
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 4, pp. 215–243. DOI:10.46586/tosc.v2023.i4.215-243

Related-Key Differential Analysis of the AES
Christina Boura1, Patrick Derbez2 and Margot Funk1

1 Université Paris-Saclay, Université de Versailles, Centre National de la Recherche Scientifique
(CNRS), Laboratoire de mathématiques de Versailles, 78000, Versailles, France

christina.boura@uvsq.fr, margot.funk@uvsq.fr
2 Univ Rennes, Inria, Centre National de la Recherche Scientifique (CNRS), Institut de

Recherche en Informatique et Systèmes Aléatoires (IRISA), Rennes, France
patrick.derbez@irisa.fr

Abstract. The Advanced Encryption Standard (AES) is considered to be the most
important and widely deployed symmetric primitive. While the cipher was designed
to be immune against differential and other classical attacks, this immunity does not
hold in the related-key setting, and various related-key attacks have appeared over
time. This work presents tools and algorithms to search for related-key distinguishers
and attacks of differential nature against the AES. First, we propose two entirely
different approaches to find optimal truncated differential characteristics and bounds
on the minimum number of active S-boxes for all variants of the AES. In the first
approach, we propose a simple MILP model that handles better linear inconsistencies
with respect to the AES system of equations and that compares particularly well to
previous tool-based approaches to solve this problem. The main advantage of this
tool is that it can easily be used as the core algorithm to search for any attack on AES
exploiting related-key differentials. Then, we design a fast and low-memory algorithm
based on dynamic programming that has a very simple to understand complexity
analysis and does not depend on any generic solver. This second algorithm provides
us useful insight on the related-key differential search problem for AES and shows
that the search space is not as big as one would expect. Finally, we build on the
top of our MILP model a fully automated tool to search for the best differential
MITM attacks against the AES. We apply our tool on AES-256 and find an attack on
13 rounds with only two related keys. This attack can be seen as the best known
cryptanalysis against this variant if only 2 related keys are permitted.
Keywords: AES · differential related-key security · dynamic programming · MILP
· differential MITM attack

1 Introduction
The block cipher Rijndael was designed by Joan Daemen and Vincent Rijmen in 1998. In
2000, a variant of Rijndael is selected by the National Institute of Standards and Tech-
nology (NIST) through the AES selection process and becomes the Advanced Encryption
Standard (AES) in the following year [FIP01]. Since then, the AES has been widely deployed
and is undeniably today the most popular and the most used symmetric primitive.

Since the very beginning, many different researchers and teams analyzed the security
of the AES and proposed various attacks against reduced-versions of it. Against all these
attacks, the three variants of the AES have proven to be extremely robust in the single-
key setting. Indeed, the best attacks against AES-128 manage to break at most 7 out

All authors were partially supported by the French Agence Nationale de la Recherche through the OREO
project under Contract ANR-22-CE39-0015.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-09-01 Accepted: 2023-11-01 Published: 2023-12-08

https://doi.org/10.46586/tosc.v2023.i4.215-243
mailto:christina.boura@uvsq.fr
mailto:margot.funk@uvsq.fr
mailto:patrick.derbez@irisa.fr
http://creativecommons.org/licenses/by/4.0/

216 Related-Key Differential Analysis of the AES

of the 10 rounds [DFJ13, BNS14, BNS19, LP21], while 9 (out of 12 and 14) rounds
are reached by attacks against AES-192 and AES-256, respectively [LJW14, BDK+18].
However, the two larger variants of the AES were shown to be much weaker in the
related-key setting and got fully broken in 2009 by Biryukov et al. with related-key
attacks [BK09, BKN09]. Other attacks on the full-round AES-192 or AES-256 were
presented later, notably boomerang attacks [GSW22, DEFN22] or attacks exploiting other
properties [GLMS20] but necessitating a huge number of related-keys.

Understanding the security of the AES in the related-key setting is crucial as these
attacks remain not well-understood and have not been generically analyzed. Among the
most important attacks to be taken into account in a security analysis are differential
attacks [BS90] and their variants. The AES was designed with resistance against differential
attacks in mind [DR01] and all its variants are known to be resistant to differential
cryptanalysis in the single-key setting. Analyzing the resistance of the AES against
differential-based attacks in the related-key setting is a much more challenging task. A
natural direction for this is to search for optimal differential characteristics and to establish
bounds on the minimum number of S-boxes a differential characteristic can activate.
This knowledge provides directly an upper bound on the probability of any differential
characteristic and is naturally related to the success of attacks of differential nature. In
this direction, Biryukov and Nikolic presented in [BN10] a branch-and-bound algorithm
highly inspired from the original algorithm of Matsui [Mat94], to search for related-key
differential characteristics for SPN ciphers. This permitted them to find optimal related-
key characteristics for the two smaller variants of the AES, but doing so was very time
consuming. Indeed, their algorithm needed several days of computation for AES-128 and
several weeks for AES-192. Then, in 2013, Fouque et al. presented an alternative approach
to solve this same problem [FJP13]. Their algorithm was based on dynamic programming
and designed for AES-128. It was a very elegant solution with an easy to understand
complexity but that consumed in return a high amount of memory (60 GB) and could not
be extended to the larger variants of the AES. Finally, Gérault et al. in [GLMS18, GLMS20]
and more recently Rouquette et al. in [RGMS22] developed a constraint-programming (CP)
approach to search for optimal differential characteristics for AES-192 and AES-256 (and
more generally for all variants of Rijndael) and managed to provide such characteristics
for any number of rounds together with bounds for the minimum number of active S-boxes.
This approach was fast and memory-efficient at the same time.

Our first contribution is a new MILP model for the optimal related-key differential
characteristics problem for all three variants of the AES. To elaborate this model, we
analyzed different strategies for eliminating invalid truncated characteristics without
adding too many constraints and propose the best trade-off we found. Our model uses less
variables and constraints than the CP approach of [RGMS22] and is faster for most of the
AES instances analyzed. It is also more efficient than the MILP model used to find the
boomerang characteristics in the work of Derbez et al. [DEFN22]. Its main advantage is
however that it can be easily used as the core algorithm in any MILP model searching for
related-key attacks of differential nature on AES. This is something we demonstrate in the
second part of this paper.

Next we show that it is possible to use a simple and easy to understand algorithm to
find differential bounds and characteristics for AES in the related-key setting, without the
need of any generic solver. Similarly to [FJP13], we propose an algorithm based on dynamic
programming, that uses a compact representation of the state to be memory-efficient. We
applied this algorithm to all three versions of the AES and reproduced the results of [FJP13]
and [RGMS22]. For AES-128 our method is much faster and requires much less memory
than the one of [FJP13] and for the other two variants our computing time is better than
in [RGMS22] for most of the instances. Furthermore, the algorithm we propose is simple
and its complexity can be very easily and accurately estimated. Our approach invalidates in

Christina Boura, Patrick Derbez and Margot Funk 217

particular the claim made in [RGMS22], where the authors write that dedicated approaches
do not scale well for the optimal related-key differential characteristic problem and need
weeks to solve its hardest instances. Moreover, it demonstrates that dynamic programming
can be memory-efficient if cleverly implemented. This has always been considered as a hard
problem, and it is the reason why the authors of [BN10] preferred the branch-and-bound
approach to the dynamic programming one.

Having algorithms or tools to find the best (truncated) differential characteristics in
the related-key setting for the AES is a first step for evaluating the resistance of this cipher
against related-key differential-like attacks. The second step is to perform cryptanalysis,
by applying well-known or new techniques. The most popular and efficient attacks against
the AES in the related-key setting are boomerang attacks [BK09, GSW22, BL23]. These
attacks can fully break both AES-192 and AES-256 but need at least 4, and sometimes
much more, related keys to work. Very recently, a new type of attack, called the differential
meet-in-the-middle cryptanalysis was proposed by Boura et al. [BDD+23]. This attack,
that can be seen as a hybrid between a differential and a meet-in-the-middle (MITM)
cryptanalysis, was applied against both SKINNY and AES-256 and produced a 12-round
attack against AES-256 in the related-key setting requiring only 2 related keys. As this
cryptanalysis technique is new and as it was demonstrated that it could be applied against
the AES, it is essential to evaluate in-depth its threat against this important standard.
Hence, our last contribution in this paper is the design of a new tool, based on the Mixed
Integer Linear Programming (MILP) approach to automatically search for differential
MITM attacks against all variants of the AES. The tool is complete in the sense that it
searches for the distinguisher (by integrating our MILP model for the characteristic search)
and the attack at the same time and outputs the configurations that optimize the total time
complexity. This tool permitted us to find an attack on 13 rounds of AES-256 that uses
only 2 related keys, improving thus the attack of [BDD+23] by one round and becoming the
best attack against AES-256 in this more practical scenario where only 2 related keys are
permitted. Moreover, we managed to scan automatically all differential MITM scenarios
on AES-128 and AES-192 and show that there does not exist any related-key attack of this
type against these two variants that performs better than other attacks. This permits to
consolidate the hypothesis of [BDD+23] that this kind of cryptanalysis performs better
when the key is much larger than the state.

The source codes of all our algorithms and models are available at:
https://github.com/pderbez/ToSC2023_3

The rest of the paper is organized as follows. Section 2 introduces some preliminary
notions on the optimal truncated differential characteristics search for the AES. Then,
Section 3 discusses known tool-based approaches for the optimal related-key characteristics
search on the AES and introduces our new MILP model for this search. Section 4 describes
our dynamic programming approach to solve this same problem. The running times of our
algorithms, their comparison and a discussion are provided in Section 5. Finally, Section 6
presents our automated tool for differential MITM cryptanalysis as well as the attack on
AES-256.

