
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 4, pp. 420–451. DOI:10.46586/tosc.v2023.i4.420-451

Committing Security of Ascon:
Cryptanalysis on Primitive and Proof on Mode

Yusuke Naito1, Yu Sasaki2 and Takeshi Sugawara3

1 Mitsubishi Electric Corporation, Kanagawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Social Informatics Laboratories, Tokyo, Japan
yusk.sasaki@ntt.com

3 The University of Electro-Communications, Tokyo, Japan
sugawara@uec.ac.jp

Abstract. Context-committing security of authenticated encryption (AE) that pre-
vents ciphertexts from being decrypted with distinct decryption contexts, (K, N, A)
comprising a key K, a nonce N , and associate data A is an active research field moti-
vated by several real-world attacks. In this paper, we study the context-committing
security of Ascon, the lightweight permutation-based AE selected by the NIST LWC
in 2023, for cryptanalysis on primitive and proof on mode. The attacker’s goal
is to find a collision of a ciphertext and a tag with distinct decryption contexts
in which an attacker can control all the parameters including the key. First, we
propose new attacks with primitives that inject differences in N and A. The new
attack on Ascon-128 improves the number of rounds from 2 to 3 and practically
generates distinct decryption contexts. The new attack also works in a practical
complexity on 3 rounds of Ascon-128a. Second, we prove the context-committing
security of Ascon with zero padding, namely Ascon-zp, in the random permutation
model. Ascon-zp achieves min

{
t+z

2 , n+t−k−ν
2 , c

2

}
-bit security with a t-bit tag, a

z-bit padding, an n-bit state, a ν-bit nonce, and a c-bit inner part. This bound corre-
sponds to min

{
64 + z

2 , 96
}

with Ascon-128 and Ascon-128a, and min
{

64 + z
2 , 80

}
with Ascon-80pq. The original Ascon (z = 0) achieves 64-bit security bounded by
a generic birthday attack. By appending zeroes to the plaintext, the security can be
enhanced up to 96 bits for Ascon-128 and Ascon-128a and 80 bits for Ascon-80pq.

Keywords: Ascon · Authenticated Encryption · Key Commitment · Context
Commitment · Differential Cryptanalysis · MILP · Security Proof · Zero Padding

1 Introduction
Authenticated encryption with associated data (AE) methods that ensure confidentiality
and authenticity are critical components in symmetric-key cryptography. The security of
AE has been extensively studied, and the schemes often provide security proofs based on a
formal security notion. However, AE schemes are sometimes abused in ways that go beyond
their intended purpose, leading to security issues. This category includes committing
security of AEs, which has been widely studied in recent years [FOR17, GLR17, DGRW18,
LGR21, ADG+22, BH22, CR22, MLGR23, BCG+23].

A nonce-based AE encryption takes a key K, nonce N , associated data A, and a
plaintext M to generate a ciphertext C and a tag T . The decryption takes (C, T) and the
triple (K, N, A) called the decryption context and outputs either the original plaintext M

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-09-01 Accepted: 2023-11-01 Published: 2023-12-08

https://doi.org/10.46586/tosc.v2023.i4.420-451
mailto:Naito.Yusuke@ce.MitsubishiElectric.co.jp
mailto:yusk.sasaki@ntt.com
mailto:sugawara@uec.ac.jp
http://creativecommons.org/licenses/by/4.0/

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 421

or the invalid symbol ⊥.1 An attacker wins the game of committing security by finding a
ciphertext and a tag (C, T) and the distinct decryption contexts (K, N, A) and (K ′, N ′, A′)
such that decryption succeeds with both contexts. Farshim et al. initiated the field by
studying the cases with K ̸= K ′, now called key commitment [FOR17, GLR17].

The conventional AE security notions do not imply key-committing security, and there
are attacks on popular schemes, including GCM [GLR17, DGRW18], GCM-SIV [LGR21],
CCM [Dwo07, MLGR23], and ChaCha20-Poly1305 [GLR17, NL18]. These attacks even
lead to application-level attacks, e.g., the multi-recipient integrity attack that targets
a specific user and sends malicious content to them and the partitioning oracle attack
that effectively performs password brute-force attacks [LGR21]. Researchers are studying
AE schemes with committing security to address the issue [GLR17, DGRW18, LGR21,
ADG+22]. Meanwhile, standardization organizations are also starting to consider com-
mitting security. For instance, key commitment appears in the RFC draft classifying the
properties of AEAD algorithms [Boz23]. Besides, NIST’s workshop on updating block-
cipher modes explicitly mentions key commitment as an extra security feature [NIS23b].

Bellare and Hoang [BH22] proposed generalized security notions called CMT-1,
CMT-3, and CMT-4. CMT-1 represents the conventional key commitment with
K ≠ K ′. Meanwhile, CMT-3 considers commitment to an entire decryption context, i.e.,
(K, N, A) ̸= (K ′, N ′, A′), called context commitment. CMT-4 considers commitment to a
plaintext and a decryption context, which is shown to be equivalent to CMT-3. Through-
out this paper, we consider CMT-3 for cryptanalysis because it requires less attacker
capability. Meanwhile, we consider the most general CMT-4 for security proofs. Chan
and Rogaway independently studied the generalized definitions of committing AEs [CR22].
CMT-4 covers a broader range of misuses and is strictly more secure than CMT-1.
Consequently, ensuring and building AEs with CMT-4 security is an ongoing research
challenge [BH22, CR22, MLGR23].

Besides the research on committing security, lightweight cryptography has been an
important subject driven by the NIST LWC competition. The competition finally selected
Ascon in 2023 [NIS23a]. Ascon is a family of cryptographic schemes using the Ascon
permutation, including AEAD (Ascon-128, Ascon-128a, and Ascon-80pq) and hash
functions (Ascon-Hash and Ascon-Xof) [DEMS21]. Ascon AEADs are based on the
duplex construction [BDPV11] but use a stronger keyed initialization and keyed finalization
function [DEMS21]. NIST is going to standardize Ascon, and real-world systems will
migrate to Ascon in the near future. Will migration to Ascon solve the problems regarding
committing security? This research question is non-trivial because Ascon has several
essential differences from the conventional standards.

1.1 State-of-the-Art and Challenges
Security Proof. Collision-resistant hash functions can be used to achieve committing se-
curity [DGRW18, BH22, CR22]. For permutation-based schemes, AEs based on the duplex
construction can easily achieve the committing security because Bertoni et al. [BDPV11]
showed that its security is reducible to the indifferentiability of the sponge construc-
tion [BDPV08]. The duplex construction shown in Figure 1 absorbs an r-bit data block
into the outer part, performs a permutation, and outputs the outer part. The output can
be seen as that from a random oracle (RO) up to the c

2 -bit bound by the indifferentiablity
of the sponge construction, where c is the capacity. For example, Dodis et al. proposed a
concrete duplex-based scheme that satisfies the key-committing security [DGRW18].

However, Ascon has essential differences from the duplex-based AE schemes. First,
Ascon initializes the state using a ν-bit nonce and a k-bit key, enabling a CMT-4 attacker

1More generally, T can be considered as a part of a ciphertext. The generalized definition covers
non-tag-based AE schemes such as AEZ [HKR15].

422 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

⊕
P

inner

data block Di output block Zi ≈ output of RO

state value defined by
the previous duplex call

new state valueouter

c bits

r bits

Figure 1: Duplex Construction [BDPV11]. P is a (r + c)-bit permutation.

to control (ν + k) bits of the initial state, including the inner part. Second, Ascon emits
t bits of the final inner part as a tag, in addition to the r-bit outer part. As a result, the
security of the duplex construction no longer ensures the CMT-4 security, and there is no
guarantee unless there is a new proof.

Besides the security proof, a generic attack upper-bounds the security to t/2 bits. The
attacker computes the decryption function offline with a fixed ciphertext while changing
(K, N, A) until getting a tag collision. This corresponds to 64 bits for Ascon-128, Ascon-
128a, and Ascon-80pq with t = 128.

Cryptanalysis on Primitives. There are many research works studying the attacks on the
primitives of Ascon for AEAD or hashing. We would like to know if they can be used to
attack the context-committing security with less than 64 bits of the generic attack. Table 1
summarizes a part of the state-of-the-art attacks of the Ascon family that is particularly
relevant to our paper.

The conventional AEAD attacks include (i) key recovery, (ii) forgery, and (iii) state
recovery. The key-recovery attacks aim at recovering a secret key [LDW17, Tez20, GPT21,
RHSS21]. In contrast, the CMT-3 attacker aims at generating colliding data by choosing
keys. Those two goals are significantly different.

Gerault et al.’s 3-round forgery attack on iteration that injects differences in consecutive
AD blocks succeeds with 2117 complexity [GPT21] and potentially breaks the CMT-3
security. Unlike the forgery attack, a CMT-3 attacker can observe the internal state using
a known key to find the paired values satisfying the differential trail more efficiently. This
can significantly reduce the complexity from 2117, and the attack succeeds if the complexity
becomes lower than 264, i.e., the birthday bound by a generic attack. Although there are
more efficient forgery attacks on finalization [DEMS15, GPT21], they are not useful for
attacking the CMT-3 security because (i) a difference in plaintexts generates different
ciphertexts and (ii) the differences in the truncated part ignored in the finalization attacks
are non-negligible in analyzing either initialization or iteration.

The attacks on Ascon hashing are more relevant to the CMT-3 security because
of the keyless setting. In particular, the collision attacks exploiting the internal state
collision [ZDW19, GPT21, YLW+23] can be used to break the CMT-3 security like the
AEAD forgery attack. The state-of-the-art in this category is the one by Yu et al. [YLW+23]
that breaks 2 rounds of Ascon-Hash with 262.6 complexity. This attack is directly
applicable to 2 rounds of Ascon-128 and Ascon-128a. Meanwhile, the other hashing
attacks are somewhat irrelevant to the CMT-3 security. The semi-free-start collision
attack [YLW+23] propagates the difference from the middle to the initial, which is efficiently
prevented by the feed-forward structure in the initialization of the AEAD mode. Similarly,
making a ciphertext that can be decrypted with different decryption contexts is non-trivial
even if a preimage is available [DEMS21]. Moreover, applications of the preimage attacks
on Ascon-Xof with 64-bit outputs to the committing security is unclear because of the
differences of the finalization function in the AEAD mode and the hashing mode.

In summary, the CMT-3 security of 2 rounds of Ascon-128 can be attacked with
262.6 complexity [YLW+23], which is already better than the generic attack. Meanwhile,

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 423

Table 1: New and conventional attacks on Ascon relevant to the CMT-3 security.

Target Type Round Complexity Ref.

Ascon-128 Forgery, Finalization 4 2101 [DEMS15]
Ascon-128 Forgery, Finalization 4 296.61 [GPT21]
Ascon-128a Forgery, Iteration 3 2117 [GPT21]
Ascon-128a Forgery, Finalization 3 220 [GPT21]

Ascon-Xof Collision 2 215 [ZDW19]
Ascon-Hash Collision 2 2125 [ZDW19]
Ascon-Hash Collision 2 2103 [GPT21]
Ascon-Hash Collision 2 262.6 [YLW+23]
Ascon-Hash Semi-free-start collision 4 Practical [YLW+23]
Ascon-Xof Preimage 2 239 [DEMS21]
Ascon-Xof Preimage 6 263.3 [DEMS21]

Ascon-128, Ascon-80pq CMT-3 2 262.6 [YLW+23]
Ascon-128a CMT-3 3 2117† [GPT21]

Ascon-128, Ascon-80pq CMT-3 3 248‡ This Work
Ascon-128a CMT-3 3 236‡ This Work

†Validity of the attack has not been confirmed. It is valid only if the differential trail with probability 2−116 can
be satisfied with a complexity below 264 by using the knowledge of the internal state values.
‡The actual attack complexity is based on the MILP solving algorithm and should be much smaller. However we
refer to this number to provide certain convenience for future reference.

the attack on 3 rounds of Ascon-128a with 2117 complexity [GPT21] has room for
improvements, but it is far beyond practical.

Security Enhancement. Even if there is a security proof, the offline security of Ascon-
128, Ascon-128a, and Ascon-80pq is upper bounded to 64 bits by the generic attack,
which is significantly lower than that of the key-recovery attack. 64-bit offline security
is insufficient in practice, and Chan and Rogaway recommended 80 bits or more [CR22].
Therefore, achieving higher CMT-4 security by applying a blackbox conversion to Ascon
is another important challenge.

Two conventional approaches are Hash-then-Encrypt (HtE) [BH22] and CTX [CR22],
which add a hash function before or after an AE encryption to use collision resistance for
improving the CMT-4 security. However, HtE’s security is limited by the same generic
attack. Meanwhile, CTX requires an unverified tag for decryption and cannot be used as
a blackbox conversion. Additional costs for a hash function are another concern.

In contrast, Albertini et al.’s Padding Fix [ADG+22] appends zeroes to a plaintext and
checks them after decryption, which maintains compatibility with the original AE and can
be more efficient. The security after padding should be evaluated for each scheme, and
Albertini et al. proved that z-bit padding improves the CMT-1 security of AES-GCM and
Chacha20-Poly1305 from 0 to z

2 bits. The security of Ascon with zero padding needs a
dedicated security evaluation, which includes the following open research questions: (i)
the effectiveness of Padding Fix in the CMT-4 (cf. CMT-1) security and (ii) improving
the security beyond z

2 bits by using a tag and zero padding.

