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Abstract 

 
Background: The rapid growth and increasing complexity of software applications are causing challenges in maintaining 
software quality within constraints of time and resources. This challenge led to the emergence of a new field of study known as 
Software Defect Prediction (SDP), which focuses on predicting future defect in advance, thereby reducing costs and improving 
productivity in software industry. 
Objective: This study aimed to address data distribution disparities when applying transfer learning in multi-project scenarios, 
and to mitigate performance issues resulting from data scarcity in SDP. 
Methods: The proposed approach, namely Transfer Learning based Low Shot Classifier (TLLSC), combined transfer learning 
and low shot learning approaches to create an SDP model. This model was designed for application in both new projects and 
those with minimal historical defect data.  
Results: Experiments were conducted using standard datasets from projects within the National Aeronautics and Space 
Administration (NASA) and Software Research Laboratory (SOFTLAB) repository. TLLSC showed an average increase in F1-
Measure of 31.22%, 27.66%, and 27.54% for project AR3, AR4, and AR5, respectively. These results surpassed those from 
Transfer Component Analysis (TCA+), Canonical Correlation Analysis (CCA+), and Kernel Canonical Correlation Analysis plus 
(KCCA+). 
Conclusion: The results of the comparison between TLLSC and state-of-the-art algorithms, namely TCA+, CCA+, and KCCA+ 
from the existing literature consistently showed that TLLSC performed better in terms of F1-Measure.  
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I. INTRODUCTION 

Software requirements are becoming increasingly complex in today's landscape and as the complexity of 
software grows, its development and maintenance present significant challenges. The foremost issue 
encountered by development teams is the comprehensive testing of software. However, testing cannot guarantee 
the absence of defect, necessitating continuous testing even after release and this makes the process to be 
laborious and costly. When the prospect of source code defect can be identified in advance, based on prior 
defect knowledge, the solution is known as Software Defect Prediction (SDP), which leverages machine 
learning or deep learning to construct models. The effectiveness of SDP models relies heavily on the quality and 
quantity of data used for training. This data comprises various elements, including software metrics of source 
files, developer experience, log files, and previous bug fixes. SDP models fall into the category of supervised 
models, necessitating well-labeled data for training predictive models. Moreover, it is important to be aware that 
many studies have discussed the scarcity of labeled data [1] [2] [3].  

Acquiring labeled data for constructing supervised learning models is a resource-intensive, time-consuming 
process that demands considerable effort when conducted manually. Consequently, studies have explored the 
application of multiple levels of transfer learning to address the data scarcity and distribution disparities, which 
often lead to performance overhead. J. Chen et al. [4] and J. Bai et al. [5] applied three levels of transfer learning 
model training, while another study used a two-level model training approach [6]. Tang et al. even went further 
by implementing multiple classifier training iterations before constructing the final classifier [7]. In one study, 
the source code was initially converted into images, followed by the application of deep transfer learning to 
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detect defective code from the image data [8]. However, it is crucial to acknowledge that excessive use of 
multilevel training can counteract the primary purpose of SDP by consuming resources and adding substantial 
time to the training and retraining of models using neural networks. This shows the need for tools that can 
efficiently collect data or propose alternative approaches requiring less data and fewer iterations for accurate 
prediction.  

The two approaches that can address these challenges are Transfer Learning and Low Shot Learning. Deep 
learning, in particular, demands an extensive amount of data for model training but offers advanced ways to 
repurpose trained models. An example is a scenario where deep learning model is trained using a dataset 
containing 10 million rows. Training this kind of model is often time-consuming and resource-intensive, hence, 
it is more practical to freeze the trained models and apply them to test a different target dataset, rather than 
going through the entire retraining process. This process of transferring knowledge from source data to make 
prediction on target data is known as deep transfer learning. 

Low shot learning presents a solution to the challenge of limited data availability. Essentially, it consists of 
working with smaller data sets, which differs from the standard practice for constructing machine learning and 
deep neural network models [1].  

In the proposed SDP approach, referred to as Transfer Learning based Low Shot Classifier (TLLSC), transfer 
learning models serve as a valuable knowledge source for low shot learning. This approach improves predictive 
accuracy, even when operating with minimal training data, as shown in Fig. 1. SDP approach effectively 
addresses the issue of data distribution disparities in multi-project scenarios and alleviates performance 
challenges arising from data scarcity. 