2 AES and Differential Analysis
In this section, we first provide the specifications of the AES and then discuss the difficulties
regarding its differential analysis.

2.1 Description of the AES Encryption Scheme
The AES is a block cipher that processes data blocks of 128 bits. There are three versions
of the AES, which differ in their key size (128, 192 or 256 bits) and their number of rounds

https://github.com/pderbez/ToSC2023_3

218 Related-Key Differential Analysis of the AES

SB SR MC ARK
Xi Xi+1Yi

Ki+1

Figure 1: The AES round function. X0 is obtained by XORing the input block and the
subkey K0. The output block is XNr . MC is omitted for the last round.

Nr (10 rounds for AES-128, 12 for AES-192 and 14 for AES-256). The block state can be
viewed as a 4× 4 array of bytes. The numbering of the state bytes we will use is as follows:

In some cases, when this is more convenient, we will also refer to a concrete byte of
the state or the key by its row and column. For example, X[2][1], will refer to the byte of
the state X lying on the row 2 and column 1, where the row and column numbering is as
indicated in the figure above.

After an initial subkey addition, the state is transformed by iterating a round function.
This round function is the same for all versions of the AES. It is composed of four byte-
oriented transformations as depicted in Figure 1. SubBytes (SB) applies to each byte of
the state a non-linear bijection called S-box. ShiftRows (SR) rotates the second row of
the state (resp. third and fourth row) by one byte (resp. two and three bytes) to the left.
MixColumns (MC) multiplies each column of the state by an MDS (Maximum Distance
Separable) matrix. Finally, AddRoundKey (ARK) XORs the state with the round subkey.
For the final round, the MixColumns operation is omitted.

The round subkeys are derived from the master key. The master key is seen as a 4×Nk

array of bytes, where Nk = ℓ/32 for AES-ℓ. From it, the key expansion algorithm generates
a 4× 4(Nr + 1) array of bytes W from which all the subkeys’ columns are extracted. The
first Nk columns of W are initialised with the master key’s columns. Then, the other
columns of W are computed, as depicted in Figure 2. The value of the k-th column
wk of W is computed using those of the columns wk−1 and wk−Nk

. More precisely, for
k ∈ [Nr, 4Nr + 3],

wk =

wk−Nk

⊕ SubWord (RotWord (wk−1))⊕ RCon(k/Nk) if k ≡ 0 mod Nk,

wk−Nk
⊕ SubWord(wk−1) if Nk = 8 and k ≡ 4 mod 8,

wk−Nk
⊕ wk−1 otherwise,

where RCon(k/Nk) is a round-dependent constant, RotWord performs an upward rotation
of the column and SubWord applies the AES S-box to each byte of the column.

2.2 AES Differential Characteristics
Finding optimal related-key differential characteristics is a highly combinatorial problem
that hardly scales. To limit this explosion, a common solution consists in using a truncated

Christina Boura, Patrick Derbez and Margot Funk 219

«S

(a) AES-128

«S

(b) AES-192

«S

S

(c) AES-256

Figure 2: Key schedules for the three versions of AES (figure from [FJP13]). The RotWord
and SubWord functions are respectively denoted by « and S. The round-dependent constant
addition is not represented.

representation [Knu95] of the characteristics’ differences. In a truncated characteristic,
each cell is abstracted by a Boolean variable that indicates whether this cell has a non-zero
difference or not. In this case, the goal is no longer to find the exact input and output
differences, but to find the positions of the cells having a non-zero difference. When a
non-zero difference is present at the input of an S-box, we say that this S-box is active.
The number of active S-boxes is an important quantity since, combined with the highest
probability of a non-trivial transition through the S-box, it gives an upper bound on the
probability of any differential characteristic matching the truncated pattern. The less
active S-boxes there are, the higher the probability of a characteristic can be.

The optimal related-key differential characteristic problem is usually solved in two
steps [BN10, FJP13, GMS16, GLMS20]. In the first one, we search for all truncated
characteristics with a low number of active S-boxes. However, since some constraints at
the byte level are relaxed when reasoning with a truncated representation, some truncated
representations could be invalid in the sense that there do not exist actual byte values
corresponding to the Boolean variables assignment. The second step aims at deciding
whether each truncated characteristic is valid, and if it is, at finding the actual cell values
that maximize its probability.

Pure truncated differential characteristic. Regarding the AES, we can model the propa-
gation of the truncated differences over MixColumns, SubBytes and ShiftRows, using the
fact that MixColumns uses an MDS matrix, that SubBytes is bijective and that ShiftRows
is a reorganization of the bytes’ positions of the state. For AddRoundKey, the XOR of two
active bytes can give an active byte or an inactive byte. Similarly, we can use a simple
model for the propagation through the key schedule. A pure truncated characteristic is a
sequence of truncated differences that respect these propagation rules.

2.3 Invalid Truncated Differential Characteristics
The main issue with truncated differential characteristics is that some of them cannot be
instantiated into actual characteristics. Among the latter, some can be directly avoided by
exploiting linear equations induced by the round function and the key schedule.

220 Related-Key Differential Analysis of the AES

? ? ?

?
?
?

?
?
?

?
?
?

?
?
?

K0 K1

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

K2

? ?

?
?
?

?
?
?

?
?
?

?
?
?

?

: active byte

: inactive byte

: byte not assigned

Figure 3: Truncated differential characteristic that does not respect all the linear constraints
induced by the key schedule of AES-128.

Linear equations from the round function and the key schedule. The round function
and the key schedule provide a set of linear equations between the bytes at the output of
an S-box and the bytes of the actual differences Xr, Kr, r ∈ [0, Nr]. For instance, in the
related-key setting, the equations for the AES-128 key schedule are as follows (S denotes
the S-box permutation):

• Kr+1[i][j] = Kr[i][j]⊕Kr+1[i][j − 1], ∀r ∈ [0, Nr − 1], ∀i ∈ [0, 3], ∀j ∈ [1, 3],

• Kr+1[i][0] = Kr[i][0]⊕ S (Kr[(i + 1) mod 4][3]), ∀r ∈ [0, Nr − 1], ∀i ∈ [0, 3].

Definition 1. We say that a truncated differential characteristic (completely or partially
defined) is not consistent with respect to a set of linear equations if it is possible to express,
from this set of equations, a variable assigned to active as a linear combination of variables
assigned to inactive.

Figure 3 gives an example of a partially defined truncated characteristic that is not
consistent with respect to the linear equations induced by the key schedule of AES-128.
Indeed, if we sum the equations

K1[0][3] = K0[0][3] + K1[0][2]
K2[0][3] = K1[0][3] + K2[0][2]
K2[0][2] = K1[0][2] + K2[0][1]

,

we obtain that K0[0][3] = K2[0][1] + K2[0][3]. This equation does not hold in the example
of Figure 3 as K0[0][3] is active, while both K2[0][1] and K2[0][3] are inactive.

Representing the system of equations with a matrix in row echelon form allows one to
check the consistency of a partially or completely defined truncated differential character-
istic. The matrix can be also used to deduce, from a partial assignment of variables, the
values of other Boolean variables. As a toy example, the inconsistency of Figure 3 with
respect to the above system of equations is detected with the following matrix:

K0[0][3] K1[0][3] K1[0][2] K2[0][2] K2[0][1] K2[0][3]

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

︸ ︷︷ ︸

variables set inactive

A particular case of those inconsistencies that happens often involves some equal columns
of the subkeys and the underlying transitions through MixColumns and AddRoundKey.
Figure 4 gives an example of such incompatibility.

Christina Boura, Patrick Derbez and Margot Funk 221

x0 y0 x1 y1

k0 k1

KS

MC
SB
SR MC

Figure 4: Example of a linear incompatibility. The key schedule imposes the subkeys’
active columns k0 and k1 to be equal. On the other hand, we have that MC(x0)⊕ k0 = y0
and MC(x1)⊕ k1 = y1. It follows that MC(x0⊕x1) = y0⊕ y1, which contradicts the MDS
property of MixColumns.

These linear incompatibilities related to the XOR operation present in the key schedule,
but also in the AddRoundKey step and its interaction with the MixColumns operation are
handled differently in the approaches encountered in the literature. Considering a large
number of linear equations permits to avoid many invalid differential trails on the one
hand but on the other hand heavily impacts the running time. Selecting the most relevant
equations to limit as much as possible the number of invalid truncated characteristics is a
difficult but also interesting problem that will be discussed in the next section.

3 Tool-based search of related-key differential characteris-
tics for AES

Khoo et al. presented in [KLPS17] human-readable proofs for the number of minimal
active S-boxes of AES-128 in the related-key setting. However, this approach, while very
interesting, is tedious, difficulty scales for the largest variants of the AES and needs extra
efforts to be applied to other ciphers. For this reason, tool-based approaches were developed
to search for optimal related-key characteristics for the AES. We present in this section
some of the most important tool-based approaches in this direction. Next, we present a
new MILP model for this task and compare it to previous solutions.

3.1 Constraint programming (CP) approach [RGMS22]
Constraint programming (CP) is an algorithmic approach for solving combinatorial opti-
mization problems. A CP model is composed of a set of variables and a set of constraints
and the goal is to find an assignment of values to the variables such that all the constraints
are satisfied. If the problem to solve is an optimization problem then the best solution,
with respect to a concrete objective, is searched. For the modeling part, some specific
language has to be used and to solve the problem one has to rely on one of the available
solvers such as Gecode [Tea06], OR-Tools [PF], Picat [ZK16] or Choco [PFL16], to cite
just a few.

