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Brain oscillations most often occur in bursts, called oscillation packets, which

span a finite extent in time and frequency. Recent studies have shown that

these packets portray a much more dynamic picture of synchronization and

transient communication between sites than previously thought. To understand

their nature and statistical properties, techniques are needed to objectively detect

oscillation packets and to quantify their temporal and frequency extent, as well as

their magnitude. There are various methods to detect bursts of oscillations. The

simplest ones divide the signal into band limited sub-components, quantifying

the strength of the resulting components. These methods cannot by themselves

cope with broadband transients that look like genuine oscillations when restricted

to a narrow band. The most successful detection methods rely on time-frequency

representations, which can readily show broadband transients and harmonics.

However, the performance of such methods is conditioned by the ability of the

representation to localize packets simultaneously in time and frequency, and by

the capabilities of packet detection techniques, whose current state of the art is

limited to extraction of bounding boxes. Here, we focus on the second problem,

introducing two detection methods that use concepts derived from clustering

and topographic prominence. These methods are able to delineate the packets’

precise contour in the time-frequency plane. We validate the new approaches

using both synthetic and real data recorded in humans and animals and rely on

a super-resolution time-frequency representation, namely the superlets, as input

to the detection algorithms. In addition, we define robust tests for benchmarking

and compare the new methods to previous techniques. Results indicate that

the two methods we introduce shine in low signal-to-noise ratio conditions,

where they only miss a fraction of packets undetected by previous methods.

Finally, algorithms that delineate precisely the border of spectral features and

their subcomponents offer far more valuable information than simple rectangular

bounding boxes (time and frequency span) and can provide a solid foundation to

investigate neural oscillations’ dynamics.
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1 Introduction

Neural computations and information transmission in the
brain are accompanied by oscillations (Wang, 2010) embedded
in rich time-frequency landscapes (Moca et al., 2021; Bârzan
et al., 2022). Oscillations often appear as events of finite duration
and finite frequency span, called oscillation bursts or packets,
intermixed with sustained oscillations and transient broadband
events (Tal et al., 2020). For example, bursts of gamma (30–80 Hz)
have been found to be modulated by attention in the cat auditory
cortex (Lakatos et al., 2004), to subserve memory encoding and
retrieval in monkeys (Lundqvist et al., 2016), alongside beta bursts
(12–30 Hz), and to transiently couple distant areas in human
electroencephalogram (EEG) during conscious perception (Melloni
et al., 2007; Hipp et al., 2011). Moreover, bursts of oscillations
have been found virtually in all relevant frequency bands [see (Tal
et al., 2020) for a review]. As the authors note, even in Berger’s first
historical account of an oscillation (Berger, 1930), alpha (8–12 Hz)
are crayoned as transient events.

In addition to oscillation bursts, there are other features
of interest in spectra of neuronal signals. Broadband shifts in
frequencies above 80 Hz (Manning et al., 2009; Waldman et al.,
2018) have been shown to correlate with increased neuronal firing
(Buzsáki, 1986; Manning et al., 2009; Ray and Maunsell, 2011), to
reflect the balance between excitation and inhibition (Gao et al.,
2017), and to correlate with behavioral task performance (Honey
et al., 2012; Miller et al., 2014). Pathologic epileptic activity is
characterized by a combination of oscillations and brief spike
discharges events (sharp waves), with high power in a wide
bandwidth (Crépon et al., 2010; Staba et al., 2014; Park et al.,
2020). Given the rich content of biological spectra comprising not
only oscillations, but also features such as high-frequency shifts,
and brief broadband events of neuronal or artifactual origin, it
is crucial to develop methods able to localize and describe the
shape of these features. Consequently, their properties, such as
shape, power, frequency, duration, etc. that reflect the underlying
processes (Buzsaki, 2006), could be quantified precisely. Here we
introduce two methods able to detect and delineate precisely the
spectral features (or packets) of arbitrary spectral shapes and over
wide frequency bands.

Detection of packets is difficult due to methodological
limitations: a robust detection method applicable over wide
frequency bands has not been developed yet. In recent years,
the increased awareness over the oscillations’ finite, burst-like
expression, has led to the development of a number of methods
for detection. Based on the applicability domain these detection
methods can be divided into two main categories, namely: (i) those
developed and optimized for high-frequency oscillations (HFOs)
and, (ii) methods intended to detect oscillation packets in a larger
context and not tunned for HFOs specifically. In the following, we
briefly introduce these methods and their main traits.

The first category comprises methods optimized specifically for
HFOs, which are applied in the context of epilepsy. One thing
to note is that, HFOs is a rather loose term (Staba et al., 2014)
that covers different sub bands, usually above 90 Hz (Buzsáki
and Draguhn, 2004; Buzsáki and da Silva, 2012; Staba et al.,
2014), but see Gardner et al. (2007) who terms a sub-gamma
range (40–100 Hz) as HFOs. Most of these detection algorithms

filter out data outside the HFOs sub-band of interest, and then
use some measure of energy (Staba et al., 2002; Worrell et al.,
2008; Zelmann et al., 2010, 2012), or the Hilbert transform
(Crépon et al., 2010) to detect HFOs based on thresholds derived
from the statistical properties of the data. Subsequently HFOs
are checked against epilepsy-specific criteria such as duration or
repetition, sometimes under the assumption that HFOs are rare
events (Zelmann et al., 2012). Surprisingly, what is considered the
gold standard of HFO detection by some authors (Donos et al.,
2020) is based on the visual inspection of filtered signal traces
(Jacobs et al., 2009), which is prone to subjectivity and errors.
In brief, periods where the 80 Hz high-pass filtered signal shows
increased activity are considered HFOs only if their spectra do
not extend beyond 250 Hz. Consequently, HFOs are validated
when there is no concomitant increase in the signal filtered with
a high-pass 250 Hz filter. In a more recent paper (Donos et al.,
2020) a radically different approach is taken. The authors use
computer vision algorithms in an iterative manner to detect blobs
of oscillations in wavelet time-frequency representations (TFRs).
As with previous methods, detected blobs are validated against
HFO’s criteria. Another interesting approach (Waldman et al.,
2018) uses the iso-power contours in wavelet spectra to identify
ripple on spike (RonS) HFOs. A wavelet TFR, limited to the ripple
band (80–250 Hz), is computed using time-domain convolution.
A “blob” (or packet) with increased power in the ripple band is
identified as possible HFO only if its contours are closed, that is,
if the packet is fully contained within the band. Next, the RonSs
are validated only if the timing of ripple waveform (isolated with
an 80 Hz high-pass filter) matches the timing of the raw signal.
While interesting and diverse in their approach, HFO detectors
are heavily specialized on epilepsy applications and are difficult to
readily transfer to the broader range of neural oscillations especially
in the area below 80 Hz.

The second category of methods, designed to detect oscillations
across the whole relevant spectrum, has been recently reviewed
(Tal et al., 2020). Here, we only briefly discuss different classes
of algorithms to highlight their most important advantages and
shortcomings. A first class of algorithms looks for oscillations in
well-defined frequency bands either by thresholding the energy
(Caplan et al., 2001), or by looking for peaks in the power of
the dominant frequency within the band (Sherman et al., 2016).
All these algorithms are confined within the limits of the chosen
frequency bands. Due to their simple approach, they are unable to
resolve fine time-frequency structures or to deal with broadband
packets but have been used successfully for real-time closed-loop
experiments (Karvat et al., 2020).

