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Abstract. In this paper, we present a new algorithm for fast correlation attacks on
stream ciphers with improved cryptanalysis results on the Sosemanuk stream cipher,
one of the 7 finalists in the eSTREAM project in 2008. The new algorithm exploits
the direct sum construction of covering codes in decoding phase which approximates
the random vectors to a nearest codeword in a linear code. The new strategy provides
large flexibility for the adversary and could reduce the time/memory/data complexities
significantly. As a case study, we carefully revisit Sosemanuk and demonstrate a
state recovery attack with a time complexity of 2134.8, which is 220 times faster than
achievable before by the same kind of attack and is the fastest one among all known
attacks so far. Our result indicates an inefficiency in longer keys than 135 bits and
depicts that the security margin of Sosemanuk is around 28 for the 128-bit security
for the first time.
Keywords: Fast correlation attack · Stream ciphers · Covering codes · Sosemanuk
· Linear feedback shift register (LFSR)

1 Introduction
The European eSTREAM project [EST08] has a sustaining effect on the design and
analysis of modern stream ciphers, which provides some typical design paradigms such as
NFSR-based (nonlinear feedback shift register), ARX-based and LFSR + FSM (Finite
State Machine) model. As one of the 7 eSTREAM finalists, Sosemanuk [BBC+08] is a
word-oriented synchronous stream cipher which supports a variable key length ranging
from 128 to 256 bits and an initial value (IV) of 128 bits with the 128-bit claimed security
level. It follows the LFSR + FSM design strategy of the SNOW family of stream ciphers
[EJ03, SNO06, EJMY19] in the keystream generation phase with the 4-bit S-box from the
Serpent block cipher [BAK98] to enhance SNOW 2.0 from both security and efficiency
points of view. The conclusion from the eSTREAM final report [BCC+08] on Sosemanuk is
that it offers a very considerable margin for security as well as very reasonable performance
trade-offs.

Correlation attack is a classical cryptanalysis method for LFSR-based stream ciphers,
which exploits the statistical relation between the keystream and some subset of the
involved LFSR sequences. The earliest studies can be traced back to the work in [Sie84]
in last century with the correlation immunity proposed as a security criterion. Then fast
correlation attacks (FCA), proposed by Meier and Staffelbach in [MS89], speeds up the
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exhaustive search of the involved LFSR state by some decoding algorithms from coding
theory when the weight of the underlying LFSR is relatively low and the noise is of modest
level. There are two kinds of algorithms involved here, i.e., the one-pass/information set
decoding and probabilistic iterative decoding algorithms. Fast correlation attacks have
been evolved over the years into some modern form, i.e., without any restriction on the
involved LFSR, of finding the linear correlation by some theoretical and/or automatic
searching strategy and of dealing with a highly noisy channel with dedicated decoding
methods [CT00, JJ99b, JJ99a, CJM02, ZXM15].

Since 2005, there are lots of attention from the community to analyze the security
of Sosemanuk. Various cryptanalysis methods have been tried to evaluate the security
of Sosemanuk, to name but a few, Guess-and-Determine attacks [TSS+06, FLZ+10],
time/memory/data tradeoff [BS00, DJGQ14] and linear/correlation attacks [LLP08, CH10].
The best attack on Sosemanuk available so far is the correlation attacks in [LLP08, CH10]
with a time complexity of 2154 by using some bitwise linear approximation of a bias 2−21.41

between any two consecutive keystream words and the corresponding LFSR sequence. It
is worth noting that given the correlation of p = 1

2 + 2−21.41 and the number of binary
variables l = 320, we can derive the information-theoretical bound [CS91] of the complexity
for any attack aiming at the l = 320-bit entropy contained in the LFSR initial state, which
is

4 · l · ln 2
1−H(p)

.= 251.08

with l = 320 and H(x) = −x · log(x)− (1−x) · log(1−x) being the binary entropy function;
while the currently best known attacks all have a time complexity of around 2154. The gap
between the theory and the cryptanalysis practice on Sosemanuk is huge and a natural
problem arising is whether we could narrow the gap by some improved decoding algorithm
given the same correlation?
Contributions. In this paper, we present an improved fast correlation attack on stream
ciphers which can make better use of the found linear correlation with respect to the
corresponding information-theoretical bound.

