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Abstract 
 
Background: COVID-19 is a highly contagious respiratory disease with multiple mutant variants, an asymptotic nature in 
patients, and with potential to stay undetected in common tests, which makes it deadlier, more transmissible, and harder to 
detect. Regardless of variants, the COVID-19 infection shows several observable anomalies in the computed tomography 
(CT) scans of the lungs, even in the early stages of infection. A quick and reliable way of detecting COVID-19 is essential 
to manage the growing transmission of COVID-19 and save lives. 
Objective: This study focuses on developing a deep learning model that can be used as an auxiliary decision system to 
detect COVID-19 from chest CT-scan images quickly and effectively. 
Methods: In this research, we propose a MobileNet-based transfer learning model to detect COVID-19 in CT-scan images. 
To test the performance of our proposed model, we collect three publicly available COVID-19 CT-scan datasets and prepare 
another dataset by combining the collected datasets. We also implement a mobile application using the model trained on 
the combined dataset, which can be used as an auxiliary decision system for COVID-19 screening in real life. 
Results: Our proposed model achieves a promising accuracy of 96.14% on the combined dataset and accuracy of 98.75%, 
98.54%, and 97.84% respectively in detecting COVID-19 samples on the collected datasets. It also outperforms other 
transfer learning models while having lower memory consumption, ensuring the best performance in both normal and low-
powered, resource-constrained devices. 
Conclusion: We believe, the promising performance of our proposed method will facilitate its use as an auxiliary decision 
system to detect COVID-19 patients quickly and reliably. This will allow authorities to take immediate measures to limit 
COVID-19 transmission to prevent further casualties as well as accelerate the screening for COVID-19 while reducing the 
workload of medical personnel. 
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I. INTRODUCTION 

Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory illness caused by a virus named severe 
acute respiratory syndrome coronavirus 2 or SARS‑CoV‑2, which has claimed more than 6.5 million human lives 
worldwide [1]. Upon entering the respiratory system, the virus causes viral sepsis, which induces severe 
respiratory distress or pneumonia in the patients. It also destroys the lung cells gradually, which in turn may lead 
to death by respiratory failure. COVID-19 transmissions occur primarily via respiratory droplets from coughs and 
sneezes. The affected show initial symptoms like cough, high fever, severe fatigue, muscle spasms, shortness of 
breath, vomiting, and loss of taste and smell [2]. These initial symptoms of COVID-19 are somehow similar to 
the symptoms of seasonal flu or community-acquired pneumonia. This makes detecting COVID-19 by symptoms 
difficult. Furthermore, a significant number (about 40.5% globally [3]) of people who are infected do not develop 
noticeable symptoms making COVID-19 harder to detect [4], [5]. Nowadays, the multiple mutations of the 
SARS‑CoV‑2 virus have also made the disease more deadly and even harder to detect by current means of 
detection [6]. 

There are more than five major mutations of the SARS‑CoV‑2 virus [7], [8]. Among them, the most concerning 
global variants are the delta and omicron variants. The delta variant that was recorded in October 2020 has 
significantly increased transmissibility and is more contagious than previous variants. It is 50% more transmissible 
and 2 times more contagious than the alpha variant, and 225% more transmissible than the original strain from 
Wuhan [9]. The effectiveness of the vaccines has also decreased against the mutation of the delta variant [10], 
[11]. It also can escape the immune system due to its mutations. In a study, researchers found the delta variants to 
infect 74% of patients who were fully vaccinated [12]. This has caused an increase in hospitalizations and resulting 
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deaths. The omicron variant that was recorded in November 2021, is also highly transmissible. It is more quickly 
transmissible than the previous Alpha, Beta, Gamma, and Delta variants. It can multiply in the lung cells 70 times 
faster than the Delta variant [13]. A mutation of omicron gained the nickname of the “stealth” variant due to a 
lack of similarity from the original Omicron strain and dissimilarities in the spike protein. This has made the 
variant hard to detect or track. A patient infected with the omicron variant of COVID-19 can spread the virus to 
others regardless of vaccination status. It can even cause reinfection in people who have recovered from COVID-
19 infection. Although it is highly transmissible and contagious, its symptoms are less fatal than the delta variants 
[14]. For this, although omicron variants have caused a record number of infections in a short period, the death 
caused by omicron variants is much lower than the delta variant.  

Among the methods being used to diagnose COVID-19 worldwide, reverse transcription polymerase chain 
reaction (RT-PCR), chest X-ray, and computed tomography (CT) scan are the most accepted practices to screen 
for COVID-19 infection. Among them, CT scan has superior sensitivity and specificity,  better accuracy, and 
excellent positive and negative predictive value for the diagnosis of COVID-19 compared to RT-PCR [15], [16], 
and chest X-ray [17], [18]. Moreover, RT-PCR, which was widely used before, fails to detect the newer variants 
of COVID-19 [19], [20]. RT-PCR also may give negative results in the early stages of infection when the viral 
load is low whereas, CT scans can show the changes due to COVID-19 from the early stages. CT scans of the 
chest area can show these small details such as small patches, and opaque shadows in the lungs very clearly and 
accurately, whereas, in X-rays, the patches seem unclear due to the lower sensitivity of X-ray images. The 
presence of the enclosing ribcage around the lungs and other noises in the X-ray images also restricts us from 
seeing the smallest development of COVID-19 in the early stages of infection.  

Regardless of variants and mutation, a CT scan of a COVID-19-infected patient shows visible anomalies in the 
lung from early stages. The radiographic imaging of the chest of an affected person contains multiple, irregular, 
sub-segmental, or segmental ground-glass density shadows in both lungs. Alternatively, it may contain multiple 
patchy, or large patches of consolidation in both lungs, with a little grid-like or honeycomb-shaped interlobular 
septal thickening, especially in the middle and lower lobes [21]. The spread of the observable anomalies depends 
on the stages of infection. Based on the examination of these opacities in of lungs, the doctor can identify the 
patients affected by COVID-19. Fig. 1 shows the distinctive feature of COVID-19-infected lungs compared to 
normal lungs. 
 