Another class of algorithms operates on TFRs. Threshold
algorithms within this category derive distinct thresholds for each
frequency either from the statistics of the individual frequencies
(Lundqvist et al., 2016), or from a 1/f model of the data (Hughes
et al., 2012). While these algorithms can detect oscillation bursts
at any frequency, they are usually tuned around a subset of
frequencies where oscillations’ occurrence has been established,
for instance from the averaged power spectra. The concept of
rhythmicity or phase consistency in time was used to recover
small amplitude oscillations (Fransen et al., 2015). The authors
show that lagged coherence can better uncover distinct oscillations
than Fourier TFRs. Since phase stability only makes sense for one
given frequency, the method is not well suited for more complex
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time-frequency patterns. This is the case for any algorithm that
operates per one frequency basis. To the best of our knowledge,
rhythmicity has been used in the alpha and beta bands and has not
been validated on higher frequencies. An interesting approach that
employs Hidden Markov Models (Quinn et al., 2019) was able to
detect complex spatiotemporal structures in the TFRs. However,
this algorithm does not operate on high frequencies (> 48 Hz)
either, where oscillations are difficult to detect. Another difficulty
lies with the number of hidden states, an important parameter
whose choice is not clear. Similar to HFOs, many of the algorithms
mentioned above require the detected burst to contain at least a
minimum number of cycles.

The most versatile TFR-based algorithm to date is OEvents
(Neymotin et al., 2022). It operates not on individual frequencies
but rather on the whole time-frequency plane where it detects
oscillation bursts as local maxima. Bursts span over time and
frequency to an extent defined by per-frequency thresholds. Finally,
each burst is localized within a rectangular bounding box and is
quantified by a set of parameters such as, extent, number of cycles,
dominant frequency, and power, etc. In this particular instance,
the wavelet TFR was used, and frequencies were equalized in a
pre-processing step, which is one of the main strengths of the
algorithm and the reason why the algorithm was able to operate
up to 200 Hz. This is by far the most successful algorithm to date
and has been used to characterize oscillation bursts in intracranial
recordings from humans and monkeys. Nevertheless, there is room
for improvement. One of the downsides of OEvents is that the fine
spatial structures of the oscillations are lost. Rectangular bounding
boxes fail to properly characterize the rich repertoire of shapes
found in TFRs. Another weakness stems from the properties of
the TFR of choice. Wavelets, although well localized in time,
struggle with resolution in high frequencies (Moca et al., 2021), a
weakness that is inherently transferred to OEvents, which makes
the algorithm overall less suited to process broad frequency ranges
(i.e., from delta to high gamma).

Finally, another class of algorithms uses a two-step approach.
First, oscillations are detected by power thresholds determined in
the frequency domain. Next, stereotypical waveforms are sought for
bursts, under the assumption that the waveform reflects properties
of the generating substrate. Although interesting, these algorithms
fall outside the scope of this paper and have been reviewed
previously in Tal et al. (2020).

Although proper detection and quantification of oscillation
packets is important, so far this has been hindered by the limitations
of detection methods. Detection methods that rely on TFRs are
further limited by the ability of the TFRs to represent oscillation
packets scattered over the time-frequency landscape. In the next
sections, we define two new detection techniques, which are able to
precisely extract the contour of the estimated packets. To validate
the two packet detection algorithms introduced here, we will
evaluate their performance on well-established TFRs, namely the
Short-Time Fourier Transform (STFT) and the continuous wavelet
transform (CWT), as well as on super-resolution TFRs computed
with superlets (Moca et al., 2021). The latter are exceptionally good
at revealing the presence of packets in complex time-frequency
spectra of neural signals. The most complex of the detection
methods we introduce here is able to find oscillations with high
success rates even in scenarios with low signal-to-noise ratio (SNR),
where simpler threshold-based algorithms fail. Overall, we show

that complex algorithms are better at capturing the structure of
oscillation bursts because contours and sub-peaks reveal far more
about the TFR structure than simple bounding boxes and can be
instrumental in probing single-trial oscillation dynamics.

2 Materials and equipment

2.1 In vivo electrophysiology

Adult C57/BL6J mice were anesthetized using isoflurane (5%
for induction, 2–2.5% for surgery) and then mounted in a
stereotaxic frame (Stoelting Co, IL, United States). The animal’s
body temperature was monitored and maintained at 37◦C using
a feedback-controlling heating pad with a rectal probe (Harvard
Apparatus, MA, United States). The head of the animal was
shaved and prepped with povidone-iodine and a local anesthetic
(Xylocaine). Following a midline incision, a circular 2 mm
craniotomy was performed on the left hemisphere targeting
stereotaxic coordinates corresponding to the visual cortex (0.5–
1 mm anterior from lambda, 2–2.5 mm lateral from midline).
A 32-channel silicon probe (Cambridge NeuroTech, Cambridge,
United Kingdom) was mounted on the stereotaxic manipulator and
slowly inserted into the brain.

The electrophysiological signals were acquired at a sampling
frequency of 32 kHz (Multi Channel Systems GmbH, Reutlingen,
Germany) and local field potentials (LFPs) were obtained by band-
pass filtering (Butterworth IIR filter, bidirectional, 3rd order, 0.1–
300 Hz) and downsampling to 1 kHz. Line noise artifacts and their
harmonics were removed using a series of notch filters (Butterworth
IIR filter, 3rd order, bidirectional @50, 100, 150 Hz).

2.2 Electroencephalography

The EEG dataset used in this study was collected from
healthy human subjects using a high-density EEG cap (Biosemi
ActiveTwo, Amsterdam, Netherlands) consisting of 128 electrodes
and recorded at a sampling rate of 1,024 Hz during a visual
recognition task. Visual stimuli were generated with the “Dots”
method (Moca et al., 2011) and presented under a viewing angle
of 8.7 × 5.6 on a 22-inch Samsung SyncMaster 226BW LCD
monitor with a resolution of 1,480 × 11,050 @ 120 fps positioned
1.12 m in front of the subject. Subsequently, EEG data was band-
pass filtered to 0.1–200 Hz (Butterworth 3rd order) and the power
line noise was rejected with a band stop filter (49.5–50.5 Hz, 4th
order Butterworth). Both filters were applied bidirectionally for
zero phase distortions.

We used a collection of 210 stimuli, consisting of dot lattices
deformed progressively to resemble the contours of 30 familiar
objects. Each trial had 3 intervals: fixation, stimulation, and
response. In the fixation interval, each participant was instructed
to fixate for 1,500–2,000 ms (baseline period) before the stimulus
appeared on the monitor. Following the stimulus presentation,
the participant was free to explore the visual scene for as much
as needed to reach a perceptual decision regarding the identity
of the stimulus. The trial ended with the response interval,
where each participant had to respond by pressing one of the
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three buttons corresponding to the perceptual decision: seen,
uncertain, and nothing.

3 Methods

Here we introduce two methods that segment time-frequency
representations (TFRs) into regions of interest (ROIs) defined by
power, namely the time-frequency breakdown method (TFBM)
and the time-frequency peak finder (TFPF). Both algorithms are
designed to identify areas with increased power levels that stand out
from their neighbors in the TFR. The boundaries are not just simple
bounding boxes, but reflect in detail the contours that encompass
their corresponding peak. Both algorithms group together, in the
same ROI, peaks that are poorly separated, under the assumption
that these could belong to the same process. There is no other
prior assumption on the detected ROIs and their characteristics.
They can be oscillations with a clear dominant frequency (bursts
or sustained), broadband events such as avalanches or artifacts, or
could be an “exotic” superposition of contributions from various
sources. In the following, both algorithms are described in detail.

