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Abstract. In recent years, lightweight cryptography has been a hot field in symmetric
cryptography. One of the most crucial problems is to find low-latency implementations
of linear layers. The current main heuristic search methods include the Boyar-Peralta
(BP) algorithm with depth limit and the backward search. In this paper we firstly
propose two improved BP algorithms with depth limit mainly by minimizing the
Euclidean norm of the new distance vector instead of maximizing it in the tie-breaking
process of the BP algorithm. They can significantly increase the potential for finding
better results. Furthermore, we give a new framework that combines forward search
with backward search to expand the search space of implementations, where the
forward search is one of the two improved BP algorithms. In the new framework,
we make a minor adjustment of the priority of rules in the backward search process
to enable the exploration of a significantly larger search space. As results, we find
better results for the most of matrices studied in previous works. For example, we
find an implementation of AES MixColumns of depth 3 with 99 XOR gates, which
represents a substantial reduction of 3 XOR gates compared to the existing record of
102 XOR gates.
Keywords: Lightweight cryptography · Linear layer · Low-latency implementation
· AES

1 Introduction
The design of cryptographic building blocks revolves around two primary criteria, namely
confusion and diffusion. One of the most popular structures of block ciphers is the
Substitution-Permutation Network (SPN) structure, wherein the attainment of confusion
and diffusion predominantly relies on the nonlinear substitution boxes (Sboxes) and the
linear permutations respectively.

In recent years, lightweight cryptography has been applied to provide security and
privacy in many fields, such as Internet of Things (IoTs), wireless sensor networks and
Radio-Frequency IDentification (RFID) tags. These devices have strict resource constraints
in terms of circuit size, power consumption and latency. Given the growing concern
for security, lightweight cryptography offers symmetric primitives that facilitate secure
encryption with low resource costs.

This research was supported by National Key Research and Development Project under Grant No.
2018YFA0704705 and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-035).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-09-01 Accepted: 2023-11-01 Published: 2023-12-08

https://doi.org/10.46586/tosc.v2023.i4.489-510
mailto:shihaotian@amss.ac.cn
mailto:fengxt@amss.ac.cn
mailto:xushengyuanxsy@outlook.com
http://creativecommons.org/licenses/by/4.0/


490 A Framework with Improved Heuristics to Optimize Low-Latency Implementations

There are typically two main research lines on lightweight cryptography. The first
direction falls on the design of new ciphers using lightweight building blocks. Related
work can be found in [BBI+15, BJK+16, LMMR21, BCG+12]. Additionally, considerable
research has been conducted on constructing lightweight Maximum Distance Separable
(MDS) matrices (see [SKOP15, DL18, LSL+19, YZW21] for an incomplete list). MDS
matrices are widely utilized in linear layers due to their ability to achieve the maximum
branch number.

The second direction focuses on optimizing the circuits of existing ciphers. Various
automated tools have been proposed to search for efficient implementations of small-scale
circuits, including SAT-based tools [Sto16] and the meet-in-the-middle search method
[JPST17, BGLS19]. Synthesis tools such as Yosys [Wol16] and ABC [BM10] are available
for rough optimization of circuits in larger domain sizes. These tools are capable of handling
both linear and non-linear layers. Numerous papers in the literature have proposed novel
techniques to efficiently implement middle-scale non-linear layers, particularly for the AES
Sbox. One of the most popular techniques involves the use of composite field arithmetic,
which leads to a small and compact implementation of AES Sbox [Can05].

There has also been a lot of research on optimizing implementations of linear layers.
Among the various criteria used for evaluating implementations, one of the most commonly
employed is the measurement of Gate Equivalent (GE)1. In the context of linear layers,
the number of XOR gates required to compute outputs from inputs corresponds to the
GE count, as the XOR gate is the only one utilized in their implementations. Therefore,
reducing the XOR gate count is equivalent to reducing the GE cost, which formulates
the Shortest Linear Program (SLP, in short) problem. However, the SLP problem has
been proven to be NP-complete over a finite field [BMP08]. To address this challenge,
various heuristic algorithms have been proposed to search for implementations with a
reduced number of XOR gates. Paar’s algorithm [Paa97] runs fast and provides some
decent cancellation-free implementations by iteratively combining different columns in
the matrix. The BP algorithm [BMP13] employs a greedy strategy on reducing distances
to outputs, and can produce good results for many middle-scale matrices. Furthermore,
several improvements upon the BP algorithm have been proposed in subsequent research
[VSP18, ME19, TP20]. Based on existing implementations, Xiang et al. introduced
new approaches to reduce the number of XOR gates by means of some reduction rules
[XZL+20, LXZZ21]. All these methods use the general-XOR metric except the one in
[XZL+20] with the sequential-XOR metric. In this paper we only consider the general-XOR
metric.

Another criterion that has gained significant attention is latency, which relates to the
total time required for running a circuit and can be characterized by the circuit depth,
i.e., the length of the longest path involved in computing an output. Latency not only
impacts the throughput of encryption/decryption, but also plays an important role in
the low-energy consideration of ciphers [BBI+15]. As mentioned previously, numerous
ciphers with low latency have been proposed. In terms of the second research line, for a
given linear layer, its implementation can reach a certain minimum depth. Within the
depth limit, it becomes important to reduce the XOR gate count of minimum latency
implementations, which formulates the Shortest Linear Program with minimum Depth
(SLPD, in short) problem. The aforementioned methods to address the SLP problem
become ineffective since they do not take the depth limit into account. Currently, there
are two primary types of algorithms for the SLPD problem. One is the forward search
represented by Li et al.’s method [LSL+19]. They added a depth limit to the original BP
algorithm. Banik et al. [BFI21] made an improvement by introducing randomness. The
other is the backward search proposed by Liu et al. [LWF+22]. They iteratively split one

1The unit of gate size is Gate Equivalent (GE), where one GE equals the area of a 2-input NAND gate.
The cost of other gates in terms of GE is a normalized ratio between their area and one NAND gate area.
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or two nodes by several rules with different priorities. In [LZW23] they further proposed a
framework for local re-optimization of a given low-latency implementation to address the
SLPD problem.

1.1 Our contributions
This paper focuses on the SLPD problem. Notably, a significant difference between the
SLPD and SLP problems lies in the fact that, in the SLPD problem, outputs and those with
high depth have a smaller contribution to other outputs due to the depth limit, but this is
not the case in the SLP problem. Consequently, prioritizing closer outputs has a smaller
impact on approaching other outputs and may result in the loss of alternative, better
pathways that generate the closer outputs. Therefore, in the SLPD problem, approaching
all outputs at a relatively consistent pace might be a preferable choice due to the depth
limit.

Based on the above idea, we propose two improved heuristics IBPD and IBPD-MD for
the SLPD problem, which are based on the BP algorithm with depth limit. When faced
with multiple choices for new base elements, which all result in new base sets with the
same sum of distances to the outputs, we refine the tie-breaking rule by minimizing the
Euclidean norm of the new distance vector instead of maximizing it. Our experiments
further show that it significantly increases the potential for better search results. Both
algorithms IBPD and IBPD-MD adopt this strategy, and the only difference between them
is that IBPD-MD has an additional filtering operation on the choices. Additionally, the
depth bound of some outputs can be set smaller.