 
Fig. 1 Distinctive features of infected lungs. (a) Normal lungs; (b) Infected lungs with ground glass density shadows; (c) Infected lungs 

with a patch of consolidations 

 
Every day, thousands of people get hospitalized for COVID-19 infection. The limited number of specialized 

doctors available makes it practically impossible to quickly test, detect, and isolate the growing number of 
COVID-19 patients. Also, the mutations have made the virus more transmissible and deadlier than before. The 
damage done to the respiratory system is more severe than the previous infections. There is also the chance of 
reinfection due to COVID-19 mutations like omicron variants. Normally, the patients are not quarantined until 
positive results are found on the RT-PCR test. This enables the patients to continue spreading the infection during 
the conclusion of RT-PCR which is used dominantly in the diagnosis of COVID-19. We need to shorten the time 
needed for the diagnosis of COVID-19 patients to contain the transmission caused by the mutated variants. Also, 
we need to detect the infection from its early stages to properly isolate and treat the patients to save their lives. 
Further, we need to make the process as accessible as possible to properly contribute to the frontline workers for 
COVID-19. To solve this problem, we need to find a solution that can detect the infection quickly and accurately, 
so that, we can quickly check and isolate the patients from the early stages of infection to prevent the spread of 
infection as well as reduce the chance of reinfection in recovering patients.  

In this research, we address the problem by automating the detection process using transfer learning to enable 
quick and accurate detection of infected patients using chest CT scans. We have also created a generalized model 
that can be used in real life to provide an auxiliary decision system to radiologists in the diagnosis of COVID-19. 

(c) (a) (b) 
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We have further demonstrated a way to make the model portable so that it can be used on web-based platforms 
and mobile devices. 

The main objective of this research is to develop an image classification model using transfer learning that can 
detect CT scans of COVID-19-infected patients quickly, reliably, and accurately. We aim to shorten the time 
needed to detect a patient with COVID-19 and thus reduce the transmission caused by patients suspected of 
COVID-19 infection. We also focus on making the model effective so that it can be used in real life as an auxiliary 
decision system. We further focus on making the model simple, easily trainable as well as accessible to our daily 
devices. 

II. LITERATURE  REVIEW 

Due to CT scans providing a very clear, accurate, and detailed image of an organ, even before COVID-19, 
many researchers used images of chest CT scans to detect different diseases such as pneumonia, lung damage, 
fluid buildup, lung cancer, asthma, etc. in the patients. They have followed different machine learning paradigms 
to achieve their desired result. During the pandemic, many researchers have come forward and used their prior 
knowledge and experience to help humanity fight against COVID-19. Some researchers curated multiple sources, 
collected images of chest CT scans, and labeled them using help from experienced doctors to provide a working 
dataset to reduce the scarcity of datasets. While others used their knowledge of machine learning on public datasets 
to automate the detection of COVID-19 in patients. 

Yener et al. [22] studied the performance of VGG16 [23], VGG19 [23], and Xception [24] in classifying 
COVID-19 from CT scans. They have used a balanced dataset with 3227 CT images, which consists of 746 
samples from the public dataset provided by Yang et al. [25] along with images they collected from multiple 
sources from Kaggle [26]. In the research, they used early stopping and reduced learning rate on the plateau with 
different parameters. They have also applied mini-batching, dropouts, and different learning rates during model 
training to address overfitting. They achieved the best result using VGG-16 with ImageNet [27] pre-trained 
weights and a learning rate of 10-4. Their proposed VGG-16 model achieved accuracy of 93%, f1-score of 94% 
and area under ROC curve 93% in detecting COVID-19 from CT scan images. 

Wu et al. [28] compared the performance of AlexNet [29], VGG-16 [23], ResNet [30], SqueezeNet [31], and 
DenseNet [32] on a small dataset provided by Soares et al. [33] to find the best method of identifying COVID-19 
pneumonia in chest CT scan images. They have also tried to determine the effect of pre-trained weights on the 
performance of the models detecting COVID-19 from CT scan images. They used the pre-training weight of the 
models trained on the MNIST dataset [34]. Using the pre-trained weights, VGG shows the best accuracy of 80.5% 
while others show accuracy between 68.5% to 78.5%. Without using the pre-trained weights, only VGG-16 and 
ResNet models could achieve an accuracy of 82.5% while other models show an accuracy between 70% to 78%. 
They concluded that not using pre-trained weights gives a better result in the case of detecting COVID-19 from 
CT scan images. 

Anwar et al. [35] fine-tuned EffiecientNet-B4 [36] architecture and trained on the Yang et al. dataset [25] to 
develop a COVID-19 detector for the CT images. They fined tuned the learning rate of the model. They used three 
different learning rate strategies. First, they tried reducing the learning rate when model performance stopped 
increasing. Later they used a cyclic learning rate to train the model. Lastly, they used a constant learning rate to 
train the model. In the end, they performed 5-fold cross-validation on the test data and averaged the test predictions 
of each fold to determine which strategy performed better. By comparing the performance, they have determined 
that the reduce-on-plateau learning rate strategy achieved the best result with an accuracy of 89.7%, an f1-score 
of 89.6%, and an area under the ROC curve of 89.5%.  

Wang et al. [37] modified the InceptionV3 [38] architecture using their curated dataset to establish a COVID-
19 detection model. First, they collected images of chest CT scans of pathogen-confirmed COVID-19 cases as 
well as typical viral pneumonia, totaling 1065 samples. Then, they defined the region of interest in the images, 
binarized the colors on the image, and reversed the color to highlight the lungs with white and the background 
with black. After that, they fine-tuned the inception model with pre-trained weight on their curated dataset. While 
training, they have also used both internal and external validation to improve the performance of the model. The 
model with internal validation showed the best result with an accuracy of 89.5%, recall or sensitivity of 88%, 
specificity of 87%, f1-score of 77% and area under ROC curve 93%. 