1.2 Contributions
Cryptanalysis on Primitives (Section 3). We propose new attacks that inject differences in
the nonce and the first AD block. The setting of injecting differences in the nonce is specific
to the CMT-3 security and was not considered by the state-of-the-art attacks [GPT21,

424 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

Table 2: Ascon’s recommended parameters and the corresponding CMT-4 bounds

Name Key Nonce Tag State Rate Capacity Rounds CMT-4 Bound‡

Parameter k ν t n† r c P1 P2

General — — — — — — — — min
{

t+z
2 , n+t−k−ν

2 , c
2

}
Ascon-128 128 128 128 320 64 256 12 6 min

{
64 + z

2 , 96
}

Ascon-128a 128 128 128 320 128 192 12 8 min
{

64 + z
2 , 96

}
Ascon-80pq 160 128 128 320 64 256 12 6 min

{
64 + z

2 , 80
}

†The state size n = 320 is not parameterized.
‡z is the number of padded zero bits.

YLW+23]. This approach enables a better differential trail because the attacker can
directly control 256 bits of the state by choosing K and N . Moreover, the attacker can
inject 128-bit differences to N while the controllable data size in the previous hash collision
attacks was limited by the data block size (or rate), e.g., 64 bits in the outer part, and
other state bits are the output of the previous block, which behaves only randomly.

To search for differential trails, considering the resource available to us, we use the
mixed integer linear programming (MILP). Simple applications of existing MILP modeling
generate a too large problem to be solved. Hence, we add heuristics to finish the search in
a reasonable time. Also, it is important to confirm validity of the trails. As [YLW+23], we
search for actual paired values with a tool, MILP in our case, by setting value conditions to
satisfy the differential trail. It is interesting that our 3-round trail for Ascon-128 can only
be satisfied if the 64-bit IV constant defined in the specification, 80400c0600000000, has
two bits of ‘1’ in bit position j and j−12 for some j ∈ {0, . . . , 63}. Because bit ‘1’ is sparse
in IV, it is fortunate for us that this configuration is satisfied. As summarized in Table 1,
our attack breaks CMT-3 security up to 3 rounds with Ascon-128, which improves the
attack using the 2-round collision attack on Ascon-Hash by 1 round. Moreover, we
practically generate a collision pair. With Ascon-128a, while the applicability of the
previous work is unclear, we successfully generate an actual collision pair for 3 rounds.

Proof on Mode (Sections 4 and 5). We consider Ascon-zp, the Ascon with z-bit zero
padding that extends a plaintext M to M∥0z, and prove its CMT-4 security in the random
permutation (RP) model. We prove that Ascon-zp achieves min

{
t+z

2 , n+t−k−ν
2 , c

2
}

-bit
CMT-4-security with an n-bit state and the relation k ≥ t. The bound with z = 0
represents the security of the original Ascon.

We directly prove the CMT-4 security of Ascon-zp. Unlike the existing proofs of
duplex-based schemes, the proof must take into account the Ascon’s structural features:
an attacker can control the inputs to Ascon including the key, i.e., the (k + ν)-bit of the
initial state is controllable; an attacker can obtain the t bits of the inner part, i.e., r bits
of the outer part and t bits of the inner part are observable. These features might degrade
the security to n−max{k+ν,r+t}

2 bits. However, regarding the initial state, the key masking
in Ascon serves as the feed-forward operation of Davies-Meyer mode and prevents security
degradation. Regarding the t-bit output, two permutations P1 and P2 prevent security
degradation. The attacker obtains only t bits from P1 used in initialization and finalization.
the remaining bits, including the outer part, are unavailable. In contrast, the attacker
only obtains r bits in the outer part from P2 used in the other processes. By the feed-
forward and the use of the two permutations, we can prove the min

{
t+z

2 , n+t−k−ν
2 , c

2
}

-bit
CMT-4-security.

With the concrete parameters, the obtained bound becomes min
{

64 + z
2 , 96

}
for

Ascon-128 and Ascon-128a, and min
{

64 + z
2 , 80

}
for Ascon-80pq, as summarized in

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 425

Message length including
ASCON’s one-zero padding [bits]

1

64 128 192 256 320 384

2
3
4
5
6

ASCON-128 w/ z=0
ASCON-128 w/ z=64

64 128 192 256 320 384

ASCON-128a w/ z=0
ASCON-128a w/ z=64

1
2
3
4
5
6

Message length including
ASCON’s one-zero padding [bits]

#pb calls
for plaintext
processing

#pb calls
for plaintext
processing

Figure 2: The number of the primitive (pb) calls with and without 64-bit zero padding
with (left) Ascon-128 and (right) Ascon-128a.

Table 2. The original AEAD modes achieve 64-bit CMT-4 security, which can be improved
up to 96 (resp. 80) bits by adding 64 (resp. 32) zero bits for Ascon-128 and Ascon-128a
(resp. Ascon-80pq). Fig. 2 compares the number of primitive call with and without 64-bit
zero padding for Ascon-128 and Ascon-128a. One additional primitive call is necessary
for Ascon-128 with 64-bit padding because r = 64. In case of Ascon-128a with r = 128,
on the other hand, there is a chance of causing no extra primitive call when the original
message has a 64-bit space until the block boundary.

1.3 Organization
We begin by recalling Ascon in Section 2. Section 3 gives the attacks on Ascon-128,
Ascon-128a, and Ascon-80pq. Then, CMT-4 security bound of Ascon with zero padding
is described in Section 4, followed by the security proof in Section 5. Section 7 is conclusion.

2 Specification of Ascon

2.1 Ascon Mode
The encryption of Ascon takes a key K, a nonce N , associated data (AD) A, and a
plaintext M as input and returns a ciphertext C and a tag T . Ascon is parameterized
by the size of key k, nonce ν, tag t, and data block (rate) r, and the number of rounds
for the initialization and finalization a and for processing AD and plaintext b. With the
state size n, r determines the size of non-data-block bits (capacity) c. Ascon specifies
recommended parameters. The instance for the primary and secondary choices are called
Ascon-128 and Ascon-128a, respectively. Besides, Ascon-80pq providing 80-bit security
for post-quantum security is specified. The recommended parameters are listed in Table 2.

Ascon operates on a state of 320 bits. The encryption of Ascon is divided into four
parts: initialization, processing AD, processing plaintext/ciphertext, and finalization. A
diagram of those operations are depicted in Fig. 3.

Initialization. The 320-bit state S is formed by a key K, a nonce N , and 320− k − 128
bits of constant IVk,r,a,b including the parameter information of k, r, a, and b, each
written as an 8-bit integer. Specifically, IVk,r,a,b is defined by k∥r∥a∥b∥0160−k, which
is 80400c0600000000, 80800c0800000000, and a0400c06 for Ascon-128, Ascon-
128a, and Ascon-80pq, respectively. Then, S is set to IVk,r,a,b∥K∥N , and updated
by S ← P1(S)⊕ (0320−k∥K), where P1 is a rounds of the round transformation.

426 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

0c-k||K

⊕
IV||K||N P1 P2

⊕ c

r

A1

⊕
P2

Ad

0c-1||1

⊕

⊕
P2

M1 C1

⊕
P2

Mm-1 Cm-1

⊕
P1

⊕c t

Mm Cm

⊕

lsbt(K)

Tc c c

r r r r
n

K||0c-k

Initialization Processing plaintext

Skipped if |A|=0

Processing AD Finalization

Figure 3: Encryption of Ascon.

Table 3: Ascon’s 5-bit S-box S as a lookup table.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

Processing AD. If A is non-empty, first A is padded by appending a single bit of 1 and
the smallest number of 0s to be a multiple of r bits. It is then split into r-bit blocks
A1, . . . , Ad. If A is empty, the padding is omitted. Then, S ← P2((Sr ⊕Ai)∥Sc) is
computed for i = 1, . . . , d, where Sr and Sc are the first r bits and the last 320−r bits
of S, respectively, and P2 is b rounds of the round transformation. After processing
Aa, a 1-bit domain separation constant is XORed to S: S = S ⊕ (0319∥1).

Processing plaintext/ciphertext. Similarly to processing AD, M is padded to a multiple
of r bits by the one-zero padding, and then is split into r-bit blocks M1, . . . , Mm.
For each block except the last one, the ciphertext block Ci is computed by Sr ⊕Mi,
then S is updated with P2(Ci∥Sc). For the last block m, Cm is truncated to match
the input plaintext length and the update by P2 is not computed.

Finalization. In finalization, K is XORed to S and S is updated by P1. The tag T consists
of the least significant 128 bits of S XORed with the last 128 bits of K.

2.2 Ascon Permutations
The 320-bit state S is split into five 64-bit words xi, i = 0, . . . , 4, hence S = x0∥x1∥x2∥x3∥x4,
which is represented by a 5× 64-bit two-dimensional array or a 320-bit one-dimensional
array. S is iteratively updated by an SPN-based round transformation a (resp. b) times
for P1 (resp. P2). The round transformation applies the three operations; round constant
addition pC , a substitution layer pS , and a linear layer pL.

• pC : XOR an 8-bit constant value to the least significant 8 bits of x2.

• pS : Update S with 64 parallel applications of the 5-bit S-box S(x) defined in Table 3
to each bit-slice of the five registers x0, . . . , x4.

• pL: Apply a linear function defined below to each word xi.

x0 ← x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28) x3 ← x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)
x1 ← x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39) x4 ← x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)
x2 ← x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 427

3 Reduced-Round Attacks to Break CMT-3 Security
3.1 Framework
Attacker’s goal to break CMT-3 security is to find a pair of input tuples (K, N, A, M) and
(K ′, N ′, A′, M ′) that output the same C, T and satisfy (K, N, A) ̸= (K ′, N ′, A′). In this
paper, we set K = K ′ because otherwise differential propagation needs to be controlled
both in the initialization and the finalization. Then, there are two possible approaches.

• Inject a difference to Ai and cancel it with a difference of Ai+1 after the permutation.

• Inject a difference to N and cancel it with a difference of A1 after the initialization.

The first approach has been taken by the previous 2-round collision attacks on Ascon-
Hash [ZDW19, GPT21, YLW+23] and the forgery attack on 3-round Ascon-128a [GPT21,
Table 22]. The 2-round collision attack on Ascon-Hash with 64-bit rate [YLW+23] only
requires 262.4 complexity, hence it immediately forms a valid CMT-3 attack against
2-round Ascon-128, Ascon-128a, and Ascon-80pq with the same complexity. The
3-round forgery attack against Ascon-128a uses the differential trail with a probability
of 2−116. Hence, the straightforward application of the trail would exceed the generic
attack complexity of 264 based on the birthday-level security of the tag size. Because
CMT-3 security operates in the keyless setting, the attack complexity could be improved
significantly from 2117. However, it would be expected that the attack complexity of both
those 2-round and 3-round attacks remain quite expensive to be a practical attack.

In this paper, we take the second approach. The main advantage is that the attacker
can directly choose values of four rows, and have two rows to inject differences even for
Ascon-128. The main drawback is that x0 are fixed to IVk,r,a,b, which behaves as a
constraint. To search for differential trails, using automated tools such as SAT, MILP, and
CP is a popular approach. Considering the resource available to us, we use MILP.

3.2 Basics of Mixed Integer Linear Programming
The basic framework of differential trail search by MILP is well summarized in [MWGP11,
SHW+14]. To be solved by MILP, we need to create the model that consists of declaration
of variables, constraints defined by linear inequalities, and an objective function.

Variables. For 3-rounds, we use 3× 320 binary variables X320i+j to denote whether each
bit before pS is active or not, where i = 0, 1, 2 denotes the round and j = 0, . . . , 319 denotes
the bit position. If the bit is active, X320i+j is 1. Otherwise, it is 0. We also use 3× 320
binary variables Y320i+j to denote whether each bit after pS is active or not. Besides, we
use binary variables n64i+l, l = 0, . . . , 63 to denote if each S-box is active or not.

Constraints by linear inequalities. We mainly need to set up three types of constraints:
relationships between n64i+l and X320i+j , relationships between X320i+j and Y320i+j over
pS , and relationships between Y320i+j and X320(i+1)+j over pL.

For the first type, we set n64i+l to 0 when the lth S-box in the ith round is inactive,
namely, when X360i+l, X360i+64+l, X360i+128+l, X360i+192+l, and X360i+256+l are all 0. We
set n64i+l to 1 otherwise. For simplicity, we explain the case with i = 0 and l = 0, i.e. n0
is defined based on 5 input bits Xh, h ∈ {0, 64, 128, 192, 256}. Our set up is achieved by 6
inequalities Σh∈{0,64,128,192,256}Xh − n0 ≥ 0 and n0 −Xh ≥ 0, h ∈ {0, 64, 128, 192, 256}.

For the second type, we model Ascon’s differential distribution table (DDT). Several
researchers have proposed the way to model DDT. We follow ∗-DDT by [ST17] which only
cares whether each entry of DDT is zero or non-zero. In [ST17], ∗-DDT is introduced
because their goal is to identify the impossible differentials determined only by the

428 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

possibility of differential transitions. CMT-3 security studied in this paper is the keyless
notion. Thus, even if the probability is low, an attacker can choose paired values satisfying
the differential transition as long as the probability is non-zero. This matches the goal of
∗-DDT. How to derive inequalities to model DDT is the same as the previous work and we
omit details. A set of linear inequalities is shown in Sect. A in Supplementary Material.

For the third type, because pL only computes three-input XORs, the model is simple.
The propagation over A⊕B ⊕ C = D can be modeled as follows;

A + B + C − D ≥ 0, A + B − C + D ≥ 0, A − B + C + D ≥ 0, −A + B + C + D ≥ 0,

−A − B − C + D ≥ −2, −A − B + C − D ≥ −2, −A + B − C − D ≥ −2, A − B − C − D ≥ −2.