We try to bridge this huge gap to some extent in theory by introducing new algorithmic
procedures into fast correlation attacks, which are derived from the famous BKW algorithm
[BKW00], a Gauss elimination procedure to transform the distribution of secret information
and a direct sum construction of some well chosen covering codes. As analogues to
similar BKW collision, distribution-transformation and code-reduction steps in the solving
algorithms of the Learning Parity with Noise (LPN) problem [GJL20], a single-list BKW
collision procedure and a random vector substitution procedure are introduced into FCA
to reduce the dimension of the secret information in the LFSR initial state with another
Gauss elimination step over finite fields converting the distribution of the initial LFSR state
from uniform to some biased distribution. The single-list BKW collision step overcomes
the lost-solution problem of the previous method, which splits the whole column-list
of the derived generator matrix to several separate sub-lists, based on the generalized
birthday problem [Wag02] to a large extent. Further recall that the parity-checks in the
pre-processing phase of a FCA are usually constructed to reduce the dimension of the
LFSR initial state that goes through the online decoding phase at the expense of the
folded noise from the piling-up lemma [Mat94], thus it is naturally expected that we can
somehow weaken the noise attenuation while still efficiently reduce the secret dimension.
This inspires us to investigate the possibility of an integrated combination of some methods
from LPN solvers with the existing FCAs on the algorithmic aspect.

Orderly, we first make the distribution transform to convert the distribution of the
LFSR initial state from uniform to the same biased distribution as that of the found
linear approximation by Gauss elimination. This step provides the possibility of reducing
the complexity for recovering the LFSR initial state, as the entropy loss from a biased
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distribution is usually larger than the uniform case. Then, the single-list BKW collision
algorithm is introduced and optimized to reduce the secret dimension by some pre-computed
tables of reasonably small size which can be accessed with a constant complexity under
the same assumption adopted by default by almost all the cryptanalysis literatures. Then
we study in details the random vector substitution procedure arising from the direct sum
construction of covering codes in solving a noisy system of linear equations in the binary
domain, a generic problem inherent not only in FCAs, but also in linear cryptanalysis
(LC) of many symmetric key primitives.

We theoretically derive the averaged bias in the considered case when the covering codes
are chosen from perfect codes with the description of relevant parameter-chosen method
of linear programming. Then we make an integrated combination of these improvements
with the Fast Walsh-Hadamard Transform (FWHT) technique to solve the resultant noisy
linear system with the newly derived biased LFSR initial state as variables, which actually
is a new framework for FCAs or a new solver of noisy linear system in the binary field.

Attacks
Attack Complexities
Type Data Time

[BS00] Time/Memory/Data Tradeoff O(2128) O(2256 + 2256)
[FLZ+10] Guess-and-Determine 24.32 O(2176)
[LLP08] Fast correlation attack 2145.50 2155.7

This paper Fast correlation attack 2135 2134.8

As a case study, we investigate the security of Sosemanuk by the new algorithm and
compare it with the previously known best results, as shown above. By carefully tuning
the parameters involved in the attack later depicted, we can have a state recovery attack
in 2134.8 time with the 210 times reduced data complexity of 2135, which is around 220

times faster than the best previously known results in [LLP08] and is the fastest attack on
Sosemanuk among all the known attacks so far. Since the time complexity is the most
important measurement when comparing different kinds of attacks, we focus on this aspect
here. Note that the time complexity unit of the new FCA is the finite field operations
such as multiplication with fixed values, while in [FLZ+10] the time complexity unit of the
2176 figure is not the same one as used in this paper. The guess-and-determine adversary
has to guess a total of 175 bits of the internal state and works under one bit assumption,
thus the inner deduction complexity for restoring the non-guessed part of the internal
state has been absorbed and simplified into the time complexity unit. Thus, the actual
time complexity of the guess-and-determine attack in [FLZ+10] is definitely much higher
than 2176 when we take into account the detailed steps in the deduction phase. For the
well-known time/memory/data tradeoff attack by Biryukov and Shamir in [BS00], if we
take the typical point on the TM2D2 = N2 tradeoff curve, i.e., P = N2/3 preprocessing
time, T = N2/3 online attack time, M = N1/3 memory space, and D = N1/3 data for
N = 2320+64 = 2384 roughly, we have T = 2256 which is 2121.2 times slower than the new
FCA. Hence, our attack is the best known attack on Sosemanuk so far. More importantly,
it indicates an inefficiency in longer keys than 135 bits and shows that the security margin
of Sosemanuk is only 28 for the 128-bit security for the first time, which is somewhat
contrary to the conclusion of the eSTREAM final report [BCC+08].