Islam et al. [39] used the LeNet-5 CNN architecture to detect COVID-19 from chest CT scans. The architecture 
consists of five layers. The first two layers consist of blocks of the convolution layer, followed by one average 
pooling layer. The next two layers are fully connected layers of sizes 120 and 84 sequentially. The final layer is 
the output layer with a sigmoid activation function. They trained the architecture on the Yang et al. dataset [25] 
to evaluate the performance of their model. The highest accuracy of 86.06%, with 85% precision in detecting 
COVID-19 from CT scans, and an f1 score of 87% was achieved by their proposed model. They also achieved 
86% area under the ROC curve using the same. 

He et al. [40] proposed a deep learning approach that follows the self-trans approach and combines transfer 
learning with self-supervised learning to learn the distinctive and unbiased features from the inputs to effectively 
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detect COVID-19 from CT scan images. Their approach can achieve excellent diagnostic accuracy even with a 
limited number of training samples, making it a sample-efficient method. Their method not only captures the 
underlying patterns and properties of data without using human-annotated labels but also reduces the risk of 
overfitting. The model learns the distinctive features by creating multiple secondary tasks based on the data itself 
and forces the network to learn meaningful representations by executing those secondary tasks. Also, they 
collected CT scan images of COVID-positive patients to build a dataset [25] for their model to be trained on. In 
their experimental study, they used several training methods with multiple transfer learning models and different 
initial configurations and then compared the performance with models trained with their self-trans architecture. 
They demonstrated that models trained with their self-trans method outperform all those other methods trained 
during the study. Among the models trained on their approach, their self-trans DenseNet-169 architecture achieves 
the best result with an accuracy of 86%, an f1-score of 85%, and an area under the ROC curve of 94%. 

Foysal et al. [41] introduced an ensemble hard voting model that incorporated three independent CNN 
architectures for accurately classifying the COVID cases. The CNN architectures used three, four, and three 
convolutional blocks in total respectively. Each block in architecture was followed by a Max Pooling layer. In 
each architecture, a Batch Normalization layer was used after the first block to enable quick learning of the model. 
Finally, they trained the ensemble model using the dataset provided by Soares et al. [33]. Their ensemble model 
achieved an accuracy of 96%, an f1-score of 95.6%, and a recall or sensitivity of 97%. 

The research to develop a model to detect COVID-19 from radiographical images mainly focuses on analyzing 
the implicit graphical features in the images to determine if the patients are suffering from COVID-19. This 
enables the model to function as an auxiliary decision system to provide a clinical diagnosis ahead of the 
pathogenic test, thus saving critical time for disease control. From the discussions above, we can see that most of 
the research fails to show a promising result that will enable it to be used as a secondary decision method. Also, 
most of the research focuses on a single dataset with a small number of samples. Despite research like Foysal et 
al. [41] and Yener et al. [22] achieving high accuracy, sensitivity, and F1 scores, the model could have been more 
generalized and robust if a larger number of samples from varying sources could be used in the training of the 
model. Moreover, the best results of the ensemble model in Foysal et al. [41] come in a cost of complex model 
structure and more computational cost. Furthermore, the trained models are bulky in size and cannot be deployed 
in our daily devices with lower computational power. Also, the complex structural model makes it difficult to 
reuse the model on other tasks or to be retrained on other samples and have the same kind of performance. In our 
research, we try to address the shortcomings of the discussed studies and aim to develop a better model with 
simple architecture, lower training time, higher performance and the ability to be deployed on devices with lower 
computational power. 

III. METHODS 

A. Dataset Collection  

Three different datasets containing images of CT scans are collected for this research. The datasets contain 
images of varying dimensions collected from multiple different sources. The datasets are used to train our 
proposed model individually to evaluate the performance of our proposed model on varying sizes of datasets. 
Finally, we created another dataset by combining all our collected datasets to train the best-performing generalized 
model to detect COVID-19 from CT scan images. The generalized model is later used as the logical back-end for 
our mobile application. The number of samples of the datasets used in this research is presented in Table 1. 

 
TABLE 1 

SUMMARY OF USED DATASETS 

Dataset COVID Non-COVID Total 

Yang et al. [25] 349 397 746 

Soares et al. [33] 1227 1226 2453 

Maftouni et al. [42] 7593 6893 14486 

Combined Dataset 8820 8119 16939 

 
The dataset collected by Yang et al. [25] consists of 349 positive COVID-19 samples and 397 negative COVID-

19 samples. The dataset was created by collecting CT scan images from papers related to COVID-19  published 
in medRxiv [43] and bioRxiv [44]. This dataset is used to evaluate the performance of our proposed model when 
a small amount of sample data is available for training. 

The dataset published by Soares et al. [33] contains 1252 CT scans with COVID-19 and 1230 CT scans of non-
COVID samples. The CT scans for the dataset were collected from 120 patients in different hospitals in Sao Paulo, 
Brazil. For this research, we modified the original dataset by examining all CT scan images and removing the 
samples where the lung is not properly visible in the image. The modified dataset contains only 1227 COVID-19 
samples and 1226 non-COVID samples. This dataset is used by many researchers. So, this dataset was used to 
evaluate our model to validate how our proposed model performs against the proposed model of other researchers. 
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The dataset published by Maftouni et al. [42] is a compilation of multiple public datasets [25], [45]–[50]. The 
original dataset contains 7593 COVID samples, 6893 non-COVID samples, and 2618 Community-Acquired 
Pneumonia (CAP) samples. For this research, we have modified the dataset by removing the CAP samples from 
the dataset. The modified dataset contains only 7593 COVID samples and 6893 non-COVID samples. This model 
is used in research to check how our model performs on a large amount of data collected from heterogeneous 
sources. 