In a recent work [RGMS22], Rouquette et al. proposed a new CP model to find the
best optimal related-key differential characteristics for all versions of Rijndael. For this
they adapted the strategy presented by Gérault et al. in 2020 [GLMS20] to solve the same
problem. The solving procedure is done within two steps. During the first step, the solver
searches for a truncated characteristic activating as few S-boxes as possible. The second
step consists in trying to instantiate the truncated characteristic with concrete differences.

The main problem that occurs if a very simple model is used is that there will be too
many truncated characteristics generated in the first step, that cannot be instantiated.
The main reason this can occur is related to the way the XOR operation is modeled.

222 Related-Key Differential Analysis of the AES

In a simple CP model, the XOR a⊕ b⊕ c = 0 between three variables is represented
by the constraint

a + b + c ̸= 1.

This simple way of modeling the XOR can lead to invalid truncated differential character-
istics as shown in the following example, provided in [RGMS22]. Suppose we have the two
XORs a⊕ b⊕ c = 0 and b⊕ c⊕ d = 0, modeled by the two constraints a + b + c ≠ 1 and
b+c+d ≠ 1. Suppose now that a is an inactive word while d is active. It is then easy to see
that it is possible to satisfy this model at the truncated level by setting a = 0, b = 1, c = 1
and d = 1. However, it is not possible to instantiate it with actual differences as a = 0
means that b = c and thus we must have d = 0.

What the authors of [GLMS20] and [RGMS22] proposed to do to solve this issue is to
XOR any two equations of this type and create a new constraint. In the previous example,
this would have given the equation a ⊕ d = 0 and the additional constraint a + d ̸= 1
and this would have been enough to solve the problem of this example. Therefore, the
approach used was to generate all basic constraints for the key schedule equations and
then recursively XOR all these equations between them at the moment they contained at
most four variables.

A second solution that was used in [GLMS20] and refined in [RGMS22] was to introduce
extra Boolean variables, called diff variables, to indicate whether two bytes a and b are
equal. More precisely, for two bytes a and b, a Boolean variable δa,b is set to 0 if the value
of the bytes a and b is the same, and is set to 1 otherwise. Such variables were associated
to all variables involved in the key schedule, the AddRoundKey and the MixColumns step.

The associated models generated from the basic AES equations with the use of the two
above tricks were shown to be quite efficient to limit the number of invalid truncated trails
but came to the cost of a high number of extra variables and constraints.

3.2 MILP model of [DEFN22]
Instead of adding a quadratic (in the number of S-boxes and round-key bytes) number of
Boolean variables indicating whether two differences involved in a characteristic of AES
are equal or not, the authors of [DEFN22] chose to directly deal with linear algebra. More
precisely, they presented a new MILP model to directly search for boomerang attacks
on AES, integrating a search for truncated related-key differential characteristics as well.
For this particular part of their algorithm, they proposed to use a very simple model,
containing only the description of the operations composing the round function, without
adding any extra constraint to prevent invalid trails. To deal with them, they instead
relied on the callback functionality of Gurobi which allows to run some extra pieces of
code and to add new constraints during the solving process. Hence, each time a solution
is found by the solver, the program checks the presence of any linear inconsistency and,
whenever it finds one, a constraint is added to avoid the inconsistency for the upcoming
solutions.

This method could permit to converge to an exact solution at the end, but the size of
the model and thus the running time exploded.

3.3 Our MILP model
For the reasons stated above, the model of [DEFN22] was very slow and the authors had
to restrict themselves to a very small portion of the search space to obtain a result in a
reasonable time. We thus propose in this work a new MILP model that we believe is the
right trade-off between the approaches of both [DEFN22] and [RGMS22].

Our MILP model starts from the model of [DEFN22] and encodes, as there, all basic
operations composing the AES into linear inequalities. We then add two types of constraints.

Christina Boura, Patrick Derbez and Margot Funk 223

First, it is well-known that, by combining key schedule equations, we can derive new
equations involving only 3 subkey bytes, located on non-consecutive rounds. For instance,
on AES-128, we know that Kr[i − 2] ⊕Kr[i] ⊕Kr−2[i] = 0 holds whenever the index i
corresponds to a byte on either the third or the fourth column of a round key. We included
in our model the inequalities corresponding to all (linear combinations of) key schedule
equations involving at most 3 key bytes. The second type of extra constraints we added to
the model is directly inspired from [GLMS20] and [RGMS22]. These constraints target
the type of inconsistencies presented in Figure 4 and they are obtained as follows. From
a pair of triplets of columns ((x0, k0, y0) , (x1, k1, y1)) satisfying y0 = MC(x0) ⊕ k0 and
y1 = MC(x1)⊕ k1, we obtain by linearity the equation y0 ⊕ y1 ⊕ k0 ⊕ k1 = MC(x0 ⊕ x1).
The MDS property should hold as well on the pair (u, v) := (x0 ⊕ x1, y0 ⊕ y1 ⊕ k0 ⊕ k1).
While the authors of [GLMS20] and [RGMS22] added such a constraint on all pairs
((x0, k0, y0) , (x1, k1, y1)) and introduced diff variables to be as precise as possible, we only
add this constraint when the sum k0 ⊕ k1 is equal, by definition of the key schedule, to
another subkey column k2 (see the calls to addMixColumnsExtraConstr on lines 12, 13
and 14 of Algorithm 1).

Algorithm 1: MILP model for AES
input : Target number of rounds R and version of AES
output : Minimum number of active S-boxes for R rounds for AES-version

1 Initialize a model m
2 addKeyScheduleBasicConstr(m, R, version)
3 addShitfRowsMixColumnsBasicConstr(m, R)
4 addAddRoundKeyBasicConstr(m, R)
5 addKeyScheduleExtraConstr(m, R, version)
6 if version = 128 then w ← 4
7 else if version = 192 then w ← 6
8 else w ← 8
9 for k = 0 . . . 4R - 1 do

10 if (version = 256 and k mod 4 ̸= 0)
11 or (version ̸= 256 and k mod w ̸= 0) then
12 addMixColumnsExtraConst(m, k, k-1, k-w)
13 addMixColumnsExtraConst(m, k-1, k-w, k)
14 addMixColumnsExtraConst(m, k-w, k, k-1)

15 � The variable obj contains the number of active S-boxes
16 obj ← getObjectiveFunction(R, version)
17 m.addConstr(obj ≥ 1)
18 Minimize obj.

We found this to be the right trade-off between the efficiency of the model and the
number of false characteristics removed and confirmed our choice by experiments. Actually,
we performed several experiments to understand the contribution of every extra constraint
we added to the model. Adding the constraints related to the sparse key schedule equations
is highly beneficial for both AES-128 and AES-192 and has almost no effect on the 256-bit
version. Regarding the XOR of two columns, since the associated constraint is quite costly
in terms of both extra variables and inequalities, its effect is fluctuating, depending on the
version and the number of rounds. We observed that for AES-128 it is always better to add
the constraints while for AES-256 it never improves the solving time. As a consequence,
we decided to apply it only on consecutive rounds and found this setting to be the most
efficient in most of the cases.

Our model is summarized in Algorithm 1. The basic constraints and the additional

224 Related-Key Differential Analysis of the AES

Algorithm 2: addMixColumnsExtraConstr(m, k0, k1, k2)

� The k2-th column of the subkeys is the XOR of the k0-th and k1-th column
for i = 0 . . . 2 do

ri ← ⌊ki/4⌋ // round of the ki-th column
ci ← ki mod 4 // index of the ki-th column

if r0 < 1 or r1 < 1 or r2 < 1 then
return // a round index is out of range

Let u[0], u[1], u[2], u[3] be dummy binary variables
Let v[0], v[1], v[2], v[3] be dummy binary variables
for i = 0 . . . 3 do

addXorConstr(m,u[i], Xr0−1[SR−1(c0 + 4i)], Xr1−1[SR−1(c1 + 4i)])
addXorConstr(m, v[i], Kr2 [c2 + 4i], Xr0[c0+4i], Xr1[c1+4i])

e ← 0
for i = 0 . . . 3 do

e ← e + u[i] + v[i]

Let f be a dummy binary variable
m.addConstr(e ≤ 8f)
m.addConstr(e ≥ 5f)

constraints for the key schedule are given in Appendix A for AES-128. The constraints for
the two other versions of AES are similar. We also give in Appendix B a comparison of
the number of variables and constraints between our model and the model of [GLMS20]
for AES-128. Note that, as in [DEFN22], we also checked a posteriori the consistency of
the linear equations that are not taken into account in our model by using the callback
functionality of Gurobi.

4 Dynamic Programming for Differential Bounds on AES

We present now a completely different approach to search for differential characteristics
and bounds for the AES. This approach is based on a dynamic programming procedure and
does not use any generic tool. In 2013, Fouque et al. [FJP13] used such an algorithm to
study this problem for AES-128. However, their algorithm, while efficient for AES-128, was
very memory consuming and their approach could not be extended to the larger variants
of the AES. To study AES-192 and AES-256 with a dynamic programming procedure we
need to think of a low-memory approach by choosing a compact representation of the
differences. The approach we chose was to only specify the number of actives bytes per
column. The second problem to tackle is that the dynamic programming procedure does
not propagate linear constraints through several rounds. We integrate these constraints
in a second step, while generating the characteristics with a tree traversal approach.
During the characteristics’ generation, we use the information obtained during the dynamic
programming phase to bound from below the number of active S-boxes of the characteristics
being formed. In the following, we rephrase the computational principle behind the generic
dynamic programming algorithm used in [FJP13] and describe how we applied it to study
the related-key differential characteristics of all versions of the AES.