Since our work indicates and exploits some link between FCA, LC and LPN solvers, it
is possible that more recent work on LPN solving can be integrated into a FCA framework
and LC. Further, the new FCA framework has its own value in linear cryptanalysis of many
symmetric key primitives as well. It is natural to investigate the immunity of many relevant
symmetric key primitives against the newly evolved LC which includes a code-reduction
procedure in appropriate parameters domain and to provide new provable security bounds
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against the new form of LC.
Organization. This paper is organized as follows. We present the basic conceptions,
notations and a brief review of fast correlation attacks, linear cryptanalysis and the related
solving LPN issues in Section 2. In Section 3, we describe the general idea of the new
algorithm, which will be more formally treated in Section 4 with complexity analysis.
Then, we analyze Sosemanuk in Section 5 before Section 6 concludes the paper with some
future work pointed out.

2 Preliminaries
2.1 Basic Notations
Denote the binary field by GF(2) and its m-dimensional extension field by GF(2m).
Let the usual xor operation be ⊕ and the inner product of two n-dimensional vectors
a = (an−1, · · · , a0) and b = (bn−1, · · · , b0) over GF(2m) is ⟨a, b⟩ :=

⊕n−1
i=0 aibi. We need

the description of linear codes in general.

Definition 1. A [n, k, d] linear code C over GF(2) is a subspace with dimension k of the
vector space GF(2)n, where n is the codeword length, k is the dimension of information
bits and d is the minimum distance between any two codewords or the minimum weight of
a non-zero codeword in C, sometimes we refer to a [n, k] linear code for simplicity.

A [n, k] linear code C is usually described by its generator matrix Gk×n =
(
g0, . . . ,

gn−1
)

with gi (0 ≤ i ≤ n− 1) being the k × 1 column vector of G as

x = (x0, x1, . . . , xn−1) = m ·Gk×n =
(
⟨m, g0⟩, . . . , ⟨m, gn−1⟩

)
,

for all codeword x ∈ C, where m = (m0, m1, . . . , mk−1)1×k is the information vector and
G is a k × n matrix whose rows form a vector space basis for C, i.e., G is of full rank k.
The choice of a basis in the vector space GF(2)n is not unique, thus code C has many
different generator matrices which could be transformed into each other by elementary
row operations in algebra. The systematic form of G is

Gsys =
(

Ik×k, Ak×(n−k)

)
,

where Ik×k is the k × k identity matrix. Note that when Gsys is used to describe code C,
we have xi = mi (0 ≤ i ≤ k− 1) for all codeword x and Gsys yields a permuted equivalent
code. Dual to the generator matrix G, a parity-check matrix H of code C is an (n− k)×n
matrix satisfying ∀x ∈ GF(2)n, x ∈ C ⇔ HxT = 0(n−k)×1, where xT is the transpose of
x. If G has the systematic form as Gsys, we have H =

(
AT , I(n−k)×(n−k)

)
. Besides, the

covering radius of code C is defined as

R(C) = maxv∈GF (2)nminx∈CWH(x⊕ v),

where WH(·) is the hamming weight of the argument. Thus, R is the smallest integer such
that the union of Hamming spheres BR(x) around the codewords of C cover the entire
vector space GF(2)n. We have R(C) = ⌊d−1

2 ⌋ for a type of linear [n, k, d] code C, called
perfect codes as discussed later in section 4.1, where ⌊·⌋ is the floor function. There are
various ways to construct linear codes from known ones, among which the direct sum
construction of linear codes is introduced as follows.