We created a new dataset by combining all our collected datasets. Yang et al. [25] dataset is already included 
in the Maftouni et al. [42] dataset. So, our dataset is created by combining only the samples in the modified Soares 
et al. dataset [33] and Maftouni et al. [42] dataset. The dataset contains a total of 8820 COVID-19 samples and 
8119 non-COVID samples. The dataset is a balanced dataset with a ratio of 52:48 for COVID and non-COVID 
samples respectively. This dataset is used to train our generalized model which can be used in real life. 

B. Model Architecture Selection 

1) Model Selection 
Normally, vision-related services are provided for internet-connected devices through cloud infrastructures for 

their superior processing power and higher storage capacity. In this research, we aim to make our model accessible 
to as many people as possible so that it can be used to properly control the rampant transmission of COVID-19 
variants. Therefore, we have to train a model that not only provides the best performance in a normal environment 
but also on low-powered, resource-constrained devices. To achieve this, our proposed model must be able to run 
quickly with the highest performance and reliability while being small in size and requiring less computational 
power. For this reason, we use MobileNet [51] as our transfer learning model for our proposed architecture. 

MobileNet is a small, efficient, low-latency, low-power transfer learning model parameterized to meet the 
resource constraints of a variety of use cases. It uses depth-wise separable convolutions instead of the traditional 
convolution layer which significantly reduces the number of parameters when compared to the transfer learning 
models with regular convolutions with the same depth. This enables MobileNet to be simple and efficient while 
being lightweight and less computation intensive. 

Depth-wise separable convolution layers perform two consecutive operations, i.e., the depth-wise convolution 
and the point-wise convolution. Depth-wise convolution applies a single filter into each input channel contrary to 
standard convolution which applies filters on all input channels. Pointwise convolution computes a linear 
combination of the output of depth-wise convolution using a 1 × 1 convolution layer. Depth-wise separable 
convolution layers use depth-wise convolution to filter the input channels and then use pointwise convolution to 
combine them to create a new feature. This consecutive use of these two operations enables depth-wise separable 
convolution layers to require a 9 times smaller number of multiplications than that of standard convolution layers. 
Fig. 2 shows the structure of the depth-wise separable convolution layer compared to the standard convolution 
layer. Fig. 3 shows the architecture of MobileNet utilizing the depth-wise separable convolution layers. 
 

 
Fig. 2 Convolution layer structures. (a) Standard convolution layer; (b) Depth-wise separable convolution layer 

 
 

 

(a) (b) 
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Fig. 3 MobileNet architecture 

 
2) Proposed Architecture 
The architecture of the proposed model architecture consists of two main units, namely, the preprocessing unit 

and the transfer learning unit. The preprocessing unit loads the CT scan images and preprocesses them to meet 
the input requirements for the image classification. The transfer learning unit extracts unique features from the 
images, calibrates the models, and uses the extracted knowledge to differentiate between chest CT scan images of 
normal and COVID-19-infected patients. The proposed model architecture is mentioned as COVID-CT-Net 
henceforth in this paper. Fig. 4 shows the overall structure and components of the proposed model architecture.  
 

 
Fig. 4 Overview of proposed COVID-CT-Net architecture 

 
The preprocessing unit contains the preprocessing layer which loads the entire dataset into the workspace and 

prepares the data according to the requirements of the transfer learning unit. At first, it resizes the image to meet 
the minimum size requirement of the transfer learning unit. Then it randomly shuffles the images and groups them 
into multiple batches. Afterward, it splits the batches into training, validation, and test sets. Finally, it rescales the 
image and normalizes the pixel values of the image to meet the specified value range of inputs for the transfer 
learning unit. 

The transfer learning unit holds the model used in this research. We have modified the original MobileNet 
architecture to develop the architecture for our proposed model. In COVID-CT-Net architecture, MobileNet only 
acts as a feature extractor for the forthcoming layers. We only use the standard convolution layer and depth-wise 
separable convolution layers of the original architecture. The other layers present in the architecture are pruned to 
modify the model for our CT scan images. A max-pooling layer instead of average pooling from the original 
architecture is used to reduce the spatial dimension of the features. The flatten layer instead of the fully connected 
layer is used in our model architecture. Finally, a sigmoid function instead of softmax is used as an activation 
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function to predict the class of the CT scan images. The model architecture for the transfer learning unit is 
illustrated in Fig. 5.  

 

 
Fig. 4 Proposed model architecture for the transfer learning unit 

 
The MobileNet layer uses the convolutional layers to extract unique features from the images in our training 

dataset. The unique features are passed to the pooling layer which reduces the dimensionality of the extracted 
features. The flatten layer vectorizes the feature matrix obtained from the pooling layer by converting the features 
into a 1-D column vector. Finally, the activation layer uses the vectorized features to predict the class label of the 
input image. 

C. Data Preparation 

Data preprocessing is an important step that prepares the input data and makes the data suitable for machine 
learning models. Data preprocessing not only improves the performance of the model but also reduces the training 
time.  

In this step, we use our preprocessing unit to prepare the data as the input for the transfer learning unit. To make 
the data compatible with the MobileNet architecture, we keep all 3 channels in the input images although the 
images are in grayscale. Moreover, we did not use any data augmentation on the images to increase our sample 
size. The further preprocessing operations performed on the datasets are explained in the following sections and 
the parameters are summarized in Table 2. 

1) Data Cleaning 
To remove the inconsistent data from the datasets, we examine the images in the datasets to drop the unsuitable 

images where the lungs are not properly visible in the CT scan. We also removed the samples irrelevant to our 
research scope. 