The subsequent sections of this paper contain Section II, which offers an overview of the existing studies in 
the literature review. Section III focuses on the specifics of the proposed approach and Section IV discusses the 
results and inferences. Section V provides insights derived from the results, while Section VI describes the 
conclusion of the study. 

II. LITERATURE REVIEW 

SDP has recently become prominent in the recent years due to the advancement of processing hardware such 
as robust CPUs and GPUs. This progress has made the development and training of software models for 
prediction more accessible but there are still critical gaps that require attention in this field. 

In the context of Unified Modeling Language (UML) class and sequence diagram classification sourced from 
the Github repository, Low Shot Learning has found application [1]. The approach comprised the use of a four-
layer convolutional neural network for low shot learning. It was observed that low shot learning had 
traditionally been effective for image data but was less suitable for conventional textual data. Wang et al. [9] 
introduced a solution to address disparities in metric distribution and class imbalances in heterogeneous defect 
prediction, which consists of using data from one project to predict defect in another. The study solved the class 
imbalance challenge through undersampling and addressed distribution differences. Another study addressed 
distribution differences between source and target projects, and proposed a feature-matching solution that 
selected features and their distribution curves from both source and target projects to mitigate heterogeneity 
[10]. In response to distribution disparities, one study suggested a source project selection process in which two 
sources with matching distributions to the target projects were chosen for maximum performance [6]. Two 
Transfer Component Analysis (TCA+) models were then constructed for each source-target combination, 
resulting in improved prediction results. 

Transfer Naive Bayes (TNB) was applied to analyze the distribution of test data and transform the training 
input into weights, which could then be used to construct a model [11]. In the process of improving intrusion 
detection system accuracy, a solution was proposed. This comprised the use of data from various layers of the 
Convolutional Neural Network (CNN) and the application of Linear Support Vector Machine (SVM) and Single 
Neural Network (1-NN) classifier for few-shot intrusion detection [3].  

AdaBoost, also known as adaptive boosting, combines multiple weak classifiers into a robust, single strong 
classifier. Additionally, it assigns more weight to challenging instances for classification and less weight to 
those that are easier to classify. AdaBoost is versatile, addressing differences in metrics and distribution in 
datasets, as well as the challenge of class imbalances [9]. It also addresses the issue of insufficient data for 
creating supervised learning models, introducing Few-Shot Learning-Based Balanced Distribution Adaptation 
(FSLBDA). The approach leverages Extreme Gradient Boosting to eliminate redundant metrics from data, as 
opposed to rows. Moreover, Gradient Boosting is a class of ensemble machine learning algorithms suitable for 
both classification and regression, where ensembles are constructed from decision tree models added iteratively, 
correcting prediction errors of earlier models. 

Domain adaptation falls within the context of machine learning, addressing situations where models trained 
on a source distribution are applied within a different target distribution. There should be a degree of relatedness 
between the source and target domains. The objective of domain adaptation is to grapple with varying metrics 
across projects while achieving satisfactory results with machine learning models. In the study, Usherwood and 
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Smit [12] compared deep transfer learning with classical machine learning approaches for low shot 
classification. Given that most machine learning and deep learning approaches demand substantial data for 
training, the exploration focused on low shot scenario, including 100 to 1000 labeled examples per class. 

Data scarcity has consistently caused a significant challenge for prediction models. To address this issue, 
many studies have combined data from multiple projects to create a larger training dataset. However, the 
extensive data collection may contain irrelevant information that needs to be filtered out before training the 
models. A semi-supervised data filtration approach was introduced by using the Semi-Supervised Density-Based 
Spatial Clustering of Applications with Noise (SSDBSCAN) filter. Additionally, the multi-source Transfer 
AdaBoost (TrAdaBoost) algorithm was introduced for transfer learning [13]. 

In cross-project defect prediction [14], the data distribution may differ, but their attribute sets need to be 
same. This requirement is contrary to transfer learning [15][16][17], a framework proposed in 2019 for 
identifying bug classes. Bugs were classified as follows: 

1) Bohrbugs, which are easily reproducible under controlled conditions,  
2) Mandelbugs, which prove challenging to reproduce using traditional approaches [18].  