Finally, we set the conditions to restrict the active bit positions to generate a collision.
Difference cannot be injected to IVk,r,a,b and K, which derives Xj = 0 for j = 0, . . . , 191.
Some difference needs to be injected to N , which derives X192 + · · ·+ X319 ≥ 1. For the
difference to be canceled after three rounds, we need conditions Yj = 0 for j = 704, . . . , 959
for Ascon-128 and j = 768, . . . , 959 for Ascon-128a.

Objective Function. In general, it is desired if the number of active S-boxes is small.
Hence, the objective function is to minimize n0 + · · ·+ n191.

3.3 Sparse DDT for the First and Last Rounds
Because the problem space is large, it is hard to efficiently find solutions with the straight-
forward application of the basic model. One complex part is the S-box. Gerault et
al. [GPT21] observed that during the first and the last round, only a small fraction of DDT
can be exploited, thus there is no need to model the entire DDT. This strategy can also
be applied to our setting. More specifically, the standard DDT contains the information
computed by

DDT := ∀∆i,∀∆o,
#{x ∈ {0, 1}5|S(x)⊕ S(x⊕∆i) = ∆o}

25 .

In our setting, the MSB of the input is fixed to b ∈ {0, 1} by IVk,r,a,b and the input
difference can only take 0, 1, 2, and 3. Hence, the following distribution table is considered.

DDTb := ∀∆i ∈ {0, 1, 2, 3},∀∆o,
#{x ∈ {0, 1}4|S(b∥x)⊕ S(b∥x⊕∆i) = ∆o}

24 .

This makes the table significantly simple, and can be modeled with a few linear inequalities.
The comparison of DDT and DDT0 are given in Sect. B in Supplementary Material. The
set of inequalities to model those tables are also compared in Sect. A.

3.4 Practical 3-Round CMT-3 Attack on Ascon-128a
Search Strategy. Even with the sparse DDTb, the problem is too large to finish in a
reasonable time in our environment, which requires us to add heuristics. Considering the
fast diffusion by pL, our strategy is to keep many 64-bit words xi inactive. Specifically, we
limit that the number of active words at the beginning of the second round is 2 or less.
This implies that the Hamming weight of the output difference of each S-box in the first
round is 2 or less. Considering that the input difference can only be 01, 02, or 03, the
possible output differences are 01, 05, 09, 10, 11, 14, or 18. None of them has a difference
in the second bit. Hence we further have a 64-bit condition yi = 0, i = 192, . . . , 255 on
S after pS , and also have xi = 0, i = 512, . . . , 575 on S after pL. We then perform the
divide-and-conquer approach [ZZDX19] to solve multiple models separately. We similarly
limit that the number of active words at the beginning of the third round is 3 or less. The

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 429

Table 4: 3-Round Differential Trail for Ascon-128a (left) and Ascon-128 (right).

round ∆ before S-box ∆ after S-box

0000000000000000 0000000000000000
0000000000000000 0000000000000000

1 0000000000000000 0000000000000000
8008000080000200 0000000000000000
8008000080000200 8008000080000200

0000000000000000 0000100100400400
0000000000000000 8148100181400604

2 0000000000000000 0000000000000000
0000000000000000 0000000000000000
8148100181400604 8148000081000204

0480500102412418 0c82400100432018
880a10018242a600 8488500082018618

3 0000000000000000 0000000000000000
0000000000000000 0000000000000000
880a10018242a600 0000000000000000

round ∆ before S-box ∆ after S-box

0000000000000000 0000000000000000
0000000000000000 0000140000401000

1 0000000000000000 0000000000000000
2140995204509144 0000000000000000
2140995204509144 21409d5204509144

0000000000000000 0000000000000000
0000342002409028 0000342000489008

2 0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000342002489028 0000000002080020

0000000000000000 40010400120c1020
40010400120c1020 0000000000000000

3 0000000000000000 0000000000000000
0000000000000000 0000000000000000
40010400120c1020 0000000000000000

derived 3-round differential trail is given in the left of Table 4, where the output difference
after pL in the third round is 6cb3401180670000 at x0 and a1ced308a304a67c at x1.
Regarding the search time, we limit it to 8 hours for each case in the divide-and-conquer
approach. If efficient trails exist, the search is fast. Our trail was detected in 9 minutes,
though it did not finish after 8 hours and thus the optimality is unknown.

As pointed out by Liu et al. [LIM20] against the previous 2-round differential trail
[ZDW19], assuming the Markov property for the Ascon permutation may result in an
invalid trail. Hence, it is important to show the validity of our trail. Here, we adopt the
same approach as one proposed by Liu et al. [LIM20] and particularly demonstrated for
Ascon in [YLW+23]. Namely, suppose that X and X ′ are two paired values we want. We
first impose linear conditions on the internal state value at the beginning of each round so
that input bits to the active S-box can satisfy the desired differential transition. Then we
use an automated tool to search for internal values of X satisfying all the conditions.

Deriving Conditions. We denote the j-th bit of xi from the left by xi[j]. Recall that 5
input bits of an S-box in column j are x0[j], x1[j], x2[j], x3[j], x4[j]. Visual representation
of the conditions along with the trail is available in Sect. C in Supplementary Material.

In the first round, 64 bits of x0 are fixed to IVk,r,a,b, which directly defines the conditions
on x0[j] for all j. There are four active S-boxes where the input difference 3 is transferred
to 1 in columns 0, 12, 32, and 54. The corresponding paired input values are {0c, 0f} and
{1c, 1f}. Hence, regardless of the fixed MSB of x0[j], we obtain three linear conditions;
x1[j] = 1, x2[j] = 1, and x3[j] = x4[j] for j = 0, 12, 32, 54.

In the second round, we have two transitions; from 1 to 9 (columns 0, 7, 9, 12, 32, 39,
54, 61) and from 1 to 18 (columns 19, 31, 41, 53). The corresponding input values are
{12, 13, 16, 17} and {1a, 1b, 1e, 1f}, respectively. Hence for the columns with differential
transition from 1 to 9, we have three conditions x0[j] = 1, x1[j] = 0, x3[j] = 1, and for the
columns with 1 to 18, we have three conditions x0[j] = 1, x1[j] = 1, x3[j] = 1.

In the third round, the input difference of active S-boxes are either 9 (columns 0, 4,
12, 14, 32, 46, 48, 54), 10 (columns 5, 8, 17, 47, 59, 60), or 19 (columns 19, 31, 38, 41,
50, 53). To be canceled with the difference in the next AD block, the output difference
can only exist in the first two rows. For the input difference 10, the output difference
must be 18, which occurs with probability of 2−2 and the conditions are x1[j] = 0, and
x3[j] ̸= x4[j]. For the input difference 9, the output difference can be 8 or 10, where each
occurs with probability of 2−4 and thus the sum is 2−3. The corresponding conditions are
x0[j] = 0, x3[j] = 0, and x1[j] ̸= x4[j]. For the input difference 19, the output difference

430 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

can be 8 or 10, where each occurs with probability of 2−3 and thus the sum is 2−2 with
the conditions x3[j] = 0 and x0[j] = x4[j]. Note that if the state value is chosen randomly,
the probability of the transition in the third round is (2−2)12 × (2−3)8 = 2−48.

Complexity analysis. As Liu et al. [LIM20], we modeled the value propagation and
the above conditions in MILP. The S-box is viewed as a 32× 32 table in which only 32
entries specified by the S-box are possible transitions. This table can be modeled in the
same way as a DDT. The XOR operation is the same between values and differences,
so pC and pL can be modeled easily. With Gurobi Optimizer provided by NEOS Server
[CMM98, Dol01, ZZDX19], we obtained the input value satisfying all the conditions in 25
minutes. The generated paired values are shown in Table 6 in Sect. E.

Evaluating the attack complexity is hard because the search procedure is based on the
MILP solving algorithm, and is not a simple iterative test by randomly choosing values.
The conditions for the first round S-boxes can be satisfied with complexity of 1. Then, we
assume that the bits of inactive S-boxes in the first round can be used as the source to
satisfy the second round conditions bit by bit, and the conditions on the third round is
satisfied only randomly. With this assumption, the attack complexity is 248. Given that
we found a solution only in 25 minutes, the actual complexity should be much smaller.
However we refer to this complexity to provide certain convenience for future reference.

3.5 Practical 3-Round CMT-3 Attack on Ascon-128
Search Strategy. Finding an efficient trail for Ascon-128 is much harder than Ascon-
128a due to the smaller rate; i.e. rate of Ascon-128 is 64 bits, thus the output difference
must be only in the top row. Ascon’s S-box requires at least 2 active bits to produce the
output difference 10. Namely, as a result of pL in the second round, each active S-box
in the third round must have active bits in multiple rows, which makes it hard to keep
the differential trail sparse. Due to this strong constraints, we fix the number of active
rows during pL in the second round (and the beginning of the third round) to 2. On the
other hand, active S-boxes in the third round must produce the output difference 10, and
from DDT, the possible input differences are 03, 09, 0c, 0d, 12, 16, 19, 1c, and 1d. By
combining them, the choices of differences at the beginning of the third round are reduced
to 4; 03, 09, 0c, and 12, which are then searched by a divide-and-conquer approach.

The discovered 3-round differential trail is given in the right of Table 4 and Sect. D,
where the output difference after pL in the third round is e2c40e04329c5260 at x0. The
set of the search time is the same as one for Ascon-128a. After choosing the right case of
the divide-and-conquer approach, our trail wad detected in 66 minutes.

Deriving Conditions. In the first round, 64 bits of x0 are fixed to IVk,r,a,b. There are 15
active S-boxes where the input difference 3 is transferred to 1 (columns 2, 7, 9, 16, 20, 23,
25, 27, 30, 37, 43, 48, 55, 57, 61). Conditions for those columns are the same as explained
in Ascon-128a, thus we omit them. We also have three columns whose differences are
transferred from 3 to 9 (columns 19, 41, 51) and one column from 1 to 9 (column 21). The
paired input values for 3 to 9 are {08, 0b} with 0 at x0[j]. Hence, we obtain three linear
conditions; x1[j] = 1, x2[j] = 0, and x3[j] = x4[j] for j = 19, 41, 51. The paired input
values for 1 to 9 are {12, 13} to have 0 in the MSB of the output, which is required to
solve the contradiction explained in the next paragraph. Hence, we obtain three linear
conditions; x1[j] = 0, x2[j] = 0, and x3[j] = 1 for j = 21.

In the second round, we have three differential transitions; from 9 to 8 (columns 18,
19, 21, 26, 41, 48, 51, 60), from 9 to 1 (columns 38, 58), and from 1 to 9 (column 44).
Conditions for 9 to 8 are x0[j] = 0, x2[j] = 1, x3[j] = 0, and x1[j] ̸= x4[j], for 9 to 1

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 431

are x0[j] = 0, x2[j] = 0, x3[j] = 0, and x1[j] = x4[j], and for 1 to 9 are as explained in
Ascon-128a.

In the third round, we have 9 active S-boxes that transfer the input difference 9 to
10 (columns 1, 15, 21, 35, 38, 44, 45, 51, 58) with probability 2−4. The corresponding
conditions for each column is x0[j] = 0, x2[j] = 0, x3[j] = 0, and x1[j] ̸= x4[j].

No existence of rotated trails. In Ascon, differential trails can generally be rotated
because pS and pL are symmetric and asymmetric factors IVk,r,a,b and pC are generally
irrelevant to differential propagation. However, the rotated variants of our trail are invalid
for any number because positions of ‘1’-bits in IVk,r,a,b play an important role in our trail.

Invalidity comes from the contradiction of conditions. In our trail, active S-boxes in
columns 19 and 21 in the second round impose two conditions x0[21] = 0 and x3[19] = 0
at the input to pS . On the other hand, active S-boxes in columns 21, 2, and 57 in the
first round impose x0[21] = 0, x0[2] = 1, x0[57] = 1 at the output of pS and this results in
x0[21] = 0 after pL, which matches the condition in the second round. Similarly, active
S-boxes in columns 19, 9, and 2 in the first round impose x3[19] = 1, x3[9] = 1, x3[2] = 0
at the output of pS and this results in x3[19] = 0 after pL; no contradiction in our trail.

To discuss rotated variants, let the conditions of the second round be x0[ℓ] = 0 and
x3[ℓ−2] = 0, ℓ ∈ {0, 1, . . . , 63}. To satisfy x0[ℓ] = 0, the conditions for the first round after
pS is x0[ℓ]⊕x0[ℓ−19]⊕x0[ℓ−29] = 0. Here, x0[ℓ−19] and x0[ℓ−29] are always 0 to satisfy
the differential transitions of pS in the first round. Hence, we have a condition x0[ℓ] = 0,
but this occurs only when the MSB of the S-box input (specified by IVk,r,a,b) is 1. To satisfy
x3[ℓ−2] = 0, the conditions for the first round after pS is x3[ℓ−2]⊕x3[ℓ−12]⊕x3[ℓ−19] = 0.
This occurs only when the MSB of the S-box input is 1 in one of those columns. Therefore,
to avoid the contradiction, we have the necessary condition;

IVk,r,a,b has two bits of 1 in bit positions (ℓ, ℓ− 2), (ℓ, ℓ− 12), or (ℓ, ℓ− 19).

IVk,r,a,b of Ascon-128 is 80400c0600000000. There is no ℓ having two bits of 1 with
distance 2 and distance 19. The only choice is ℓ = 21 with distance 12, which is the choice
of our trail. This concludes that any rotated variant of our trail is invalid.