Definition 2. For linear codes C1 = [n1, k1, d1] and C2 = [n2, k2, d2], the direct sum of
C1 and C2 is defined as C1 ∔ C2 = {(x1, x2)|x1 ∈ C1, x2 ∈ C2}. We have C1 ∔ C2 is a new
[n1 + n2, k1 + k2] linear code with radius ⌊d1−1

2 ⌋+ ⌊d2−1
2 ⌋.
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From Definition 2, the direct sum of two known codes is a new linear code constructed
by concatenation, whose basic coding attribute can be determined accordingly.

Next, we will present some relevant facts of Boolean functions. A function f : GF(2)n →
GF(2) is called a Boolean function and a function h = (h1, · · · , hm) : GF(2)n → GF(2)m

when each hi (1 ≤ i ≤ m) is a Boolean function is defined as a m-dimensional vectorial
Boolean function. Let X be a binary random variable, the correlation or bias of X is
c(X) = Pr{X = 0} − Pr{X = 1}. Further, the correlation of a Boolean function f is
defined as c(f) = Pr{f(X) = 0} − Pr{f(X) = 1} with X ∈ GF(2)n uniformly distributed.
Given a vectorial Boolean function h : GF(2)n → GF(2)m, define the distribution ph of
h(X) with X uniformly distributed as ph(a) = #{X∈GF (2)n|h(X)=a}

2n for all a ∈ GF(2)m.
A natural measure of the bias of a distribution over a general alphabet is the Squared
Euclidean Imbalance (SEI) [BJV04], which is also referred to as capacity in [HN10].

Definition 3. The SEI of a distribution ph is ∆(ph) = 2m
∑

a∈GF (2)m(ph(a) − 1
2m )2,

which measures the distance between ph and the uniform distribution over GF (2)m.

SEI is used as a measure of the data complexity in attacks based on linear approx-
imations over GF(2)m. In the bitwise case, we have ∆(ph) = c2(h) when m = 1. It
is a well-known fact that the high-dimensional SEI ∆(ph) will never be less than the
low-dimensional counterpart, but we focus on the case of m = 1 in this paper. Further,
the Walsh-Hadamard Transform plays the central role in linear cryptanalysis/correlation
attacks to reduce the substitution complexity [CJM02].

Definition 4. For a function f : GF(2)n → R, where R is the set of real num-
bers, the Walsh-Hadamard Transform of f at point ω ∈ GF(2n) is defined as f̂(ω) =∑

x∈GF (2n) f(x)(−1)⟨ω,x⟩.

The Walsh-Hadamard Transform of f can be computed efficiently with Fast Walsh-
Hadamard Transform (FWHT), whose time complexity is 2n + n2n with 2n memory, while
the straight forward approach costs 22n time.

2.2 Correlation Attacks, Linear Cryptanalysis and Solving LPN
As stated, correlation attacks [Sie84, MS89] usually exploit the correlation between the
keystream and the linear combinations of several LFSR sequences, which is directly
applicable to memoryless combiners, but can be also generalized to combiners with memory
[Gol96].

In most literature, the core problem is regarded as the decoding of a low-rate linear
code transmitted through a binary channel, usually symmetric (BSC), with a low capacity,
as depicted in Fig.1, where the nonlinearity introduced by the cipher can be typically
represented as the noise from the channel. In Fig.1, the keystream zt is regarded as the
noisy version of the LFSR bit ut and the aim is to reconstruct the original LFSR sequence
from an given keystream segment. Since the seminal work of Meier and Staffelbach in
[MS89] which exploits the low-weight linear relations, called parity-checks, among the
codeword (LFSR) bits, huge efforts have been made to improve the performance and extend
the application scope of fast correlation attacks [CT00, JJ99b, JJ99a, CJM02, ZXM15,
CS91, TIM+18, MG90, MFI02, CJS01].