The study by [18] used the TrAdaBoost approach of instance-based transfer learning, incorporating three 
different classifier, namely the Gradient Boosting Classifier (GBC), the Stochastic Gradient Descent Classifier 
(SGD), and the AdaBoost Classifier (ABC). One-to-one project mapping was used for both training and testing. 
These two projects may belong to the same company, with the developer team potentially sharing common 
members. Cross-company projects were used to develop transfer learning models, emphasizing the need to 
eliminate irrelevant data from multiple projects used in model development.  

In existing literature, low shot learning has primarily found application in computer vision, image detection 
[19][20], and natural language processing. In these domains, even a single labeled sample can suffice for 
training and constructing prediction models. However, this does not hold in SDP, which relies on source code 
metrics data. Applying low shot concept in the context of SDP differs substantially from working with image 
data. The number of samples required to achieve acceptable results in SDP is considerably higher compared to 
image data [2]. The following section introduces solutions to these key challenges. 

III. METHOD 

Transfer learning served as a mechanism for constructing a knowledge base from various data sources, 
establishing the foundation for model training. This approach effectively resolved the challenges linked to data 
scarcity, while low shot learning [21][22] improved project performance in situations consisting of limited 
datasets. The combined influence of transfer learning and low shot learning significantly enhanced prediction 
accuracy. 

In this paper, TLLSC was introduced to address concerns related to data scarcity and distribution disparities 
among datasets in SDP. The proposed SDP approach integrated deep transfer learning and low shot learning in a 
hierarchical manner. The primary model was trained using data from multiple projects characterized by minimal 
distribution differences. Subsequently, it went through retraining using smaller projects with inadequate data to 
create a comprehensive prediction model. The knowledge acquired from multiple projects was transferred to 
form a generalized model, improving its capability to address low shot challenges. 
 

 
 

Fig. 1 Flowchart of the proposed approach 
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A. Dataset  

This study used six projects from the existing literature, comprising three projects from the National 
Aeronautics and Space Administration (NASA) and three projects from Software Research Laboratory 
(SOFTLAB) repository. These projects were well-established and consistent with the study objectives, offering 
reliability and precision. Furthermore, the dataset sizes conformed to the study's requirements, as shown in 
Table 1. 

TABLE 1 
DATASET SIZE 

Repository Name Project Name Data Size (Rows, Features) 

SOFTLAB AR3 (63,21) 
SOFTLAB AR4 (107,21) 
SOFTLAB AR5 (36,21) 
NASA CM1 (327,21) 
NASA MW1 (253,21) 
NASA PC1 (705,21) 

 

B. Performance metrics  

To assess the performance of the model, a calculation of four widely adopted metrics was executed, namely 
Accuracy, Precision, Recall, and F1 Measure. These metrics were fundamental for evaluating model 
effectiveness. It was essential to be aware that relying solely on Precision and Recall individually could produce 
skewed results in a generalized context. Therefore, the F1 measure was chosen to represent the harmonic mean 
of Precision and Recall, in order to obtain a comprehensive assessment. All metrics were computed from the 
confusion matrix, allowing for the recording of True Positive (TP), False Positive (FP), False Negative (FN), 
and True Negative (TN) values to validate performance. 

C. Data Pre-processing  

Prerequisite to data usage in SDP was data cleaning, optimizing the final model's performance. The proposed 
algorithm removed duplicate rows in each project dataset, retaining only the initial instance. Furthermore, it 
addressed rows with null values by substituting them with the feature's mean. The dataset may also have 
contained outliers, which were excluded when their z-score values exceeded 3, improving the final SDP model's 
performance. 

D. Normalization  

Given the diversity of software metrics in each project, each metric showed variation in scale and units. To 
resolve this discrepancy, normalization was crucial to scale metrics within the range of 0 to 1 using 
MinMaxScaler, facilitating the model's convergence to local minima. 

E. Standardization  

With the normalization of metrics within individual project datasets, discrepancies in standard deviation 
values for identical metrics across different projects posed challenges when consolidating data for training deep 
learning models. Standardization played a crucial role in supporting software metrics from all projects within a 
consistent value range via StandardScaler. 