Moreover, we propose a new framework of combining forward search with backward
search. Specifically, the forward search is performed multiple times to optimize the nodes
in the current working set and predecessor set after each iteration of the backward search.
Finally, one implementation with the least cost is recorded. The forward search can be
IBPD or IBPD-MD, and actually IBPD-MD performs better. Compared to the algorithm
IBPD or IBPD-MD alone, the framework can produce better results, as backward search
can expand the search space of forward search by predetermining how some outputs are
generated. Moreover, we also find that leveling up the priority of the random splitting
rule could explore a much larger expanded search space and lead to much better results.

Finally we apply our methods to various matrices studied in related works [LWF+22,
LZW23]. For most matrices, better results can be found and are listed in Table 52. Notably,
we find a minimum latency implementation of AES MixColumns with only 99 XOR gates,
which breaks the previous record of 102 XOR gates in [LZW23] and is given in Table 4.
Additionally, we also apply them to 4254 involutory MDS matrices with minimum depth 3
proposed in [LSL+19] and obtain better results for 88.2% of them (see Table 6), which is
much higher than those in previous works (54.3% in [LWF+22] and 77.6% in [LZW23]).
In particular, we find implementations of several matrices with depth 3 and 84 XOR gates,
which break the previous record of 85 XOR gates in [LZW23].

1.2 Organization
In Section 2, we introduce some notations, definitions and the metric in use. In Section 3,
we present some existing heuristics for the SLPD problem. In Section 4, we propose our
new methods, followed by some comparisons and discussions. All the experimental results
are listed in Section 5. Finally, we conclude our work in Section 6.

2All the source codes and results of this paper are available at https://gitee.com/Haotian-Shi/
A_framework_with_improved_heuristics_to_optimize_low-latency_implementations_of_linear_
layers.

https://gitee.com/Haotian-Shi/A_framework_with_improved_heuristics_to_optimize_low-latency_implementations_of_linear_layers
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2 Preliminaries

2.1 Notations
Let F2 be the finite field with 2 elements 0 and 1, and Fn

2 be the n-dimensional vector
space over F2. The XOR operation, i.e., the addition in F2 or Fn

2 , is denoted by ⊕. Denote
wt(v) the Hamming weight of v ∈ Fn

2 , i.e., the number of 1’s in v.
The linear layer of a cipher is actually a linear Boolean function with n inputs and

m outputs and can be interpreted as a matrix A = (ai,j)m×n over F2 (Usually m = n
and A is invertible). Denote the inputs of A as x = (x0, x1, . . . , xn−1) and the outputs as
y = (y0, y1, . . . , ym−1), then y can be computed by the matrix multiplication yT = AxT .
Therefore, the i-th row (ai,0, ai,1, . . . , ai,n−1), corresponds to the i-th output yi = ai,0x0 ⊕
ai,1x1⊕· · ·⊕ai,n−1xn−1. In fact, each intermediate value t = t0x0⊕ t1x1⊕· · ·⊕ tn−1xn−1
can be associated with a coefficient vector of length n:

t = (t0, t1, . . . , tn−1).

We use “node” to define such a binary vector. Then yi is the i-th output node, and xj is
the j-th input node. Actually xj is the j-th unit vector, i.e. the j-th component equals
1 and others equal 0, and for convenience we assume that every output node y is not a
input node, i.e. wt(y) > 1.

For three nodes t1, t2, t3, if t1 is computed by t2 ⊕ t3, we call that t2 and t3 generate
t1 and refer to them as the predecessors of t1. The XOR computation of t1 is said to be
cancellation-free if there are no common input terms cancelled by XOR in t2 and t3. To
generate an output node y, at the beginning the existing nodes only consist of input nodes.
So y can be generated with wt(y) input nodes using wt(y)− 1 XOR gates. It is easy to see
that there exist different implementations which generate y if wt(y) > 2. The generation
of multiple output nodes of a matrix Am×n is done one by one, and this process is formally
defined as an implementation of Am×n.

Definition 1. [XZL+20] An implementation I of a matrix Am×n over F2 can be described
as a sequence of nodes I = {x0, x1, · · · , xn+c−1} which contains all output nodes of Am×n

and satisfies xi = xj ⊕ xk for any i = n, n + 1, . . . , n + c− 1 with some j, k < i. It is also
called a general implementation of A with XOR gate count c.

A trivial implementation needs
∑m−1

i=0 (wt(yi) − 1) XOR gates to generate all yi’s.
However, since some intermediate nodes can be reused to save some XOR gates, different
implementations might have different XOR gate counts for a given matrix Am×n. We take
the following matrix A as an example, and give two of its implementations (a),(b) in Table
1.

A =

1 1 1 1
1 1 1 0
1 1 0 0



Table 1: Two implementations of A

Implementation (a) Implementation (b)
No. Operation Depth No. Operation Depth
1 x4 = x0 ⊕ x1//y2 1 1 x4 = x0 ⊕ x1//y2 1
2 x5 = x2 ⊕ x4//y1 2 2 x5 = x2 ⊕ x3 1
3 x6 = x3 ⊕ x5//y0 3 3 x6 = x4 ⊕ x2//y1 2

4 x7 = x4 ⊕ x5//y0 2
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Implementation (a) in Table 1 gives an implementation of A with 3 XOR gates by
reusing of x4 and x5. Implementation (b) in Table 1 is another implementation of A with
4 XOR gates. They have different XOR gate counts and different depths. Note that the
trivial implementation of A needs 6 XOR gates.

An implementation of a matrix A can also be described as an implementation graph.
All nodes of an implementation are the nodes of the graph, and both two predecessors of
each non-input node have a directed edge pointing to it. Within the given implementation
of A, the depth can be defined as follows:
Definition 2 (Depth). Given an implementation I of A, the depth of a node t in I is
defined as the length of the longest path from an input node to t in the implementation
graph, denoted by d(t). In particular, the depth of all input nodes is defined as 0. The
depth of I is defined as the maximum depth of all output nodes denoted by d(I), that is

d(I) = max
0≤i<m

d(yi).

The depth of nodes follows the property:
Property 1. For three nodes t1, t2, t3 in an implementation, if t1 is generated by t2 and
t3, then d(t1) = max{d(t2), d(t3)}+ 1.

For a given node t, it may be at different depths since there can be different ways to
generate it. We denote by dmin(t) the minimum depth that t can reach among all its
implementations. It is easy to see that

dmin(t) = ⌈log2 wt(t)⌉.

Similarly, there exists a minimum depth that all A’s implementations can achieve,
denoted by dmin(A). We have

dmin(A) = max
0≤i<m

dmin(yi),

which characterizes the lowest latency of A’s implementations.
Definition 3. An implementation of A is called a minimum latency implementation if its
depth is equal to dmin(A).

It is easy to see that Implementation (b) in Table 1 has depth 2 and is a minimum
latency implementation of A.