3.1 Detection of oscillation packets with
TFBM

3.1.1 Core principle
Time-frequency breakdown method (TFBM) (Figure 1A)

traverses an intensity map, namely the TFR, searching for ROIs
with a clear increase in power. At first, TFBM looks for potential
peaks of oscillations by searching for local maxima that become
packet center candidates. All candidates below a certain threshold
(see section “3.1.2 Validation of local maxima”) are discarded in
order to avoid very small fluctuations that usually result in a large
number of spurious noisy peaks with small amplitudes near the
floor of the TFR. Once valid candidate peaks are identified, a
modified breadth-first search (BFS) algorithm expands each of the
peaks iteratively into ROIs. The peaks with higher power values
take precedence during expansion such that strongest peaks are
expanded first. TFBM shares the same core principles with the
Space Breakdown Method (SBM), a clustering algorithm designed
with a similar problem in mind: to differentiate overlapping
clusters with distinct densities (Ardelean et al., 2019). During the
expansion, BFS uses stopping criteria that ensures ROIs will expand
only to the extent of the oscillation packet. First, the TFR point to
which it expands must not have been visited before, and it must
have a lower power than the current point. This ensures that the
expansion is done from the peak on a descending slope. Second,
similarly to SBM, the power of the current point must be higher
than an expansion bound calculated based on distance and a dropoff
(see section “3.1.3 ROI expansion and merging” for more details),
which essentially stops the expansion algorithm for points of low
power situated at some distance from the peak. Each packet center
is expanded, iteratively, over all neighboring points that do not
meet the stopping criteria. If during the expansions the current
ROI finds a point already assigned to another ROI, that point is
flagged as a point of “conflict” and a process of “disambiguation” is
initiated. The power and dropoff of the conflicting peaks, and the

distances to the point of conflict are used to decide to which ROI
the conflicting point is assigned to. TFBM tends to over-segment
the TFR. Therefore, the final step merges the ROIs separated
only by small differences/drops in power as described in section
“3.1.2 Validation of local maxima.” To summarize, TFBM has
three distinct sequential steps: the search for local maxima that
become candidate oscillation packets (section “3.1.2 Validation of
local maxima”), the expansion of said peaks (section “3.1.3 ROI
expansion and merging”) and finally the merging of connected
oscillation packets (section “3.1.3 ROI expansion and merging”).

The SBM algorithm is heavily influenced in its performance
by the properties of the intensity map, and especially by its local
statistics. TFBM inherits the sensitivity to the local statistics of the
TFR. For instance, heavily disproportionate time-frequency scales
will skew the distance which now needs to operate in the 3D space
of time-frequency-power. In order to mitigate this issue, TFBM
normalizes the power values such that they are ranged between
0 and 100. The scaling of the time and frequency is not actually
performed but it is taken into account while computing the distance
on the time-frequency plane with the following modified Euclidean
distance:

D(p, q) =
√

(scalet ∗ (pt − qt))2 + (scalef ∗ (pf − qf ))2 (1)

where p and q are two points in the time-frequency plane, and scalex
is the scale for a particular dimension, which is computed using the
resolution of the TFR in points along dimension x:

scalex =
min_points

pointsx
∗ kx, with aspect_ratio =

kt

kf
(2)

where x can be time (t) or frequency (f ), and pointsx is simply the
count of discrete steps along the x axis where the TFR is evaluated,
and min_points is the count of discrete steps of the smallest axis.
This equation is used to scale the time-frequency span of the TFR
such as to compensate for the large difference between the number
of points (pointsx) in time and frequency. Further scaling can
be achieved through the use of the aspect_ratio parameter which
allows for more resolution on the chosen axis, if not otherwise
specified, kf = 1 and kt = aspect_ratio.

3.1.2 Validation of local maxima
As discussed above, one issue that the algorithm needs to

eliminate pertains to the small spurious peaks that appear in noisy
regions with very low activity. While inspecting the distribution
of power values, we found that usually about 80% of the values
fall below 1–5% of the power of the dominant peaks in the TFR
(Supplementary Figure 1), which means that most of the dynamic
range in the TFR is covered by only a small fraction of the points.
In these low-power areas, there are a lot of spurious peaks caused
by noise that can be safely removed without any danger of losing
legitimate packets. TFBM will automatically compute the threshold
such that 80% of the power values from the TFR fall below. In
practice, the threshold usually is a small fraction (typically 1–2%)
of the maximum power, depending on the signal-to-noise ratio
(SNR). However, the threshold is also exposed as a parameter
that can be tuned by the experimenter. Importantly, the threshold
only affects valid local maxima, the ROI expansion can still use
such points. Finally, valid local maxima are not allowed to have
another local maximum in their neighborhood. This condition
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FIGURE 1

Segmentation algorithms and ROI matching metric. (A) To segment the TFR in ROIs, TFBM starts at peaks from where it follows a descending path
until it encounters a conflict point (gray circle) or a point that does not meet the expansion criteria (gray squares). Next, the algorithm resolves
conflicts by assigning the points of conflict to one of the ROIs or by merging the conflicting ROIs into a larger ROI, whose border is depicted with
dotted lines. Peaks that are below the threshold (thin gray line) are not considered as seeds for ROI expansion. (B) TFPF slices through the TFR from
the highest power to the threshold (gray line). ROIs (dotted lines) expand as the algorithm slice level is lowered. When ROIs merge (thick gray line)
the smaller peak is merged into the larger one. The algorithm stops at the threshold (thing gray line). Points below the threshold are not taken into
consideration. (C) The left pane illustrates the matching metric between two ROIs. On the right, best matching ROI (green) overlaps with the target
ROI (red). The gray ROI has a lower match value to the target than the best matching ROI.

effectively reduces elevated plateaus to one peak and simplifies
further processing.

3.1.3 ROI expansion and merging
For TFRs, it is useful to separate ROI expansion and merging

in successive steps such that each peak is able to expand the
corresponding ROI to the full extent, in order to find and retain
its complete time-frequency footprint. Following expansion, the
merging process combines packets, whilst both the dominant ROIs
and their constitutive sub-packets are retained. This is an important
adaptation over SBM because it allows for both coarse-grained and
fine-grained investigations, even if it is difficult to decide a priori
whether an ROI reflects one or multiple underlying processes.

A common feature of SBM and TFBM is the dropoff
calculation, which has been updated for TFBM to:

Dropoff (p) = |TFR(p) − min (TFR(n))|, for n ∈ N(p) (3)

where p is the point in the time-frequency plane at which the
dropoff is evaluated, N(p) is the neighborhood of point p, TFR(p)
is the value of the TFR at point p, and n iterates through
the neighborhood.

In SBM, the dropoff of the cluster center candidate is used
throughout the expansion. By contrast TFBM recalculates the
dropoff around each expansion point such that the borders of
oscillation packets are delineated more faithfully. The lower bound

of the expansion (Figure 1A, gray squares) is calculated as the
dropoff of the current point multiplied by the distance between the
packet center and said point as shown. The expansion condition
is described by Equation 4, where p indicates the current point of
expansion, n its neighbors to which it might expand and PC the
packet center. Figure 1A shows a simple example of the expansion
process for each of the three local maxima found, and the extent of
each of the peaks. All conflicting points between the current packet
and the others are stored in a list to be used in the subsequent
disambiguation step.