F. Sub sampling or clustering  

Combining multiple project datasets often resulted in a substantial dataset. Large datasets were presumed to 
contain homogeneous data regions that clustering could identify. Each homogeneous cluster had a unique value 
range, suitable for serving as training samples for target data, contingent on cluster compatibility. For example, 
a combined dataset could be grouped into three homogeneous clusters, each showing a heterogeneous 
distribution of values. 

G. Feature selection  

The number of rows and features in the dataset significantly impacted deep learning model performance. This 
simply implied that reducing features played a very important role in SDP model. Software metrics dataset 
included features loosely connected to the final dependent variable. The algorithm incorporated chi-square-
based feature selection through the scikit-learn Python library, thereby eliminating features with minimal impact 
on prediction classifier and greatly improving model performance.  
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Fig. 2 TLLSC Framework 

 
Algorithm 1 
Transfer Learning based Low Shot Classifier (TLLSC) 

Set project as p1,p2, pn // P1, P2 … Pn denotes software projects metrics dataset 
set Testing project as L // L denote the target project software metrics dataset 
function TestDataProcessing() 
begin 
 min_max_scaler(L) 
  return Ln 
 standard_scaler(Ln) // Ln denotes normalized target dataset 
  return Lns 
 feature_selection(Lns) 
  apply_chi_square(Lns) // Lns denotes scaled Ln 
   return Lns’              // Lns’ denotes Lns with only selected features. 
 create_clusters(Lns’) 
  return L0,L1, …Ln  // L1, L2….Ln denote the clusters of target dataset L after preprocessing 
end 
function build_model() 
begin 

set T0,T1… Tn = TrainingDataPreProcessing() 
for each T0, T1… Tn 

apply_stratified_split() 
return XT0,YT0……XTn,YTn 

foreach XT0,YT0……XTn,YTn 
function generate_CNN(XT0, YT0) 
 apply_dropout_regularization() 
  return C0 // C0 denote CNN model corresponding to XT0 and YT0 
return C0, C1….Cn  

end  
function Predictor() 
begin 
 for each pair D0(T0,L0), D1(T1,L1), Dn(Tn, Ln) 
  function find_correlation(D) // D denotes Training and testing data pair(T,L) 
   return correlation_coefficient (CC) 

function MaxCorrelation(CC) 
 return D 

 selectBestModel from build_model() 
   return C 
// C denotes best classification model and D denotes Highest correlated Training and testing data pair. 
function MakePrediction(C,D) 
end 
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In order to generalize the models, n-clusters will generate n-models, each of which will become prediction 
model based on the correlation with target set. 

H. Transfer Learning based Low Shot Classifier (TLLSC)  

The proposed SDP framework, known as TLLSC, is a system where data dimensions of each dataset were 
shown in  

TABLE 1. The TLLSC framework can be seen on Fig. 2. These datasets comprised different software 
metrics, including total lines of code (LOC), blank LOC, cyclomatic complexity, condition count, decision 
count, comment LOC, total operators, total operands, total unique operators, total unique operands, halstead 
length, halstead volume, halstead difficulty, halstead error, halstead time, design complexity, and labels. 
Additionally, the labels signified whether the source file was defective or defect-free, serving as the dependent 
variable. Deep learning models scrutinized these dataset attributes for model training. After training, the model 
became capable of predicting defect proneness of source files based on insights gleaned from the labeled 
dataset.  

The lack of labeled data created a significant challenge in software industry, a matter observed in numerous 
literature reviews. To address the issue, TLLSC consolidated data from multiple software projects, creating a 
dataset of sufficient size for training CNN models. These datasets often showed variations in metric values, 
measurement scales, and condition counts due to different development teams. To rectify these distribution 
disparities, pre-processing, normalization, and standardization were applied. As outlined in Algorithm 1, once 
the datasets were standardized, they were used for CNN model training. The "TrainingDataProcessing()" 
function generated a combined dataset for the model-building phase, as shown in Fig. . These datasets were 
divided into training and testing sets, followed by dropout regularization to fortify the CNN models. The best 
model was chosen as the final classifier (C) based on the accuracy achieved in the model-building phase. 