One may think that by slightly tweaking our trail, conditions on IV can be avoided. In
fact, this was our first attempt when we found the contradiction of conditions for ℓ ̸= 21.
However, due to the strong constrains that all the third round S-boxes must have multiple
active bits, we have not found any of such slightly tweaked variants of our trail so far.

Complexity analysis. Similarly to Ascon-128a, we modeled the value propagation to
satisfy the conditions for MILP. With Gurobi on NEOS Server, we obtained the input
value satisfying all the conditions in 3 minutes. The generated paired values are shown in
Table 7. With the same evaluation as for Ascon-128a, the attack complexity is 236.

3.6 Remarks on Ascon-80pq

The difference between Ascon-128 and Ascon-80pq is the key size and the size and value
of IVk,r,a,b. For the CMT-3 security, this only gives advantages to the attacker, where
the key value can be chosen by the attacker while IVk,r,a,b is a fixed constant. IVk,r,a,b

for Ascon-80pq is a0400c06 that also satisfies “two bits of 1 with the distance of 12 bits.”
Hence, the 3-round trail of Ascon-128 can also be used for Ascon-80pq.

432 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

4 Committing Security of Ascon Mode with Zero Padding
In this section, we prove the committing security of the Ascon mode in the RP model.2,3

4.1 Basic Notations
We use the following basic notations.

• Let ε be an empty string and ∅ an empty set.

• For an integer i ≥ 0, let {0, 1}i be the set of all i-bit strings, {0, 1}0 := {ε}, and
{0, 1}∗ the set of all bit strings.

• Let 0i be the bit string of i-bit zeros.

• For X ∈ {0, 1}j , let |X| := j.

• The concatenation of two bit-strings X and Y is written as X∥Y or XY when no
confusion is possible.

• Let 1c := 0c−11, and ∅ an empty set.

• For integers 0 ≤ i, j, let [i, j] := {i, i + 1, . . . , j} and [j] := [1, j]. If i > j then
[i, j] := ∅.

• For integers 0 ≤ j ≤ i and X ∈ {0, 1}i, let msbj(X) (resp. lsbj(X)) be the most
(resp. least) significant j bits of X.

• For V ∈ {0, 1}n, let ExtK(V) := msbk ◦ lsbk+ν(V) (resp. ExtIV(V) := msbn−k−ν(V))
be a function that extracts the k (resp. n− k − ν) bits of V corresponding with the
key (resp. IV) of the initial state of Ascon.

• For V ∈ {0, 1}∗, let Len10∗(V) be the length of the 10∗ part in V from the least
significant bit, i.e., if Len10∗(V) = j, then lsbj(V) = 10j−1. If V = 0|V |, then
Len10∗(V) := 0.

4.2 Ascon with Zero Padding
Let Ascon[P1, P2] be Ascon with n-bit permutations P1 and P2, and Ascon[P1, P2].Enc
the encryption algorithm of Ascon[P1, P2] that on an input tuple of a key, a nonce, AD,
and a plaintext (K, N, A, M) ∈ {0, 1}k × {0, 1}ν × {0, 1}∗ × {0, 1}∗, returns a pair of the
ciphertext and the tag (C, T) ∈ {0, 1}|M | × {0, 1}t. The specification of Ascon is given in
Figure 3 (and the full specification of Ascon is also given in Algorithm 2 in Supporting
Material F).

The generic attack on Ascon yields the birthday bound for the tag length that is less
than the key size. To enhance the committing security, we extend the black-box technique
by [ADG+22] that appends zeros to plaintexts. Let z be the length of zeros and Ascon-zp
the Ascon with the zero padding, i.e., for an input tuple (K, N, A, M), the output of the en-
cryption is defined as Ascon-zp[P1, P2].Enc(K, N, A, M) := Ascon[P1, P2].Enc(K, N, A, M∥0z).
We prove that Ascon-zp achieves min

{
t+z

2 , c
2 , n+t−k−ν

2
}

-bit committing security, assum-
ing k ≥ t.

2An n-bit RP is chosen uniformly at random from a set of all n-bit permutations.
3Due to the different number of rounds and round constants, P1 and P2 have different outputs for the

same input. Assuming independent RPs for different primitives is common in security proofs.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 433

4.3 Definition of Committing Security
Regarding a committing security notion, we use the definitions given in [BH22].

We define functions WiCi (i ∈ {1, 3, 4}) that on an input tuple (K, N, A, M), re-
turns the first i elements to which a ciphertext is committed: WiC1(K, N, A, M) = K,
WiC3(K, N, A, M) = (K, N, A), and WiC4(K, N, A, M) = (K, N, A, M).

In the CMT-i-security game where i ∈ {1, 3, 4}, the goal of an adversary A, which is
a computationally unbounded one, with access to RPs P1, P −1

1 , P2, P −1
2 is to return two

distinct input tuples with respect to WiCi on which the outputs of Ascon-zp[P1, P2] are
the same. The CMT-i-security advantage of an adversary A for i ∈ {1, 3, 4} is defined as

Advcmt-i
Ascon-zp[P1,P2](A) := Pr

[
(K†, N†, A†, M†), (K‡, N‡, A‡, M‡)← AP1,P −1

1 ,P2,P −1
2 s.t.(

WiCi(K†, N†, A†, M†) ̸= WiCi(K‡, N‡, A‡, M‡)
)

∧
(

Ascon-zp[P1, P2].Enc(K†, N†, A†, M†)

= Ascon-zp[P1, P2].Enc(K‡, N‡, A‡, M‡)
)]

.

We assume that the input-output pairs of RPs to calculate Ascon’s outputs with inputs
(K†, N†, A†, M†) and (K‡, N‡, A‡, M‡) are defined by adversary’s queries. This assumption
is valid since all the pairs are necessary to check the condition for CMT-i-security, and
it is natural to count the number of the pairs for calculating the Ascon’s outputs in the
number of queries by the adversary. The same assumption is used for proving collision
resistance of hash functions in the ideal model, e.g., [LS15].

Bellare and Hoang [BH22] proved that CMT-4 implies CMT-1, and CMT-4 and
CMT-3 are equivalent.

Lemma 1. For any CMT-4 adversary A4 making p queries, there exists a CMT-3
adversary A3 making p queries such that Advcmt-4

Ascon-zp[P1,P2](A4) ≤ Advcmt-3
Ascon-zp[P1,P2](A3).

4.4 CMT-4-Security Bound
The following theorem shows a CMT-4-security bound of Ascon-zp in the RP model.
The proof is given in Section 5.4

Theorem 1. Let P1 and P2 be independent RPs. For any CMT-4 adversary making p
queries to P1, P −1

1 , P2, or P −1
2 , we have

Advcmt-4
Ascon-zp(A) ≤

(
11p2

2c
+ 5p2

2n−ν
+ 0.5p2

2t+z
+ 0.5p2

2n+t−k−ν

)
·
(

1− 0.5p2

2n

)−1

.

Assuming p ≤ 2n/2, the term
(

1− 0.5p2

2n

)−1
is O(1). Then, assuming k ≥ t, the above

bound shows that Ascon-zp is CMT-4-secure as long as p≪ min
{

2 c
2 , 2 t+z

2 , 2 n+t−k−ν
2

}
,

ensuring min
{

c
2 , t+z

2 , n+t−k−ν
2

}
-bit CMT-4 security.

5 Proof of Theorem 1
Let A be an adversary breaking the CMT-4-security of Ascon-zp. Let p1 (resp. p2)
be the number of queries to R1 or R−1

1 (resp. R2 or R−1
2). Let p1f , p1i, p2f , and p2i be

4Note that the proof is longer than the previous proofs with zero padding [ADG+22]. This is because
the proof considers CMT-4 security while the previous ones consider weaker CMT-1 security.

434 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

Algorithm 1 Lazy Sampled RFs Ri for each i ∈ [2]
Initialization

1: TRi is initialized as an empty set for each i ∈ [2]

Forward query X to Ri for each i ∈ [2]
1: if ∃ j ≥ 1 s.t. (X, Y1), . . . , (X, Yj) ∈ TRi

∧ Y1, . . . , Yj are all distinct then
2: Y is chosen uniformly at random from {Y1, . . . , Yj}
3: else
4: Y is chosen uniformly at random from {0, 1}n

5: end if
6: TRi

← TRi
∪ (X, Y); return Y

Inverse query Y to R−1
i for each i ∈ [2]

1: if ∃j ≥ 1 s.t. (X1, Y), . . . , (Xj , Y) ∈ TRi
∧X1, . . . , Xj are all distinct then

2: X is chosen uniformly at random from {X1, . . . , Xj}
3: else
4: X is chosen uniformly at random from {0, 1}n

5: end if
6: TRi

← TRi
∪ (X, Y); return X

respectively the numbers of queries to R1, R−1
1 , R2, and R−1

2 . Hence, p1 = p1f + p1i and
p2 = p2f + p2i. For query-response pairs (X, Y), (X ′, Y ′) of RPs„ if (X, Y) is defined after
(resp. before) (X ′, Y ′) is defined then the relation is denoted by (X, Y) ≻ (X ′, Y ′) (resp.
(X, Y) ≺ (X ′, Y ′)).

5.1 Replacing Random Permutations with Random Functions
We first replace RPs (P1, P2) by lazy sampled random functions (RFs) (R1, R2) where
for each new query, the output is chosen uniformly at random from {0, 1}n. The detail
procedures are given in Algorithm 1. In this algorithm, i = 1 (resp. i = 2) for R1 (resp.
R2). TRi

is a table that keeps query-response pairs. TR1 (resp. TR2) is for R1 (resp. R2).
For i ∈ [2], let T fwd

Ri
(resp. T inv

Ri
) be the set of query-response pairs in TRi

that are defined
by forward (resp. inverse) queries. For a new forward (resp. inverse) query to Ri (resp.
R−1

i), it returns an n-bit random value. Hence, there probabilistically exist pairs whose
first or second elements are the same. For a query that is stored in TRi

, it returns the
corresponding value. If there exist multiple pairs, the response is chosen uniformly at
random from the pairs.

Let Coll be a collision event for R1 and R2 where ∃i ∈ [2], (X1, Y1), (X2, Y2) ∈ TRi
s.t.

(X1 = X2 ∧ Y1 ≠ Y2) ∨ (X1 ̸= X2 ∧ Y1 = Y2). The RP-RF switch offers the following
bound.

Pr[Coll] ≤
∑

i∈[p1]

i− 1
2n

+
∑

i∈[p2]

i− 1
2n
≤ 0.5p2

1
2n

+ 0.5p2
2

2n
≤ 0.5p2

2n
.

Let Win be an event that A breaks the CMT-4-security of Ascon-zp[R1, R2]. Since the
RFs behave as RPs as long as Coll does not occur, we have

Advcmt-4
Ascon-zp[P1,P2](A) = Pr[Win | ¬Coll] = Pr[Win ∧ ¬Coll]

Pr[¬Coll] = Pr[Win ∧ ¬Coll]
1− Pr[Coll]

≤ Pr[Win ∧ ¬Coll] ·
(

1− 0.5p2

2n

)−1

. (1)

Note that assuming p ≤ 2n/2, the term
(

1− 0.5p2

2n

)−1
is O(1), and the above bound

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 435

0c-k||ExtK(X1)

P1 P2

⊕
P2

0c-1||1

⊕

⊕
P2

⊕
P2

⊕
P1

⊕ ⊕

lsbt(ExtK(X1))ExtK(X1)||0c-k

X1

Yd+1

Xd+2 Yd+2 Xd+m

Y1 X2 Y2 Xd+1

Yd+m

Xd+m+1 Yd+m+1

msbrm-j

Ffs(S) = plaintext of S

IV =

Fis(S)
= tag of S

T

C

Len10* ≠0

⊕

Len10*

≠0

Figure 4: Full Sequence S = {(X1, Y1), . . . , (Xd+m+1, Yd+m+1)}.

is dominated by the bound of Pr[Win ∧ ¬Coll]. In the following proof, we evaluate the
probability Pr[Win∧¬Coll] that is bounded by the probability that Win occurs before Coll
occurs.

5.2 Sequences with Ascon’s Structure
In this evaluation, we consider sequences of input-output pairs {(X1, Y1), . . . , (Xd+m+1, Yd+m+1)}
of R1 or R2 that have the structure of Ascon, i.e., for i ∈ [d + m + 1], (Xi, Yi) is the i-th
input-output pair of Ascon. The sequences are formally defined below. The structure of
the sequence is depicted in Figure 4.