2.2 SLP problem and SLPD problem
The SLP problem mainly aims at minimizing the XOR gate counts of implementing a
matrix, and is defined below:
Definition 4. The shortest linear program (SLP) problem is defined as follows: given a
matrix Am×n over F2, where each row yi, 0 ≤ i < m, represents an output node. The goal
is to find an implementation of A using the least number of XOR gates.

Moreover, if one aims for a minimum latency implementation, the following problem
arises:
Definition 5. [LZW23] The shortest linear program with minimum depth limit (SLPD)
problem is defined as follows: given a matrix Am×n over F2, where each row yi, 0 ≤ i < m,
represents an output node. The goal is to find a minimum latency implementation of A
using the least number of XOR gates.

It is known from [BMP08] that the SLP problem over F2 is NP-complete. Various
heuristics have been proposed to address the SLP and SLPD problems with middle-scale
m and n [Paa97, BMP08, XZL+20, LXZZ21, LSL+19, LWF+22, LZW23]. This paper
focuses on the SLPD problem.
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2.3 Metric
In this paper, all the results of XOR gate counts correspond to the general-XOR metric,
which is defined as follows:

Definition 6 (g-XOR). [XZL+20] The general-XOR count of a matrix Am×n over F2 is
defined as the minimum XOR gates of all general implementations of A.

3 State-of-art heuristics
In this section, we present several existing methods to address the SLPD problem, including
the BP algorithm with depth limit [LSL+19], the backward search [LWF+22], and the
local re-optimization method [LZW23].

3.1 BP algorithm with depth limit
The original BP algorithm is a heuristic introduced by Boyar and Peralta to address the
SLP problem [BMP13]. It involves the utilization of two key parameters: the base set B
and the distance vector DistB. The base set B consists of nodes that have already been
computed, while the distance vector DistB describes the distances from the base set B to
all output nodes. Formally, DistB[i] is defined as DistB[i] = min{d | yi =

⊕d
t=1 B[it]} 3.

The subscript B can be omitted without ambiguity. The smaller Dist[i] is, the closer B is
to yi.

In each iteration of the BP algorithm, one selects a new base element generated by
two nodes in B, adds it to B, and then updates the distance vector Dist. BP’s original
strategy to choose a new base element works as follows:

• Choose the first encountered new base element that minimizes the sum of new Dist[i];

• Resolve ties by maximizing the Euclidean norm of new Dist.

Additionally, a pre-emptive strategy is adopted:

• If there exist two base elements B[i] and B[j] such that B[i]⊕ B[j] equals an output
node, then one adds it directly to B and update Dist.

This pre-emptive strategy can often save the running time without increasing the overall
cost, as the majority of time is spent computing new Dists.

Note that the BP algorithm produces cancellation-allowed implementations while Paar’s
method [Paa97] only produces cancellation-free implementations, which is thought to be
the main reason why the former performs much better than the latter. Moreover, if
multiple new base elements are allowed to be selected in the BP algorithm at once, then
the BP algorithm must be able to obtain the optimal solution under the condition of
infinite computing resources.

Several refinements have been proposed for the BP algorithm in recent studies. Visconti
et al. [VSP18] introduced the definition of critical path to address dense matrices. Tan
et al. proposed the RNBP, A1 and A2 algorithms [TP20], which all are improvements of
the original BP algorithm. Compared with BP’s original strategy that has ruled out the
possibility of subsequent choices with the same parameters, the RNBP algorithm ensures
that every tie-breaking choice is equally possible. The A1 algorithm adds a filtering step
to the RNBP algorithm: the choice of a new base element must reduce the distance to at
least one of the nearest output nodes. Its motivation is similar to that of the tie-breaking

3For convenience, we have modified the original definition so that DistB[i] is exactly the minimum
number of nodes in B required to generate yi via the XOR gate. The original definition represents the
number of nodes minus one, which is the required XOR gate count.
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rule in the original BP algorithm. The A2 algorithm works the same as the A1 algorithm,
except that the Euclidean norm of Dist no longer acts as the tie-breaker.

Another improvement is proposed by Banik et al. [BFI21]. It involves randomly
choosing two permutation matrices Pm×m, Qn×n over F2 and then applying the original
BP algorithm on the matrix PAQ. This technique introduces randomness to the choice of
a new base element by altering the order of input and output nodes and can find better
results. However, it is worth noting that the strategy presented in the RNBP algorithm
has already guaranteed an equal probability of all choices. Therefore, altering the order of
input and output nodes becomes meaningless.

When it comes to low-latency implementations, the original BP algorithm as well as
its several improvements no longer works, since they cannot bound the depth of chosen
new base elements. To address this limitation, Li et al. proposed a revised BP algorithm
with depth limit [LSL+19]. The main difference from the original BP algorithm is that
the depth of each base element is recorded and cannot exceed the specified depth limit.
Meanwhile, the distance vector Dist is computed under the depth limit. Since Li et al.’s
algorithm follows the original BP algorithm, it cannot guarantee equal probability of all
possible choices, while Banik et al.’s strategy indeed introduces randomness to it and can
yield better results [BFI21].

For simplicity, we collectively call the BP algorithm and all its variants as forward
search throughout the rest of the paper.

3.2 Backward search
Liu et al. put forward a new greedy algorithm called backward search to address the SLPD
problem [LWF+22]. Instead of starting from input nodes, the backward search initiates
the search from output nodes and ensures that all nodes achieve their minimum depths 4.
Therefore it is suitable for the low-latency criteria. Specifically, they defined a working
set W containing the nodes to be split and a predecessor set P. The nodes p in P can be
repeatedly utilized as predecessors to split nodes w in W, i.e. w = p⊕ p′. Additionally,
a parameter s, known as the current depth, represents the depth of the elements in W.
Consequently, a predecessor p of w must satisfy dmin(p) < s. The algorithm works as
follows: at the beginning, s = dmin(A), P = ∅ and W contains all yi’s. In each iteration,
randomly execute one of the choices of the rule with the highest priority. If W is empty,
let W = P,P = ∅, s = s− 1. The algorithm continues until s = 0.

For a given node w, a key operation in the backward search is to determine its
predecessors according to some predefined rules. Therefore, designing splitting rules with
different priorities to guide the search becomes the main task. In order to maximize the
reuse of predecessor nodes, the authors developed five priority-based rules for splitting
nodes within W:

• Rule 1 If ∃w ∈ W, s.t. dmin(w) < s, move w from W to P.

• Rule 2 If ∃p1, p2 ∈ P and w ∈ W, s.t. w = p1 ⊕ p2, remove w from W.

• Rule 3 If ∃p1 ∈ P, w ∈ W, s.t. p2 = w ⊕ p1, and dmin(p2) < s, remove w from W
and add p2 to P.

• Rule 4 If ∃w1, w2 ∈ W, s.t. w1 = p1 ⊕ p2, w2 = p2 ⊕ p3, and dmin(p1) < s,
dmin(p2) < s, dmin(p3) < s, remove w1, w2 from W and add p1, p2, p3 to P.

• Rule 5 Randomly choose w ∈ W and randomly split w = p1 ⊕ p2, s.t. dmin(p1) <
s, dmin(p2) < s, remove w from W and add p1, p2 to P.