The issue of scarcity persisted in new projects that lacked sufficient data for training CNN models. In this 
context, TLLSC leveraged the combined dataset created through the "TrainingDataProcessing()" function. This 
dataset went through scaling, aggregation, and clustering to generate test data. The "TestingDataProcessing()" 
function was then applied to the smaller project dataset, producing a highly correlated mixed dataset (D) using 
k-means correlation analysis between clusters from the combined dataset and the smaller test dataset, as shown 
in Fig. . Subsequently, classifier (C) was trained on dataset D, enabling prediction for all new, unseen data in the 
test project.  

IV. RESULTS 

In the study, experiments were conducted including three NASA projects (CM1, MW1, and PC1) and three 
projects from the SOFTLAB repository (AR3, AR4, and AR5). The CNN model was trained with various 
activation functions, optimizers, loss functions, and iterations to ensure effective prediction performance. 
The experiments were carried out on a computer equipped with an Intel i5 dual-core processor and 8 gigabytes 
(GB) of RAM. The entire experiment was developed using Python 3.9, incorporating scikit-learn, TensorFlow, 
and other related Python packages. The hyperparameters used for fine-tuning the CNN model are shown in 
Table 2. 

TABLE 2 
HYPER PARAMETERS USED FOR TUNING THE CNN MODEL 

Parameter name Value 
Batch Size 16 and 32 
Epochs 50, 100, 200 
Optimizers adam 
Train-Test Split Ratio 70:30 
Drop-out Ratio 0.2, 0.3 
Activation Function relu 
Number of Layers 3 
Learning Rate 0.01 

 
The approach consisted of selecting three NASA projects (CM1, MW1, and PC1) for building the CNN 

models, and three SOFTLAB projects were also used as the target dataset to evaluate the effectiveness. The 
proposed TLLSC model was applied to the dataset mentioned in  

TABLE 1, using different projects for training the model.  
The results, as shown in Table 2, included the outcomes of the experiments along with the sizes of the 

training and target datasets. Cluster 1 showed the highest accuracy when MW1 served as the training dataset and 
AR5 as the target dataset. On the other hand, cluster 2 showed lowest accuracy with the same combination of 
MW1 and AR5. This implied that cluster 1 was more inclined with the target data, showing a high level of 
homogeneity, while cluster 2 seemed to contain outliers or presented heterogeneity.
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TABLE 3 
RESULTS FROM THE EXPERIMENT USING NASA PROJECT AS TRAINING AND SOFTLAB PROJECT AS TARGET 

Training 
Data 

Target 
Data 

Training 
size 

Target 
size 

Accuracy 
(%) 

Precision (%) Recall 
(%) 

F1 Measure (%) TP FP FN TN Cluster 

CM1 AR3 (42, 21) (63, 21) 92 93.1 98.1 95.5 54 4 1 4 1 
MW1 AR3 (46, 21) (63, 21) 93.6 93.2 100 96.4 55 4 0 4 1 
PC1 AR3 (653, 21) (63, 21) 88.8 88.7 100 94.0 55 7 0 1 1 
CM1 AR3 (285, 21) (63, 21) 88.8 88.7 100 94.0 55 7 0 1 2 
MW1 AR3 (207, 21) (63, 21) 88.8 91.3 96.3 93.8 53 5 2 3 2 
PC1 AR3 (52, 21) (63, 21) 90.4 90.1 100 94.8 55 6 0 2 2 
CM1 AR4 (293, 21) (107, 21) 86.9 89.2 95.4 92.2 83 10 4 10 1 
MW1 AR4 (45, 21) (107, 21) 86.9 86.8 98.8 92.4 86 13 1 7 1 
PC1 AR4 (654, 21) (107, 21) 83.1 83.4 98.8 90.5 86 17 1 3 1 
CM1 AR4 (34, 21) (107, 21) 82.2 82.0 100 90.1 87 19 0 1 2 
MW1 AR4 (208, 21) (107, 21) 85.0 85.1 98.8 91.4 86 15 1 5 2 
PC1 AR4 (51, 21) (107, 21) 85.9 87.5 96.5 91.8 84 12 3 8 2 
CM1 AR5 (285, 21) (36, 21) 88.8 92.8 92.8 92.8 26 2 2 6 1 
MW1 AR5 (46, 21) (36, 21) 94.4 93.3 100 96.5 28 2 0 6 1 
PC1 AR5 (653, 21) (36, 21) 83.3 82.3 100 90.3 28 6 0 2 1 
CM1 AR5 (42, 21) (36, 21) 91.6 93.1 96.4 94.7 27 2 1 6 2 
MW1 AR5 (207, 21) (36, 21) 77.7 77.7 100 87.5 28 8 0 0 2 
PC1 AR5 (52, 21) (36, 21) 91.6 96.2 92.8 94.5 26 1 2 7 2 