2) Input Pipeline Modification  
To utilize the full training capability and reduce the model training time drastically, the whole dataset is copied 

into the virtual machine provided by Google Colab. The dataset is imported into the virtual machine as a zip file 
and extracted into the current working directory of the virtual machine. Then the dataset is read directly from the 
current directory and passed into the input layer. This modification removes the bottleneck process of individually 
reading the data from Google Drive every time the data is needed. For example, this modification reduces the 
training time for the Soares et al. [34] dataset from 40 minutes to about 6 minutes.  

3) Class Label Definition 
The class labels have been inferred from the label of the folder where the data is stored. Since we have not 

modified the folder structure of the used datasets, the original labels for the classes defined by the respective 
dataset authors have become the class labels for the data in that particular dataset.  

4) Dimensionality Reduction 
The dimension of the images in the dataset ranges from 115×98 to 1858×1275. But, to get the best performance, 

the images passed to the model need to have the same dimension. To address this issue, we have modified the 
dimensionality of the images to 224×224 pixels, so that every image passed to the model matches the dimension 
of the images the transfer model is trained on. We have used the lossy compression method to achieve this. Also, 
no region has been cropped from the image in this process. 
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5) Data Normalization 
The transfer learning models are trained on the ImageNet [55] dataset and the input to the transfer learning 

models also needs to match the image intensity range of the ImageNet dataset. So, we have normalized the image 
intensity from the range [0, 255] to [-1, 1] to match the image intensity of the samples in the ImageNet dataset.  

6) Data Batching 
We have randomly shuffled the dataset and distributed it into batches of 32 images per batch. 
7) Dataset Splitting 
After applying several splitting ratios for training, validation, and test sets on the datasets, we found that the 

ratio 70:10:20 provides the best result. So, in this research, we have used the ratio 70:10:20 for splitting the dataset 
into training, validation, and test sets respectively.  At first, we reserved 20% of the data in the dataset as a test 
set, to measure the performance of the model. Then, we used the remaining 80% for training our model. From the 
remaining 80%, 10% of the data is used as a validation set to address overfitting in the model while training. 

 
TABLE 2  

PARAMETERS USED FOR DATA PREPARATION 

Parameter Value 

Intensity Range [-1,1] 

Image Dimension (224,224, 3) 

Batch Size 32 

Dataset Splitting Ratio 70:10:20 

 

D. Model Implementation 

In this research, we used Tensorflow [52] and Keras [53] as the machine learning library and Google Colab 
[54] as the notebook environment to implement our proposed architecture. We used GPU as the hardware 
accelerator in google colab for this research. The models discussed in this research were trained with 13 GB of 
RAM, 15 GB of Tesla T4 GPU, and 2.2 GHz Intel Xeon CPU provided by the free tier of Google Colab. 

We implement the transfer learning unit of our COVID-CT-Net model on Google Colab using a sequential 
model from the Keras library. As the input images for the MobileNet layer are required to have 3 channels, the 
input shape for the MobileNet layer is set to (224,224,3). The weight pre-trained on the ImageNet dataset is used 
as the initial weight for our MobileNet layer. As we are using only the depth-wise separable convolutions layers 
of the MobileNet architecture, including the top fully connected layer at the top of the network is set to False to 
exclude the fully connected layers of the original MobileNetV1 architecture. This allows us to pass the learned 
parameter to the next layers and efficiently use the parameters by designing our own fully connected layers for 
the model. The width multiplier (α) and depth multiplier (ρ) are both set to 1 to utilize the full potential of the 
depth-wise separable convolutions layers. The dropout for our model is set to 0.001.  

The MobileNet layer is followed by a MaxPooling2d layer with a pooling size of (2,2) with no padding and 
stride equal to the pooling size. The MaxPooling2d layer is followed by a flatten layer and an activation layer with 
a size of 2 with a sigmoid activation function. Table 3 summarizes the parameters used to implement the transfer 
learning unit of the COVID-CT-Net model. 

 
TABLE 3  

PARAMETERS FOR IMPLEMENTING TRANSFER LEARNING UNIT 
Layer Parameter Value 

MobileNetV1 Input Size (224,224,3) 

Initial Weight ImageNet 

Include Top Layers False 

Width multiplier (α) 1.0 

Depth multiplier (ρ) 1.0 

Dropout 0.001 

Max Pooling Size (2,2) 

Stride (2,2) 

Padding 0 

Flatten - - 

Activation Size 2 

Function Sigmoid 

 

E. Model Training 

The implemented model is executed to extract distinct features from the preprocessed image. The extracted 
feature is used by the transfer learning unit to classify the CT scan image correctly. 
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For training the COVID-CT-Net model on collected datasets, we use Adam [55] as an optimizer for the model 
with a learning rate of 10-3. Categorical cross-entropy is used as a loss function for training the model. The 
from_logits flag of the loss function is set to True to have more numerical stability of the loss values. The epoch 
is set to 15 for the model to fit the training data into the model. Table 4 summarizes the parameters used to train 
the COVID-CT-Net model. 

TABLE 4  
TRAINING PARAMETERS 

Parameter Value 

Optimizer Adam 

Learning Rate 10-3 

Loss Function Categorical Cross-entropy 

Epoch 15 

 
We train the COVID-CT-Net model on the collected datasets one by one and evaluate the performance of our 

model on that dataset. We also save the best-performing models in the SavedModel format of Tensorflow, so that 
the model and its learned parameters can be reused.  

At first, we apply our model to the modified Soares et al. [33] dataset and examine the performance of the 
proposed model. We also apply other transfer learning models such as DenseNet121, ResNet50V1, VGG16, 
VGG19, InceptionV3, and Xception as a transfer learning model to demonstrate the comparison between the 
performance of our COVID-CT-Net with other transfer learning models. We have further compared the 
performance of our proposed method with the state-of-art models trained on the same dataset. 

Later, we apply our model to Yang et al. [25] to check how the model performs on a dataset with a small number 
of samples. After that, we apply the model to the modified Maftouni et al. [42] dataset to check how the model 
performs on a larger and more diverse dataset. We also compare the performances with pre-existing models to 
establish the quality of our proposed model. 