Definition 1. A set of pairs {(X1, Y1), . . . , (Xd+m+1, Yd+m+1)} is a full sequence if the
input-output pairs have the structure of Ascon, i.e.,

1. (X1, Y1) ∈ TR1 , (Xi, Yi) ∈ TR2 for i ∈ [2, d + m], (Xd+m+1, Yd+m+1) ∈ TR1 ,

2. lsbc(Y1 ⊕X2) = 0c−k∥ExtK(X1) if d ≥ 1;
lsbc(Y1 ⊕X2) = (0c−k∥ExtK(X1))⊕ 1c if d = 0 and m ≥ 2;
lsbc(Y1 ⊕X2) = (0c−k∥ExtK(X1))⊕ (ExtK(X1)∥0c−k)⊕ 0c−11 if d = 0 and m = 1,

3. lsbc(Yi ⊕Xi+1) = 0c for i ∈ [2, d],

4. Len10∗(msbr(Yd ⊕Xd+1)) ̸= 0 if d ≥ 1,

5. lsbc(Yd+1 ⊕Xd+2) = 1c if d ≥ 1 and m ≥ 2,
lsbc(Yd+1 ⊕Xd+2) = (ExtK(X1)∥0c−k)⊕ 1c if d ≥ 1 and m = 1,

6. lsbc(Yi ⊕Xi+1) = 0c for i ∈ [d + 2, d + m− 1],

7. lsbc(Yd+m ⊕Xd+m+1) = ExtK(X1)∥0c−k if d ≥ 1 and m ≥ 2,

8. Len10∗(msbr(Yd+m ⊕Xd+m+1)) ̸= 0.

lsbt(Yd+m+1)⊕ExtK(X1) is called a “tag of the full sequence”. msbrm−j

(
(Yd+1⊕Xd+2)∥(Yd+2⊕

Xd+3)∥ · · · ∥(Yd+m ⊕ Xd+m+1)
)

is called a “plaintext of the full sequence” where j =
Len10∗(msbr(Yd+m ⊕Xd+m+1)). msbrm−j

(
Xd+2∥Xd+3∥ · · · ∥Xd+m+1

)
is called a “cipher-

text of the full sequence”.
A set of pairs {(X1, Y1), . . . , (Xd+m, Yd+m)} is an Ascon’s internal sequence if the

input-output pairs are of some Ascon’s process excluding the last block, i.e., these pairs
satisfy the above conditions 1-6 (the last two conditions are excluded). The c-bit value
defined by using lsbc(Yd+m), i.e.,

• lsbc(Yd+m)⊕ ExtK(X1)∥0c−k if m ≥ 2;

436 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

• lsbc(Yd+m)⊕ (ExtK(X1)∥0c−k)⊕ 1c if d ≥ 1 and m = 1;

• lsbc(Yd+m)⊕ (ExtK(X1)∥0c−k)⊕ (0c−k∥ExtK(X1))⊕ 1c if d = 0 and m = 1

is called an “output of the internal sequence”.
Some definitions for the sequences are given below.

• Let IS be the set of internal sequences.

• Let FS be the set of full sequences.

• For S ∈ IS (resp. S ∈ FS), let S[i] := (Xi, Yi) be the i-th pair of the internal (resp.
full) sequence.

• We abuse the notations ExtK and ExtIV. For S ∈ FS, let ExtK(S) (resp. ExtIV(S))
be the key (resp. IV) element of S, i.e., ExtK(S) = ExtK(X1) (resp. ExtIV(S) =
ExtIV(X1)) where S[1] = (X1, Y1).

• Let Fis : IS → {0, 1}∗ be a function that on an input S ∈ IS, returns the output of
S.

• Let Ffs : FS → {0, 1}∗ × {0, 1}t be a function that on an input S ∈ FS, returns a
pair of the ciphertext and the tag of S.

• Let F T
fs : FS → {0, 1}t be a function that on an input S ∈ FS, returns the tag of S.

• For S ∈ IS or S ∈ FS, let ℓS := |S| be the number of pairs in S.

• For S ∈ IS or S ∈ FS, let Last(S) ∈ [ℓS] be the block number such that ∀i ∈
[ℓS]\{Last(S)} : S[Last(S)] ≻ S[i].

5.3 Outline of Remaining Proof
In the remaining proof, we evaluate the probability Pr[Win ∧ ¬Coll].

We first define bad events in Section 5.4. The bad events are defined so that if no bad
event occur, for each full sequence S ∈ FS,

1. S[1] ≺ S[2] ≺ · · · ≺ S[ℓS], and

2. S[2], . . . , S[ℓS − 1] ∈ T Fwd
R2

, S[ℓS] ∈ T Fwd
R1

,

and for each pair of distinct full sequences (S′, S∗) ∈ FS2,

3. the pairs of the tag and the ciphetext are independently defined if S′[1], S∗[1] ∈ T Fwd
R1

,
and

4. the tags are independently defined if S′[1] ∈ T Inv
R1

or S∗[1] ∈ T Inv
R1

.

The bad events are defined in Section 5.4. To ensure the above condition 1, we define bad
events with the case where for some i, S[i] ≻ S[i + 1]. To ensure the above condition 2,
we define bad events with the case where for some i ≥ 2, S[i] ∈ T Inv

R1
∪ T Inv

R2
. To ensure

the above conditions 3 and 4, we define bad events with the case where for some full
sequences, a collision of some inner parts occur. The probabilities for the bad events are
upper-bounded in Sections 5.7-5.16 with Lemmas 2 and 3 in Section 5.5.

Assume that no bad event occur. For each pair of distinct full sequences (S′, S∗) ∈ FS2,

• if S′[1], S∗[1] ∈ T Fwd
R1

, then we have Pr[Ffs(S′) = Ffs(S∗)] ≤ 1
2z+t , and

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 437

V ∈ Set in Eq. (2)

⊕

X'
Y' X*

Y*

?

MITM1 MITM2

P1

⊕
P1

0c-k||ExtK(X1)

⊕

ExtK(X1)||0c-k

X1

?
V =

P2

(⊕ 1c)

Figure 5: Bad Events MITM1 (left) and MITM2 (right).

V ∈ Set in Eq.(3)

⊕

X'

Y' X*

Y*

?

Connectf1 Connectf2

P1

⊕
P1

0c-k||ExtK(X1)

⊕

X1
P2

ExtK(X1)||0c-k (⊕ 1c)
?

V =

Figure 6: Bad Events Connectf1 (left) and Connectf2 (right).

V ∈ Set in Eq.(4)

⊕

X'
Y' X*

Y*

?

Connecti1 Connecti2

V ∈ Set in Eq.(5)

⊕

X'
Y' X*

Y*

?

IV =
?

IV =
?

Figure 7: Bad Events Connecti1 (left) and Connecti2 (right).

• if S′[1] ∈ T Inv
R1

or S∗[1] ∈ T Inv
R1

, then the response of the inverse query collides with
IV , and by the IV collision and the tag collision, we have Pr[Ffs(S′) = Ffs(S∗)] ≤

1
2n+t−k−ν .

Lemma 3 shows that if no bad event occur, then we have |FS| ≤ p1f , and the probability that
A wins (the event is defined as Win) is at most

(
p1f
2

)
·
(1

2z+t + 1
2n+t−k−ν

)
≤ 0.5p2

1f
2z+t + 0.5p2

1f
2n+t−k−ν .

The evaluation is given in Section 5.17, the first case is defined as an event Win1 and the
second case is defined as an event Win2.

Using these bounds, we have the upper-bound of Pr[Win ∧ ¬Coll]. The bound is given
in Eq. (9) in Section 5.6. Putting the bound in Eq. (9) into the one in in Eq. (1), we
obtain the bound in Theorem 1.

5.4 Bad Events
The events MITM1 and MITM2 depicted in Figure 5 are meet-in-the-middle events for full
sequences. MITM2 considers the last two pairs of full sequences of length ≥ 3. MITM1
considers the other adjacent pairs of full sequences. The events Connectf1 and Connectf2
depicted in Figure 6 are connecting events for full sequences where two forward queries
probabilistically connect. Connectf2 considers the last two pairs of full sequences of length
≥ 3. Connectf1 considers the other adjacent pairs of full sequences. The event Connecti1
(resp. Connecti2) depicted in Figure 7 is a connecting event for the first two pairs of full
sequences where two inverse (resp. inverse and forward) queries probabilistically connect.
The events Coll1, Coll2, and Coll3 depicted in Figure 8 are collision events for two outputs

438 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

V⊕

X'
Y'

X*

Y*
?

Coｌｌ1

IV =
?

Set
in Eq.(6)

∈ V

P1

⊕

X'
Y'

X*

Y*
?

Coｌｌ2

Set
in Eq.(7)

∈

IV =
?

V

P1

⊕

X'
Y'

X*

Y*
?

Coｌｌ3

P1
Set
in Eq.(8)

∈

IV =
?

Figure 8: Bad Events Coll1 (left), Coll2 (middle), and Coll3 (right).

except for a collision in outputs of internal sequences whose size is ≥ 2. The event Coll4 is
a collision event for outputs of internal sequences whose size is ≥ 2.

• MITM1: ∃(X ′, Y ′) ∈ T Fwd
R1
∪ T Fwd

R2
∧ (X∗, Y ∗) ∈ T Inv

R1
∪ T Inv

R2
s.t.

lsbc(Y ′ ⊕X∗) ∈
{

0c, 1c, 0c−k∥ExtK(X ′), (0c−k∥ExtK(X ′))⊕ 1c,

(0c−k∥ExtK(X ′))⊕ (ExtK(X ′)∥0c−k)⊕ 1c

}
. (2)

• MITM2: ∃S ∈ FS s.t. ℓS ≥ 3 ∧ S[ℓS − 1] ∈ T Fwd
R2

∧ S[ℓS] ∈ T Inv
R1

.

• Connectf1: ∃(X ′, Y ′), (X∗, Y ∗) ∈ T Fwd
R1
∪ T Fwd

R2
s.t. (X ′, Y ′) ≻ (X∗, Y ∗) ∧

lsbc(Y ′ ⊕X∗) ∈
{

0c, 1c, 0c−k∥ExtK(X ′), (0c−k∥ExtK(X ′))⊕ 1c,

(0c−k∥ExtK(X ′))⊕ (ExtK(X ′)∥0c−k)⊕ 1c

}
. (3)

• Connectf2: ∃S ∈ FS s.t. ℓS ≥ 3 ∧ S[ℓS − 1] ≻ S[ℓS]
∧ S[ℓS − 1] ∈ T Fwd

R2
∧ S[ℓS] ∈ T Fwd

R1
.

• Connecti1: ∃(X ′, Y ′) ∈ T Inv
R1

, (X∗, Y ∗) ∈ T Inv
R1
∪ T Inv

R2
s.t. ExtIV(X ′) = IV ∧

lsbc(Y ′ ⊕X∗) ∈
{

0c−k∥ExtK(X ′), (0c−k∥ExtK(X ′))⊕ 1c,

(0c−k∥ExtK(X ′))⊕ (ExtK(X ′)∥0c−k)⊕ 1c

}
. (4)

• Connecti2: ∃(X ′, Y ′) ∈ T Inv
R1

, (X∗, Y ∗) ∈ T Fwd
R1
∪T Fwd

R2
s.t. ExtIV(X ′) = IV ∧ (X ′, Y ′) ≻

(X∗, Y ∗) ∧

lsbc(Y ′ ⊕X∗) ∈
{

0c−k∥ExtK(X ′), (0c−k∥ExtK(X ′))⊕ 1c,

(0c−k∥ExtK(X ′))⊕ (ExtK(X ′)∥0c−k)⊕ 1c

}
. (5)

• Coll1: ∃(X ′, Y ′), (X∗, Y ∗) ∈ T Fwd
R1
∪ T Fwd

R2
s.t.

lsbc(Y ′ ⊕ Y ∗) ∈
{

0c, 1c, 0c−k∥ExtK(X ′), (0c−k∥ExtK(X ′))⊕ 1c

0c−k∥ExtK(X ′ ⊕X∗), (0c−k∥ExtK(X ′ ⊕X∗)⊕ 1c,

(0c−k∥ExtK(X ′ ⊕X∗))⊕ (ExtK(X ′ ⊕X∗)∥0c−k)
}

. (6)

• Coll2: ∃(X ′, Y ′) ∈ T Inv
R1

, (X∗, Y ∗) ∈ T Fwd
R1
∪ T Fwd

R2
s.t. ExtIV(X ′) = IV ∧

lsbc(Y ′ ⊕ Y ∗) ∈
{

0c−k∥ExtK(X ′), (0c−k∥ExtK(X ′))⊕ 1c

0c−k∥ExtK(X ′ ⊕X∗), (0c−k∥ExtK(X ′ ⊕X∗)⊕ 1c,

(0c−k∥ExtK(X ′ ⊕X∗))⊕ (ExtK(X ′ ⊕X∗)∥0c−k)
}

. (7)

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 439

• Coll3: ∃(X ′, Y ′), (X∗, Y ∗) ∈ T Inv
R1

s.t. ExtIV(X ′) = ExtIV(X∗) = IV ∧

lsbc(Y ′ ⊕ Y ∗) ∈
{

0c−k∥ExtK(X ′), (0c−k∥ExtK(X ′))⊕ 1c

0c−k∥ExtK(X ′ ⊕X∗), (0c−k∥ExtK(X ′ ⊕X∗)⊕ 1c,

(0c−k∥ExtK(X ′ ⊕X∗))⊕ (ExtK(X ′ ⊕X∗)∥0c−k)
}

. (8)

• Coll4: ∃S′, S∗ ∈ IS s.t. S′ ̸= S∗ ∧ ℓS′ ≥ 2 ∧ Fis(S′) = Fis(S∗).

Let Bad := {Win, MITM1, MITM2, MITM3, Connectf1, Connectf2, Connecti, Coll1, Coll2, Coll3,
Coll4}.

5.5 Useful Lemmas for Sequences
The following lemma shows that each of internal or full sequences is defined in the order
from the first pair to the last one, and all pairs except for the first pair are defined by
forward queries. The proof is given in Subsection 5.18.

Lemma 2. If the bad events in Bad do not occur, then

• ∀S ∈ IS : (∀i ∈ [ℓS − 1] : S[i] ≺ S[i + 1]) ∧ (∀i ∈ [2, ℓS] : S[i] ∈ T Fwd
R2

), and

• ∀S ∈ FS : (∀i ∈ [ℓS − 1] : S[i] ≺ S[i + 1])
∧(∀i ∈ [2, ℓS − 1] : S[i] ∈ T Fwd

R2
) ∧ (S[ℓS] ∈ T Fwd

R1
).