A closer examination showed that when CM1 was used as the training project, the highest F1-measure value, 
reaching 94%, was observed with AR3 as the target project. Subsequently, with AR4, Kernel Canonical Correlation 
Analysis plus (KCCA+) achieved 84%, Canonical Correlation Analysis (CCA+) was 80%, and Transfer Component 
Analysis (TCA+) attained 40%. TLLSC also showed excellent performance with maximum F1-measure values of 
95% and 94% when MW1 and PC1 were used as training projects, respectively. 

These results showed that TLLSC consistently outperformed the other approaches across various combinations of 
training and target projects with different sizes. Furthermore, the F1-measure values for TLLSC showed less 
variation compared to the other approaches, signifying its robustness in effectively handling variations. 

To further evaluate the effectiveness of the proposed approach, an additional experiment was conducted using a 
different configuration. Data from three projects (CM1, MW1, and PC1) were combined to create a larger dataset 
for training the model, and then the model was sequentially tested on three SOFTLAB projects (AR3, AR4, and 
AR5). 

Table 3 showed the experimental results for each cluster, including accuracy, precision, recall, and F1-measure. 
TLLSC achieved a maximum F1-measure of 94.8% and a minimum of 90.2%. TLLSC showed an impressive 
accuracy of 88.9% even with a small dataset containing only 36 rows, with maximum values shown in bold and 
minimum values underlined. 

 
TABLE 4 

RESULTS FROM THE EXPERIMENT USING COMBINED 3 NASA PROJECTS AS TRAINING AND SOFTLAB PROJECTS AS TARGET 
Training 
Data 

Target 
Data 

Training 
size 

Target 
size 

Accuracy 
(%) 

 Precision  
(%) 

Recall (%) F1 Measure  
(%) 

TP FP FN TN Cluster 

CM1, MW1, PC1 AR3 (1112,21) (63, 21) 90.5 91.5 98.2 94.7 54 5 1 3 1 
CM1, MW1, PC1 AR4 (1112,21) (107, 21) 82.2 82.1 100 90.2 87 19 0 1 1 
CM1, MW1, PC1 AR5 (1112,21) (36, 21) 88.9 87.5 100 93.3 28 4 0 4 1 
CM1, MW1, PC1 AR3 (173, 21) (63, 21) 90.5 90.2 100 94.8 55 6 0 2 2 
CM1, MW1, PC1 AR4 (173, 21) (107, 21) 85.0 85.1 98.9 91.5 86 15 1 5 2 
CM1, MW1, PC1 AR5 (173, 21) (36, 21) 86.1 84.8 100 91.8 28 5 0 3 2 

V. DISCUSSION 

TLLSC, when applied to AR3 and AR4, achieved the highest F1-Measure of 95% and 92% when MW1 served as 
the source project. For AR5, the highest F1-Measure of 93% was attained with CM1 as the training source.  

To prove the effectiveness of the proposed approach, a comparative analysis was conducted with state-of-the-art 
approaches from the literature [23] [24] [25]. The baseline approaches used identical datasets for their experiments, 
ensuring a robust and ethical comparison. Various evaluation metrics, including accuracy, precision, recall, and F1-
Measure, were generated as prediction outputs. F1-Measure provided a balanced measure of performance compared 
to recall and precision, which showed an inverse relationship. 

TABLE 4 showed a comparison of F1-Measure results achieved by different approaches, namely TCA+ [23], 
CCA+ [24], KCCA+ [25], and the proposed TLLSC. The evaluation was executed using distinct training projects, 
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with three projects, AR3, AR4, and AR5, as the target projects. The F1-Measure values in TABLE 4 showed the 
averages derived from both one-cluster and two-cluster scenarios. 

TLLSC approach outperformed all other existing approaches examined in this study as it achieved a minimum F-
Measure of 91% and a maximum of 95% when conducting one-to-one project prediction. When training with multi-
project data, the F1-Measure ranged from 90% to 94%. However, the other approaches reached maximum values of 
84%, 80%, and 55% for KCCA+, CCA+, and TCA+, respectively. 

