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ABSTRACT

Oral epithelial dysplasia (OED) is a premalignant histopatho-
logical diagnosis given to lesions of the oral cavity. OED
grading is subject to large inter/intra-rater variability, result-
ing in the under/over-treatment of patients. We developed
a new Transformer-based pipeline to improve detection and
segmentation of OED in haematoxylin and eosin (H&E)
stained whole slide images (WSIs). Our model was trained
on OED cases (n = 260) and controls (n = 105) collected
using three different scanners, and validated on test data from
three external centres in the United Kingdom and Brazil (n =
78). Our internal experiments yield a mean F1-score of 0.81
for OED segmentation, which reduced slightly to 0.71 on
external testing, showing good generalisability, and gaining
state-of-the-art results. This is the first externally validated
study to use Transformers for segmentation in precancerous
histology images. Our publicly available model shows great
promise to be the first step of a fully-integrated pipeline, al-
lowing earlier and more efficient OED diagnosis, ultimately
benefiting patient outcomes.

Index Terms— Oral Epithelial Dysplasia, Segmentation,
Tranformer, Computational Pathology, Histopathology

1. INTRODUCTION

Oral epithelial dysplasia (OED) presents a significant chal-
lenge in the realm of head & neck pathology, where accurate
diagnosis and early detection are paramount for effective in-
tervention and the prevention of malignant progression [1].
OED is a premalignant histopathological diagnosis encom-
passing various lesions of the oral mucosa, typically mani-
festing as white (leukoplakia), red (erythroplakia) or mixed
(red-white) lesions [[1]]. Accurate diagnosis and early detec-
tion of OED are crucial for effective intervention and preven-

tion of malignant progression. However, the current manual
assessment of H&E-stained sections of oral tissue slides, the
gold standard in OED diagnosis, suffers from low throughput
and susceptibility to intra-/inter-observer variability [} 2]].

To address these challenges and enhance the diagno-
sis and management of OED, there is a growing interest in
leveraging advanced technologies, particularly deep learn-
ing, which has seen extensive use in medical image analysis
over the last decade [3 4]]. Concurrently, Transformers have
captured widespread attention in recent years due to their
successful application in various domains, including natu-
ral language processing and computer vision tasks, such as
classification [S)]. A typical Transformer encoder comprises
three fundamental components: a multi-head self-attention
(MSA) layer, a multi-layer perceptron (MLP), and layer
normalisation (LN). The inclusion of the MSA layer is par-
ticularly noteworthy as it empowers Transformers to capture
long-range dependencies, rendering them a promising choice
for semantic segmentation in the context of medical images
[6, [7]. While Transformers have demonstrated their po-
tential to mitigate some of the constraints associated with
convolutional neural networks (CNNs), their utilization in
histological applications has been primarily limited to clas-
sification tasks, with semantic segmentation left relatively
unexplored. This raises the question of whether Transformers
can be harnessed for segmentation of histological images.

In this study, we apply a Transformer-based model to a
comprehensive OED dataset for dysplasia segmentation, set-
ting a new standard in the field. Our model is built on the
Trans-UNet architecture [6], and is specifically designed for
segmenting dysplastic regions in H&E-stained whole slide
images (WSIs) of oral tissue. We believe that the applica-
tion of cutting-edge, state-of-the-art (SOTA) deep learning
techniques, such as Transformer-based architectures, holds
the potential to significantly improve the accuracy and effi-



Table 1. Internal testing results with different loss functions and patch sizes/resolutions.

. OED cases Controls
Loss Patch Size  Res. (mpp) F Recall  Prec. Spec.
Dice + CE 256 1.0 0.794 0.824 0.767 0.998
Dice + CE 512 0.5 0.781 0.792 0.771 0.999
Dice + CE 512 1.0 0.807 0.844 0.773 0.997
Dice 512 1.0 0.795 0.852 0.746 0.996
Jaccard 512 1.0 0.000  0.000 0.000 1.000
CE 512 1.0 0.805 0.834 0.778 0.998
Jaccard + CE 512 1.0 0.784 0.828 0.744 0.996

ciency of OED diagnosis. We rigorously evaluate the perfor-
mance of our model by comparing it to other SOTA meth-
ods, and demonstrate its robustness and generalisability by
extending our evaluation to include cases from three external
and international centres: Birmingham (UK), Belfast (UK)
and Sdo Paulo (Brazil). We have open-sourced our model in-
ference pipeline to facilitate broader research and application
(https://github.com/adamshephard/oed_inference).