The following lemma shows the upper-bounds of the numbers of full sequences and of
internal sequences. The proof is given in Subsection 5.19.

Lemma 3. If the bad events in Bad do not occur, then we have |IS| ≤ p and |FS| ≤ p1f .

5.6 Upper-Bound of CMT-4-Advantage
For each event E ∈ Bad, let E∗ be an event that E occurs before the other events in
Bad∪{Coll} occur. For each E ∈ bad, the bound of Pr[E] is given in the following sections.
Using the bounds (given in Eqs. (10)-(20)), we have

Pr[Win ∧ ¬Coll] ≤
∑

E∈Bad

Pr[E∗] ≤ 11p2

2c
+ 5p2

2n−ν
+ 0.5p2

2t+z
+ 0.5p2

2n+t−k−ν
. (9)

5.7 Upper-Bound of Pr[MITM∗
1]

For each (X ′, Y ′) ∈ T Fwd
R1
∪ T Fwd

R2
, (X∗, Y ∗) ∈ T Inv

R1
∪ T Inv

R2
, by the randomnesses of Y ′ and

X∗, the probability that the condition in Eq. (2) is satisfied is at most 5
2c , giving the

following bound.
Pr[MITM∗

1] ≤ 5pfpi
2c

. (10)

5.8 Upper-Bound of Pr[MITM∗
2]

The event MITM2 implies that for some (X∗, Y ∗) ∈ T Inv
R1

and S ∈ IS such that ℓS ≥ 2, S
and X∗ probabilistically connect, yielding a full sequence.

Consider (X∗, Y ∗) ∈ T Inv
R1

and S ∈ IS such that ℓS ≥ 2. Let S[ℓS] := (X ′, Y ′).
By Lemma 3, we have (X ′, Y ′) ∈ T Fwd

R2
. By the randomnesses of Y ′ and X∗, we have

Pr[lsbc(Y ′ ⊕X∗) ∈ {ExtK(S)∥0c−k, ExtK(S)∥0c−k ⊕ 1c}] ≤ 2
2c .

By |T Inv
R1
| = p1i and |IS| ≤ p (from Lemma 3), we have

Pr[MITM∗
2] ≤ 2pp1i

2c
. (11)

440 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

5.9 Upper-Bound of Pr[Connect∗
f1]

For each (X ′, Y ′), (X∗, Y ∗) ∈ T Fwd
R1
∪ T Fwd

R2
such that (X ′, Y ′) ≻ (X∗, Y ∗), by the random-

ness of Y ′, the probability that the condition in Eq. (3) is satisfied is at most 5
2c . As

|T Fwd
R1
∪ T Fwd

R2
| = pf , we have

Pr[Connect∗
f1] ≤

∑
i∈[pf]

5i

2c
≤ 5p2

f
2c

. (12)

5.10 Upper-Bound of Pr[Connect∗
f2]

The event Connectf2 implies that for some (X∗, Y ∗) ∈ T Fwd
R1

and S ∈ IS such that ℓS ≥ 2,
S and Y ∗ probabilistically connect, yielding a full sequence.

Consider (X∗, Y ∗) ∈ T Fwd
R1

and S ∈ IS such that S ≥ 2 and S[ℓS] ≻ (X∗, Y ∗). Let
S[ℓS] := (X ′, Y ′). By Lemma 3, we have (X ′, Y ′) ∈ T Fwd

R2
. By the randomness of Y ′, we

have Pr[lsbc(Y ′ ⊕X∗) ∈ {ExtK(S)∥0c−k, ExtK(S)∥0c−k ⊕ 1c}] ≤ 2
2c .

By |T Fwd
R1
| = p1f and |IS| ≤ p (from Lemma 3), we have

Pr[Connect∗
f2] ≤ 2pp1f

2c
. (13)

5.11 Upper-Bound of Pr[Connect∗
i1]

For each (X ′, Y ′) ∈ T Inv
R1

and (X∗, Y ∗) ∈ T Inv
R1
∪T Inv

R2
, we have Pr[ExtIV(X ′) = IV] ≤ 1

2n−k−ν ,
and if (X ′, Y ′) ≻ (X∗, Y ∗) (resp. (X ′, Y ′) ≺ (X∗, Y ∗)), then the probability that the
condition in Eq. (4) is satisfied is at most 3

2k (resp. 3
2c). These bounds give

Pr[Connect∗
i1] ≤ p1i · pi ·

1
2n−k−ν

· 3
2k

= 3p1ipi
2n−ν

. (14)

5.12 Upper-Bound of Pr[Connect∗
i2]

For each (X ′, Y ′) ∈ T Inv
R1

and (X∗, Y ∗) ∈ T Fwd
R1
∪ T Fwd

R2
such that (X ′, Y ′) ≻ (X∗, Y ∗), we

have Pr[ExtIV(X ′) = IV] ≤ 1
2n−k−ν and the probability that the condition in Eq (5) is

satisfied is at most 3
2k . These bounds give

Pr[Connect∗
i2] ≤ p1i · pf ·

1
2n−k−ν

· 3
2k

= 3p1ipf
2n−ν

. (15)

5.13 Upper-Bound of Pr[Coll∗1]
For each (X ′, Y ′), (X∗, Y ∗) ∈ T Fwd

R1
∪ T Fwd

R2
, the probability that the condition in Eq (6) is

satisfied is at most 7
2c . The bound gives the following one.

Pr[Coll∗1] ≤
(

pf
2

)
· 7

2c
≤ 3.5p2

f
2c

. (16)

5.14 Upper-Bound of Pr[Coll∗2]
For each (X ′, Y ′) ∈ T Inv

R1
and (X∗, Y ∗) ∈ T Fwd

R1
∪ T Fwd

R2
, we have Pr[ExtIV(X ′) = IV] ≤

1
2n−k−ν and the probability that the condition in Eq. (7) is satisfied is at most 5

2k . These
bounds give

Pr[Coll∗2] ≤ p1i · pf ·
1

2n−k−ν
· 5

2k
= 5p1ipf

2n−ν
. (17)

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 441

5.15 Upper-Bound of Pr[Coll∗3]

For each (X ′, Y ′), (X∗, Y ∗) ∈ T Inv
R1

, we have Pr[ExtIV(X ′) = ExtIV(X∗) = IV] ≤
(1

2n−k−ν

)2

and the probability that the condition in Eq (8) is satisfied is at most 5
2k . Using these

bounds, we have

Pr[Coll∗3] ≤
(

p1i
2

)
·
(

1
2n−k−ν

)2
· 5

2k
≤ 2.5p2

1i
2n−ν

. (18)

5.16 Upper-Bound of Pr[Coll∗4]
Fix two distinct internal sequences S′, S∗ ∈ IS such that ℓS′ = ℓS∗ ≥ 2. Let S′[ℓS′] :=
(X ′, Y ′) and S∗[ℓS∗] := (X∗, Y ∗). Lemma 2 ensures that S′[ℓS′], S∗[ℓS∗] ∈ T Fwd

R2
. The

events Coll1, Coll2, and Coll3 ensure that X ′ and X∗ are distinct. Thus, Y ′ and Y ∗ are
independently chosen, and we have Pr[Fis(S′) = Fis(S∗)] ≤ 1

2c . By using Lemma 3 and
the bound, we have

Pr[Coll∗4] ≤
(

p

2

)
· 1

2c
≤ 0.5p2

2c
. (19)

5.17 Upper-Bound of Pr[Win]
The event Win implies ∃S′, S∗ ∈ FS s.t. Ffs(S′) = Ffs(S∗). In this evaluation, we consider
the following events where Win = Win1 ∨Win2.

• Win1: ∃S′, S∗ ∈ FS s.t. S′[1], S∗[1] ∈ T Fwd
R1
∧ Ffs(S′) = Ffs(S∗).

• Win2: ∃S′, S∗ ∈ FS s.t. S′[1] ∈ T Inv
R1
∧ Ffs(S′) = Ffs(S∗).

We first evaluate Pr[Win1]. By Coll1, Coll4, and Lemma 2, for each pair of distinct
full sequences S′, S∗ ∈ FS, we have Pr[Ffs(S′) = Ffs(S′)] ≤ 1

2t+z . By Lemma 3, we have
Pr[Win1] ≤

(
pf
2
)
· 1

2t+z ≤ 0.5p2
f

2t+z .
We next evaluate Pr[Win2]. For each (X, Y) ∈ T Inv

R1
, we have Pr[ExtIV(X)] ≤ 1

2n−k−ν .
For each S′, S∗ ∈ FS such that ℓS′ = ℓS∗ , by Coll2, Coll3, and Coll4, we have Pr[F T

fs (S′) =
F T

fs (S∗)] ≤ 1
2t . By Lemma 3, we have Pr[Win2] ≤

(
pf
2
)
· 1

2n−k−ν · 1
2t ≤ 0.5p2

f
2n+t−k−ν .

These bounds give

Pr[Win] ≤ 0.5p2
f

2t+z
+ 0.5p2

f
2n+t−k−ν

. (20)

5.18 Proof of Lemma 2
Assume that the bad events in Bad do not occur.

We consider the first condition of the lemma. For each S ∈ IS,

• if S[1] ∈ T Fwd
R1

, then by MITM1, ∀i ∈ [2, ℓS] : S[i] ∈ T Fwd
R2

is satisfied;

• if S[1] ∈ T Inv
R1

, then by Connecti1, S[2] ∈ T Fwd
R2

is satisfied, and by MITM1, ∀i ∈ [3, ℓS] :
S[i] ∈ T Fwd

R2
is satisfied.

By Connectf1 and Connecti2, ∀i ∈ [2, ℓS] : BS [i − 1] ≺ BS [i] is satisfied. Hence, the first
condition of the lemma holds.

We next consider the second condition of the lemma. For each S ∈ FS, by the
above analysis, ∀i ∈ [2, ℓS − 1] : (S[i− 1] ≺ S[i]) ∧ (S[i] ∈ T Fwd

R2
) is satisfied. By MITM2,

S[ℓS] ∈ T Fwd
R1

is satisfied, and by Connectf2, S[ℓS − 1] ≺ S[ℓS] is satisfied. Hence, the
second condition of the lemma holds.

442 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

5.19 Proof of Lemma 3
Assume that the bad events in Bad do not occur.

For each internal sequence S ∈ IS, by Lemma 2, S[ℓS] ∈ T Fwd
R2

(resp. S[ℓS] ∈
T Fwd

R1
∪ T Inv

R1
) is satisfied if ℓS ≥ 2 (resp. ℓS = 1). The collision events Coll1, Coll2, and

Coll3 ensure that for each (X, Y) ∈ T Fwd
R2

, the number of internal sequences whose last pair
is (X, Y) is at most 1. Hence, we have |IS| ≤ p1 + p2f ≤ p.

For each full sequence S ∈ FS, by Lemma 2, S[ℓS] ∈ T Fwd
R1

is satisfied. For each
(X, Y) ∈ T Fwd

R1
, by Coll4, the number of internal sequences S ∈ IS such that Fis(S) =

lsbc(X) is at most 1. Hence, we have |FS| ≤ p1f .

6 Ascon with Other Zero Paddings
In the security bound (Theorem 1) and the proof in Sections 4 and 5, we considered
Ascon-zp with the particular padding scheme that pads M into M∥0z. Here, we discuss
the other padding schemes, including 0z∥M instead of M∥0z. Let π : {0, 1}∗ → {0, 1}∗

be a length-preserving bijective function, i.e., ∀X ∈ {0, 1}∗ : |π(X)| = |X| and ∀X, X ′ ∈
{0, 1}∗ s.t. X ≠ X ′: π(X) ̸= π(X ′). The function π defines the positions of the
padded zeroes. Then, Ascon with the zero padding is defined as Ascon-zp∗(M) :=
Ascon[P1, P2].Enc(K, N, A, π(M∥0z)). The proof of Ascon-zp∗ is the same as that of
Ascon-zp. In the proof, the evaluation of the event Win1 appears in Section 5.17, depends
on the length of 0z, and considers the collision Ffs(S′) = Ffs(S∗) for full sequences
S′, S∗ ∈ FS s.t. S′[1], S∗[1] ∈ T Fwd

R1
. Regarding Ascon-zp∗, even with π, the collision

Ffs(S′) = Ffs(S∗) depends on the length z, and thus the proof with π offers the same
bound as Theorem 1. Hence, we have the following theorem for the CMT-4 security of
Ascon-zp∗.

Theorem 2. Let P1 and P2 be independent RPs. For any length-preserving bijective
function π and CMT-4 adversary making p queries to P1, P −1

1 , P2, or P −1
2 , we have

Advcmt-4
Ascon-zp∗(A) ≤

(
11p2

2c
+ 5p2

2n−ν
+ 0.5p2

2t+z
+ 0.5p2

2n+t−k−ν

)
·
(

1− 0.5p2

2n

)−1

.

7 Conclusion
We proposed the new attacks and proof regarding the context-committing, i.e., CMT-3 or
equivalently CMT-4, security of Ascon. The CMT-4 attacker’s capability of knowing
and controlling the secret key enabled new differential trails between a nonce and an AD
block that was unavailable in the conventional attack scenarios. With Ascon-128, the new
attack improved the number of rounds from 2 to 3 and practically generated a collision
pair. Although the number of rounds stayed the same with Ascon-128a, the new attack
significantly improved the complexity, achieving practical generation. Although the new
attack succeeds one more round than hash collisions, it is limited to 3 out of 12 rounds,
and there is a significant margin until the full rounds.