4This is achieved by Rule 1.
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They further introduced the cost of a splitting rule, which is described as how many
nodes are split, how many XOR gates are needed, and how many new predecessors are
generated. According to the cost of 5 splitting rules illustrated in Table 2, in [LWF+22]
they recommended the following priority:

Rule 1 > Rule 2 > Rule 3 , Rule 4 > Rule 5,

where Rule 4 is regarded as the combination of Rule 3 and Rule 5, and has the same
priority as Rule 3. Indeed, we noticed that Rule 3 allows the cancellation of input terms
but Rule 4 does not, so the combination of Rule 3 and Rule 5 is not entirely equivalent
to Rule 4 and can produce even more possibilities than the latter, which has been utilized
in our new framework to explore a larger search space.

Table 2: The costs of 5 splitting rules

Rules Split nodes Gates New predecessors
Rule 1 1 0 0
Rule 2 1 1 0
Rule 3 1 1 1
Rule 4 2 2 3
Rule 5 1 1 2

3.3 Local re-optimization method
Liu et al. introduced a framework for local re-optimization of a given low-latency im-
plementation [LZW23]. This framework involves enumerating an extended base set and
a segment of intermediate nodes in the given low-latency implementation as inputs and
outputs respectively, followed by a re-optimization process to determine if fewer XOR gates
are needed. In fact, different heuristics can be used during the process of re-optimization.
Though the framework seems to offer more possibilities, only a few of matrices in their
experiments have improved results.

4 New methods
In this section, we first propose two improved algorithms involving refining the strategies
employed in the BP algorithm with depth limit. And then we give a new framework of
combining forward search with priority-modified backward search to expand the search
space. Finally, we make some comparisons with known algorithms.

4.1 IBPD & IBPD-MD algorithms
Similar to the BP algorithm with depth limit, our new algorithms remain the strategy of
minimizing the sum of new Dist[i] unchanged when a new base element is chosen, and
take consideration of depth limit in computing the Dist parameter. The base set B is
associated with the depth set D, and for each index i, B[i] has depth D[i]. Below we first
provide a lemma on the depth of nodes:

Lemma 1. [LSL+19] Let {v1, v2, . . . , vn} be a set of nodes with d(vi) = di. Then the lower
bound of the depth of the circuit implementing z = v1 ⊕ v2 ⊕ · · · ⊕ vn is ⌈log2(

∑n
i=1 2di)⌉.

Moreover, there is always a circuit implementing z with depth ⌈log2(
∑n

i=1 2di)⌉, i.e. the
lower bound is achievable.

In [LSL+19], a description of how to compute Dist[i] with a depth limit were not
explicitly provided, but the computing process can be inferred from their public C++
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code. Specifically, the parameter L in their algorithm requires that if t = v1⊕ v2⊕ · · ·⊕ vn

with d(vi) = di, then
∑n

i=1 2di ≤ L is necessary. Particularly, according to Lemma 1,
if yi = v1 ⊕ v2 ⊕ · · · ⊕ vn with depth limit bi, then

∑n
i=1 2di ≤ 2bi , where d(vi) = di.

Algorithm 1, named ChooseComb, determines if a node t can be expressed by K base
elements with indices larger or equal to S under the restriction of D and the parameter L,
and returns True if yes, otherwise, False. It is executed during the computation of a new
distance vector Dist in order to check if some Dist[i] > 2 is reduced by one.

Algorithm 1 ChooseComb(t, K, S, L,B,D)
Input: t, K, S, L,B,D
Output: True or False

if L < 1 or K = 0 or | B | − S < K then
return False

end if
if K = 1 then

if t ∈ B then
return True

else
return False

end if
end if
if ChooseComb(t, K, S + 1, L,B,D) then

return True
end if
if ChooseComb(t⊕ B[S], K − 1, S + 1, L− 2D[S],B,D) then

return True
end if
return False

Time complexity of Algorithm 1: The time complexity of our heuristics is dominated by
computing new Dists under each choice of a new base element. Denote the time complexity
of executing Algorithm 1 as C(B, L, K, S). It is easy to see that by induction and some
boundary conditions,

C(B, L, K, S) ≤ C(B, L− 2D[S], K − 1, S + 1) + C(B, L, K, S + 1).

The time complexity of determining whether a target node t can be computed with (K−1)
XOR gates is C(B, L, K, 0). If D[S] = 0 for all S, a very loose estimation of C(B, L, K, 0)
is C(B, L, K, 0) ≤

( |B|
min{L,K}

)
. For most 32 × 32 matrices in our experiments, |B| is

upper-bounded by 140 and K is upper-bounded by 8. So a very loose time upper bound
of computing a new Dist[i] in our experiments is

(140
8

)
≈ 241. In fact, things are not that

bad. Since D[S] is 0 only for input nodes and greater than 0 for all intermediate nodes,
L decreases very fast in practice. Also, as |B| gets larger, K gets smaller. In addition,
the backtracking process has pruning operations. Thus the actual time to compute a new
Dist[i] is far less than the very loose time upper bound.

The primary difference between our new algorithm IBPD and Li et al.’s algorithm can
be identified in two key aspects. Firstly, just like in RNBP, we make tie-breaking choices
of new base elements with equal probability. Secondly, in order to approach all output
nodes at a relatively consistent pace when the sum of new Dist[i] is equal to before, our
tie-breaking rule aims to minimize the Euclidean norm of new Dist instead of maximizing
it, which significantly increases the potential for searching better results.
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Furthermore, similar to the idea of Additional Output Requirement in [ME19], we
generalize the algorithm by assuming that each yi has its own depth limit bi, where
bi ≥ dmin(yi). To obtain minimum latency implementations of a given matrix A, the
condition max{bi} = dmin(A) is necessary. Procedures of Algorithm 2, named Improved
BP with Depth limit (IBPD in short), is illustrated below. The implementation of A can
be inferred from the returned B. Note that different output nodes can have different depth
bounds, IBPD is easily combined with backward search.

Algorithm 2 Improved BP with Depth limit (IBPD)
Input: A matrix Am×n over F2, i.e. yi = (ai,0, ai,1, . . . , ai,n−1), 0 ≤ i < m, depth bound

b = (b0, b1, . . . , bm−1), max{bi} = dmin(A).
Output: B, such that B[i] = B[j] ⊕ B[k], n ≤ i <| B |, j, k < i, and for every yi, there

exists j such that B[j] = yi,D[j] ≤ bi.
1: if ∃i, s.t. bi < dmin(yi) then
2: return ∅. ▷ impossible with this given b
3: end if
4: B ← {x0, x1, . . . , xn−1}.
5: D ← {0, 0, . . . , 0}.
6: Dist← {wt(y0), wt(y1), . . . , wt(ym−1)}.
7: while ∃i, s.t. Dist[i] > 1 do
8: if ∃i, s.t. Dist[i] = 2 then
9: Find j, k s.t. B[j] ⊕ B[k] = yi and D[j],D[k] < bi, then B ← B ∪ {yi},D ←
D ∪ {max{D[j],D[k]}+ 1}.

10: else
11: Randomly choose a new base element β = B[j]⊕ B[k], with the following rules:

(1) The depth of β cannot go beyond the maximum depth limit dmin(A); (2) Minimize
the sum of new Dist[i] with the tie breaking rule of minimizing the Euclidean norm of
new Dist.