Linear cryptanalysis (LC) [Mat94] is a known-plaintext attack proposed by Matsui
in 1993 to break DES, but can be seen as a more generic and closely related method to
correlation attacks in symmetric key cryptanalysis. It has played an important role in
block cipher domain, which first looks for bitwise linear approximations of the nonlinear
components with a deviation from 1

2 as much as possible and connect them together to
build some probabilistic linear equations between several input/output bits and the key
material, which can then be used to recover either 1 bit information of the key or part of
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Figure 1: Model for a bitwise fast correlation attack

the last round key by statistical hypothesis test. It is easy to see that the key recovery
routine is not necessarily be confined to the above cases. In general, we can loose the
restrictions and try to establish a probabilistic linear system with the involved key bits as
various variables, which is actually similar to fast correlation attacks [GBM02]. Thus, the
final obstacle in LC is how to solve a noisy linear system over GF(2) as well.

The LPN problem is believed to be hard even given quantum computers, though no
formal reduction from hard lattice problems exists (unlike the case of Learning with Errors
(LWE) problem). Let Berη being the Bernoulli distribution with parameter η, i.e., if a
random variable e ← Berη then Pr[e = 1] = η and Pr[e = 0] = 1 − η (0 < η < 1

2 ), here
instead of giving a more formal definition, we briefly recall the search LPN problem as
follows.

Definition 5. For a secret vector s ∈ GF(2)k, the adversary is given many pairs of the
form (g, ⟨s, g⟩ ⊕ e), where g ∈ GF(2)k is randomly generated and e← Berη, the task of
the adversary is to recover s from the many given pairs.

Hence, if we take the secret vector s in LPN as the key material involved in LC of
block ciphers, or the unknown initial state of the LFSR in correlation attacks on stream
ciphers, then the above three problems actually result in the same mathematical model as
solving a noisy system of linear equations over GF(2) whose bias is determined either by
the linear approximations derived from the primitives or by the LPN oracle, given many
observable noisy values of random linear combinations of the unknown variables, which is
characterized as the data complexity in cryptanalysis.

The technique of covering codes plays an important role in the cryptographic hash
function domain for memoryless near collision detecting [LR11, LMRS12, Leu14] and for
solving LPN [GJL20, ZJW16], whose formal definition is as follows.

Definition 6. Some code C is a covering code if each vector in the vector space GF(2)n is
within a fixed distance RC to some codeword x in C, i.e., ∀v ∈ GF(2)n, ∃ x ∈ C such that
WH(x⊕ v) ≤ RC .

It is easy to see that a covering code provides a partition of the whole vector space
GF(2)n, i.e., each random vector belongs to some Hamming sphere BR(x) around a
codeword of the covering code C. We will resort to this technique in some uniform case
heavily hereafter, i.e., we will prefer to some uniform partition of the whole vector space
when developing the new framework for FCAs.

3 A General Description of the New Algorithm
Fast correlation attacks consist of two phases: the pre-processing phase and the online
decoding phase. For the attacks to be effective, the parity-check equations pre-computed
have to match well with a series of incremental factors. First, they should be able to make
a good use of the given linear correlation, which is crucial for the final complexity. This
issue means that good parity-checks, if appropriately used, can exploit more information
leakage represented by the correlation at a reasonable expense of time/memory/data
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complexities. Second, the parity-checks should be specially tailored for the subsequent
decoding procedure, i.e., the form of the parity-checks is usually determined by the solving
method.

3.1 Sketch of Procedures in Fast Correlation Attacks
We first review the essential procedures used in non-iterative fast correlation attacks. The
starting point is to look at the generator matrix G of the LFSR [N, k] linear code where
N is the length of the codeword and k is the dimension of the information, i.e., the LFSR
length. Let u = (u0, u1, · · · , uN−1), we have

u = (u0, u1, · · · , uk−1) ·G = (u0, u1, · · · , uk−1) ·
(

g0, g1, · · · , gN−1

)
, (1)

where gi = (gi
0, gi

1, · · · , gi
k−1)T is the i-th column vector. Given the model in Fig.1, we

regard the column vectors gi as random vectors over GF(2)k, though they are in fact
algebraically related to each other. This is a reasonable assumption adopted in many
literatures, which provides reliable theoretical results conforming to experiments. The
parity-checks are usually constructed as