4.1 Principle of Dynamic Programming
To describe the algorithm, we denote by f the SPN cipher under consideration. If we choose
to work in the related-key scenario, the function f must include the key schedule. In other

Christina Boura, Patrick Derbez and Margot Funk 225

words, its domain D must be the Cartesian product of the key space and the internal state
space. The function f is seen as the composition of n simple functions: f = fn ◦ · · · ◦ f1.
Typically, the fi’s are some sub-functions of the round function or the key schedule. The
algorithm allows one to compute for each step 1 ≤ i ≤ n and each difference d ∈ D a lower
bound on the number of active S-boxes of a valid characteristic over fi ◦ · · · ◦ f1 ending
with the difference d. The algorithm relies on a compact representation of the differences.
The truncated differences are an example of such compact representation. We denote
by comp the function that associates to an exact difference its compact representation.
For each choice of compact representation, a set of propagation rules must be deduced.
More precisely, we say that a compact difference a ∈ comp(D) is compatible over fi

with a compact difference b if there exists an exact and valid differential (da, db) ∈ D2

over fi such that a = comp(da) and b = comp(db). For each step function fi and each
compact difference a ∈ comp(D), we denote by succfi

(a) the set containing all the compact
differences that are compatible with a over fi. We denote by precfi

(a) the set defined
as precfi

(a) := {x ∈ comp(D) : a ∈ succfi
(x)}. The goal of the dynamic programming is

to fill a 2-dimensional array T in such a way that the cell T[i][a] contains the minimum
number of active S-boxes of a compact trail over fi ◦ . . . ◦ f1 ending with a. Algorithm 3
starts by initializing the whole sub-table T [0] to 0. Then, for 1 ≤ i ≤ n, the sub-table T [i]
is computed from the sub-table T [i− 1]. If we denote by cfi

(a, b) the minimum number of
S-boxes that are activated to reach the compact difference b from the compact difference a
at step i, we have that

T [i][b] = min
a∈precfi

(b)
(T[i− 1][a] + cfi

(a, b)) .

The algorithm has a time complexity of about
n∑

i=1

∑
a∈comp(D)

|succfi
(a)| updates of cells

but note that it is sometimes possible to reduce this complexity by replacing the loop
of line 6 with a more efficient procedure exploiting some properties of the propagation
rules as we will show below. The memory complexity of the algorithm corresponds to the
storage of the n sub-tables of size |comp(D)|. Note that in fact, since only 2 sub-tables are
needed for the computational process, one can choose to only keep some of the sub-tables.
We do not include in the memory complexity the storage of the sets succfi

(a), contrary
to what is done in [FJP13]. Indeed, we consider that the function f can be divided into
sub-functions simple enough to directly compute the sets succfi(a) in the loop of line 7.

Algorithm 3: Bounds on the number of active S-boxes
output : An array T such that for an exact difference d, T[i][comp(d)] is a lower

bound on the number of active S-boxes of a valid characteristic over
fi ◦ . . . ◦ f1 ending with the difference d.

1 forall a ∈ comp(D) do
2 T[0][a]← 0
3 forall i ∈ [1, n] do
4 forall b ∈ comp(D) do
5 T[i][b]←∞
6 forall a ∈ comp(D) do
7 forall b ∈ succfi(a) do
8 T[i][b]← min (T[i− 1][a] + cfi

(a, b) , T[i][b])

9 return T

226 Related-Key Differential Analysis of the AES

4.2 Our Variant Dedicated to the AES
Algorithm 3 requires to store the sub-tables T[i] of size equal to the cardinal of comp(F128

2 ×
Fℓ

2), where ℓ is the key size. We have two opposite objectives when defining the compression
function comp: keeping enough information to get a meaningful bound while minimizing
the size of the arrays so they can be stored. The first approach we tried was to specify only
3 of the 4 rows of the state and the subkeys, but the bounds obtained were not precise
enough. For this reason, we finally decided to indicate only the number of active bytes per
column, for both the block state and the subkeys. We call this type of compact differences
the compressed differences (see Figure 5 for an example). The authors of [FJP13] had
already introduced this compact vision of the block state but did not exploit its full
potential to decrease the memory and the time complexity. The rationale behind this
choice lies in the property of the matrix used to define the MixColumns transformation. As
the matrix is MDS (Maximum Distance Separable), we only need to know the number
of active bytes per column to propagate the truncated differences through MixColumns.
The choice of the compact representation of the subkeys is motivated by the fact that the
related-key differential characteristics with few active S-boxes seem to have their subkeys
structured by columns, with mostly columns that are fully active or fully inactive.

1 3 0 1

Figure 5: A truncated state difference and its associated compressed difference.

The propagation rules for the compressed differences are summarized below.

SubBytes, SubWord and RotWord. Since the AES S-box is bijective, SubBytes and SubWord
have no effect on the active/inactive bytes. Since RotWord rotates the bytes of a column,
it does not affect the number of active bytes per column. Thus, over these three maps, a
compressed difference is only compatible with itself.

MixColumns. We use the MDS property of the MixColumns transformation: the sum of
the number of active bytes of a column before MC and after MC is equal to 0 or strictly
greater than 4.

XOR of two columns for the key schedule and AddRoundKey. The XOR between
a column with x active bytes and a column with x′ active bytes gives a column with
y ∈ [|x− x′| , min (4, x + x′)] active bytes.

ShiftRows Let x = (x0, x1, x2, x3) ∈ [0, 4]4 be a compressed state. The set succSR(x)
contains all the compressed differences y = (y0, y1, y2, y3) ∈ [0, 4]4 such that y can be
expressed as the sum of 4 vectors of {0, 1}4 of respective Hamming weights x0, x1, x2 and
x3. Note that succSR(x) = precSR(x). For example,

succSR ((3, 1, 0, 0)) =

 (2, 1, 1, 0), (1, 2, 1, 0), (1, 1, 2, 0), (2, 1, 0, 1), (1, 2, 0, 1),
(2, 0, 1, 1), (1, 1, 1, 1), (0, 2, 1, 1), (1, 0, 2, 1), (0, 1, 2, 1),
(1, 1, 0, 2), (1, 0, 1, 2), (0, 1, 1, 2)

 .

Working with compact differences relaxes the propagation rules for ShiftRows, RotWord
and for the XOR operation. As a consequence, there exist compressed characteristics that
do not correspond to any pure truncated characteristic (see Figure 6 for an example).

Christina Boura, Patrick Derbez and Margot Funk 227

0 1 1 1
Ki

1 1 1 0
Ki+1KS

0 0 0 0 0 1 1 1
Xi+1

0 3 0 0SB
SR

0 1 0 0
Ki

0 1 1 1
Ki+1KS

Figure 6: Two examples of inconsistent compressed characteristics. For the left charac-
teristic, if we assume that the first three columns of Ki+1 are valid, then its last column
should have 2 active bytes. For the right characteristic, we know from the key schedule
and from the fact that Xi+1 = Ki+1, that the active bytes of Xi+1 are on the same row.
Thus, the transition over SR is inconsistent.

Complexity of the dynamic programming phase. To apply Algorithm 3, we decompose
the AES with the above operations. For MixColumns, AddRoundKey and the computations of
the subkeys, we update one column after the other and store the results after each update.
Given that the XOR between two compressed columns gives 2.6 compatible columns on
average, computing a new subkey requires in total 4 × 2.6 × 54+Nk ≈ 212.65+2.32·Nk cell
updates. For the propagation over ShiftRows, MixColumns and AddRoundKey, we reduce
the time complexity thanks to some specific properties of the propagation rules.

The improvement for ShiftRows relies on the fact that the sub-table storing the results
can be partitioned into groups of cells that necessarily share the same value. The existence
of these groups comes from the following property: for any compressed block state
x′ ∈ [0, 4]4 obtained by permuting the columns of a compressed state x, we have that
precSR(x′) = precSR(x). For each of these groups, it is thus sufficient to compute the
shared value once and copy it in all the cells. While the naive approach needs 16145× 5Nk

operations in terms of cell updates, this approach requires only 2433 × 5Nk operations
(88.8% of which are an affectation of a shared value).

For MixColumns, the sub-table T[iMC] that stores the results, can be filled with
less operations than

∑
a |succMC(a)|. For this, we take advantage of relations of the

form precMC(b) = precMC(b′) ∪ {a}, where b, b′, a ∈ [0, 4]4+Nk . There is indeed, at the
compressed column level, an inductive formula to define the sets precMC(c), where c ∈ [0, 4]
is a compressed column:

precMC(c) =

 {0}, if c = 0,
{4}, if c = 1,
precMC(c− 1) ∪ {5− c}, if 2 ≤ c ≤ 4.

This type of relation is interesting since if T[iMC][b′] has already been computed, the
value T[iMC][b] can be obtained in 1 cell update:

T[iMC][b] = min(T[iMC][b′], T[iMC − 1][a]).

In fact, if we compose the column multiplication of MixColumns with the XOR of a subkey
column from AddRoundKey, we still have this type of inductive formula. We thus merge
the steps MixColumns and AddRoundKey. In total for these two steps, we have a time
complexity of 5.6× 54+Nk cell updates while the naive method would require 19.2× 54+Nk

operations.

The following table summarizes both the time and memory complexities of the function
ProgDynCol(ℓ, r) that applies Algorithm 3 on r rounds of AES-ℓ. For each round we store
the array after the ShiftRows operation. Then, for AES-128, we also store the array after
each update of a column for both the key schedule and the ARK ◦MC operations and thus
we need to store 9 tables per round. For the two larger versions, in order to keep the

228 Related-Key Differential Analysis of the AES

Table 1: Time and memory complexity of ProgDynCol(ℓ, r). The time complexity is given
in the number of cell updates.