12: B ← B ∪ {β},D ← D ∪ {max{D[j],D[k]}+ 1}.
13: end if
14: end while
15: return B.

Just as A1 is an adjustment of RNBP [TP20], our new algorithm IBPD-MD is an
adjustment of IBPD. A key difference lies in the additional filtering step: the choice of a
new base element must reduce the distance to at least one of the nearest output nodes. It
does not violate the principal of approaching all output nodes at a relatively consistent
pace and is beneficial to find better results in many cases. IBPD-MD is illustrated below
as Algorithm 3.

In practice, both algorithms can find better results in many examples where all output
nodes have the same minimum depth, and IBPD-MD is better suited for cases where the
minimum depth of some output nodes is smaller than others because the depth limit is a
bit looser.

4.2 New framework
In this subsection we will provide a new framework of combining forward search with
backward search. In our new framework, IBPD or IBPD-MD is invoked in the forward
search, and a modified priority of rules is used in the backward search. In practice, the
IBPD-MD version performs better than the IBPD version, and they both can find better
results than single IBPD or IBPD-MD in many cases. Figure 1 illustrates the IBPD-MD
version.
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Algorithm 3 Improved BP with Depth limit and reduction of Minimum Distance (IBPD-
MD)
Input: A matrix Am×n over F2, i.e. yi = (ai,0, ai,1, . . . , ai,n−1), 0 ≤ i < m, depth bound

b = (b0, b1, . . . , bm−1), max{bi} = dmin(A).
Output: B, such that B[i] = B[j] ⊕ B[k], n ≤ i <| B |, j, k < i, and for every yi, there

exists j such that B[j] = yi,D[j] ≤ bi.
1: if ∃i, s.t. bi < dmin(yi) then
2: return ∅. ▷ impossible with this given b
3: end if
4: B ← {x0, x1, . . . , xn−1}.
5: D ← {0, 0, . . . , 0}.
6: Dist← {wt(y0), wt(y1), . . . , wt(ym−1)}.
7: while ∃i, s.t. Dist[i] > 1 do
8: if ∃i, s.t. Dist[i] = 2 then
9: Find j, k s.t. B[j] ⊕ B[k] = yi and D[j],D[k] < bi, then B ← B ∪ {yi},D ←
D ∪ {max{D[j],D[k]}+ 1}.

10: else
11: Randomly choose a new base element β = B[j]⊕ B[k], with the following rules:

(1) The depth of β cannot go beyond the maximum depth limit dmin(A); (2) The
choice β must reduce the distance to at least one of the nearest output
nodes; (3) Minimize the sum of new Dist[i] with the tie breaking rule of minimizing
the Euclidean norm of new Dist.

12: B ← B ∪ {β},D ← D ∪ {max{D[j],D[k]}+ 1}.
13: end if
14: end while
15: return B.

Start

Input A

Preprocessing as
in backward search

W ̸= ∅

Split by a priority of
splitting rules

Execute IBPD-MD with
the current W,P, s, upd-
ate minimum XOR count

Yes
No

Output the mini-
mum XOR count

End

Figure 1: Framework of integrating IBPD-MD with backward search.
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In the above IBPD-MD version, the nodes in W,P are actually viewed as output nodes
in IBPD-MD in every iteration of the backward search. Among them, the nodes in W have
depth bound s, and the predecessor and non-predecessor nodes in P have depth bound s−1
and s, respectively. Since we only split the nodes in the initialW , IBPD-MD will dominate
the search and the backward search only adjusts the search space by predetermining how
to generate some yi’s. The adjustments of the search space is helpful for IBPD-MD to
jump out of local minima.

As for the splitting rules of the backward search in our framework, their priority can
be adjusted to explore how to generate output nodes in different ways. A few examples of
priority are listed as follows. Among them, the priority (1) is introduced in [LWF+22].

• (1) Rule 1 > Rule 2 > Rule 3, Rule 4 > Rule 5;

• (2) Rule 1 > Rule 2 > Rule 4, Rule 5;

• (3) Rule 1 > Rule 2 > Rule 3, Rule 5;

• (4) Rule 1 > Rule 2 > Rule 3, Rule 4, Rule 5;

• (5) Rule 1 > Rule 2 > Rule 5.

Interestingly, the priority (3) yields significantly better results than the others according
to our experiments. We think there are three main reasons for this. Firstly, IBPD-MD
itself can find better results than the original backward search in many cases. Secondly,
compared to Rule 3 and Rule 4, higher priority of Rule 5 can result in a larger search
space. Finally, Rule 4 does not allow cancellation of input terms, and all its cases can be
included by the combination of Rule 3 and Rule 5. Therefore we use the priority (3) in
our framework. Here it should be pointed out that alternative priorities may also yield
satisfactory results in specific cases.

In conclusion, combining IBPD-MD with priority-modified backward search can enlarge
the search space of IBPD-MD by constraining how the original output nodes are generated.
Below we provide a precise formulation of the framework through Algorithm 4 named
BPBS. The implementation can be inferred from B and S.

Algorithm 4 Improved BP combined with Backward Search(BPBS)
Input: A matrix Am×n over F2, i.e. yi = (ai,0, ai,1, . . . , ai,n−1), 0 ≤ i < m.
Output: Minimum XOR gate count of all searched implementations.
1: W ← {yi}, 0 ≤ i < m
2: P ← ∅.
3: s← max(dmin(yi)).
4: S ← ∅
5: minm←∞
6: while W ̸= ∅ do
7: Split by a random choice of the rule with the highest priority under the priority

(3). Add the split node to S.
8: The algorithm IBPD-MD is executed multiple times, where the output nodes

consist of two parts: (1) the nodes in W, whose depth bounds are set to s; (2) the
predecessor and non-predecessor nodes in P , whose depth bounds are set to s− 1 and
s respectively. Record one returned B with minimum number of elements.

9: minm = min(minm, | B | + | S | − n)
10: end while
11: return minm.
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4.3 Comparisons and discussions
In this subsection we compare our methods with the existing ones and explain the
advantages of our methods.

Advantage of the new tie-breaking rule. Our new algorithms IBPD and IBPD-MD
both outperform Li et al.’s algorithm [LSL+19] and its improvement in [BFI21], which we
believe is mainly due to the improved strategy: when the selection of a new base element
results in a sum of new Dist[i] equal to before, our tie-breaking resolution will minimize
the Euclidean norm of new Dist. In the original BP algorithm [BMP08], the authors put
forward a novel tie-breaking resolution of maximizing the Euclidean norm of new Dist.
They believed that a distance vector like (1, 1, 4, 2) is superior to one like (2, 2, 2, 2) because
the latter needs 4 XOR gates while 3 XOR gates may be possible for the former. This
strategy works well for the SLP problem and is adopted in [LSL+19, BFI21]. However,
things are different in the case of the SLPD problem. Due to the depth limit, output nodes
and those with high depth have a smaller contribution to other output nodes. Take the
distance vector (1, 1, 4, 2) as an example. y3 cannot contribute to y2 if it reaches the depth
bound. Thus the original tie-breaking strategy may not work well in the new scenario,
since prioritizing closer outputs has a smaller impact on approaching other outputs and
may result in the loss of alternative, better pathways that generate the closer outputs.
Instead, we tend to reduce all Dist[i]’s at a relatively consistent pace, which is achieved
by the tie-breaking rule of minimizing the Euclidean norm of new Dist and is proved to
be effective in the SLPD problem by our experiments.