v−1⊕
j=0

uij
= (u0, u1, · · · , uk−1) ·

v−1⊕
j=0

gij
=

k1−1⊕
j=0

cjuj ,

where
⊕v−1

j=0 gij
= (c0, c1, · · · , ck1−1, 0, · · · , 0)T with k1 < k. Thus, the parity-checks are

prepared as a linear combination of some LFSR bits, e.g., {uij
}v−1

j=0 and some partial
target bits, i.e., {uj}k1−1

j=0 in the initial state of the LFSR. Once pre-computed, these
linear equations are numerically evaluated on the noisy keystream bit zt to gather the
information leakage for the LFSR bits from this operation. Note that the above procedure
is similar to the BKW collision in LPN solvers [GJL20], and the new noise variable is
e1

1 =
⊕v−1

j=0 eij
with a bias ϵv given Pr{eij

= 0} = 1
2 (1 + ϵ). When the number of the

parity-checks is statistically large enough to demonstrate the folded bias, some prediction
can be made by a majority poll on the target bits in (u0, u1, · · · , uk1−1). The evaluation
of these parity-checks requires a complexity of 2k1N1 if this step is executed in a straight
forward way, where N1 is the cardinality of the parity-checks group on these target bits.
Thanks to FWHT, this evaluation complexity can be reduced to N1 + 2k1k1 to fulfill the
same task, which is detailed in Appendix A. This process can be seen as some decoding
procedure of the newly derived [N1, k1] linear code, which directly gives some partial
information on the initial state of the LFSR in Fig.1. After restoring the first part of
the LFSR initial state, the other parts of the LFSR initial state can be determined in a
similar way with a much lower complexity. The required keystream length and the time
complexity of the whole attack mainly depends on the absolute value of the finally derived
correlation inherent in the decoding of the [N1, k1] linear code.

3.2 New Algorithmic Procedures and their Integration
To facilitate the description of the new algorithmic procedures, we first go back to Figure
1. From Eq.(1), we have

z = (z0, z1, · · · , zN−1) = (u0, u1, · · · , uk−1) ·G⊕ e, (2)

where e = (e0, e1, · · · , eN−1) is the noise vector with Pr{ei = 0} = 1
2 (1 + ϵ) (ϵ > 0).

Gauss Elimination. As in the LPN solvers [GJL20, ZJW16], Gauss elimination can be
adopted here to transform the distribution of the secret initial state (u0, u1, · · · , uk−1) of the
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LFSR into the same distribution as that of the noise variables ei. Precisely, the adversary
first rewrites the matrix G into the systematic form through elementary row operations.
Usually, in the LFSR case, this step is naturally fulfilled as can be seen from Eq.(1), i.e.,
G =

(
Ik×k, Ak×(n−k)

)
. Then define û = (u0, u1, · · · , uk−1)⊕ (z0, z1, · · · , zk−1), now the

adversary can derive that

ẑ = z⊕ (z0, z1, · · · , zk−1) ·G = (01×k, ẑk+1, ẑk+2, · · · , ẑN−1), (3)
= (u0, u1, · · · , uk−1) ·G⊕ e⊕ (z0, z1, · · · , zk−1) ·G
= û ·G⊕ e,

where û = (û0, û1, . . . , ûk−1) is the new initial state whose distribution is Pr(ûi = 0) =
Pr(ei = 0) = 1

2 (1 + ϵ) from 01×k for 0 ≤ i ≤ k − 1. Since (z0, z1, · · · , zk−1) are concrete
values (not random variables) when online and G has the systematic form, the first k bits
of ẑ are all 0s, thus for each ûi (0 ≤ i ≤ k − 1), the event that {ûi = 0} implies the event
that {ei = 0}, which results in the distribution given above. As can be seen, Eq.(3) is
obtained via a pure algebraic transformation, i.e., variable substitution, now the adversary
can analyze the model in Eq.(3) whose secret vector has a biased distribution as the noise
variable to derive information on the original initial state. We believe that the biased
distribution will facilitate the partial exhaustive search of the new initial state with a lower
complexity than the uniform case to a large extent and enlarge the usable parity-checks by
the subsequent decoding.
BKW Collision-reduction. As stated just now, the preparation of parity-checks is very
similar to the BKW collision procedure [BKW00] in LPN solvers, which solves LPN in
sub-exponential time. In fact, the BKW procedure adopts an iterative sort-and-match
procedure on the columns of the involved matrix to iteratively and effectively reduce the
information dimension. We are interested in the reduction phase of the BKW algorithm in
which the adversary iteratively searches for all the combinations of two columns in the
current matrix that xor to zero in the last b bits. Given the k × n matrix G, assume that
we find two columns gi0 and gi1 satisfying