Time complexity Memory (Bytes)
AES-128 r × 222.89 (9r − 9)× 218.58

AES-192 r × 227.53 (3r − 3)× 223.22

AES-256 r × 232.18 (3r − 4)× 227.86

memory low enough so that the program can be run on a personal computer, we store the
array only after updating the next round-key and after performing the ARK◦MC operation
on the four columns. Hence, for these versions we only store 3 tables per round. Note
that some tables can be omitted: there is no need to perform the first and last ShiftRows
operations and for AES-256 the second round-key is part of the master key.

4.3 Reconstructing Truncated Characteristics
First, the procedure to find an optimal truncated differential characteristic calls ProgDynCol
to compute an array T that stores lower bounds on the number of active S-boxes necessary
to reach a given compressed difference. Then, it calls FindCharacteristic to search
for an r-round truncated differential characteristic with ns active S-boxes, starting with
ns = 0. The variable ns is incremented until a characteristic is found. The function
FindCharacteristic makes use of the array T to search for compressed characteristics
with ns active S-boxes. During this search, it integrates linear constraints to detect some
invalid compressed characteristics. The compressed characteristics are then turned if
possible into valid truncated characteristics, that respect all the linear constraints.

The function FindCharacteristic forms the compressed characteristics in the back-
ward direction and with a recursive depth-first search approach. The last sub-array that
is computed by ProgDynCol – denoted T[imax] – gives the starting points of the tree
traversal; and the other sub-arrays give data to prune the tree. We begin a characteristic
(in the backward direction) with a compressed difference dimax ∈ [0, 4]4+Nk such that
T[imax][dimax] ≤ ns. Before extending a compressed characteristic di → · · · → dimax , we
always check that the sum between T[i][di] and the number of active S-boxes of the
characteristic di → · · · → dimax is below ns. We also check that no linear inconsistency is
detected.

To detect a linear inconsistency, the function FindCharacteristic keeps track of
information at the truncated byte level. For that, each compressed characteristic is
paired with a partially defined truncated characteristic, that locates all the bytes of the
compressed characteristic which are known to be active or inactive. This partially defined
truncated characteristic is used, along with a system of linear equations, to detect a linear
inconsistency and to notice when other bytes must be set active or inactive. When we
extend a compressed characteristic, we keep the partially defined truncated characteristic
up-to-date. For example, if a compressed difference has a column with k active bytes and
if there are already k active bytes in the associated column of the truncated characteristic,
the other 4− k bytes of the column are set inactive. An inconsistency is detected when
the newly deduced bytes of the truncated characteristic are in contradiction with the
compressed characteristic or when the truncated characteristic is itself inconsistent. Since
the best truncated differential characteristics are very structured, with many columns fully
active or inactive, we detect most of the inconsistencies. Still, some of them cannot be
detected with this method as it relies on the knowledge of the exact positions of the active
and inactive bytes. Thus, in addition to the previous verification, we also detect, at the
compressed column level, some frequent transitions over MixColumns and AddRoundKey

Christina Boura, Patrick Derbez and Margot Funk 229

1 2 3 4 5103

104

105

106

round

#
ch

ar
ac

te
ris

tic
s

Figure 7: Number of compressed characteristics reaching a given length when calling
FindCharacteristic with ns = 17, ℓ = 128 and r = 5. Each of the five rounds is divided
in 9 steps. We distinguish between the case in which only the verification at the truncated
byte level is performed (symbol) and the case in which both verifications are used
(symbol).

which contradict the MDS property of the MixColumns matrix, exactly as we did in our
MILP model (see Section 3.3). For each pair of triplets of columns ((x0, k0, y0) , (x1, k1, y1))
verifying y0 = MC(x0) ⊕ k0 and y1 = MC(x1) ⊕ k1 and such that the sum k0 ⊕ k1 is
equal to another subkey column k2, we check whether the sum of the number of active
bytes of x0 ⊕ x1 and of y0 ⊕ y1 ⊕ k2 can be equal to 0 or strictly greater than 4 in
our compressed characteristics. For that, we use the compressed characteristic and its
associated partially defined truncated characteristic to bound from above the number of
active bytes of x0 ⊕ x1 and of y0 ⊕ y1 ⊕ k2. If the sum of these two bounds is equal to or
less than 4, we should have x0 ⊕ x1 = 0 and y0 ⊕ y1 ⊕ k2 = 0. If these equalities cannot be
verified, we find an inconsistency. Otherwise, we use them to refine the partially defined
truncated characteristic.

For AES-128, adding the verification at the compressed column level increases, after a
few rounds, the number of invalid compressed characteristics that are detected at each step
of the tree traversal. For example, Figure 7 gives the number of characteristics that need
to be extended, with and without this verification, to find the optimal 5-round truncated
characteristics for AES-128. For AES-256, the verification at the truncated byte level is
sufficient to have a very low number of compressed characteristics to extend (less than 500
and often just a dozen).

Algorithm 4: Computation of an optimal truncated differential characteristic
input : The size ℓ of the key and the number r of rounds
output : An optimal truncated differential characteristic t and its number ns of

active S-boxes
T← ProgDynCol(ℓ, r)
ns ← 0
t← null
while t = null do

t← FindCharacteristic(ns, T, ℓ, r)
if t = null then ns ← ns + 1

return t, ns

230 Related-Key Differential Analysis of the AES

5 Running Times and Discussion
We provide in this section the running times of our MILP model presented in Section 3.3
and our dynamic programming algorithm given in Section 4 applied to all three versions of
the AES. The results are summarized in Table 2. The third column of the table shows the
minimum number of active S-boxes that both programs computed for different number
of rounds. The bounds we obtained are the same as those given by Rouquette et al.
in [RGMS22]. The fourth column contains the number of optimal truncated differential
characteristics found by all approaches. We give in the sixth column the timings we
obtained by running our MILP model and in the seventh column the timings of our
dynamic programming algorithm. All computations were done on a personal computer
equipped with a 8-core Ryzen 3700X processor, running at 3.6 GHz and having 32 GB
of RAM. The first measurement shown in the last two columns corresponds to the real
time, that is the running time it took to the program to terminate when all 8 cores were
used. The second measurement given in the parenthesis corresponds to the user time,
that is, the time when a single core is used for the computation. Finally, the fifth column
corresponds to the timings given in [RGMS22] to compute the same bounds. Examples
of optimal truncated differential characteristics for AES-192 and AES-256 are provided in
Appendix C.

As it can be seen from this table, our ad-hoc algorithm is very competitive and almost
always faster than both the CP-based approach of [RGMS22] and our MILP model. Besides
the simplicity of our solution and its comprehensible complexity analysis it offers, it has
further the advantage to be easily parallelizable. This is not the case of the CP-approach
of [RGMS22] and this is the reason the bounds were computed on a single core. Note that
the authors of [RGMS22] might have obtained better results with recent CP solvers which
support multi-threading such as the OR-tool. However, our opinion is that the only way
for such a solver to benefit from parallelism would be to rely on an embarrassingly parallel
search and it is unclear whether it would have been easy to balance the workload.

The running times of the three approaches all are practical and the interest of our new
ad-hoc algorithm based on dynamic programming does not lie in the few minutes saved
to compute the differential characteristics. We believe that its main advantage is to give
more insight on the real complexity of the problem of searching for the best related-key
differential characteristic on AES and to show that the search space is much smaller than
one could have expected.

AES-192 We noticed that our algorithm is much slower than both the CP and MILP
approaches for 9 rounds of AES-192. The reason comes from the high linearity of the key
schedule for this version of AES, and more precisely from the existence of sparse relations
between round-key bytes separated by many rounds. For instance, for the right values of
i and r, the relation Kr[i]⊕Kr[i− 4] computes a byte on a round key located 6 rounds
before. As when we reconstruct the characteristics we work locally, handling the round
operations one by one, such long key-bridging have a disastrous effect on the efficiency
of our algorithm. To overcome this issue, a solution could have been to recompute the
bounds while reconstructing the characteristics once enough key bytes have been fixed.

To show the importance of such sparse relations in the efficiency of the different
approaches, we removed the corresponding constraints from our MILP model and we
observed that, in most cases, solving the model became much slower. For instance, still
for 9 rounds of AES-192, without the constraints, the solver took 98 minutes to solve this
problem instead of only 5 minutes. This also explains why the modelisation of [RGMS22],
based on extra variables indicating whether two variables are equal, is particularly efficient
on this version of the AES.

Christina Boura, Patrick Derbez and Margot Funk 231

Table 2: Running times of our MILP model and dynamic programming algorithm on all
versions of the AES and comparison with the timings obtained by the CP-based approach
of [RGMS22]. The third column contains the bounds on the minimal number of active
S-boxes, while the fourth column provides the number of optimal truncated differential
characteristics found.