Difference between IBPD and IBPD-MD. Since both IBPD and IBPD-MD work well
in different examples according to our experiments, they have their own suitable scenarios.
For matrices with the same minimum depth of all output nodes, some of the best results
can only be searched by one of the two algorithms, which might be due to the different
characteristics of different matrices. However, for matrices with different minimum depths
of output nodes, IBPD-MD performs better than IBPD due to the relatively loose depth
limit. In fact, output nodes with a smaller minimum depth may contribute to others, and
prioritizing them may be beneficial for finding low-latency implementations that save more
gates. This is exactly the case in our new framework, so the IBPD-MD version performs
better than the IBPD version.

Improvements in the new framework. In order to further improve the search results
of IBPD and IBPD-MD, we formulate our framework that combines forward search with
backward search. A significant advantage of the backward search is the ability to explore
more possibilities for generating output nodes, which is not easy with forward search alone.
Conversely, the backward search cannot predetermine the initial steps of implementations.
Therefore, their combination seems likely to yield better results. Liu et al. introduced a
method for local re-optimization of a given implementation [LZW23]. Compared to their
method, our framework does not depend on any existing implementations and has a much
larger expanded search space.

Each node does not have to be at a minimum depth in our framework, which provides
more possibilities than the original backward search. In each iteration of our framework,
the nodes in P which are not predecessors of any other nodes can have a relaxed depth
bound in IBPD-MD. Note that in IBPD-MD, different output nodes are allowed to have
different depth bounds. As mentioned earlier, the original backward search ensures that
all nodes achieve their minimum depths. If some dmin(yi) is smaller than dmin(A), the
original backward search would eliminate the possibility of d(yi) > dmin(yi), which may
result in the omission of better implementations. Actually, the only matrix with minimum
depth 4 in Table 5 proposed in [SS16] and many examples of MDS matrices proposed
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in [LSL+19] demonstrate this drawback of the original backward search. An important
property of these matrices is that the minimum depth of only a few output nodes is equal
to that of the matrix.

The priority (3) in our framework effectively explores a wide range of ways to generate
outputs. Since IBPD-MD dominates the search of implementations in our framework
and we aim to explore alternative ways to generate output nodes, the combination of
Rule 3 and Rule 5 works well by taking randomness into account while allowing for
the cancellation of input terms. So the priority (3) performs better than (1) and (2) in
our framework. Actually, all the best results can be found by (3) in our experiments,
while it does not mean that other priorities cannot produce some of the same results. It
is important to note that alternative choices of priority rules may also yield satisfactory
results, such as higher priority of Rule 4 may be more efficient in some cases. Moreover,
some priorities involving much larger randomness such as priority (4) and (5) also work
well under the assumption that the computation resource is sufficient.

5 Results and applications
In this section we apply our algorithms IBPD, IBPD-MD and framework BPBS to various
16 × 16 and 32 × 32 matrices studied in related works. The priority (3) is used in our
framework. All methods are repeated tens of thousands of times for each matrix and
the best results are recorded. With 360 threads running in parallel, it takes less than a
minute and less than two hours to find the best result for each 16× 16 and 32× 32 matrix,
respectively. For the most of matrices studied in previous works, improvements of their
minimum latency implementations can be found, which are listed in Table 5.

5.1 Application to AES MixColumns

We first apply our methods to AES MixColumns, whose minimum depth is 3. The
paper [LSL+19] reported an implementation with 105 XOR gates, and [BFI21] found an
implementation with 103 XOR gates. In [LWF+22], the backward search can also find an
implementation with 103 XOR gates, which is optimized to 102 XOR gates in [LZW23] by
means of the local re-optimization method.

As for our methods, IBPD discovers a minimum latency implementation with 101 XOR
gates, while IBPD-MD can find one with 100 XOR gates. Remarkably, the framework
BPBS is capable of finding an implementation of depth 3 with only 99 XOR gates. The
implementation is presented in Table 4. A comparison with previous findings is outlined
in Table 3.

Table 3: XOR/depth costs of AES MixColumns

Source [KLSW17] [TP20] [XZL+20] [Max19]
XORs/depth 97/8 94/6 92/6 92/6

Source [LXZZ21] [LSL+19] [BFI21] [LWF+22]
XORs/depth 91/7 105/3 103/3 103/3

Source [LZW23] IBPD IBPD-MD BPBS
XORs/depth 102/3 101/3 100/3 99/3

In a personal computer, applying IBPD-MD to AES MixColumns for one time takes
no more than ten minutes.
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Table 4: An implementation of AES MixColoumns of depth 3 with 99 XOR gates