[Dropoff (p) ∗ Dist(p, PC) < TFR(n)] and [TFR(n) < TFR(p)],

for n ∈ N(p) (4)

Similar to SBM, TFBM incorporates a disambiguation step.
While in SBM, it was achieved during the expansion of clusters,
in TFBM it is done as a subsequent step after the expansion.
The purpose of the disambiguation is to determine to which
cluster/packet should a point be assigned to in the case that multiple
clusters/packets could expand to the same point, named a point of
conflict. By separating the disambiguation step from expansion, the
algorithm can determine for each conflict point all the packets that
could assimilate it and then choose the most appropriate. The peak
power divided by the distance to the point of conflict is calculated
for each candidate peak. The peak with highest value assimilates
the conflicting point. Finally, contours can be calculated and the
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points of conflict for the merging step are defined as the overlap of
contours between two packets.

The merging process iterates through all the packets in
increasing order of their peak power value and their corresponding
conflicting candidates. Two packets are merged if and only if the
difference between their peak power values and the maximum
power across the conflict points is below a threshold. Additionally,
the packet with the higher power value of its peak assimilates
the less prominent one. This threshold is exposed to the user as
a parameter, called merge threshold. The merge threshold can be
interpreted as the percentage (power values are normalized in the
0–100 interval) of difference allowed between conflicting peaks and
their common maximum conflict point.

For each of the found packets TFBM stores the coordinates
of the peak, maximum power, prominence as defined in the
topological literature (Helman, 2005), coordinates of conflicting
points, the contour of the packet, all the point coordinates that form
the ROI, and the parent packet if merged. These characteristics
completely define and expose the found packets for further analysis.

To summarize, TFBM is controlled by three parameters: (i) the
threshold which eliminates spurious noisy peaks in the TFR, (ii)
the aspect ratio which determines the resolution of the TFR for
the calculation of the scaled distance, (iii) the merge threshold that
determines whether two packets will be merged into one or not.
All algorithms were implemented, and all analyses were performed
with in-house software libraries developed in C# and Python.

3.2 Detection of oscillation packets with
TFPF

Time-frequency peak finder (TFPF) is inspired by the concept
of topographic prominence (Helman, 2005). It is a simple classical
threshold-based algorithm that incorporates the concepts of sub-
peaks and ROIs that works surprisingly well. In short, the power
range in the TFR, from the maximum up to a threshold, is divided
into equally spaced cutoff levels (Figure 1B, thin dotted lines).
TFPF goes through all cutoff levels, starting from the highest one,
and for each level it creates a mask of the TFR with the values
above the cutoff level. As the cutoffs get smaller, peaks will appear
in the mask as isolated ROIs. As the cutoff levels descend, the ROIs
will become larger and larger until some of the ROIs will merge
(Figure 1B thick gray line). When this happens, the largest peak
in the intersecting ROIs will take ownership of the ROI and will
also swallow the smaller peaks. The smaller peaks will be registered
as sub-peaks and will retain their ROIs from the previous cutoff
level. In this way TFPF will keep track of the merged sub-peaks
and their extents as isolated peaks. The algorithm continues until
the cutoff reaches the threshold. Finally, the isolated ROIs will
define the detected packets. Similar to TFBM, TFPF characterizes
the detected packets by a ROI, one bounding box, the frequency
and time (corresponding to the dominant peak), and a list with the
sub-peaks. Sub-peaks are characterized in the same fashion as the
main one.

The threshold is chosen based on the distribution of power
values, following the same procedure described for TFBM. The
threshold is perhaps the most important parameter for TFPF
because it essentially determines how the footprint of the ROI will

look like. A high threshold will disregard the noise and render the
bursts more separable but can also miss less prominent features.
Conversely, with a low threshold many peaks will be incorporated
in the same packet (Figure 1B red and yellow peaks). The number
of cutoff levels influences how well defined the ROIs of the sub-
peaks are. From our experience, this is not a parameter that
influences the results heavily as long as the range of power is
sampled densely enough.

3.3 Detection of oscillation packets with
OEvents

OEvents (Neymotin et al., 2022) is designed to identify
and analyze oscillation packets in electrophysiological signals by
inspecting TFRs. Originally, OEvents was developed on wavelet-
based TFRs using 7 cycle Morlets. However, the algorithm is readily
usable on other TFRs as well. At the core of OEvents are adaptive
thresholds. It first computes the statistics of each frequency of
interest across the whole dataset. Next, a local maximum filter
is used to detect peaks in the spectrogram, per frequency. Peaks
exceeding 4 times the median are considered as moderate-power
to high-power events. The authors defined a local power peak
within a 3 × 3 window and then seek the time-frequency bounds
around it by expanding the peak as long as the power is above a
threshold, which is defined as 50% of the peak value or 4× the
median, whichever is lower. Next, packets with overlapping areas
greater than 50% of the minimum area of each individual event
are merged together. Finally, OEvents computes various packet
features including frequency span, time span, peak frequency,
and other customizable features. The algorithm has been shown
to reliably detect the number of cycles and peak frequency of
oscillation events with high accuracy for most frequency bands,
and at multiple event durations. Here, we are evaluating OEvents
in relation to TFPF and TFBM on multiple data sets and on three
TFRs, namely the superlet transform (SLT), the continuous wavelet
transform (CWT) and the Short-Time Fourier Transform (STFT).

3.4 Synthetic data and detection metric

3.4.1 Synthetic data—the atoms and synthetic
background

In order to evaluate the detection algorithms, we will often use
Gaussian atoms as a ground truth signal. An atom is, by definition,
a sine wave packet with a given number of cycles, multiplied with
a Gaussian window, where the Gaussian’s standard deviation is set
to 1/6 of the sine packet length. The atom vanishes at both ends
(Moca et al., 2021), similarly to realistic packets of oscillations,
which rise and fall in a short number of cycles. In addition, for
the same number of cycles, atoms have a frequency-dependent
duration in the same way neural oscillation bursts are shorter at
higher frequencies.

To evaluate the three algorithms, we also include synthetic pink
and brown noise as backgrounds in which the Gaussian atoms are
introduced. Pink noise was generated using the Voss-McCartney
algorithm (Whittle, 2006) with 30 coefficient generators (rows).
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Brown noise was produced by integrating white noise (Gardiner,
2004).

3.4.2 Ground truth data for evaluation
To evaluate and compare various oscillatory burst detection

algorithms, we generated synthetic atoms that were then embedded
into distracting backgrounds (real EEG data, pink noise and brown
noise). Since in the literature, the gamma band seems particularly
difficult to handle by detection algorithms (Tal et al., 2020), we
embedded the atoms in backgrounds restricted to the 30 to 100 Hz
frequency range.

To control the ratio between the atom and the background, we
used the following definition of signal-to-noise ratio (SNR):

SNR =
Var(x)

Var(y)
(5)

where x and y are two signals. Please note that for a signal with
zero mean (no DC offset), as is the case here, the variance of the
signal in time is actually its power. Our choice of SNR is motivated
by the fact that the detection algorithms operate on TFRs, which in
most cases show power. In this form, the SNR is linear in the power
domain, and it is best suited to compare the detection algorithms.