Algorithm R Min nb # char. CP [RGMS22] MILP Dynam. Prog.
of active Time Real Time Real Time
S-boxes (User Time) (User Time)

3 5 2 13s 1s (1s) 1s (1s)
AES-128 4 12 1 31s 9s (36s) 1s (1s)

5 17 81 2h24m 26s (2m22s) 40s (5m6s)

3 1 14 1s 1s (1s) 1s (2s)
4 4 3 6s 2s (3s) 1s (4s)

AES-192 5 5 2 8s 1s (3s) 1s (5s)
6 10 3 17s 10s (34s) 1s (8s)
7 14 2 46s 1m (4m26s) 1s (9s)
8 18 4 1m23s 1m38s (8m3s) 1m35s (12m37s)
9 24 6 30m 5m33s (35m18s) 4d5h (20d4h)

3 1 33 1s 1s (1s) 8s (46s)

4 3 10 3s 1s (1s) 12s (1m10s)
5 3 4 5s 1s (2s) 16s (1m39s)
6 5 3 13s 3s (5s) 19s (1m57s)
7 5 1 18s 3s (5s) 23s (2m21s)

AES-256 8 10 2 32s 8s (24s) 29s (3m1s)
9 15 8 5m46s 23s (1m31s) 32s (3m24s)
10 16 4 2m39s 2m19s (8m59s) 34s (3m31s)
11 20 4 5m30s 3m20s (15m35s) 42s (4m30s)
12 20 4 4m37s 6m31s (37m24s) 42s (4m16s)
13 24 4 7m 23m16 (160m58s) 52s (5m24s)
14 24 4 9m17s 32m27s (124m28s) 50s (5m5s)

232 Related-Key Differential Analysis of the AES

Figure 8: The differential meet-in-the-middle framework

6 Differential Meet-in-the-Middle Cryptanalysis of AES-256

In a recent paper, Boura, David, Derbez, Leander and Naya-Plasencia presented a new
cryptanalysis technique, called the differential meet-in-the-middle attack [BDD+23]. This
cryptanalysis method can be seen as either a way to extend by more rounds the middle
part of a meet-in-the-middle attack, or as an alternative way to do the key recovery in a
differential attack. In this paper, the authors provided two applications of their technique.
First, a single-key attack against SKINNY-128-384 and then a related-key attack against
12-round AES-256. The interest of the latter attack is that it needs only 2 related keys,
while the boomerang attack of Biryukov and Khovratovich that can break the full AES-256
in the related-key setting [BK09], necessitates 4 related keys.

One of the interests of this newly introduced technique is that it permits to exploit
differential distinguishers in a different way than what is typically done in classical
differential attacks. However, the authors did not provide an automated algorithm to
search for these attacks and such a tool would be very helpful to evaluate the resistance of
a known or newly developed cipher against this cryptanalysis technique.

To fill this gap, we describe in this section a MILP-based tool to automatically search
for differential meet-in-the-middle attacks on AES. This tool permitted us to find a new
13-round attack against AES-256 involving only two related keys.

We first start by briefly describing the attack framework as given in [BDD+23]. Then
in Section 6.2 we provide our tool for differential meet-in-the-middle attacks and describe
our attack on AES-256 in Section 6.3.

6.1 Differential Meet-in-the-Middle Cryptanalysis Framework
Let E be a block cipher divided into three parts Ein, Em and Eout such that E =
Eout ◦Em ◦Ein. Suppose now there exists an r-round differential ∆x → ∆y of probability
2−p for the middle part Em, as depicted in Figure 8. The attacker starts from a random
plaintext P and its associated ciphertext C and tries to generate a second plaintext-
ciphertext pair (P̃ , C̃) such that together they satisfy the differential ∆x → ∆y in the
middle part Em:

Ein(P)⊕ Ein(P̃) = ∆x and E−1
out(C)⊕ E−1

out(C̃) = ∆y.

The idea now of the framework is to generate P̃ , C̃ using a MITM approach. For this,
the attacker treats the parts Ein and Eout independently and searches, in a second step, a
match between those parts, by checking whether E(P̃) = C̃. A successful match indicates
a potentially correct guess for the secret key. The detailed procedure is as follows:

Part Ein. Given P , the attacker guesses the minimal amount of key information kin, that
permits her to compute an associated plaintext P̃ such that Ein(P)⊕ Ein(P̃) = ∆x if the
guess of kin is correct. For each guess i for kin, the attacker obtains a different plaintext
candidate P̃ i and for any of these 2|kin| plaintext candidates, she asks the encryption

Christina Boura, Patrick Derbez and Margot Funk 233

oracle to generate the corresponding ciphertext Ĉi = E(P̃ i). She stores Ĉi together with i
in a hash table.

Part Eout. In a similar way, given C, the attacker will guess some key material kout that
will permit her to generate a new ciphertext C̃ that satisfies E−1

out(C) ⊕ E−1
out(C̃) = ∆y.

More precisely for each guess j for kout, the attacker computes a candidate ciphertext C̃j .

Match and complexities. If the differential transition ∆x → ∆y happened with prob-
ability 1, then the attacker would have to search among the C̃j ciphertext candidates
one that would be present in the hash table. This would indicate that the guess (i, j)
for the key material (kin, kout) is correct. However, as the transition has in general a
much lower probability 2−p, the attack has to be repeated 2p times with different random
plaintext-ciphertext pairs (P, C) in order to hope for a match.

If k is the size of the key, the time complexity in the expected case where |kin ∪ kout| ≥
n− p is computed as

T = 2p × (2|kin| + 2|kout|) + 2|kin∪kout|−n+p + 2k−n+p.

The data complexity of this attack can be estimated as

D = min
(

2n, 2p+min(|kin|,|kout|)
)

.

Finally, the memory complexity is given byM = 2min(|kin|,|kout|). However, this complexity
can be improved to 2min(|kin|−|kin∩kout|,|kout|−|kin∩kout|) by first guessing the common key
material before running the attack.

6.2 MILP-based Tool to Search for Differential MITM Attacks
Searching for the best differential meet-in-the-middle attacks against AES requires to search
for the right trade-off between the length of the distinguisher, its probability, the number of
rounds that can be appended around the distinguisher and the entropy of the key material
involved in the key-recovery process. As such, and since many recent cryptanalysis tools
are based on, we decided to extend our MILP model from Section 3.3 into a new MILP
model dedicated to differential meet-in-the-middle cryptanalysis.
Outer parts. Extending our model to find attacks and not only distinguishers only
requires to handle the outer parts within the model by adding extra constraints as well as
modifying the objective since we now want to minimize the overall complexity of the attack.
In those parts, the differences are propagated with probability 1 to the plaintext and to
the ciphertext respectively. Then we count the key bytes required to partially encrypt or
decrypt the active state bytes. The main advantage of the differential MITM technique
over classical differential attacks lies in the simplicity of approximating the complexity. To
accurately compute the cost of guessing the required key material in a MILP model, one
has to take into account sophisticated key bridging techniques [LWZ16], making the model
very complicated. But for differential MITM attacks, the relations between the round-key
bytes of both the upper and lower parts only affect the complexity of the matching part.
Hence, and since we assumed that the distinguisher will not be extended by more than 2
rounds at the beginning and by more than 2 rounds at the end, we only had to add few
and simple extra constraints to compute the dimension of the key material involved in the
attack. More precisely we only added to the model the relations involving bytes of the two
first round keys and of the two last. Finally, because the key schedule is non-linear, there
might be some differences unknown to the attacker that she has to guess to perform the
attack. As it was complicated to give a precise estimation of the number of extra guesses

234 Related-Key Differential Analysis of the AES

one has to do, we chose to omit this part. This has as a consequence that the complexity
given by the tool is slightly underestimated but still remains close enough to its real value.
Distinguisher part. In order to avoid weak-key attacks, we also have to ensure that from
any key there exists a corresponding related key satisfying the differential characteristic
associated to the attack. In [DEFN22], the authors used an extra information for each key
variable involved in order to to know whether this variable is controlled (i.e. its value can
be freely chosen) or not. In particular they added to the model that k and S(k) should not
be both controlled as otherwise this would fix the value of k and thus lead to a weak-key
attack, only working for a portion of the key space. To keep our model simpler, we did
not follow this strategy. Instead, we checked through the callback functionality of Gurobi
whether the current solution is a weak-key attack and, when it is, we added an extra
constraint to remove it. Checking a solution is done by extracting the differences on the
key and then by trying to echelonize the system of equations describing the key schedule.

6.3 Attack against AES-256

We describe now our attack against 13 rounds of AES-256. It is an attack in the related-
key setting exploiting two related keys only. The attack procedure can be visualized in
Figure 9. The differential distinguisher corresponds to the blue and red part of the depicted
characteristic. The red bytes correspond to active S-box transitions and their number
determines the probability of the distinguisher. As there are 18 active S-boxes in the
distinguisher and the worst differential transitions for the S-box have a probability of 2−7,
the probability of the differential distinguisher can be estimated as 2−18×7 = 2−126.

Both the distinguisher and the attack were found together in a completely automated
way by the tool described in Section 6.2. The upper part of the characteristic is identical
to the one used to attack 12 rounds of AES-256 in [BDD+23] and for this reason the first
part of the attack is very similar to the one described there.

Data. First, as also done in [BDD+23], one can remark that the difference on the
plaintext P belongs to a vector space of dimension 11, as the bytes 3, 10, 14 and 15 are
inactive and ∆P [4] = ∆P [5] as they are both equal on ∆k2[4]. Therefore, the attack starts
by requesting the encryption of a structure of 211×8 = 288 plaintexts first under the secret
key K and then under the related key K ′.

Related-keys generation process. The two keys involved in the attack are related as
described in Figure 9 and we explain here the algorithm which, given a key K, generates
the second related one. First we choose a value for the difference a. As the difference on
k10[4] is null, the adversary obtains the value of the difference d on k12[4]. She then forces
a difference 3d on k12[12] and thus obtains the difference c on k11[3]. Finally, from both c
and 2a, the adversary computes the difference b which fully determines K ′. Note that we
only know the value of a, the remaining ones depending on the key K are unknown at the
beginning of the attack. In particular, the probability that the differential characteristic
holds is around 2−4 (transitions b→ a, c⊕ a→ d, ∆x2[0]→ a and ∆x1[0]→ ∆z1[0] have
to hold) and when it does its probability is 2−18×7 = 2−126.