Then, we gave the CMT-4 bounds of Ascon with zero padding. Migration to Ascon
can solve the problems regarding committing security. Despite the keyed initialization
and finalization functions [DEMS21], Ascon still enjoys collision resistance from the
sponge construction and achieves improved committing security compared with the con-
ventional BC-based schemes, e.g., GCM and GCM-SIV. Although the original Ascon’s
committing security is t/2 limited by the generic tag-birthday attack, we can improve it
by padding zeroes to the original message. More concretely, Ascon with zero padding
achieves min

{
t+z

2 , n−ν
2 , c

2 , n+t−k−ν
2

}
-bit CMT-4-security. This bound corresponds to

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 443

min
{

64 + z
2 , 96

}
bits with Ascon-128 and Ascon-128a and min

{
64 + z

2 , 80
}

bits with
Ascon-80pq. The bound is tight with Ascon-128. Meanwhile, tightness with Ascon-
128a/Ascon-80pq is unclear and open for future research.

Acknowledgments
We thank the anonymous reviewers and the shepherd for their valuable comments.

References
[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and

Sophie Schmieg. How to abuse and fix authenticated encryption without key
commitment. In USENIX Security 2022, pages 3291–3308, 2022.

[BCG+23] Mihir Bellare, John Chan, Paul Grubbs, Viet Tung Hoang, Sanketh Menda,
Julia Len, Thomas Ristenpart, and Phillip Rogaway. Ask your cryptographer if
context-committing AEAD is right for you. In Real World Crypto Symposium
(RWC) 2023, 2023.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In EUROCRYPT 2008, volume
4965 of LNCS, pages 181–197, 2008.

[BDPV11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In SAC 2011, volume 7118 of LNCS, pages 320–337, 2011.

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing authen-
ticated encryption. In EUROCRYPT 2022, volume 13276 of LNCS, pages
845–875, 2022.

[Boz23] Andrey Bozhko. Properties of AEAD algorithms.
https://www.ietf.org/archive/id/draft-bozhko-cfrg-aead-properties-02.txt,
2023.

[CMM98] Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Moré. The NEOS server.
IEEE Journal on Computational Science and Engineering, 5(3):68–75, 1998.

[CR22] John Chan and Phillip Rogaway. On committing authenticated-encryption.
In ESORICS 2022, volume 13555 of LNCS, pages 275–294, 2022.

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Cryptanalysis of Ascon. In CT-RSA 2015, pages 371–387, 2015.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast
message franking: From invisible salamanders to encryptment. In CRYPTO
2018, volume 10991 of LNCS, pages 155–186, 2018.

[Dol01] Elizabeth D. Dolan. The NEOS server 4.0 administrative guide. Techni-
cal Memorandum ANL/MCS-TM-250, Mathematics and Computer Science
Division, Argonne National Laboratory, 2001.

444 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

[Dwo07] Morris Dworkin. NIST Special Publication 800-38C: Recommendation for block
cipher modes of operation: the CCM mode for authentication and confidential-
ity. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38c.pdf, 2007.

[FOR17] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric
primitives under incorrect usage of keys. IACR Trans. Symmetric Cryptol.,
2017(1):449–473, 2017.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via
committing authenticated encryption. In CRYPTO 2017, volume 10403 of
LNCS, pages 66–97, 2017.

[GPT21] David Gérault, Thomas Peyrin, and Quan Quan Tan. Exploring differential-
based distinguishers and forgeries for ASCON. IACR Trans. Symmetric
Cryptol., 2021(3):102–136, 2021.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust Authenticated-
Encryption AEZ and the Problem That It Solves. In EUROCRYPT 2015,
volume 9056 of LNCS, pages 15–44. Springer, 2015.

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on
round-reduced ASCON. IACR Trans. Symmetric Cryptol., 2017(1):175–202,
2017.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle attacks.
In USENIX Security 2021, pages 195–212, 2021.

[LIM20] Fukang Liu, Takanori Isobe, and Willi Meier. Automatic verification of
differential characteristics: Application to reduced Gimli. In CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 219–248, 2020.

[LS15] Jooyoung Lee and Martijn Stam. MJH: a faster alternative to MDC-2. Des.
Codes Cryptogr., 76(2):179–205, 2015.

[MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context
discovery and commitment attacks - how to break CCM, EAX, SIV, and more.
In EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages 379–407, 2023.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Inscrypt 2011,
volume 7537 of LNCS, pages 57–76, 2011.

[NIS23a] NIST. Lightweight cryptography standardization process: NIST selects As-
con. https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-
ascon, 2023. Accessed: 2023-08-31.

[NIS23b] NIST. The third NIST workshop on block cipher modes of operation
2023. https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-
modes-of-operation, 2023. Accessed: 2023-08-31.

[NL18] Yoav Nir and Adam Langley. Chacha20 and poly1305 for IETF protocols.
RFC, 8439:1–46, 2018.

[RHSS21] Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. Misuse-free
key-recovery and distinguishing attacks on 7-round Ascon. IACR Trans.
Symmetric Cryptol., 2021(1):130–155, 2021.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 445

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 158–178, 2014.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects - revealing structural properties of several
ciphers. In EUROCRYPT 2017, volume 10212 of LNCS, pages 185–215, 2017.

[Tez20] Cihangir Tezcan. Analysis of Ascon, DryGASCON, and Shamash permutations.
IACR Cryptol. ePrint Arch., page 1458, 2020.

[YLW+23] Xiaorui Yu, Fukang Liu, Gaoli Wang, Siwei Sun, and Willi Meier. A
closer look at the S-box: Deeper analysis of round-reduced ASCON-
HASH. In SAC 2023, 2023. https://sac-workshop.github.io/sac-2023/
preproceedings/15XiaoruiYu.pdf.

[ZDW19] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Collision attacks on round-
reduced Gimli-Hash/Ascon-Xof/Ascon-Hash. Cryptology ePrint Archive,
Paper 2019/1115, 2019. https://eprint.iacr.org/2019/1115.

[ZZDX19] Chunning Zhou, Wentao Zhang, Tianyou Ding, and Zejun Xiang. Improv-
ing the MILP-based security evaluation algorithm against differential/linear
cryptanalysis using a divide-and-conquer approach. IACR Trans. Symmetric
Cryptol., 2019(4):438–469, 2019.

https://sac-workshop.github.io/sac-2023/preproceedings/15XiaoruiYu.pdf
https://sac-workshop.github.io/sac-2023/preproceedings/15XiaoruiYu.pdf
https://eprint.iacr.org/2019/1115

446 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

A Linear Inequalities To Model DDT and DDT0

The below is a set of linear inequalities to model DDT of Ascon’s S-box without considering
the probability of each differential transition. Here we suppose that the S-box input is
X0∥X64∥X128∥X192∥X256 and the S-box output is Y0∥Y64∥Y128∥Y192∥Y256.

−X64 − X128 + X192 + X256 − Y128 ≥ −2 −X0 − X192 − X256 − Y128 − Y192 ≥ −4

X0 − X64 − X128 − X192 + X256 − Y64 ≥ −3 −X0 − X64 − X128 − X192 + X256 + Y64 ≥ −3

X0 − X64 + X128 − X192 − X256 + Y192 ≥ −2 −X64 + X192 + Y0 − Y64 + Y128 − Y256 ≥ −2

X0 − X64 + X256 + Y128 − Y192 − Y256 ≥ −2 −X64 + X192 − Y0 − Y64 + Y128 + Y256 ≥ −2

X0 − X192 + X256 − Y128 − Y192 + Y256 ≥ −2 X128 + X192 − X256 − Y0 − Y64 − Y128 − Y256 ≥ −4

X128 + X192 − X256 + Y0 + Y64 − Y128 − Y256 ≥ −2 X128 + X192 − X256 + Y0 − Y64 − Y128 + Y256 ≥ −2

X128 + X192 − X256 − Y0 + Y64 − Y128 + Y256 ≥ −2 −X0 − X64 − X192 + X256 + Y64 + Y192 + Y256 ≥ −2

X64 + X128 + X192 + X256 − Y128 ≥ 0 X64 − X128 + X192 + X256 + Y128 ≥ 0

−X64 + X128 + X192 + X256 + Y128 ≥ 0 X0 + X192 + X256 + Y128 − Y192 ≥ 0

X0 + X192 + X256 − Y128 + Y192 ≥ 0 −X0 − X192 − X256 + Y128 + Y192 ≥ −2

−X0 + X64 − X192 − X256 − Y256 ≥ −3 X64 + X192 + X256 − Y0 − Y256 ≥ −1

X0 + X64 − X192 + X256 + Y256 ≥ 0 X64 + X192 − X256 + Y0 + Y256 ≥ 0

X0 + X64 − X128 − X192 − X256 − Y0 ≥ −3 −X0 + X64 − X128 − X192 + X256 + Y0 ≥ −2

−X0 − X64 − X128 − X192 − X256 − Y64 ≥ −5 X0 − X64 − X128 − X192 − X256 − Y192 ≥ −4

X0 + X64 + X128 − X192 − X256 − Y192 ≥ −2 X0 + X64 − X128 − X192 − X256 + Y192 ≥ −2

X0 − X128 − X192 − X256 + Y64 + Y192 ≥ −2 X0 + X64 + X128 − X256 − Y0 − Y256 ≥ −2

−X0 + X64 + X128 + X256 − Y0 − Y256 ≥ −2 X0 + X64 − X128 + X192 + Y0 − Y256 ≥ −1

−X0 + X64 + X128 − X256 + Y0 − Y256 ≥ −2 X0 + X64 + X128 + X256 + Y0 − Y256 ≥ 0

−X128 + X192 − Y0 + Y64 − Y128 − Y256 ≥ −3 X64 + X192 − Y0 − Y64 + Y128 − Y256 ≥ −2

−X64 + X192 − Y0 + Y64 + Y128 − Y256 ≥ −2 X64 + X192 + Y0 + Y64 + Y128 − Y256 ≥ 0

−X0 − X64 − X256 − Y128 − Y192 − Y256 ≥ −5 X0 − X64 + X256 − Y128 + Y192 − Y256 ≥ −2

−X0 − X64 − X256 + Y128 + Y192 − Y256 ≥ −3 −X0 + X64 − X128 + X192 − Y0 + Y256 ≥ −2

−X0 + X64 + X128 − X256 − Y0 + Y256 ≥ −2 −X0 + X64 + X128 + X256 + Y0 + Y256 ≥ 0

−X64 − X128 + X192 + Y0 + Y64 + Y256 ≥ −1 X0 + X64 + X256 − Y64 + Y128 + Y256 ≥ 0

X64 + X192 − Y0 + Y64 + Y128 + Y256 ≥ 0 X192 − X256 + Y0 + Y64 + Y128 + Y256 ≥ 0

−X0 + X192 − X256 + Y128 − Y192 + Y256 ≥ −2 X0 + X64 − X192 + Y0 + Y192 + Y256 ≥ 0

−X0 + X192 − X256 − Y128 + Y192 + Y256 ≥ −2 X0 − X192 + X256 + Y128 + Y192 + Y256 ≥ 0

−X128 + X192 − X256 + Y0 − Y64 − Y128 − Y256 ≥ −4

−X0 − X64 − X192 + X256 + Y64 − Y192 − Y256 ≥ −4

−X128 + X192 − X256 − Y0 − Y64 − Y128 + Y256 ≥ −4

−X0 − X64 + X128 − X192 + X256 − Y64 + Y192 − Y256 ≥ −4

−X0 − X64 + X128 − X192 + X256 − Y64 − Y192 + Y256 ≥ −4

The below is a set of linear inequalities to model the sparse DDTb with b = 0 for the
first round, which shows that the number of required linear inequalities is much smaller
than that of DDT.

−X0 ≥ 0 −X192 ≥ 0
−X256 ≥ 0 Y128 − Y192 ≥ 0

X64 − Y256 ≥ 0 −X64 − X128 − Y128 ≥ −2
X64 + X128 − Y128 ≥ 0 −X64 + X128 + Y192 ≥ 0

X64 − Y0 + Y192 ≥ 0 X64 − Y64 + Y192 ≥ 0
Y0 − Y64 + Y192 − Y256 ≥ −1 −Y0 + Y64 + Y192 − Y256 ≥ −1

−Y0 − Y64 + Y192 + Y256 ≥ −1 −X128 + Y0 + Y64 + Y192 + Y256 ≥ 0

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 447

B Sparse DDT for the First Round in Our Setting

Table 5: Standard DDT (top) and Sparse DDT0 for the First Round (bottom).