gi0 ⊕ gi1 = (∗, ∗, · · · , ∗, 0, 0, · · · , 0︸ ︷︷ ︸
b

),

where ∗ denotes any value of GF(2), then it is said that gi0 and gi1 belong to the same
partition or equivalence class. The concrete process of BKW reduction is shown in
Algorithm 1 below, where two methods, LF1 and LF2, are described which only differ in
how to merge and choose the columns and t is the number of reduction rounds.

Algorithm 1 BKW Reduction
Input: The matrix G0 = G = [g0, g1, . . . , gn−1], the parameters t and b
Online: Reduction phase in BKW algorithm
1: for i = 1 to t do
2: Partition the columns of Gi−1 according to the last b · i bits

Form pairs of the columns in each partition to obtain Gi

2a: LF1. Partition Gi−1 = V0 ∪ V1 ∪ · · · ∪ V2b−1.
Randomly choose v∗ ∈ Vj as the representative of Vj .
For each v ∈ Vj , v ̸= v∗, Gi = Gi ∪ (v⊕ v∗)

2b: LF2. Partition Gi−1 = V0 ∪ V1 ∪ · · · ∪ V2b−1.
For each pair (v, v′) ∈ Vj , v ̸= v′, Gi = Gi ∪ (v⊕ v′)

Output: The matrix Gt

Note that when we merge the two columns gi0 and gi1 in each iteration, the last b bits of 0
could be ignored in Algorithm 1. There are two routines, LF1 and LF2, involved in BKW
reduction: the spirit of which are the same except the way how we choose and merge the
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selected columns in each partition. LF1 randomly selects one column in each partition as
the representative and then xor it with the remaining columns in Vj ; while LF2 merges all
pairs within the same partition Vj . Thus, LF2 could produce more data samples at the
cost of some increased dependency which can be safely ignored according to experiments
in [GJL20, ZJW16, LF06]. Further, the dependency does not affect the performance of
the subsequent decoding. In some cases, this little dependency will facilitate the statistical
decoding, as here the dependency is statistically linear dependency not the usual algebraic
dependency [GBM02, LZFV13]. To fully exploit the given data samples, we usually take
LF2 in the BKW collision-reduction based on the following fact.

Proposition 1 (Completeness). Given the matrix G, one round of LF2 in BKW collision
reduction can find all pairs of columns in G that xor to 0 in the last b bits.

Depending on the concrete scenario, t ≥ 1 rounds of LF2 may be applied to the matrix
G, as illustrated in Algorithm 1. It is worth noting that the BKW reduction works on
a single list of the columns, i.e., there is no division operation on the matrix columns;
while the method based on the generalized birthday problem in [Wag02] and adopted in
[ZXM15] splits the whole set of columns in G into 2 or 4 sub-lists, which will lose quite
some solutions to the real single-list κ-sum problem when the arguments are from the
same sub-list.
Code-reduction. Another algorithmic procedure is the code-reduction that reduces the
dimension of the secret information without having the piling-up lemma [Mat94] penalty
of the folded noise. Essentially, this procedure rewrites each column of the resultant matrix
Gt from some BKW reduction consisting of several rounds or with different values of v, as
a sum of some codeword in a linear covering code and some sparse vectors easy to use in
distinguishing process. The adversary rearrange these columns according to their nearest
codewords and derive a new smaller linear code [Nc, kc] with kc < k1 in the [N1, k1] linear
code. Assume this procedure starts with some matrix Gt which can be regarded as certain
random linear code, where we simply follow the matrix G as defined in Eq.(3). Precisely,