Lower part. This step of the attack after the data generation consists in picking a
plaintext P and its corresponding ciphertext C, guessing some key material and generate
the possible ciphertexts C̃ by the procedure described in Section 6.1. The attacker starts
by guessing both k13[10] and k13[11]. She deduces k11[11] and then the value of d from
the relation ∆k10[4]⊕∆S(k11[11])⊕∆k12[4] = 0. Similarly, she guesses both k13[2] and
k13[3] and deduces k11[3] and c. She then guesses the bytes 0, 1, 8, 9 of k13, 3, 7, 11, 15 of
k12, 7, 15 of k11 as well as k10[3]. This allows her to compute the differences on k10, k12

Christina Boura, Patrick Derbez and Margot Funk 235

and k13 and thus to obtain the possible ciphertexts satisfying the output of the differential
characteristic. For each of them, the probability that the corresponding plaintext belongs
to the structure of 288 plaintexts is 288−128 = 2−40 and when it does, the attacker stores it
in a hash table with the corresponding key guesses.

Upper part. In this step the attacker wants to generate the possible plaintexts P̃ . For
this, she needs to guess 9 bytes of k0, namely the bytes 0, 1, 2, 6, 7, 8, 11, 12, 13 and the
two bytes 5 and 10 of k1. Knowing these bytes will permit her to compute the bytes z0[0],
z1[4] and z1[8]. Then, the attacker guesses the difference on the first column of k2 as well
as the difference b and propagates backwards the differences to compute P̃ . Note that
there are only 27×5 = 235 possible differences for those 5 bytes since they all need to be
valid transition through the S-Box for the fixed value a. As a consequence, the attacker
generates 2(9+2)×8 × 235 = 2123 tuples and checks for matches in the hash table.

Matching part. We expect 2123+120−128−8 = 2107 matches since the meet-in-the-middle
is performed on both the plaintext and the value b. For each of them, we first obtain the
possible values for the last column of k3 by using both the knowledge of the difference in the
first column of k2 and in the first column of k4. At this point, we have around 2107+4 = 2111

tuples which is immediately reduced to 2103 by using the equation k3[3] = k5[2]⊕ k5[3]
(see Appendix D). The best algorithm to reconstruct the master key from those key bytes
requires to make 3 more guesses and thus would lead to a complexity of 2127.

Complexity. Since the procedure has to be performed 2126 times to get one right pair,
the overall complexity would be: 2126 plaintext-ciphertext pairs for each key in order
to get one pair, the time complexity is equivalent to 2126 × (2120 + 2123 + 2127) ≈ 2253

encryptions and the memory complexity around 2120−40 × 16× 2−4 = 280 128-bit blocks.
It is possible to decrease the time complexity by asking for enough pairs to get two right
ones so that the master key only has to be reconstructed for matches appearing twice.
In this scenario, the data complexity is increased by two, the time complexity becomes
2127×(2120 +2123 +2103 +224) ≈ 2250 encryptions and the memory complexity is dominated
by the storage of all matches, requiring around 2127× 2103× 30× 2−4 = 2231 128-bit blocks.

Note that this attack is not a weak-key attack since for each key, there are values for
a such that the differential holds. Furthermore, we can check during the attack process
whether the guesses actually lead to a valid differential characteristic and thus finding the
right value for a is fully amortized.

The complexities of our attack and a comparison with other related-key attacks against
AES-256 are summarized in Table 3.

6.3.1 Application of our Tool to AES-128 and AES-192.

We used our tool to search for differential MITM attacks in the related-key setting against
the other two versions of the AES. Our tool exhausted the search space for AES-128 and
did not find any non-trivial attack. This is not very surprising as this variant is known
to resist related-key attacks much better than the bigger variants. On AES-192 the tool
outputted a single non-trivial attack scenario for 8 rounds but having a complexity higher
than the best single-key attacks on this variant. This confirms in the case of the AES the
assumption made in [BDD+23] that differential MITM attacks work better against ciphers
for which the key is much longer than the state.

The 3 guesses are k13[6], k12[1] and k12[5]

236 Related-Key Differential Analysis of the AES

Figure 9: Differential meet-in-the-middle attack against AES-256. Blue bytes belong to
the distinguisher. Among them, the red bytes correspond to the active S-boxes. Green
bytes are part of the key-recovery procedure. White bytes are inactive. Red dots on key
bytes correspond to key values that have to be guessed. Finally, blue dots correspond to
key differences that have to be guessed.

Christina Boura, Patrick Derbez and Margot Funk 237

Table 3: Best known attacks against AES-256 together with the the attack presented in
this section. † The parameter s should be such that 0 ≤ s ≤ 7.5.

Rounds Data Time Memory # Related keys Type Ref.

9 2120 2203 2203 0 MITM [DFJ13]
10 2114.9 2171.8 264 256 Rectangle [BDK05]
10 2113.9 2172.8 - 64 Rectangle [KHP07]
12 289 2206 271.6 2 differential MITM [BDD+23]
14 299.5 299.5 256 4 Boomerang [BK09]
14 291+s 292+s 289−s 219−s Boomerang [GSW22] †
14 2q q266 - 2q q-multicollisions [GLMS18]
14 2125 2125 265 232 basic RK differential [GLMS18]

13 2126 2253 280 2 differential MITM our
13 2126 2250 2231 2 differential MITM our

7 Conclusion and open problems
In the first part of this work we presented two different approaches for the optimal related-
key characteristics problem for the AES. The AES is the most important symmetric-key
algorithm in use, and many different cryptanalysis techniques applied against it need the
existence of good differential characteristics to work. It is thus important for such an
important target, to be able to confirm by other methods the results that were found by
generic solvers, especially as bugs in such solvers have already been discovered in the past
(see for example [EY20]). Our dynamic approach method permitted to better understand
the underlying difficulty of this problem and to propose a pure algorithmic approach that
we believe can be adapted to other ciphers. In parallel, it permitted to solve an open
problem, as presenting a memory-efficient dynamic programming solution for the larger
variants of AES was considered to be hard.

Our work opens also several problems regarding the adaptation of our models and
algorithms to ciphers of different nature. For example, it would be interesting to try to
adapt our algorithms to ciphers whose matrix is not MDS or to see how the dynamic
programming approach could be adapted to ciphers where the key schedule algorithm does
not work by columns. Finally, we believe that the MILP tool we developed for differential
MITM cryptanalysis can serve as a basis to study the applicability of this newly proposed
method to other primitives, by starting by those whose structure is close to the AES.

References
[BDD+23] Christina Boura, Nicolas David, Patrick Derbez, Gregor Leander, and María

Naya-Plasencia. Differential meet-in-the-middle cryptanalysis. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part III, volume
14083 of Lecture Notes in Computer Science, pages 240–272. Springer, 2023.

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and
rectangle attacks. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494
of Lecture Notes in Computer Science, pages 507–525. Springer, 2005.

[BDK+18] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.
Improved key recovery attacks on reduced-round AES with practical data and

238 Related-Key Differential Analysis of the AES

memory complexities. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science,
pages 185–212. Springer, 2018.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume
5912 of Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
related-key attack on the full AES-256. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 231–249. Springer,
2009.

[BL23] Augustin Bariant and Gaëtan Leurent. Truncated boomerang attacks and
application to AES-based ciphers. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part IV, volume 14007 of Lecture Notes in Computer
Science, pages 3–35. Springer, 2023.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic search for related-key differential
characteristics in byte-oriented block ciphers: Application to AES, Camellia,
Khazad and others. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 322–344. Springer, 2010.

[BNS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and
improving impossible differential attacks: Applications to CLEFIA, Camellia,
LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT
2014, Part I, volume 8873 of Lecture Notes in Computer Science, pages 179–199.
Springer, 2014.

[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum
security analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–93,
2019.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO ’90, volume 537
of Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

[DEFN22] Patrick Derbez, Marie Euler, Pierre-Alain Fouque, and Phuong Hoa Nguyen.
Revisiting related-key boomerang attacks on AES using computer-aided tool.
In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part III,
volume 13793 of Lecture Notes in Computer Science, pages 68–88. Springer,
2022.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 371–387. Springer, 2013.

[DR01] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In Bahram
Honary, editor, IMA 2001, volume 2260 of Lecture Notes in Computer Science,
pages 222–238. Springer, 2001.

[EY20] Muhammad ElSheikh and Amr M. Youssef. A cautionary note on the use of
gurobi for cryptanalysis. Cryptology ePrint Archive, Paper 2020/1112, 2020.
https://eprint.iacr.org/2020/1112.

https://eprint.iacr.org/2020/1112

Christina Boura, Patrick Derbez and Margot Funk 239

[FIP01] FIPS 197. Announcing the Advanced Encryption Standard (AES). National
Institute for Standards and Technology, Gaithersburg, MD, USA, November
2001.

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural evaluation
of AES and chosen-key distinguisher of 9-round AES-128. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 183–203. Springer, 2013.

[GLMS18] David Gérault, Pascal Lafourcade, Marine Minier, and Christine Solnon. Re-
visiting AES related-key differential attacks with constraint programming. Inf.
Process. Lett., 139:24–29, 2018.

[GLMS20] David Gérault, Pascal Lafourcade, Marine Minier, and Christine Solnon. Com-
puting AES related-key differential characteristics with constraint programming.
Artif. Intell., 278, 2020.