 
TABLE 4 

F-MEASURE VALUES WHEN USING CM1, MW1 AND PC1 AS TRAINING PROJECTS AND AR3, AR4 AND AR5 AS TARGET PROJECTS 

Training project Target project TCA+ (%) CCA+ (%) KCCA+ (%) TLLSC (%) 

CM1 
AR3 33 61 66 94 
AR4 40 80 84 91 
AR5 37 71 77 93 

MW1 
AR3 48 58 65 95 
AR4 38 70 75 92 
AR5 55 68 72 91 

PC1 
AR3 30 80 79 94 
AR4 37 75 74 91 
AR5 50 76 80 92 

A comparison of TLLSC's performance with the existing approach CCA+ [24] was carried out using the 
combined dataset of CM1, MW1, and PC1. The results in Table 5, clearly showed TLLSC's superiority across 
various combinations. Specifically, TLLSC outperformed CCA+ by 9%, 2%, and 12% when AR3, AR4, and AR5 
were used as the target data in this combined configuration experiment. 

The results provided additional validation of the superiority of the proposed TLLSC approach when compared to 
existing approaches. This findings was recorded because it consistently delivered better results across different data 
combinations and specifically outperformed CCA+ as seen at Table 6. 

 
TABLE 5 

F-MEASURE VALUES WHEN USING CM1, MW1 AND PC1 AS TRAINING PROJECT 
Target project CCA+ (%) TLLSC (%) 
AR3 85 94 
AR4 88 90 
AR5 80 92 

Fig. 3 showed a comparative analysis of the proposed approach TLLSC with other state-of-the-art approaches 
such as TCA+, CCA+, and KCCA+ using F1-Measure performance metric. The bar graph showed the total 
comparison for one-to-one and many-to-one scenarios of model training and validation. All these experiments were 
conducted using standard datasets, making the proposed approach easily reproducible for validation. 

The high predictive performance of TLLSC was positioned to enable the swift and efficient resolution of software 
defect, along with averting future issues through in-depth project code analysis in advance. This promised cost 
savings in software projects and an augmentation of productivity. 

A. Threats to Validity 

During the design of the proposed approach and the execution of experiments, specific assumptions were made 
that could introduce variability when replicating the study. These assumptions included aspects such as the number 
of epochs needed for training each model, the random state used for the training and testing division, and the impact 
of feature selection on performance outcomes. Different attribute combinations could produce diverse observations 
and results. 

The computation of metrics, including accuracy, recall, precision, and F1-measure, could fluctuate based on the 
specific algorithm used. Python offered a range of pre-built packages with distinct implementations of these metrics, 
potentially resulting in varying values. In this study, all metric calculations were grounded in the confusion matrix, 
providing a robust foundation for evaluating model performance. Considering these factors, it was crucial to 
consider the assumptions made and meticulously replicate the experimental conditions to ensure consistent and 
dependable results. 
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Fig. 3 Comparative analysis of TLLSC with other approaches (a) F-Measure values when using CM1 as training project (b) F-Measure values 
when using MW as training project. (c) F-Measure values when using PC1 as training project (d) F-Measure values when using CM1, MW1 and 
PC1 as training project 

VI. CONCLUSION 

In conclusion, the paper introduced a hybrid approach called TLLSC, which combined transfer learning and low 
shot learning to predict defect in projects with limited datasets. TLLSC was applied to three NASA projects for 
model training and three SOFTLAB projects for validation. The experimental results established the superiority of 
the proposed approach when compared with the existing ones in the literature. 

These results affirmed that TLLSC adeptly addressed the challenges stemming from limited data availability and 
distribution variations. This proficiency was crucial for early detection and rectification of errors in software 
projects. The important role of transfer learning in constructing a knowledge base for low shot learning significantly 
improved model training. Both 1-to-1 and n-to-1 project ratios were used in the training and validation of the model. 

Clustering the data into homogeneous sets produced an enhancement in the model's performance. TLLSC showed 
its effectiveness even with datasets as small as 36 rows, showing its capacity to handle projects with limited data.  

Future investigations are needed to explore the generalizability of the approach and its application to larger and 
more diverse datasets. 
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