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 32 ·
1 · · · · · · · · · 4 · 4 · 4 · 4 · · · · · · · · 4 · 4 · 4 · 4 ·
2 · · · · · · · · · · · · · · · · · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4
3 · 4 · · · 4 · · · 4 · · · 4 · · 4 · · · 4 · · · 4 · · · 4 · · ·
4 · · · · · · 8 · · · · · · · 8 · · · · · · · 8 · · · · · · · 8 ·
5 · · · · · · · · · · · · · · · · · 4 · 4 4 · 4 · 4 · 4 · · 4 · 4
6 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
7 · · 4 4 · · 4 4 · · 4 4 · · 4 4 · · · · · · · · · · · · · · · ·
8 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4
9 · 2 · 2 2 · 2 · 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 · 2 · 2 2 · 2 ·
a · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2
b · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2
c · 8 · · · · · · 8 · · · · · · · 8 · · · · · · · · 8 · · · · · ·
d · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · · 2 · 2 · 2 · 2
e · 4 4 · 4 · · 4 · · · · · · · · · 4 4 · 4 · · 4 · · · · · · · ·
f · · · · · · · · 4 4 · · 4 4 · · · · · · · · · · 4 4 · · 4 4 · ·

10 · · · · · · · · · 8 · 8 · · · · · · · · · · · · 8 · 8 · · · · ·
11 · · · · · · · · · · · · · · · · · 8 · 8 · 8 · 8 · · · · · · · ·
12 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·
13 · · 8 · 8 · · · · · 8 · 8 · · · · · · · · · · · · · · · · · · ·
14 · · · · 4 4 4 4 · · · · 4 4 4 4 · · · · · · · · · · · · · · · ·
15 · · · · · 4 · 4 · 4 · 4 · · · · · 4 · 4 · · · · · · · · · 4 · 4
16 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · ·
18 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2
19 · · · 4 · · 4 · 4 · · · · 4 · · 4 · · · · 4 · · · · · 4 · · 4 ·
1a · 2 2 · · 2 2 · 2 · · 2 2 · · 2 · 2 2 · · 2 2 · 2 · · 2 2 · · 2
1b · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · ·
1c · 4 · 4 · · · · 4 · 4 · · · · · 4 · 4 · · · · · · 4 · 4 · · · ·
1d · · · 4 · 4 · · 4 · · · · · 4 · 4 · · · · · 4 · · · · 4 · 4 · ·
1e · · · · · · · · 2 2 2 2 2 2 2 2 · · · · · · · · 2 2 2 2 2 2 2 2
1f · · 4 4 4 4 · · · · · · · · · · · · 4 4 4 4 · · · · · · · · · ·

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 16 ·
1 · · · · · · · · · · · 4 · · · 4 · · · · · · · · · · 4 · · · 4 ·
2 · · · · · · · · · · · · · · · · · · · 4 · · · 4 · · · 4 · · · 4
3 · 2 · · · 2 · · · 2 · · · 2 · · 2 · · · 2 · · · 2 · · · 2 · · ·
4 ·
5 ·
6 ·
7 ·
8 ·
9 ·
a ·
b ·
c ·
d ·
e ·
f ·

10 ·
11 ·
12 ·
13 ·
14 ·
15 ·
16 ·
17 ·
18 ·
19 ·
1a ·
1b ·
1c ·
1d ·
1e ·
1f ·

448 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

C Visual Representation of 3-Round Trail of Ascon-128a

X0 - X63 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

X64 - X127 1 1 1 1

X128 - X191 1 1 1 1

X192 - X255 x x x x

X256 - X319 x x x x

Y0 - Y63
Y64 - Y127

Y128 - Y191
Y192 - Y255
Y256 - Y319

X320 - X383 1 1 1 1 1 1 1 1 1 1 1 1

X384 - X447 0 0 0 0 1 1 0 0 1 1 0 0

X448 - X511
X512 - X575 1 1 1 1 1 1 1 1 1 1 1 1

X576 - X639

Y320 - Y383
Y384 - Y447
Y448 - Y511
Y512 - Y575
Y576 - Y639

X640 - X703 0 0 0 0 x x 0 x x 0 0 x x 0

X704 - X767 x x 0 0 x x 0 x x 0 x x 0 0

X768 - X831
X832 - X895 0 0 x x 0 0 x 0 0 0 0 0 0 x 0 0 0 0 x x

X896 - X959 y y y y y y y x x y x x y y y x x y y y

Y640 - Y703
Y704 - Y767
Y768 - Y831
Y832 - Y895
Y896 - Y959

Linear layer

IV

Substitution Layer

Linear layer

Substitution Layer

Linear layer

Substitution Layer

Figure 9: Visual Representation of 3-Round Differential Trail of Ascon-128a and Con-
ditions to Satisfy the Trail. 5 × 64 cells represent the 320-bit state before and after
the substitution layer pS and the linear layer pL. The constant addition pC is omitted.
Xi, Yi, 0 ≤ i ≤ 959 in the left of each state is the variables in MILP. White and black
cells represent inactive and active bits, respectively. The red and blue cells in the state
after pS in the third round denote that either one of them can be active because the input
differences 09 and 19 to the S-box can propagate to both 10 and 08. Light red and light
blue cells at the output represent that positions of active bits depend on the red and
blue cells and thus are not fixed in advance. ‘1’ and ‘0’ in white cells represent the value
conditions to be satisfied (by the first value in a pair) to satisfy the proposed differential
trail. Two ‘x’s in a column mean that those values must be identical, while one ‘x’ and
one ‘y’ in a column mean that those values must be different.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 449

D Visual Representation of 3-Round Trail of Ascon-128

X0 - X63 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0

X64 - X127 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

X128 - X191 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1

X192 - X255 x x x x x x 1 x x x x x x x x x x x x

X256 - X319 x x x x x x x x x x x x x x x x x x

Y0 - Y63
Y64 - Y127

Y128 - Y191
Y192 - Y255
Y256 - Y319

X320 - X383 0 0 0 0 0 0 1 0 0 0 0

X384 - X447 x x x x x x 0 x x x x

X448 - X511 1 1 1 1 0 1 1 1 0 1

X512 - X575 0 0 0 0 0 0 1 0 0 0 0

X576 - X639 y y y y x y y y x y

Y320 - Y383
Y384 - Y447
Y448 - Y511
Y512 - Y575
Y576 - Y639

X640 - X703 0 0 0 0 0 0 0 0 0

X704 - X767 x x x x x x x x x

X768 - X831 0 0 0 0 0 0 0 0 0

X832 - X895 0 0 0 0 0 0 0 0 0

X896 - X959 y y y y y y y y y

Y640 - Y703
Y704 - Y767
Y768 - Y831
Y832 - Y895
Y896 - Y959

Linear layer

Substitution Layer

Linear layer

IV

Substitution Layer

Linear layer

Substitution Layer

Figure 10: Visual Representation of 3-Round Differential Trail of Ascon-128 and Condi-
tions to Satisfy the Trail. The notations are the same as in Fig. 9. Two ‘0’s in red at the
beginning of the second round are the bits we carefully need to avoid the inconsistency by
finding two bits of ‘1’ in IVk,r,a,b with 12-bit distance.

E Generated Colliding Paired Values

450 Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

Table 6: An Example of Paired Values for 3-Round Ascon-128a.

Value 1 Value 2 Difference
IVk,r,a,b 80800c0800000000 80800c0800000000 0000000000000000
KMSB 841b4401c00a0201 841b4401c00a0201 0000000000000000
KLSB a008c500e0100ef1 a008c500e0100ef1 0000000000000000
NMSB e300430220100a87 63084302a0100887 8008000080000200
NLSB a1b30009444a03c2 21bb0009c44a01c2 8008000080000200

c7583e97e949b62e c7583e97e949b62e 0000000000000000
722473090e5c2470 722473090e5c2470 0000000000000000

After 1R c99dbc778816b42a c99dbc778816b42a 0000000000000000
b57b9569a1d43764 b57b9569a1d43764 0000000000000000
cac4580951f1e0d7 4b8c4808d0b1e6d3 8148100181400604

02111ba211a96086 06914ba313e8449e 0480500102412418
a151236a21002862 295b336ba3428e62 880a10018242a600

After 2R d5984d23b9f8aa83 d5984d23b9f8aa83 0000000000000000
36d50326453c114e 36d50326453c114e 0000000000000000
5b7fd322ec0bfbb2 d375c3236e495db2 880a10018242a600

bcf33658674754ea d0407649e72054ea 6cb3401180670000
41bc2ce51cf2671b e072ffedbff6c167 a1ced308a304a67c

After 3R 501a106b73bace9f 501a106b73bace9f 0000000000000000
(Output) 9c52e4fb0078a9b4 9c52e4fb0078a9b4 0000000000000000

07741f6d2b0378d2 07741f6d2b0378d2 0000000000000000

Table 7: An Example of Paired Values for 3-Round Ascon-128.

Value 1 Value 2 Difference
IVk,r,a,b 80400c0600000000 80400c0600000000 0000000000000000
KMSB 2164995204d2b154 2164995204d2b154 0000000000000000
KLSB 21408952161a8984 21408952161a8984 0000000000000000
NMSB 8040043400204008 a1009d660470d14c 2140995204509144
NLSB 0470021110020000 25309f4314529144 21409d5204509144

51e48a98919f2c82 51e48a98919f2c82 0000000000000000
efbdf90bc9751bbb efbdcd2bcb358b93 0000342002409028

After 1R 79f1b4b6785bf32f 79f1b4b6785bf32f 0000000000000000
b261490a843943c3 b261490a843943c3 0000000000000000
aeb407337089aef5 aeb4331372c13edd 0000342002489028

9d6061940da22156 9d6061940da22156 0000000000000000
08d70052ebfab2bb 48d60452f9f6a29b 40010400120c1020

After 2R ae20f09b6d80208f ae20f09b6d80208f 0000000000000000
39aa88b8440203ca 39aa88b8440203ca 0000000000000000
7cbea6bfd0266b48 3cbfa2bfc22a7b68 40010400120c1020

a50d1f38a255a0d4 47c9113c90c9f2b4 e2c40e04329c5260
67cc3c30332574dc 67cc3c30332574dc 0000000000000000

After 3R f7e64d0ddad70381 f7e64d0ddad70381 0000000000000000
(Output) ca05427803f501e0 ca05427803f501e0 0000000000000000

20542b670894ef04 20542b670894ef04 0000000000000000

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 451

F Specification of Ascon Mode
We define notations. Let ε be an empty string For integers i ≤ j and X ∈ {0, 1}i, let
zpj(X) := X∥0j−i. For an integer l ≥ 0 and a bit string X, (X1, . . . , Xℓ)

l←− X means
parsing of X into fixed-length l-bit strings, where if X ̸= ε then X = X1∥ · · · ∥Xℓ, |Xi| = l
for i ∈ [ℓ− 1], and 0 < |Xℓ| ≤ l; if X = ε then ℓ = 1 and X1 = ε.

The specification of Ascon is given in Algorithm 2.

Algorithm 2 Ascon
Encryption Ascon[P1, P2].Enc(K, N, A, M)

1: S ← Ascon[P1, P2].ADProcess(K, N, A)
2: (M1, . . . , Mm) r←−M∥1
3: for i ∈ [m] do
4: S ← S ⊕ zpn(Mi); Ci ← msb|Mi|(S); if i ̸= m then S ← P2(S) end if
5: end for
6: C ← msb|M |(C1∥ . . . ∥Cm)
7: S ← P1(S ⊕ 0r∥K∥0c−k); T ← lsbk(S)⊕K; return (C, T)

Decryption Ascon[P1, P2].Dec(K, N, A, C, T ′)
1: S ← Ascon[P1, P2].ADProcess(K, N, A)
2: (C1, . . . , Cm) r←− C∥1
3: for i ∈ [m− 1] do
4: Mi ← Ci ⊕msb|Ci|(S); S ← P2(Ci∥lsbc(S))
5: end for
6: Mm ← msb|Cm|−1(Cm)⊕msb|Cm|−1(S); S ← S ⊕ zpn(Mm∥1)
7: M ←M1∥ . . . ∥Mm; S ← P1(S ⊕ 0r∥K∥0c−k); T ← lsbk(S)⊕K
8: if T = T ∗ then return M ; else return ⊥ end if

Processing AD Ascon[P1, P2].Hash(K, N, A)
1: S ← IV ∥K∥N ; S ← P1(S)⊕ (0n−k∥K);
2: if |A| > 0 then
3: (A1, . . . , Ad) r←− A∥1; for i ∈ [d] do S ← P2(S ⊕ zpr(Ai)) end for
4: end if
5: S ← S ⊕ 0n−11; return S

	Introduction
	State-of-the-Art and Challenges
	Contributions
	Organization

	Specification of Ascon
	Ascon Mode
	Ascon Permutations

	Reduced-Round Attacks to Break CMT-3 Security
	Framework
	Basics of Mixed Integer Linear Programming
	Sparse DDT for the First and Last Rounds
	Practical 3-Round CMT-3 Attack on Ascon-128a
	Practical 3-Round CMT-3 Attack on Ascon-128
	Remarks on Ascon-80pq

	Committing Security of Ascon Mode with Zero Padding
	Basic Notations
	Ascon with Zero Padding
	Definition of Committing Security
	CMT-4-Security Bound

	Proof of Theorem 1
	Replacing Random Permutations with Random Functions
	Sequences with Ascon's Structure
	Outline of Remaining Proof
	Bad Events
	Useful Lemmas for Sequences
	Upper-Bound of CMT-4-Advantage
	Upper-Bound of Pr[MITM1]
	Upper-Bound of Pr[MITM2]
	Upper-Bound of Pr[Connectf1]
	Upper-Bound of Pr[Connectf2]
	Upper-Bound of Pr[Connecti1]
	Upper-Bound of Pr[Connecti2]
	Upper-Bound of Pr[Coll1]
	Upper-Bound of Pr[Coll2]
	Upper-Bound of Pr[Coll3]
	Upper-Bound of Pr[Coll4]
	Upper-Bound of Pr[Win]
	Proof of Lemma 2
	Proof of Lemma 3

	Ascon with Other Zero Paddings
	Conclusion
	Linear Inequalities To Model DDT and DDT0
	Sparse DDT for the First Round in Our Setting
	Visual Representation of 3-Round Trail of Ascon-128a
	Visual Representation of 3-Round Trail of Ascon-128
	Generated Colliding Paired Values
	Specification of Ascon Mode