[GMS16] David Gérault, Marine Minier, and Christine Solnon. Constraint programming
models for chosen key differential cryptanalysis. In Michel Rueher, editor,
CP 2016, volume 9892 of Lecture Notes in Computer Science, pages 584–601.
Springer, 2016.

[GSW22] Jian Guo, Ling Song, and Haoyang Wang. Key structures: Improved related-key
boomerang attack against the full AES-256. In Khoa Nguyen, Guomin Yang,
Fuchun Guo, and Willy Susilo, editors, ACISP 2022, volume 13494 of Lecture
Notes in Computer Science, pages 3–23. Springer, 2022.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[KHP07] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks
on reduced AES-192 and AES-256. In Alex Biryukov, editor, FSE 2007, volume
4593 of Lecture Notes in Computer Science, pages 225–241. Springer, 2007.

[KLPS17] Khoongming Khoo, Eugene Lee, Thomas Peyrin, and Siang Meng Sim. Human-
readable proof of the related-key security of AES-128. IACR Trans. Symmetric
Cryptol., 2017(2):59–83, 2017.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, Fast Software Encryption, pages 196–211, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[LJW14] Leibo Li, Keting Jia, and Xiaoyun Wang. Improved single-key attacks on
9-round AES-192/256. In Carlos Cid and Christian Rechberger, editors, Fast
Software Encryption - 21st International Workshop, FSE 2014, London, UK,
March 3-5, 2014. Revised Selected Papers, volume 8540 of Lecture Notes in
Computer Science, pages 127–146. Springer, 2014.

[LP21] Gaëtan Leurent and Clara Pernot. New representations of the AES key schedule.
In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of Lecture Notes in Computer Science, pages 54–84.
Springer, 2021.

[LWZ16] Li Lin, Wenling Wu, and Yafei Zheng. Automatic search for key-bridging
technique: Applications to lblock and TWINE. In Thomas Peyrin, editor,
FSE 2016, volume 9783 of Lecture Notes in Computer Science, pages 247–267.
Springer, 2016.

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/

240 Related-Key Differential Analysis of the AES

[Mat94] Mitsuru Matsui. On correlation between the order of S-boxes and the strength
of DES. In Alfredo De Santis, editor, EUROCRYPT ’94, volume 950 of Lecture
Notes in Computer Science, pages 366–375. Springer, 1994.

[PF] Laurent Perron and Vincent Furnon. Or-tools.

[PFL16] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Solver
Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING
S.A.S., 2016.

[RGMS22] Loïc Rouquette, David Gérault, Marine Minier, and Christine Solnon. And
Rijndael?: Automatic related-key differential analysis of Rijndael. In Lejla
Batina and Joan Daemen, editors, AFRICACRYPT 2022, Lecture Notes in
Computer Science, pages 150–175. Springer Nature Switzerland, 2022.

[Tea06] Gecode Team. Gecode: Generic constraint development environment. Available
from http://www.gecode.org/, 2006.

[ZK16] Neng-Fa Zhou and Håkan Kjellerstrand. The Picat-SAT compiler. In Marco
Gavanelli and John H. Reppy, editors, PADL 2016, volume 9585 of Lecture
Notes in Computer Science, pages 48–62. Springer, 2016.

A Basic constraints for the MILP model

We give here the basic constraints that are part of our MILP model. The XOR a⊕b⊕c = 0
between differential bytes is modeled with three inequalities, which ensure that a+b+c ̸= 1.
The XOR of 4 bytes is modeled similarly. To model the MDS property of the MixColumns
operation, some dummy variables are used to indicate whether the columns are active or
not before and after MixColumns. The basic constraints are a straightforward encoding of
the AES with these rules.

Algorithm 5: addXorConstr(m, a, b, c)

m.addConstr(1 - a + b + c ≥ 1)
m.addConstr(a + 1 - b + c ≥ 1)
m.addConstr(a + b + 1 - c ≥ 1)

Algorithm 6: addXorConstr(m, a, b, c, d)

m.addConstr(1 - a + b + c + d ≥ 1)
m.addConstr(a + 1 - b + c + d ≥ 1)
m.addConstr(a + b + 1 - c + d ≥ 1)
m.addConstr(a + b + c + 1 - d ≥ 1)

Algorithm 7: addAddRoundKeyBasicConstr(m, R)

for r = 1 . . . R do
for i = 0 . . . 15 do

// Yr = MC ◦ SR ◦ SB(Xr)
addXorConstr(m, Xr[i], Kr[i], Yr−1[i])

http://www.gecode.org/

Christina Boura, Patrick Derbez and Margot Funk 241

Algorithm 8: addKeyScheduleBasicConstr(m, R, version = 128)

for r = 1 . . . R do
for i = 0 . . . 15 do

if i mod 4 = 0 then
ρ(i)← i + 7 mod 16
addXorConstr(m, Kr[i], Kr−1[i], Kr−1[ρ(i)])

else
addXorConstr(m, Kr[i], Kr−1[i], Kr[i-1])

Algorithm 9: addShiftRowsMixColumnsBasicConstr(m, R)

for r= 0 . . . R−2 do
for c= 0 . . . 3 do

e ← 0
for i = 0 . . . 3 do

// Yr = MC ◦ SR ◦ SB(Xr)
e ← e + Yr[c + 4i]
e ← e + Xr[(c + i) mod 4 + 4i]

Let f be a dummy binary variable
m.addConstr(e ≤ 8f)
m.addConstr(e ≥ 5f)

� No MixColumns for the last round
for c= 0 . . . 3 do

for i= 0 . . . 3 do
m.addConstr(YR−1[c+4i] = XR−1[(c + i) mod 4 + 4i]]

Algorithm 10: getObjectiveFunction(R, version = 128)

obj ← 0
for r= 0 . . . R - 1 do

for i = 0 . . . 15 do
obj ← obj + Xr[i]

for i = 0 . . . 3 do
obj ← obj + Kr[3 + 4i]

return obj

Algorithm 11: addKeyScheduleExtraConstr(m, R, version = 128)

for r = 2 . . . R do
for i = 0 . . . 15 do

if i mod 4 > 1 then
addXorConstr(m, Kr[i], Kr−2[i], Kr[i-2])

242 Related-Key Differential Analysis of the AES

Table 4: Comparison of the number of variables and constraints between our model and
the model of [GLMS20] for r rounds of AES-128

CP model of [GLMS20]
diff var. ≈ 228(r − 1)2

other var 80r + 32

basic constr. 56r − 16
diff var. constr. ≈ 308(r − 1)2 + 167(r − 1)3

KS eqs with 3 var. (eg. 266 for r = 10)
KS eqs with 4 var. (eg. 1104 for r = 10)

Our MILP model
var. for MC 4(r − 1)
var. for MC extra contr. 81(r − 2)
other var. 80r + 32
basic constr. 120r + 24
extra KS constr. 24(r − 2)
extra MC constr. 270(r − 2)

B Number of variables and constraints of our MILP model

C Examples of optimal truncated differential characteristics
for AES-192 and AES-256

We provide here examples of optimal truncated differential characteristics for AES-192 and
AES-256. All the characteristics were designed by using the library [Jea16].

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

Figure 10: An optimal truncated differential characteristic for AES-192 over 7 rounds with
14 active Sboxes (in red).

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

Figure 11: An optimal truncated differential characteristic for AES-256 over 7 rounds with
5 active Sboxes (in red).

Christina Boura, Patrick Derbez and Margot Funk 243

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

Figure 13: An optimal truncated differential characteristic for AES-256 over 12 rounds
with 20 active Sboxes (in red).

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

KS

SB

SR MC

Figure 12: An optimal truncated differential characteristic for AES-256 over 10 rounds
with 16 active Sboxes (in red).

D Matching Part for the 13-round Attack against AES-256
A critical part of this attack is the filtering provided by the equation k3[3] = k5[2]⊕ k5[3].
While it is quite clear that k3[3] belongs to kin it is much more complex to see that we
are also able to compute k5[2]⊕ k5[3] from kout. Actually, this linear combination can be
computed from only 2 bytes of kout, exploiting the sparsity of the equations describing the
key schedule:

k5[2]⊕ k5[3] = k7[1]⊕ k7[2]⊕ k7[2]⊕ k7[3]
= k7[1]⊕ k7[3]
= k9[0]⊕ k9[1]⊕ k9[2]⊕ k9[3]
= S(k10[3])⊕ k11[0]⊕ k11[0]⊕ k11[1]⊕ k11[1]⊕ k11[2]⊕ k11[2]⊕ k11[3]
= S(k10[3])⊕ k11[3]

	Introduction
	AES and Differential Analysis
	Description of the AES Encryption Scheme
	AES Differential Characteristics
	Invalid Truncated Differential Characteristics

	Tool-based search of related-key differential characteristics for AES
	Constraint programming (CP) approach RGMS22
	MILP model of DerbezEFN22
	Our MILP model

	Dynamic Programming for Differential Bounds on AES
	Principle of Dynamic Programming
	Our Variant Dedicated to the AES
	Reconstructing Truncated Characteristics

	Running Times and Discussion
	Differential Meet-in-the-Middle Cryptanalysis of AES-256
	Differential Meet-in-the-Middle Cryptanalysis Framework
	MILP-based Tool to Search for Differential MITM Attacks
	Attack against AES-256

	Conclusion and open problems
	Basic constraints for the MILP model
	Number of variables and constraints of our MILP model
	Examples of optimal truncated differential characteristics for AES-192 and AES-256
	Matching Part for the 13-round Attack against AES-256