2. METHOD

2.1. Study Data
2.1.1. Training Data

The training dataset comprised a retrospective sample of his-
tology tissue sections collected (dating 2008 to 2016) from
the Oral and Maxillofacial Pathology archive at the School
of Clinical Dentistry, University of Sheffield, UK. New tis-
sue sections of the selected cases were cut (4 pum thickness)
from formalin fixed paraffin embedded (FFPE) blocks and
stained with H&E. The dataset comprised 260 slides with a
histological diagnosis of OED, and 105 non-dysplastic (con-
trol) slides. Slides were scanned at 40x objective power with
either a NanoZoomer S360 (Hamamatsu Photonics, Japan;
0.2258 mpp), an Aperio CS2 (Leica Biosystems, Germany;
0.2520 mpp), or a Pannoramic 1000 (3DHISTECH Ltd., Hun-
gary; 0.2426 mpp) slide scanner to obtain digital WSIs. Ex-
haustive delineation of ROIs representing dysplastic epithe-
lium in OED slides, and normal epithelium in controls slides,
was performed using QuPath [§].

2.1.2. External Testing Data

For the external testing of the models generated in this study,
we recruited OED cases from three external centres: (i)
Queen’s University Belfast, UK; (ii) Institute of Head and
Neck Studies and Education, Birmingham, UK; and (iii)
Piracicaba Dental School, Brazil. 30 OED cases were col-
lected from Belfast, 30 from Birmingham and 18 from Brazil.
The Birmingham and Belfast slides were scanned at 40x ob-
jective power using a Pannoramic 250 (P250, 3DHISTECH
Ltd., Hungary; 0.1394 mpp), and an Aperio AT2 (Leica
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Fig. 1. Network architecture of the TransUNet model.

Biosystems, Germany; 0.2529 mpp) scanner, respectively.
The Brazil cases were scanned at 20X objective power, by
an Aperio CS (Leica Biosystems, Germany; 0.4928 mpp)
scanner. Owing to the limited size of the these datasets we
combined them into a single multi-institutional test set con-
sisting of 78 OED cases. Exhaustive delineation of dysplastic
ROIs in the epithelium in all cases was performed.

2.2. Network Architecture and Implementation

We present a new model for OED segmentation, based on
the TransUNet [6] architecture (see Fig. . This is a hybrid
model, that uses a CNN (ResNet50 [9]) as a feature extrac-
tor. 1 x 1 patches are then extracted from the feature maps
and used for patch embedding for the Transformer layers. Fi-
nally, a cascaded upsampler is used as a decoder. This allows
feature aggregation through skip-connections, thus leveraging
the high-resolution CNN feature maps in the decoding path.
Our model takes an input RGB image of size 512 x 512
(at 1.0 micron per pixel, mpp, resolution) and outputs a dys-
plasia segmentation map. For post-processing, we performed
morphological closing/opening, and removal of small ob-
jects and holes. We first tested the proposed model over
varying patch sizes, resolutions, and loss functions. To aid
our model in generalising to unseen domains, we tested its
performance based on various domain generalisation (DG)
techniques. Methods we employed included: weighted sam-
pling (WS), stain augmentation (SA), and domain adversarial
training (DA) [10]. Following this, we compared our model
against other state-of-the-art deep learning models for se-
mantic segmentation, including Swin-UNet [7], U-Net [11[]
(ResNet-50 [9] backbone), Efficient-UNet [12] (Efficient-
Net-B7 backbone), DeepLabV3+ [13] (ResNet-101 back-
bone), and HoVer-Net+ ([[14]; segmentation decoder alone).


https://github.com/adamshephard/oed_inference

All of these models were trained based on their default pa-
rameters, and pretrained on ImageNet.