For the background, we used one channel EEG data (PZ), and
pink and brown noise filtered to the band of interest (30–100 Hz)
with bidirectional IIR filter (3rd order Butterworth). The variance
of the filtered signal will essentially be the power within the band
of interest. To scale an atom, a, with a scaling factor, k, to match a
desired SNR with respect to the background, b, the relation is:

SNR =
Var(k · a)

Var(b)
(6)

Then the scaling factor is:

k =
√

SNR
Stdev(b)

Stdev(a)
(7)

3.4.3 Detection metrics
To compare the algorithms, we need an error function, able to

compare the ROIs of packets detected by the algorithm against the
ground truth, the atom’s known ROI. Or, in other words, we need
a measure of how well two ROIs match. To that end, we define the
match measure, m, as the ratio between the ROIs’ intersection and
reunion (Figure 1C left):

m(A, B) =
A ∩ B
A ∪ B

(8)

where A and B are the two ROIs. The match m is 1 if the
intersection and reunion are identical, that is if the two ROIs
completely overlap, otherwise m has a sub unitary value. If there
is no intersection, then m becomes 0. The matching error can then
be defined based on m:

e(A, B) = 1−m(A, B) (9)

Consider an atom embedded in the background noise. The
detection algorithms will identify a series of packets in the TFR out
of which only one, if any, will have the best match with the atom’s
true ROI (Figure 1C right). The best matching packet will produce
the lowest error (Equation 9), when its ROI, B, is compared to the
atoms known ROI, A. If none of the detected packets match the

inserted atom, then we consider that the atom was not detected in
that trial. The ground truth ROI A and its bounding box are defined
based on the atom’s noise-free TFR. The area with power above
20% of its peak power forms the ROI and defines the bounding
box. These surface matching measures are readily transferrable to
bounding boxes.

3.5 Time-frequency representations

In the following, we will evaluate TFBM, TFPF, and OEvents
using the SLT, CWT and STFT. All particular analysis parameters
for all figures are displayed in Table 1.

Here, we used the SLT transform (Moca et al., 2021) with base
cycles c1 = 3 and order o= 10, which provides a non-diluting TFR
with good time-frequency resolution. For illustrative purposes, the
adaptive SLT with order o = 5:10 was also used in order to better
resolve high-frequency oscillations. For the CWT we used Morlet
wavelet with 7 base cycles, as used originally in the OEvents paper
(Neymotin et al., 2022). For the STFT we used a Blackman window
of 250 ms slid over the data with a step of 1 ms. Zero padding was
used in order to increase the frequency resolution to 4 bins/Hz. The
SLT and CWT were computed using the same frequency resolution.

4 Results

4.1 Structure of identified oscillations

We first compared the structure of identified packets between
the three algorithms (Figure 2). In all tests, if not otherwise
specified, the data was analyzed with the adaptive superlet
transform (SLT) and all algorithms were applied to the same time-
frequency representation (TFR). Even if OEvents was initially used
in conjunction with a wavelet TFR, here we wanted to factor out
from evaluations the differences between TFRs. In principle all
three algorithms can be used in conjunction with any TFR, and
all can potentially benefit from the sharper spectral representation
of the superlets. However, for the sake of completeness we
also evaluate their performance on the Short-Time Fourier
Transform (STFT) and the continuous wavelet transform (CWT).
All parameters used for the analyses are summarized in Table 1.

With the first test we wanted to probe the capacity of the
methods to delineate different processes that have a close proximity
in the frequency space. To that end, we generated groups of
Gaussian atoms (20 cycles) equally spaced in time but progressively
closer in the frequency space (Figure 2A). The atoms with
amplitude 1 were embedded in a uniform random noise with
double the amplitude. The signals were analyzed with the SLT (base
cycles c1 = 3, order o = 10:10) and all algorithms were applied
on the same TFR. In the following paragraphs, we focus on: (i)
the ability to detect existing atoms, without introducing spurious
nonexistent oscillations, (ii) over-segmentation, and (iii) the ability
to separate distinct atoms.

Time-frequency breakdown method (TFBM) and time-
frequency peak finder (TFPF) were both able to identify all the
atoms, while OEvents struggled to detect the atoms due to its
per-frequency thresholding logic that requires power to be 4 times
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TABLE 1 Analysis parameters.

Analysis and
corresponding
figure

Figures 2A,C,D Figure 2B Figure 3 Figure 4 and
Supplementary

Figure 3

Supplementary
Figure 2

Supplementary
Figure 4

Algorithm Parameter

TFBM

Threshold
(percentile)

90% 92% 90% 90% 92% 80%

Merge threshold 35% 35% 15% 15% 35% 15%

Aspect Ratio 1 1 1 1 1 1

TFPF

Threshold
(percentile)

90% 92% 90% 90% 92% 80%

Cutoff levels 30 30 30 30 30 30

OEvents Threshold (×median) 4 4 4 4 4 4

SLT
Base cycles, c1 3 3 3 3 3 3

Order, o 10:10 5:10 10:10 10:10 5:10 10:10

CWT Cycles – – – 7 7 7

STFT

Window size – – – 250 ms 250 ms 250 ms

Step size – – – 1 ms 1 ms 1 ms

Frequency resolution – – – 4 bins/Hz 4 bins/Hz 4 bins/Hz

Window type – – – Blackman Blackman Blackman

For each algorithm and analysis, all parameters are listed with reference to the figure it pertains to.

above the median for a peak to be detected (Neymotin et al.,
2022). In this particular test, due to the amplitude of the atoms
and the noise, the OEvents median is not able to separate clear
oscillations from the background. At low frequency (20 Hz), where
atoms introduce a lot of power, the median is too high and clear
bursts are missed. At higher frequencies, where shorter atoms
introduce less power, the normalization makes even tiny levels
of power seem significant and many atoms are clumped together
under the same bounding box, as a single event. Symptom of
the same problem, a lot of non-existing events are detected as
oscillations in areas without atoms. Overall, OEvents misses and
merges the most while detecting spurious oscillations in areas
with noise. We have also run the same OEvents analysis, but the
median used for normalization was computed over the entire TFR
and the same value was used on all frequencies. The reasoning
was that, when only short stretches of signals are available, the
median over the entire TFR is more representative of the data.
This is especially the case with TFRs, such as superlets, where
1/f dilution is less pronounced. Indeed, using one median across
the entire TFR was a better normalization for this particular case,
and OEvents performed significantly better, but still merged more
atoms together than TFBM and TFPF (data not shown).

A closer look at TFBM shows that some of the atoms were
subdivided or sometimes broken into distinct subparts (adjacent
red bounding boxes in Figure 2A left pane). This is in part due
to the parameter choice (see Table 1), which in this case favors a
finer segmentation designed to separate as much as possible the
overlapping packets. Indeed, TFBM was able to separate packets
slightly better than TFPF, but at the cost of over-segmentation.
TFPF on the other hand, is a simple threshold-based method, which
works well when the packets are quite clear, like in this example.
It performs almost the same over segmentations as TFBM, but
the over-segmented satellite peaks are very small and less clearly

apparent. As compared to TFBM, it is more difficult to tune its sole
parameter, the threshold, to detect the faint packets and at the same
time to separate well the overlapping packets. Notably, with these
parameters, none of the packets are missed by TFBM or TFPF, albeit
with some over-segmentations and spurious merges where atoms
are close in time and frequency (above the 7s time mark). These
“spurious” packets are faint parts of already existing packets and
could be eliminated by thresholding the representation at slightly
higher power values.