Finally, we train the COVID-CT-Net model on our combined CU-COVID-CT dataset, to get a generalized 
model which can be used in real life. The generalized model is later converted and used as the logical backend for 
our mobile application. 

F. Model Evaluation 

After training the models on the training dataset, we evaluate the performance of our proposed model on its 
ability to detect COVID-19-positive CT scan images from the test dataset. We use several performance measures 
to analyze the performance of our COVID-CT-Net model. They are Accuracy, Recall, Precision, F1-score, and 
Area Under the ROC Curve (AUC-ROC). Among them, accuracy, recall, precision, and f1-score are calculated 
from the confusion matrix, whereas, AUC is calculated as the area under the Receiver Operating Characteristics 
(ROC) curve in the plot where the True Positive Rate (TPR) on the y-axis and the False Positive Rate (FPR) on 
the x-axis. Accuracy, Precision, Recall, and F1-score is calculated using equation (1), (2), (3) and (4) respectively. 

 

Accuracy =  
������ �� �������� ������� ��������� ���������

����� ������ �� �������
    (1) 

Precision =  
������ �� ������� ��������� ��������� �� ��������  

 ����� ������ �� ������� ��������� �� ��������  
    (2) 

Recall =  
������ �� ������� ��������� ��������� �� ��������  

 ����� ������ �� �������� ������� �� �������  
    (3) 

F1 − score =  
� ×��������� ×������

����������������
    (4) 

 

G. Model Conversion 

The saved model generated using TensorFlow [52] is bulky in size as well as contains multiple API calls. So, 
the models cannot be directly imported into a mobile application to be used in real life. To solve this problem, the 
saved model is converted into a small-sized TFLite Flatbuffer format. The TFLite model contains the model's 
execution graph. This can be easily loaded into the memory of a mobile device and necessary operations to detect 
the COVID-19 samples can be performed as in the SavedModel. The conversion can be done easily using the 
convert function provided by Tensorflow Lite. We can get a TFLite model by writing the bytes generated by the 
converter into a file. 

The saved model generated by TensorFlow not only contains the weight for the model but also metadata about 
model input and outputs. However, the model generated by the TensorFlow lite converter does not contain that 
metadata. To solve this, a metadata populator is used to generate the required metadata for the model. The 
generated metadata contains information about input size, input pixel value range, input color channel, output 
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labels, minimum and maximum output level, model author, model license, etc. Finally, the converted model file 
and the metadata is packed into one file, which can be easily used for making auxiliary decision system for low-
powered devices such as smartphones and raspberry pie. 

H. Mobile Application Development 

Using the TFLite model of the generalized method, we implement a proof-of-concept auxiliary decision system 
for the Android operating system using Android Studio as the development environment. We have used XML for 
developing the front end, and Java for implementing the application.  

We have used the TFLite flatbuffer model of the COVID-CT-Net model instead of the original SavedModel to 
further reduce the size of the model and required processing for decisions in the application. Reading the TFLite 
flatbuffer model, pre-processing the input, and making decisions using the COVID-CT-Net model will be handled 
within the application. The application will read the metadata of the COVID-CT-Net TFLite flatbuffer model, 
preprocess the image accordingly, and pass it to our model to classify the image. The model will then read the 
image and classify it accordingly along with confidence for the decision. 

IV. RESULTS 

COVID-CT-Net has shown impressive results in all the datasets. When applied to the modified Soares et al. 
[33] dataset, COVID-CT-Net shows an accuracy of 98.54% in distinguishing COVID-19-infected CT scans from 
non-COVID ones. Later, applying COVID-CT-Net to the Yang et al. [25] dataset, we achieved a testing accuracy 
of 98.75% on the dataset. Further applying the COVID-CT-Net model to the Maftouni et al. [42] dataset, we 
achieved an accuracy of 97.84% in distinguishing the non-COVID samples from the COVID ones. Finally, 
applying COVID-CT-Net to the combined dataset, we get an excellent performance of 96.14% accuracy in 
distinguishing COVID-19-infected CT scans from non-COVID ones. Fig. 6 shows the confusion matrices for all 
the datasets used in the research. Table 5 shows the performance of COVID-CT-Net on the datasets using the 
evaluation parameters. The ROC curves for all the datasets used in the research are illustrated in Fig. 7. 

 

 
Fig. 5 Confusion Matrix for (a) Yang et al. [25]; (b) Soares et al. [33]; (c) Maftouni et al. [42]; (d) Combined Dataset 

 
TABLE 5  

PERFORMANCE OF COVID-CT-NET ON USED DATASETS 

Dataset Accuracy Precision Recall F1 Score AUC 

Yang et al. [25] 98.75% 97.33% 100.00% 98.65% 98.85% 

Soares et al. [33] 98.54% 100.00% 96.98% 98.47% 98.49% 

Maftouni et al. [42] 97.84% 98.04% 97.56% 97.80% 97.83% 

Combined Dataset 96.14% 99.46% 93.08% 96.16% 96.27% 

 

(a) (b) 

(c) (d) 
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Fig. 6 ROC Curve for (a) Yang et al.; (b) Soares et al.; (c) Maftouni et al.; (d) Combined Dataset 

 
In the receiver operating characteristic curve or ROC curves, the blue line represents the ROC curve of COVID-

CT-Net for different classification thresholds, whereas the red line refers to the ROC curve of no separability. The 
ROC curve for COVID-CT-Net is far above the ROC curve of no separability and the area under the curve (AUC) 
is very close to the ideal AUC of 100%. Thus, we can say that our COVID-CT-Net not only shows remarkable 
results but also can exceptionally distinguish between COVID and non-COVID samples. 