We trained all models in two phases. We trained the de-
coders for 20 epochs first, before training the entire network
for 30 epochs second. The Adam optimizer was used with a
learning rate that decayed initially from 10 to 10 after 10
epochs, in both phases. We applied the following random data
augmentations: flip, rotation, Gaussian blur, median blur, and
colour perturbation. We additionally tested the effect of stain
augmentation using the TIAToolbox [[1S] implementation of
the Macenko method [[16]. This has been shown previously to
help counter scanner-induced domain-shift [[17, (18} [19]].

For internal testing, we split the dataset with a 80/20 split
controlled for both scanner and OED grade. This resulted in
206 OED and 75 control slides in the training set, and 54 OED
and 21 control slides in the testing set. A higher proportion
of controls were kept in the test set to ensure a high speci-
ficity of OED segmentation in controls. An equal number of
cases and controls were used from each scanner in the test
set. We tessellated our WSIs and masks into smaller patches
of size 512 x 512 (overlap of 184) pixels at 10x magnifica-
tion (1.0 mpp), resulting in a total of 11,756 normal patches
and 19,063 OED patches for model training/validation on the
discovery cohort. For model testing, we report our evaluation
metrics at the ROI level. Typically, each case/control had only
one complete tissue section annotated. However, since some
of the WSIs contained multiple tissue sections with annota-
tions, this amounted to 66 OED ROIs and 23 control ROIs for
testing. Each ROI encapsulated a whole tissue section.

For external validation, we trained our models based on
the Sheffield data, and tested on the 78 external OED cases.
This resulted in a total of 6,341 OED patches for model val-
idation. Since some of these WSIs contained multiple tissue
sections with annotations, this totalled 87 OED ROIs. The
external data only comprises OED cases (and no controls).

2.3. Evaluation Metrics

For OED cases, we report an Fl-score, recall and precision,
aggregated over all ROIs. For controls, we provide the model
specificity, since a single false positive pixel, would result in
F1, recall, and precision values of 0; thus not giving an accu-
rate representation of the model performance.

3. EXPERIMENTS AND RESULTS

We first tested the performance of our model over differing
patch sizes (and resolutions), and loss functions; where we
found a patch size of 512 x 512 at 1.0 mpp, with a combined
Dice and cross-entropy loss function to be best (see Table [I)).
Next, we tested the proposed model when comparing the in-
corporation of various domain generalisation techniques (see
Table [2). These techniques yielded no improvement in per-
formance on internal testing, with domain adversarial training

Table 2. Internal testing on the OED cases and controls,
whilst testing domain generalisation techniques.
OED cases Controls

DG Method F1 Recall Prec. Spec.
WS 0.798 0.839 0.760  0.998
SA [L16] 0.805 0.858 0.758 0.997
DA [10] 0.682 0.723 0.644 0.984
WS, SA 0.802 0.851 0.758 0.997
WS, DA 0.700 0.749  0.657 0.991
SA, DA 0.735 0.774 0.701 0.992
WS, SA, DA  0.699 0.725 0.655 0.988
Proposed 0.807 0.845 0.773 0.998

Table 3. Comparative experiments for internal testing.

Model OED cases Controls
F1 Recall Prec. Spec.
U-Net [11]] 0.775 0.796 0.755 0.996
HoVer-Net+ [14] 0.789 0.827 0.754  0.996
DeepLabV3+ [13] 0.802 0.817 0.788  0.998
Efficient-UNet [12] 0.790 0.834 0.751 0.998
Swin-UNet [7] 0.795 0.845 0.750  0.997
Proposed 0.807 0.845 0.773 0.998

Table 4. Comparative experiments for external testing.