In Figure 2B, we show an example of single-trial local field
potentials (LFP) recorded from mouse visual cortex (V1) during
a receptive field mapping trial, where a moving bar traverses
horizontally the receptive field. The adaptive SLT used here was
optimized (Table 1) to cover a wide frequency range (1–100 Hz).
It reveals a wide array of frequencies with well-defined bursts of
activity, such as the gamma burst at 55 Hz at around 1s and the
beta burst that starts at 2.5s. Both have a complex shape with
decreasing frequency and power modulations that appear as sub-
peaks. In addition, there are several small and fainter oscillations
that enrich the landscape. TFBM and TFPF are able to delineate
(black border) the most important packets of oscillations. Between
TFBM and TFPF, TFBM does a better job at isolating both large
and small packets, some that are actually missed by TFPF. Take
for instance the 35 Hz burst that occurs immediately after the 1s
mark. Although faint, it is clearly separable from the background
and has a series of easily identifiable sub-peak. All these aspects
are correctly revealed only by TFBM. After 2.5s the beta-gamma
activity is also better segmented by TFBM which detects a larger
number of structures that, at least subjectively, should be separated.
TFPF also nicely delineates these structures, but it performs more
aggressive merging. Note, however, that the beta (14 Hz) and
gamma (55 Hz) packets at 1s are over-segmented by TFBM
but nicely isolated by TFPF. OEvents behaves similar to the
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FIGURE 2

Single trial comparison. The figure compares the segmentation of TFBM (left), TFPF (center), and OEvents (right) on several single-trial TFRs
computed with superlets. The ROI boundaries of detected packets are shown in black and the bounding boxes in red. Local maxima are marked
with white dots and sub-peaks with gray. (A) A series of atoms in the gamma range (20–55 Hz) with increase proximity in frequency are embedded
in uniform noise. (B) A wide frequency range (0–100 Hz) of a single trial LFP recording from mouse visual cortex, stimulated with a drifting oriented
bar. (C) Single trial electroencephalogram (EEG) with rich spectrum covering the alpha, beta, and low gamma frequency band. The marked area in
(C) is zoomed-in in (D).

previous example, over-merging bursts across the entire spectrum.
Important to note is that both TFBM and TFPF do a good job
at carving out oscillation packets that are clearly delineated, with

sub-peaks correctly placed over prominent sub-peaks. TFBM and
TFPF present an unprecedented level of detail with respect to the
complexity of the identified structure and the level of description.
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To identify such structures, we argue that it is important to employ
the appropriate TFR. In Supplementary Figure 2 we compare the
algorithms on three different TFRs namely the superlet, CWT,
and STFT. The same data as shown in Figure 2B was used. The
comparison shows how the crisp details in the superlets allow the
algorithms to overall better separate the structures.

The SLT shows the same level of detail in human EEG data
(Figure 2C). Here, OEvents performs better than in the previous
two cases and identifies the most prominent features of the TFR.
The OEvents segmentation is in general greedier and merges larger
areas in a coarser account of the structures, as compared to TFBM
and TFPF. It also misses some of the packets with low power
such as the 20 Hz burst starting at 0s or the brief alpha activity
around 1.5–2s. TFPF also misses or barely finds packets in higher
frequencies. By contrast TFBM is the algorithm that best delineates
the structures, although it is merging some of the faint packets. For
instance, it merges together, like OEvents, the 30–40 Hz structures
around the 1s mark. TFBM identifies more structures than TFPF
and OEvents. The alpha activity and the beta (20 Hz) activity
around 1.6 and 2.5s are correctly delineated only by TFBM. Overall,
the TFBM segmentation is superior to TFPF but perhaps overly
greedy in faint areas, while OEvents captures only a rough structure
of the oscillations.

Take, for instance, the rich region between 0.9–2.05s in the
12–30 Hz range which is zoomed in Figure 2D. In this area, the
oscillations are clear and TFBM’s segmentation borders follow the
edges of the oscillations most accurately (Figure 2D left). TFPF also
finds the contours nicely, but it suffers from the fixed threshold
and poorly delineates smaller peaks, such as the low beta burst
just before the 1.5s mark. By comparison, OEvents’ bounding boxes
(Figure 2D right) cannot match the level of details put forth by the
contours of TFBM or TFPF.

4.2 Comparison between methods

As we have seen from the examples in Figures 2B–D, single
trial neural oscillations are usually embedded in rich landscapes,
with background activity and noise. In the following, we tested
how well the three methods are able to recover known oscillations
buried in realistic backgrounds. To this end, we generated 200
atoms with a duration of 10 cycles and frequencies ranging from 35
to 95 Hz. Each atom is assigned a random frequency and insertion
time point after which is inserted into a background instance.
Following the procedure described in section “3.4.2 Ground truth
data for evaluation,” we calibrated all atoms’ amplitude to obtain
increasingly higher SNR levels (0.1, 0.25, 0.5, 1, and 2) and we then
embedded them in the data, such that the same configuration of
the atoms’ frequency, time, and trial were repeated for each SNR.
In summary, 1,000 tests have been performed using 200 atoms at
five SNR levels.

First, we embedded the atoms in EEG data to test the detection
in a context as realistic as possible. To that end, for each atom
one trial is chosen randomly from the 84 available EEG trials.
Figure 3A shows the detection measurement statistics when all
three algorithms were evaluated based on the rectangular bounding
boxes of the detected packets. As described in section “3.4.3
Detection metrics,” a known atom was considered detected if its

bounding box intersected with at least one of the packets found
by the detection algorithm. The best matching packet is then
considered for error measurement against the ground truth atom.
Here, we measure three errors: the bounding box match error, the
time match error, and the frequency match errors. The latter two
are just the differences between the location in time and frequency
of the atom and that of the highest peak in the bounding box.
However, we also measure the percentage of missed atoms (no
detected packet has any overlap with the atom).

At all SNRs, TFBM is able to locate the atoms with significantly
lower error than the other two algorithms (Figure 3A, top). This
is perhaps due to the fact that TFBM is best at capturing packets
at low SNRs, where it has two times fewer misses than TFPF and
OEvents. The latter two fail to find about 7% of the atoms at SNR
0.1 (Figure 3A, bottom). Overall, TFBM shows lower bounding box
errors than TFPF and OEvents at all SNR levels and also the smallest
proportion of missed packets. From SNR = 1 onward, none of
the packets are missed by TFBM and TFPF. At low SNRs (≤0.25)
TFPF’s performance is slightly lower than OEvents, but at SNRs≥1
TFPF has lower bounding box errors and no misses.

Next, we evaluate the time and frequency errors (Figure 3A,
second and third panel, respectively). Time and frequency errors
can be computed only if the atom is detected. Consequently,
atoms that were not detected did not contribute to the time and
frequency error statistics. At SNR = 0.1, TFPF and OEvents lose
twice more atoms than TFBM (Figure 3A, bottom). This favors
their time/frequency distributions since the missed, hardest to
detect packets, do not contribute to their error distributions but
are registered by TFBM. However, even in this case time and
frequency errors are smaller for TFBM. Overall, errors decrease as
a function of SNR, and starting with SNR = 1 and above the time
and frequency errors are extremely low and the three algorithms
performed with the same accuracy in all these tests. Nevertheless,
OEvents still misses a small fraction of the atoms while and TFPF
and TFBM miss none. For SNR ≤ 0.5 TFPF had a harder time
in determining the correct timing and frequency of the atoms
than TFBM and OEvents. All significance levels were assessed
with a paired t-test, assuming unequal variances, with Bonferroni
correction for multiple comparisons, where applicable (Figure 3).

The same procedure is applied for measurements shown in
Figure 3B, but rather than using the rectangular bounding boxes,
the evaluations are performed on the detected ROIs (surface
bounded by the detected packets’ contour). Only TFPF and TFBM
were compared, because OEvents finds only the bounding boxes.
In terms of contours matching TFBM is significantly better than
TFPF across all SNRs. At SNR = 0.1, TFBM only misses about 5%
of the packets as opposed to TFPF, which fails to find about 9% of
the packets. From SNR 1 and above, when the atoms stand out from
the background, the TFBM and TFPF algorithms have virtually the
same performance in terms of frequency and time errors, and no
packet is missed.