No. Operation Depth No. Operation Depth
1 x32 = x2 ⊕ x10 1 51 x82 = x77 ⊕ x81//y16 3
2 x33 = x1 ⊕ x25 1 52 x83 = x5 ⊕ x21 1
3 x34 = x18 ⊕ x33 2 53 x84 = x71 ⊕ x83 2
4 x35 = x9 ⊕ x25 1 54 x85 = x57 ⊕ x84//y30 3
5 x36 = x10 ⊕ x26 1 55 x86 = x63 ⊕ x84//y14 3
6 x37 = x35 ⊕ x36 2 56 x87 = x12 ⊕ x28 1
7 x38 = x9 ⊕ x17 1 57 x88 = x83 ⊕ x87 2
8 x39 = x2 ⊕ x38 2 58 x89 = x60 ⊕ x88//y29 3
9 x40 = x37 ⊕ x39//y18 3 59 x90 = x66 ⊕ x88//y13 3
10 x41 = x18 ⊕ x26 1 60 x91 = x68 ⊕ x80 2
11 x42 = x39 ⊕ x41//y10 3 61 x92 = x16 ⊕ x35 2
12 x43 = x7 ⊕ x31 1 62 x93 = x91 ⊕ x92//y17 3
13 x44 = x8 ⊕ x16 1 63 x94 = x17 ⊕ x35 2
14 x45 = x0 ⊕ x43 2 64 x95 = x47 ⊕ x77 2
15 x46 = x44 ⊕ x45//y24 3 65 x96 = x94 ⊕ x95//y1 3
16 x47 = x7 ⊕ x15 1 66 x97 = x17 ⊕ x44 2
17 x48 = x24 ⊕ x44 2 67 x98 = x33 ⊕ x74 2
18 x49 = x47 ⊕ x48//y0 3 68 x99 = x97 ⊕ x98//y9 3
19 x50 = x14 ⊕ x22 1 69 x100 = x19 ⊕ x27 1
20 x51 = x23 ⊕ x43 2 70 x101 = x11 ⊕ x47 2
21 x52 = x50 ⊕ x51//y15 3 71 x102 = x32 ⊕ x100 2
22 x53 = x6 ⊕ x30 1 72 x103 = x101 ⊕ x102//y3 3
23 x54 = x47 ⊕ x53 2 73 x104 = x3 ⊕ x20 1
24 x55 = x23 ⊕ x54//y31 3 74 x105 = x87 ⊕ x104 2
25 x56 = x21 ⊕ x29 1 75 x106 = x101 ⊕ x105//y4 3
26 x57 = x14 ⊕ x56 2 76 x107 = x80 ⊕ x100 2
27 x58 = x53 ⊕ x57//y22 3 77 x108 = x4 ⊕ x87 2
28 x59 = x4 ⊕ x12 1 78 x109 = x107 ⊕ x108//y20 3
29 x60 = x13 ⊕ x59 2 79 x110 = x27 ⊕ x104 2
30 x61 = x56 ⊕ x60//y5 3 80 x111 = x43 ⊕ x59 2
31 x62 = x5 ⊕ x13 1 81 x112 = x110 ⊕ x111//y28 3
32 x63 = x30 ⊕ x62 2 82 x113 = x11 ⊕ x19 1
33 x64 = x50 ⊕ x63//y6 3 83 x114 = x65 ⊕ x113 2
34 x65 = x20 ⊕ x28 1 84 x115 = x4 ⊕ x74 2
35 x66 = x29 ⊕ x65 2 85 x116 = x114 ⊕ x115//y12 3
36 x67 = x62 ⊕ x66//y21 3 86 x117 = x2 ⊕ x26 1
37 x68 = x1 ⊕ x24 1 87 x118 = x3 ⊕ x43 2
38 x69 = x38 ⊕ x68 2 88 x119 = x113 ⊕ x117 2
39 x70 = x45 ⊕ x69//y25 3 89 x120 = x118 ⊕ x119//y27 3
40 x71 = x6 ⊕ x22 1 90 x121 = x10 ⊕ x74 2
41 x72 = x31 ⊕ x71 2 91 x122 = x3 ⊕ x18 1
42 x73 = x54 ⊕ x72//y23 3 92 x123 = x100 ⊕ x122 2
43 x74 = x15 ⊕ x23 1 93 x124 = x121 ⊕ x123//y11 3
44 x75 = x50 ⊕ x74 2 94 x125 = x41 ⊕ x80 2
45 x76 = x72 ⊕ x75//y7 3 95 x126 = x11 ⊕ x27 1
46 x77 = x0 ⊕ x8 1 96 x127 = x3 ⊕ x126 2
47 x78 = x74 ⊕ x77 2 97 x128 = x125 ⊕ x127//y19 3
48 x79 = x48 ⊕ x78//y8 3 98 x129 = x34 ⊕ x37//y2 3
49 x80 = x23 ⊕ x31 1 99 x130 = x32 ⊕ x34//y26 3
50 x81 = x24 ⊕ x80 2
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5.2 Application to many proposed matrices
Following the work of [LWF+22, LZW23], we apply our methods to various matrices in
the literature including:

• some MDS matrices which are independently constructed in [SKOP15, SS16, JPST17,
LS16, LW16, BKL16, KLSW17];

• some matrices which are used in block ciphers [DR02, CMR05, JNP15, Ava17,
BBI+15, BCG+12, ADK+14, BJK+16, AIK+01].

For the 11 matrices used in block ciphers, we have identified 8 matrices whose minimum
latency implementations have the same number of XOR gates as previous works, while
successfully optimizing the remaining 3 matrices. Here it should be noted that 7 out of
the 8 matrices have minimum depth 2, and it is most likely that they have no room for
optimization due to their relatively simple form. For the constructed MDS matrices, we
optimize 19 of the 21 matrices and get equally good results on the rest 2 of them. Note
that more than half of the best results can be searched by IBPD or IBPD-MD, and some
results can only be searched by the framework BPBS. All the better results and their
comparison with previous works are listed in Table 5.

Table 5: The XOR/depth costs for minimum latency implementations of matrices

Matrix Size [LSL+19] [BFI21] [LWF+22] [LZW23] This paper
[DR02]AES 32 105/3 103/3 103/3 102/3 99/3a

[CMR05]SMALLSCALE AES 16 49/3 49/3 47/3 47/3 46/3a

[JNP15]Joltik 16 51/3 50/3 48/3 48/3 47/3a

[SKOP15](Hadamard) 16 51/3 50/3 49/3 48/3 47/3a

[LS16](Circulant) 16 47/3 44/3 44/3 44/3 43/3a

[LW16](Circulant) 16 47/3 44/3 44/3 44/3 43/3c

[SS16](Toeplitz) 16 44/3 43/3 45/3 43/3 42/3c

[JPST17] 16 45/3 45/3 45/3 44/3 43/3a

[SKOP15](Involutory) 16 51/3 49/3 48/3 48/3 47/3a

[LW16](Involutory) 16 51/3 49/3 48/3 48/3 47/3a

[SS16](Involutory) 16 48/3 46/3 45/3 43/3 42/3b

[JPST17](Involutory) 16 47/3 47/3 47/3 47/3 46/3b

[SKOP15](Hadamard) 32 102/3 99/3 100/3 99/3 96/3b

[LS16](Circulant) 32 113/3 113/3 113/3 112/3 110/3c

[LW16] 32 102/3 103/3 102/3 102/3 101/3c

[BKL16](Circulant) 32 112/3 110/3 111/3 110/3 107/3b

[SS16](Toeplitz) 32 107/3 107/3 107/3 107/3 105/3bc

[JPST17](Subfield) 32 90/3 90/3 93/3 90/3 89/3c

[SKOP15](Involutory) 32 102/3 100/3 100/3 99/3 98/3b

[LW16](Involutory) 32 99/3 95/3 94/3 93/3 89/3c

[SS16](Involutory) 32 104/4 102/4 109/4 102/4 98/4c

[KLSW17] 32 96/3 - 92/3 89/3 86/3a

[LSL+19] 32 88/3 - 86/3 85/3 84/3a

a The result can only be searched by BPBS.
b The result can be searched by IBPD.
c The result can be searched by IBPD-MD.

5.3 Application to matrices from [LSL+19]
We also apply our methods to the 4254 involutory MDS matrices with minimum depth 3
proposed in [LSL+19]. All matrices are of size 32 × 32, and their Hamming weights range
from 148 to 172.
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As results, we have an overall improvement about 3752 (88.2%) matrices in terms of
their minimum latency implementations (see all the results in Table 6), which is much
higher than those in previous works (2310 (54.3%) in [LWF+22] and 3300 (77.6%) in
[LZW23]). Compared to the results in [LZW23], our proposed methods yield much better
overall performance indices, such as minimum XOR gates (see Figure 2) and reduced XOR
gates.