Model F1 Recall Prec.
U-Net [11] 0.685 0.694 0.676
HoVer-Net+ [[14]] 0.668 0.719 0.623
DeepLabV3+ [13] 0.704 0.704 0.705
Efficient-UNet [12] 0.700 0.777 0.638
Swin-UNet [7] 0.680 0.728 0.638
Proposed 0.708 0.764 0.660
Proposed (SA) 0.708 0.744 0.676

hindering performance. Stain augmentation improved speci-
ficity on controls, with a slight reduction in Fl-score. We
suggest that these techniques were not beneficial on internal
testing as slides from all three scanners were present in both
the training and testing set. Instead, techniques such as stain
augmentation may be more beneficial for external testing.
We compared our model to other state-of-the-art methods
in Table[3] Here, we see the superiority of the proposed model
(F1 =0.81) when compared to all other models. DeepLabV3+
was the closest performing model (F1 = 0.80), with U-Net
being worst (F1 = 0.78). We additionally provide a dyspla-
sia heatmap for a severe OED case (see Fig. [2)), showing our
model’s accurate segmentation. The proposed model gener-
alised well on external testing, gaining an Fl-score of 0.71,
and a high recall (see Table ). Stain augmentation did not
appear to improve the model F1-score; however, it did make
the model more precise. We provide the comparative model
results in Table[d] showing our proposed model to be best.
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Fig. 2. Dysplasia segmentation heatmap for a case graded as Severe (WHO Grade) and High-risk (Binary Grade), that trans-
formed to cancer. The green line is the ground truth dysplasia segmentation by the pathologist. The red box shows a zoom in

of one the most dysplastic areas.

4. DISCUSSION AND CONCLUSION

In this study, we presented a Transformer-based model tai-
lored for OED segmentation, and introduced the most ex-
tensive and diverse OED dataset to date. This dataset com-
prises 338 OED slides from four global centres, scanned us-
ing six different digital slide scanners, along with 105 control
slides. Our study represents the first successful application of
Transformer-based architectures for semantic segmentation in
head & neck histology images. Our model’s architecture, fea-
turing the Transformer’s self-attention mechanism, enables
it to capture long-range dependencies, making it well-suited
for segmentation in complex medical images. Our model
achieved remarkable performance, consistently outperform-
ing other SOTA deep learning models. This underlines the
technical prowess of Transformer-based architectures in tack-
ling challenging medical image segmentation tasks.

We found one other study to perform OED segmentation
[20]. This study focussed on moderate/severe OED cases,
where dysplasia is more pronounced, and achieved an F1-
score of 0.64 for segmentation at the patch-level. In com-
parison, all of our metrics are provided at the ROI-level, a
harder task due to containing a higher variation of tissue type.
Even so, we have clearly surpassed this performance on both
internal (F1 = 0.81) and external testing (F1 =0.71).

A key technical achievement of our model is its robustness
across diverse data sources. By training the model on slides
from various scanners, we addressed a fundamental challenge
in medical image analysis: domain shift [21]. This ensured

our model maintained its performance, even in the presence of
variations introduced by different scanners/sites. Its ability to
generalise well across external datasets, is a crucial indicator
of its robustness and applicability in diverse clinical settings.

As we move forward, the integration of the proposed
model into clinical practice holds promise for enhancing the
efficiency and reliability of OED diagnosis. Future research
should focus on the seamless integration of this model into
the assessment of individual slides for OED diagnosis and
grading, enabling swifter and more objective treatment. Fi-
nally, the external validation of our models across multiple
centres/scanners is a notable strength of this study. Future
research could explore the application of the proposed model
in even more diverse clinical settings and expand its utility
to other histopathological tasks beyond OED. We suggest
testing the method on other precancerous squamous lesions,
such as laryngeal and cervical dysplasia, or even other types
of dysplasia such as ductal carcinoma in situ.

In conclusion, our research represents a substantial ad-
vancement in head & neck pathology by providing a powerful
publicly available model for OED segmentation, powered by
a Transformer-based architecture. This technology demon-
strates the transformative potential of computational pathol-
ogy in improving the diagnosis and management of OED. As
we address challenges and refine the model, deep learning
is poised to play a vital role in enhancing the diagnosis of
head & neck precancerous lesions in the future. Finally, this
works serves as a benchmark for future research into the use
of Transformers for segmentation in histopathology images.
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