In previous evaluations we have used SLT as the TFR of choice
and we embedded atoms in background EEG. These raises two
questions: How would the algorithms perform on other TFRs and
what is the influence of the background of choice? Therefore, in the
next evaluations we aim to answer these two questions.

In a second set of comparisons, we ran the detection algorithm
on the same atoms embedded in EEG, but using also CWT and
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FIGURE 3

Detection comparison between the three algorithms as a function of SNR. In (A) the match between the ground truth (atom) and the detected
packets is evaluated using the matching error of rectangular bounding boxes. The top panel shows the bounding-box detected errors with better
detection as SNR is increased. Time and frequency errors are shown on the second and third panels, respectively. Finally, the percentage of missed
atoms is shown on the bottom. For TFBM and TFPF (B) shows the same data as in (A) but evaluated using the fine-grained ROIs (contours) instead of
the bounding-boxes. Stars indicate significance levels.

STFT, the two most established TFRs. Figure 4A illustrates the
comparative performance of TFBM, TFPF and OEvents on the
three TFRs generated by SLT, CWT, and STFT. As expected, for all
representations, the algorithms perform better for increased SNR.
TFBM has the smallest box errors in most situations and performs
best in combination with SLT. It also fares better than TFPF and
OEvents for CWT. Overall, TFBM and TFPF profit most from the
sharper (Supplementary Figure 3) superlet. By contrast, OEvents
seem to fare comparably well on SLT and STFT, with most misses
on CWT (see also Supplementary Figure 4).

Time-frequency peak finder (TFPF) and TFBM have problems
on STFT at SNR≤ 0.25, where they miss more atoms than OEvents.
The fact that both TFPF and TFBM have a problem on STFT
at low SNR could be caused by the thresholding operation that
eliminates small power values. The thresholds were established
on the SLT representations, while the STFT has different spectral
characteristics. To test this hypothesis, we lowered the power
threshold such that more of the low part of the TFRs contributes to
packet detection (Supplementary Figure 4A). Indeed, with a lower

threshold (80%) the detection performances of TFBM and TFPF
greatly improve and they always surpass OEvents. With this lower
threshold that favors the detection of atoms, TFBM only misses
atoms on STFT and less than 2% at SNR = 0.1. TFPF also barely
loses packets on SLT and CWT. These results point to SLT as being
the TFR of choice for TFBM and TFPF.

Third, because EEG might not be the most suitable background
in all situations, we also tested atom detection with pink
noise (Figure 4B) and brown noise (Figure 4C) backgrounds
generated according to the procedures described in section “3.4.1
Synthetic data—the atoms and synthetic background.” Similarly,
to the case of EEG background, each atom is embedded in a
different instantiation (trial) of the noise. The same procedure
for embedding (including filtering) was performed, as described
in section “3.4.3 Detection metrics.” In terms of performance
the algorithms perform similarly on background noise and EEG.
With one exception (brown noise background with STFT) TFBM
performs best across the board. OEvents and TFPF are competing
at small SNRs (≤0.25) while at SNR ≥ 0.5 TFPF has fewer overall
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FIGURE 4

Effects of background type and time-frequency representations on detection. (A) Shows the detection performance of atoms embedded in
electroencephalogram (EEG) background. The box match error (upper panes) and the percentage of missed packets (bottom panes) are shown for
three TFRs: SLT on the left, CWT in center and STFT on the right. For easy comparison, left panes in A, recapitulate top and bottom panes in
Figure 3A. In (B,C) the same evaluation is shown for backgrounds of pink and brown noise, respectively.

misses than OEevents (except at brown noise with STFT and
SNR = 0.5). Lowering the power threshold dramatically improves
packet detection for TFBM and TFPF also in the case of brown
and pink backgrounds (Supplementary Figures 4B, C). With TFPF
and TFBM missing far less packets as compared to OEvents (except
TFPF on brown noise with STFT at SNR = 0.1), even though the
box error was usually larger for TFPF than for OEvents. As in the
case of EEG background, TFPF and TFBM usually performed better
on SLT and worse on STFT, with OEvents faring worse on CWT
(Figures 4B, C and Supplementary Figures 4B, C).

5 Discussion

Detection of oscillation transients in neural data can be
a challenging task due to their 1/f nature and the rich

time-frequency landscape they populate. The packet detection
methods introduced here can work, in principle, with any
time-frequency representation (TFR), estimated using Fourier
analysis, wavelets, Wigner-Ville distributions, etc. We argue
that the properties of the TFRs have a critical impact on
the detection performance of any methods that rely on them
for finding oscillation transients. Therefore, instead of focusing
on tuning packet detection algorithms to cope with the 1/f
nature of neural signals, for TFR-based methods, one should
instead focus on improving the TFR itself, or applying TFR
correction techniques, such as the pseudo Z-score baselining
(Ciuparu and Mureşan, 2016). When applicable, the baselining
technique enables the removal of the 1/f trend from the
TFR, irrespective of the technique used to estimate the latter.
Nevertheless, the way the TFR concentrates the representation
of an oscillation transient, simultaneously in time-frequency, still
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remains an important factor, even if baselining is applied. The
shape, amplitude, and time-frequency span of an oscillation event
extracted by a detection algorithm depends ultimately on the
time-frequency estimation method, i.e., the TFR. We discuss these
issues next.

5.1 Importance of TFRs

The development of capable TFRs is a very active field of
research in signal processing (Pachori and Sircar, 2007; Boashash,
2015; Yu et al., 2019; Peng et al., 2020; Li et al., 2022). TFRs
are estimators—the true time-frequency representation of a signal
is usually not known. For obvious reasons, methods that rely
on TFRs to detect oscillation transients depend dramatically
on the ability of such TFRs to correctly estimate the presence
of the transients. The two most widely used TFRs are built
using the Short-Time Fourier Transform (STFT), to calculate
spectrograms, and the continuous wavelet transform (CWT), to
calculate scalograms. Both have serious issues. The spectrogram
uses a fixed sliding window to estimate the evolution of power in
time. The window needs to be large enough to capture the lowest
frequency in the representation. As a result, higher frequency
bursts, which are shorter in time, will fill a smaller proportion
of the window and appear “diluted” in the representation (Moca
et al., 2021). On the other hand, the traditional scalogram uses
wavelets with energy preserving normalization. This also suffers
from power dilution [see Supplementary Information in Moca
et al. (2021)]. Power dilution of both representations exacerbates
the 1/f problem by even further attenuating spectral components
in the higher frequency range. A solution around the dilution
problem for wavelet-based techniques is a wavelet normalization
that conserves the modulus integral (Mallat and Zhong, 1992;
Liu et al., 2007; Lilly, 2017)—by default implemented in Matlab.
In such representations, the peak power density of an oscillation
burst with a finite number of cycles will be the same at any
frequency. However, this leads to another issue, called redundancy:
the total energy recovered from the representation is larger than
the actual energy of the signal. Nevertheless, these representations
are very useful for the detection of oscillation packets (Moca et al.,
2021).