The proof-of-concept also mobile application shows promising performance as an auxiliary decision system to 
detect COVID-19 from CT scan images. Despite being only 12 MB in the TFLite model, the model behind the 
application shows the same performance as our original COVID-CT-Net generalized model. 

The mobile application works in the following way as an auxiliary decision system to detect COVID-19 from 
CT scan images. Fig. 8 demonstrates the process through screenshots of the interface from our mobile application. 

1. The user opens the mobile application using the application icon. The application greets the user with a 
welcome screen. 

2. The user is shown the start page of the application with a “Load Image” button. The user presses the “Load 
Image” button. 

3. The user is taken to the gallery to select the image from the device. The user selects the picture. 
4. The user is taken to the image analysis page in the application. The user is shown the selected image along 

with the button “Analyze Image” and “Clear Selection”.  
5. If the user presses the “Analyze Image” button, the application will preprocess and analyze the selected 

image using the TFlite flatbuffer COVID-CT-Net model and show the result on the result page. The 
application will discard the selected picture and take the user back to the start page if the user presses the 
“Clear Selection” button. 

6. The result page will show the selected image with either "COVID: POSITIVE" or "COVID: NEGATIVE" 
as a result along with the confidence of the shown result and a button “Check Another”. 

7. Selecting “Check Another” will take the user to the start page. 
 

(a) (b) 

(c) (d) 
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Fig. 7 Mobile Application Screenshots. (a) Welcome Page; (b) Start Page; (c) Image Selection Page; (d) Image Analysis Page; (e) Result 

Page 

V. DISCUSSION 

Our proposed COVID-CT-Net shows an impressive performance on all the datasets collected for this research. 
Our COVID-CT-Net model not only performs remarkably on small datasets like the Yang et al. [25] dataset but 
also on datasets with a large number of samples such as the Maftouni et al. [42] and the combined dataset. It also 
handles excellently the varying size of the inputs. Also, the datasets are a curation of samples collected from 
different sources. The collected images have varying conditions such as brightness, contrast, and cropping. Yet 
our proposed model has shown promising performance in distinguishing them effectively.  So, we believe our 
COVID-CT-Net can be used as a general model to identify COVID-19 in patients’ CT scans as an auxiliary 
decision system. 

To further demonstrate the performance of our proposed model, we have also compared the performance with 
other results and methods using the same datasets. We have also compared the performance with other transfer 
learning models in terms of training time, model performance, parameter size, and model size to demonstrate the 
efficiency of our proposal.  

A. Performance Analysis 

From the confusion matrix of the generalized COVID-CT-Net model trained on the combined dataset, we can 
see that the model fails to identify 122 of the total 1764 COVID samples and 9 out of 1628 of the non-COVID 
samples from the test dataset. Moreover, we can see from the performance matrices that our model has a precision 
of 99.46% but a recall of 93.08%. That means, our model is correct 99.46% time when it labels a CT image as 
COVID, but it fails to label 6.92% of the COVID samples of the test COVID samples. So, our generalized model 
has an error rate of 6.92% for COVID samples and 0.55% for non-COVID samples. The precision value also 
indicates that our model generates fewer false negatives, which is essential to prevent the spread of different 
variants of COVID-19 due to unsuspecting and asymptotic COVID-19-infected patients. 

B. Comparison with Transfer Learning Models 

Using the Soares et al. [33] dataset, we have trained other transfer learning models such as DenseNet121, 
ResNet50V1, VGG16, VGG19, InceptionV3, and Xception with the same resource and running configuration as 
our COVID-CT-Net model. Comparing the performances, we can see that, our COVID-CT-Net not only 
outperforms those models but also has fewer parameters and reduced model size. Moreover, our model has less 

(a) (b) (c) 

(d) (e) 
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training time than those models. So, we can conclude that, despite having a simple architecture, low training time, 
and smaller model size our model is more efficient in detecting COVID-19 from CT scan images than other 
transfer learning methods. Table 6 shows the performance comparison with other transfer learning models in 
detecting COVID-19 from CT scan images. Table 7 compares the model in the aspect of model size and the 
number of parameters which is essential for deploying the model on low-powered devices. 

 
TABLE 6  

PERFORMANCE COMPARISON WITH OTHER TRANSFER LEARNING MODELS 

Model Training Time Accuracy Precision Recall F1 Score AUC 

COVID-CT-Net 6m 30s 98.54% 100.00% 96.98% 98.47% 98.49% 

DenseNet121 13m 82.50% 99.39% 66.40% 79.61% 82.98% 

ResNet50V1 11m 20s 90.63% 85.99% 96.60% 90.98% 90.75% 

VGG16 13m 20s 90.63% 90.48% 90.09% 90.28% 90.61% 

VGG19 15m 20s 88.54% 85.31% 94.44% 89.64% 88.23% 

InceptionV3 16m 50s 94.58% 97.47% 92.03% 94.67% 94.71% 

Xception 34m 30s 96.04% 99.12% 92.98% 95.95% 96.07% 

 
TABLE 7  

MEMORY UTILIZATION COMPARISON WITH OTHER TRANSFER LEARNING MODELS 

Model Total Parameters (Million) Saved Model Size (MB) 

COVID-CT-Net 3.247 40 

DenseNet121 7.055 92 

ResNet50V1 23.624 276 

VGG16 14.723 170 

VGG19 20.033 230 

InceptionV3 21.868 259 

Xception 20.963 244 

 

C. Comparison with Other Methods and Results 

Despite having a simple architecture and low training time, our COVID-CT-Net architecture performs better 
than other methods used on the datasets used in this research. Moreover, the same configuration of the model 
provides the best result for all the datasets despite having different numbers of diverse samples. It also surpasses 
the baseline methods provided by the dataset authors in their paper. 