Table 6: Experiments for matrices in [LSL+19]

Hamming weight Number Opt.a Percentageb Max.c MinXORd

148 18 18 100.0% 3 87
149 48 48 100.0% 5 86
150 72 72 100.0% 6 86
151 48 48 100.0% 7 88
152 60 60 100.0% 8 89
153 72 72 100.0% 7 87
154 84 84 100.0% 8 87
155 24 24 100.0% 8 91
156 48 48 100.0% 6 93
157 72 72 100.0% 7 90
158 84 84 100.0% 10 88
160 162 146 90.1% 12 84
161 96 96 100.0% 12 86
162 132 132 100.0% 11 85
163 120 96 80.0% 10 86
164 144 132 91.7% 15 86
165 240 240 100.0% 11 85
166 228 228 100.0% 15 85
167 216 168 77.8% 13 84
168 528 493 93.4% 14 84
169 360 322 89.4% 11 85
170 432 388 89.8% 11 84
171 432 362 83.8% 11 85
172 534 319 59.7% 17 86
All 4254 3752 88.2% 17 84

a The number of matrices that our algorithms can optimize.
b The percentage of matrices that our algorithms can optimize.
c The maximum number of reduced XOR gates from our algorithms.
d The minimum number of XOR gates.

In [LSL+19], the authors modified the BP algorithm to make it suitable for the low-
latency constraint. The algorithm was applied to the matrices they constructed and gave
minimum latency implementations for each matrix. The minimum cost is 88 XOR gates.
After that, the backward search method [LWF+22] can find an implementation of depth 3
with 86 XOR gates. The result is improved to 85 XOR gates in [LZW23]. Applying our
BPBS framework, we find several matrices that have implementations of depth 3 with
84 XOR gates, which represents a new record within the range of 4× 4 involutory MDS
matrices in GL(2, 8). One lightest matrix M is the 130th matrix with Hamming weight
168. It has the parameter [4, 4, 10, -4, -6, 0] as referenced in [LSL+19]. Table 7 in the
appendix illustrates its implementation.
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Figure 2: Comparison of the minimum XOR gates with different Hamming weights.

6 Conclusion
In this work we mainly studied the SLPD problem. Two new improved heuristics with a
new tie-breaking rule suitable for tight depth bound scenarios are given by improving the
BP algorithm with depth bound. Moreover, a new framework of combining an improved
forward search with priority-modified backward search is proposed. As applications, we
find better results of minimum latency implementations for most of the 16 × 16 and
32 × 32 matrices studied in related works. For example, we find a minimum latency
implementation of AES MixColumns with 99 XOR gates. As a future work, it would be
interesting to study the results underlying the trade-off between area and latency. The
design of linear layers in lightweight symmetric primitives can be potentially guided by
this work.
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A The low-latency implementation

Table 7: An implementation of matrix M with 84 XOR gates

No. Operation Depth No. Operation Depth
1 x32 = x15 ⊕ x23 1 43 x74 = x18 ⊕ x68 2
2 x33 = x13 ⊕ x25 1 44 x75 = x73 ⊕ x74//y6 3
3 x34 = x32 ⊕ x33 2 45 x76 = x14 ⊕ x22 1
4 x35 = x12 ⊕ x28 1 46 x77 = x8 ⊕ x76 2
5 x36 = x4 ⊕ x22 1 47 x78 = x73 ⊕ x77//y22 3
6 x37 = x35 ⊕ x36//y28 2 48 x79 = x12 ⊕ x24 1
7 x38 = x11 ⊕ x29 1 49 x80 = x76 ⊕ x79 2
8 x39 = x1 ⊕ x17 1 50 x81 = x43 ⊕ x80//y12 3
9 x40 = x38 ⊕ x39//y17 2 51 x82 = x28 ⊕ x48 2
10 x41 = x14 ⊕ x30 1 52 x83 = x80 ⊕ x82//y2 3
11 x42 = x6 ⊕ x16 1 53 x84 = x0 ⊕ x8 1
12 x43 = x41 ⊕ x42//y30 2 54 x85 = x82 ⊕ x84//y8 3
13 x44 = x5 ⊕ x31 1 55 x86 = x20 ⊕ x30 1
14 x45 = x21 ⊕ x23 1 56 x87 = x36 ⊕ x86 2
15 x46 = x44 ⊕ x45 2 57 x88 = x80 ⊕ x87//y20 3
16 x47 = x38 ⊕ x46//y11 3 58 x89 = x68 ⊕ x87//y10 3
17 x48 = x2 ⊕ x20 1 59 x90 = x0 ⊕ x35 2
18 x49 = x10 ⊕ x26 1 60 x91 = x86 ⊕ x90//y0 3
19 x50 = x48 ⊕ x49//y26 2 61 x92 = x16 ⊕ x26 1
20 x51 = x21 ⊕ x29 1 62 x93 = x14 ⊕ x92 2
21 x52 = x3 ⊕ x51 2 63 x94 = x71 ⊕ x93//y14 3
22 x53 = x34 ⊕ x52//y3 3 64 x95 = x19 ⊕ x56 2
23 x54 = x27 ⊕ x38 2 65 x96 = x17 ⊕ x25 1
24 x55 = x52 ⊕ x54//y27 3 66 x97 = x95 ⊕ x96//y25 3
25 x56 = x1 ⊕ x9 1 67 x98 = x15 ⊕ x64 2
26 x57 = x52 ⊕ x56//y9 3 68 x99 = x95 ⊕ x98//y15 3
27 x58 = x7 ⊕ x19 1 69 x100 = x44 ⊕ x96 2
28 x59 = x54 ⊕ x58//y7 3 70 x101 = x65 ⊕ x100//y5 3
29 x60 = x13 ⊕ x31 1 71 x102 = x19 ⊕ x38 2
30 x61 = x51 ⊕ x60 2 72 x103 = x3 ⊕ x60 2
31 x62 = x1 ⊕ x61//y1 3 73 x104 = x102 ⊕ x103//y19 3
32 x63 = x46 ⊕ x61//y29 3 74 x105 = x7 ⊕ x31 1
33 x64 = x9 ⊕ x27 1 75 x106 = x15 ⊕ x17 1
34 x65 = x32 ⊕ x64 2 76 x107 = x105 ⊕ x106//y31 2
35 x66 = x7 ⊕ x65//y23 3 77 x108 = x36 ⊕ x70 2
36 x67 = x0 ⊕ x16 1 78 x109 = x41 ⊕ x92 2
37 x68 = x10 ⊕ x28 1 79 x110 = x108 ⊕ x109//y4 3
38 x69 = x67 ⊕ x68//y16 2 80 x111 = x12 ⊕ x30 1
39 x70 = x8 ⊕ x24 1 81 x112 = x2 ⊕ x111 2
40 x71 = x18 ⊕ x67 2 82 x113 = x74 ⊕ x112//y18 3
41 x72 = x70 ⊕ x71//y24 3 83 x114 = x34 ⊕ x46//y21 3
42 x73 = x6 ⊕ x26 1 84 x115 = x34 ⊕ x107//y13 3


	Introduction
	Our contributions
	Organization

	Preliminaries
	Notations
	SLP problem and SLPD problem
	Metric

	State-of-art heuristics
	BP algorithm with depth limit
	Backward search
	Local re-optimization method

	New methods
	IBPD & IBPD-MD algorithms
	New framework
	Comparisons and discussions

	Results and applications
	Application to AES MixColumns
	Application to many proposed matrices
	Application to matrices from LSL19

	Conclusion
	The low-latency implementation