Not only dilution or the 1/f nature of brain signals poses
challenges. Perhaps the most formidable one is the Heisenberg-
Gabor uncertainty principle, or the Gabor limit (Gabor, 1946;
Heisenberg, 1985), according to which one cannot perfectly localize
a signal in both time and frequency simultaneously. This introduces
a resolution limit, which can be theoretically achieved by the
family of Wigner-Ville distributions (WVD) (Boashash, 2015).
Unfortunately, the price to pay to achieve such resolution is
that WVDs exhibit cross-terms (artefactual components in the
spectrum), which render them unusable for data with a rich spectral
landscape, such as brain signals (Moca et al., 2021). The more
traditional techniques are usually not even coming close to the
resolution limit displaying leakage of power across frequencies
and/or time-smearing. Therefore, even well-defined oscillation
packets may be difficult to detect in such representations, especially
when close-by components exist, whose representation is mixed
with that of the target packets. Therefore, methods are needed that

can achieve good or near-optimal power concentration, yielding
good time-frequency resolution.

One such method is the SLT, which combines multiple wavelet
representations geometrically, to achieve time-frequency super-
resolution: the SLT has a better resolution in the time-frequency
space than any of the individual wavelet representations from its
set (Moca et al., 2021). Another advantage of the SLT is that it
uses the modulus integral wavelet normalization, such that the
representation does not suffer from dilution issues, alleviating
the 1/f problem. Here, we have shown that using superlets can
enable packet detection methods to isolate target oscillations with
remarkable precision. In general, any detection algorithm that uses
TFRs could benefit from the improved time-frequency landscape
provided by superlets.

5.2 Detection methods

Detection methods based on TFRs differ in terms of the
particular algorithms used to detect and isolate peaks in the
representation. Aside from the normalization to compensate for
1/f phenomena, most algorithms use some kind of local peak
seeking (Tal et al., 2020). Then, rectangular bounding boxes are
typically constructed to delineate the estimated extent of the packet
at the location of the peak (Neymotin et al., 2022), but see
Waldman et al. (2018). However, packets can frequently exhibit
less canonical shapes in the TFR, like bursts with increasing or
decreasing frequency, ripples on spikes (Waldman et al., 2018), etc.
It would therefore be ideal to devise methods that can perform
detection in such a way that the precise contour of the packet can
be extracted.

Here, we developed two methods that are able to estimate
the presence of oscillation packets in complex TFRs of brain
signals, while also extracting the contour of these packets. The
geographical approach of time-frequency peak finder (TFPF) bears
some similarities with the algorithms used by Waldman and
colleagues (Waldman et al., 2018) to identify RonS high-frequency
oscillations (HFOs). Although the RonS detection algorithm
employs contours, these are mainly used to detect whether the
packet is limited to the ripple band or if it is a broad-band
artifact. In addition, similar to other packet detection algorithms,
the RonS detector is specifically designed for one type of activity,
the RonS HFOs, and is not readily transferable to other frequency
bands or to packets with different morphologies. In our case, time-
frequency breakdown method (TFBM) and time-frequency peak
finder (TFPF) were developed with the clear target in mind of
identifying the precise contour of various packet morphologies in
TFRs, rather than just their rectangular bounding box. In addition,
it would be desirable to have techniques that are able to determine
the hierarchical relationship between different, nearby TFR peaks.
We have shown that both TFBM and TFPF can successfully meet
these two requirements.

When compared to the other techniques, TFBM is more
complex but appears to have a better performance, especially on
difficult cases. Indeed, TFBM has lower errors than both TFPF and
OEvents (Tal et al., 2020), irrespective of the type of TFR or the
statistics of the background (EEG, pink noise, or brown noise).
With respect to the misses of packets, TFBM seems best suited to
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operate on the SLT representation, where it clearly outperforms all
the other methods and obtains the best results overall. The OEvents
fares best on the STFT, sometimes suffering from less misses
than the TFBM at low SNR on this representation. This is likely
because, on the STFT, OEvents takes advantage of the frequency-
wise normalization, which has not been applied on the TFR of
the TFBM—although a pseudo Z-scoring (Ciuparu and Mureşan,
2016) could be applied and may bring TFBM in advantage.
Regarding the type of TFR, at low signal-to-noise ratio, the SLT
generally provides the lowest detection error irrespective of the type
of detection technique used (Supplementary Figure 3), indicating
the advantage this representation brings in the case of complex
TFR landscapes, cluttered with noise. From the extensive testing
performed here, the best results are obtained by the combination of
TFBM-SLT, across all types of data, with strong performance boosts
at low signal-to-noise ratios.

Beyond performance, TFBM and TFPF have an advantage over
previous methods because they can delineate the fine contour of the
detected oscillation events. Previous methods, with the exception of
RonS detection algorithms (Waldman et al., 2018), can only extract
rectangular bounding boxes of oscillation packets. While the RonS
algorithm also employs contours, the algorithm is constructed for
a specific type of HFO, the RonS, and is not readily extensible to
other type of packets (oscillations or not) or to other frequency
bands. Importantly, the ability of the novel methods introduced
here to construct hierarchical relationships between components of
the TFR can be exploited for unprecedentedly detailed analysis of
the underlying bursting processes.

Finally, while there seems to be no perfect methods for
detection of oscillation packets, in general more complex ones,
like the TFBM, seem to fare better. The price to pay, of course, is
increased complexity and more parameters, which may need to be
tuned by the user. OEvents, for example, features a fixed threshold
(4 ∗ the median threshold), and perhaps this could be tuned in order
to obtain better performance on certain types of representations
/ signals. Similarly, TFBM features a single parameter that needs
to be manually provided, the rest are optional and are calculated
automatically. Nevertheless, these optional parameters are also
exposed and can be set manually. In all cases, however, on
real neural data, choosing an optimal parameter set is a tedious
undertaking, because the ground truth is not known.

5.3 Single-trial analysis versus averaged
TFRs

It is worth pointing out that even isolated bursts can be
misinterpreted as sustained oscillations in averaged TFRs. This is
a confound ultimately rooted in the high variability of neuronal
responses, frequently overwhelming the effects of interest. For
example, an assumption that is often made is that stimulation
induces effects that are small relative to background activity, such
that, for a reliable detection of these effects, multiple realizations
(trials) under the same condition are required. However, the
usual averaging of the spectra does come with confounds.
In power spectra both induced and evoked effects sum up,
including those oscillation bursts not time locked to the stimulus.
The first consequence is that induced, non-time-locked, activity

gets smeared out and diluted by the background. Second, if
oscillation bursts at a fixed frequency are spread out in time, the
resulting averaged TFR has a smeared-out appearance that may
be confounded with a sustained oscillation, even if single trials do
not contain sustained rhythms. We therefore argue that the true
nature of oscillation packets can only be revealed by performing
single trial analyses.

6 Conclusion

Here, we have introduced two robust techniques for detecting,
isolating, and quantifying oscillation packets of any shape and
expressed anywhere in TFRs of neural signals. They are able
to precisely isolate the shape of the time-frequency components
in the TFR and to determine hierarchical relationships between
peaks that represent oscillation packets. In addition, we also
demonstrated the usefulness of super-resolution TFRs for the
detection of oscillation packets. In particular, the recently
developed superlet transform appears to fare well on neural
data. Such powerful tools to characterize oscillation bursts open
the way for quantitative analysis of the properties of transient
oscillations in brain signals. For example, one hypothesis that
could be explored is that oscillation events are manifestations
of scale-free processes operating in cortical circuits (Grosu
et al., 2022), which give rise to periodic transients that are
self-similar (fractal) across a wide range of temporal scales.
The power of tools for detection of oscillation packets is
yet to be revealed by complex future studies of transient
oscillation processes.
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