Yang et al. [25] proposed the self-supervising DenseNet-169 architecture [40] as the baseline method having 
an accuracy of 86% in detecting COVID-19 from CT-scan images. Soares et al. [33] proposed a baseline method 
using an explainable deep neural network (xDNN) having an accuracy of 97.38%. Whereas, Maftouni et al. [42] 
trained the baseline model using an ensemble learning approach which showed an accuracy of 95.31% in 
distinguishing between COVID and non-COVID samples. The comparison between the performance of COVID-
CT-Net and the baseline methods is presented in Table 8. 

 
TABLE 8  

PERFORMANCE COMPARISON WITH BASELINE RESULTS 
Dataset Model Accuracy Precision Recall F1 Score AUC 

Yang et al. [25] COVID-CT-Net 98.75% 97.33% 100.00% 98.65% 98.85% 

DenseNet-169  86.00% - - 85.00% 94.00% 

Soares et al. [33] COVID-CT-Net 98.54% 100.00% 96.98% 98.47% 98.49% 

xDNN  97.38% 99.16% 95.53% 97.31% 97.36% 

Maftouni et al. [42] COVID-CT-Net 97.84% 98.04% 97.56% 97.80% 97.83% 

Ensemble Learning 95.31% 97.93% 90.80% 94.23% 98.06% 

 
Many other researchers have used the datasets to develop a method to detect COVID-19 from CT-scan images. 

Some have used different deep learning or transfer learning methods. Others have tuned the parameters of existing 
models to get their desired results. Table 9 shows the performance comparison with other methods for Yang et 
al., Soares et al., and Maftouni et al. dataset sequentially. Comparing the performance with other methods using 
the same datasets used in our research we have found that our COVID-CT-Net outperforms them by a noteworthy 
margin.  
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TABLE 9  
PERFORMANCE COMPARISON WITH OTHER METHODS 

Dataset Author(s) Model Accuracy F1 Score 

Yang et al. [25] Our Model COVID-CT-Net 98.75% 98.65% 

Yener et al. [22] VGG16 93.00% 92.00% 

Anwar et al. [35] EffiecientNet-B4 89.70% 89.60% 

Islam et al. [39] LeNet-5 CNN 86.06% 87.00% 

Soares et al. [33] Our Model COVID-CT-Net 98.54% 98.47% 

Wu et al. [28] VGG16, ResNet 82.50% - 

Foysal et al. [41] Ensembled CNN 96.00% 95.60% 

Panwar et al. [56] Modified VGG19 95.00% 95.00% 

Maftouni et al. [42] Our Model COVID-CT-Net 97.84% 97.80% 

Dhruv et al. [57] InRFNet 96.00% 96.33% 

A. Ouahab [58] CNN 88.30% 88.50% 

Hartono at al. [59] LeNet-5 83.33% 84.89% 

VI. CONCLUSIONS 

COVID-19 is a respiratory disease that appeared on December 19, 2019, and caused worldwide transmission 
expeditiously, resulting in the COVID-19 pandemic. It has claimed numerous human lives by inducing severe 
respiratory distress and damage to the lung cells. Although worldwide governments and doctors are doing an 
excellent job keeping this disease under control, the recurring appearance of newer variants of the disease is 
making the containment process difficult. The recurring mutation of COVID-19 has made the disease more 
transmissible as well as deadly, resulting in a sudden increase in infections, hospitalizations, and even deaths. 
Moreover, the time needed for detecting COVID-19 with RT-PCR tests, which are being used predominantly 
around the world, is causing more and more transmissions through unsuspecting patients in the early stages of 
COVID-19 infection. Some variants are also causing retransmission in recovered patients. To solve this problem, 
we need a reliable way to detect COVID-19 from patients quickly and effectively to overcome the rampant 
transmission of COVID-19. 

In this research, we have proposed a deep learning model named COVID-CT-Net to detect COVID-19 from 
images of lung CT scans reliably and efficiently. We have collected three publicly available datasets provided by 
Soares et al. [33], Yang et al. [25], and Maftouni et al. [42] for this research. We have also created a dataset by 
curating, preprocessing, and combining the collected datasets to generate a generalized model that can be used as 
an auxiliary decision system for the radiologist. We have also developed a mobile application as a proof-of-
concept using the generalized COVID-CT-Net model to further demonstrate our performance in detecting 
COVID-19 from CT scan images in low-powered and resource-constrained environments. Despite having a small 
size, simple architecture, and lower training time, the COVID-CT-Net model has shown astounding accuracy of 
98.54%, 98.75%, and 97.84% respectively on the Soares et al. dataset [33], Yang et al. dataset [25], and Maftouni 
et al. dataset [42] in detecting COVID-19 from CT scan images, outperforming not only other transfer learning 
models but also state-of-the-art models trained on those datasets. Our generalized COVID-CT-Net model has also 
shown an excellent performance of 96.14% in detecting COVID-19 from CT scan images. Furthermore, our 
mobile application has also shown performance similar to the used generalized model despite having a smaller-
sized model. Considering the promising performance of our COVID-CT-Net model, we believe that our model 
will be useful as an auxiliary decision system for detecting COVID-19 from CT scan images which will not only 
reduce the time needed to diagnose the COVID-19 to a minimum but also help mitigate the risk of transmission 
and retransmission. We also believe our research will contribute towards overcoming the COVID-19 pandemic, 
therefore saving the lives of millions of people.  

Although our research provides a quick and reliable way to detect COVID-19 from CT scan images, we believe 
our work can be further expanded in many ways. In the future, we want to use the knowledge from error analysis 
to make the model more efficient. Additionally, we want to utilize callbacks and data augmentation techniques to 
make the model more robust and reliable in real-life scenarios. We also want to enable our model to distinguish 
between the changes in CT scans because of COVID-19 and other types of pneumonia. Furthermore, we want to 
expand this research to be able to not only detect COVID-19 but also calculate the level of lung damage by 
assessing the shadows utilizing the excellent sensitivity and clear imaging of CT scans.  
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