Gt =
(

I
(t)
k1×k1

, A
(t)
k1×(N1−k1)

)
=

(
I

(t)
k1×k1

, g(t)
k1+1, . . . , g(t)

N1−1

)
(4)

=
(

I
(t)
k1×k1

, ck1+1 ⊕ ēk1+1, . . . , cN1−1 ⊕ ēN1−1

)
,

where gi = ci ⊕ ēi (k1 + 1 ≤ i ≤ N1 − 1) with ci being the nearest codeword from a
[k1, kc, dc] covering code. Thus, it is natural that WH(ēi) ≤ Rc, where Rc = ⌊dc−1

2 ⌋.
Substituting Eq.(4) into Eq.(3), we have

ẑ = û ·G⊕ e = û ·
(

Ik1×k1 , ck1+1 ⊕ ēk1+1, . . . , cN1−1 ⊕ ēN1−1

)
⊕ e, (5)

where for each i ≥ k1 + 1, we have ẑi = ⟨û, (ci ⊕ ēi)⟩ ⊕ ei = ⟨û, ci⟩ ⊕ ⟨û, ēi⟩ ⊕ei. Note
that the term ⟨û, ēi⟩ ⊕ei is the new noise variable introduced from this code-reduction
procedure. Since kc is usually much less than k1 and is controllable by the adversary
to a large extent, the dimension has been reduced a lot at the cost of the above newly
introduced noise variable which may provide some trade-off beyond the piling-up lemma.

Based on the above three algorithmic procedures, by a flexible combination of the
code-reduction with the BKW collision-reduction which is called dimension reduction
hereafter, we can have a new high-level framework for fast correlation attacks as depicted
below.
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Algorithm 2 Improved FCA
Input: A keystream z = (z0, z1, . . . , zk−1, zk, . . . , zN−1)
Online: Recover (partial) LFSR initial state which is consistent with z
1: Apply Gauss elimination to derive the equivalent model in Eq.(3)
2: Select a dimension reduction strategy from Section 4 and

build a new linear code accordingly
3: Decode the new code via FWHT

Output: The partial LFSR initial state involved in the new code

Compared with the previous framework for FCA, e.g., in [ZXM15], which only exploit the
collision reduction to derive the required parity-checks, Algorithm 2 offers new space and
freedom for the adversary to construct the targeted linear code whose decoding will provide
the partial information of the original LFSR initial state. We will enrich the framework in
Algorithm 2 with the corresponding technical details in the next section.

4 New Algorithms Based on Dimension Reduction
4.0.1 Overview.

We first show the overview before we detail the new algorithm. From Eq.(5), we have the
equivalent model that is under consideration. There are some strategies in front of us to
fulfil the dimension reduction task in Step 2 of Algorithm 2, from which we describe two
candidate routines as follows.

• We first construct parity-check equations in the BKW collision reduction or in
the generalized birthday problem [Wag02] manner as shown in Section 3.1, which
are associated with

⊕v−1
j=0 gij

and
⊕v−1

j=0 zij
. Then, the code-reduction procedure

is conducted on the resultant smaller-size random linear code from the previous
dimension reduction, to further lower the dimension of the remaining information
as shown in Section 3.2 and below in details. We do not impose any restrictions on
the number of times that a special reduction method is performed, i.e., it may be
possible that there are not only one time of BKW or code-reduction in this routine
before deriving the final linear code for the retrieval of the partial initial state of
LFSR in Fig.1, which is mainly dependent on the involved parameter domain.

• We first perform the code-reduction procedure on the equivalent model to reduce
the dimension, which may be favorable in some noise/secret information dimension
parameter domain. Similarly, the number of times that the code-reduction conducted
is unnecessarily restricted to one. Then we arrange the BKW reduction on the linear
code by random collisions on the columns of its generator matrix. Again, we can
allow several rounds of BKW reduction after the covering code procedure. The
number of parity-checks constructed is the final code length and the remaining secret
bits constitute the partial state information to be restored from decoding.

Actually, there are also some other combination approaches for the dimension reduction.
For example, we can conceive the alternating routine, i.e., BKW reduction and covering
code reduction are alternatingly executed for a very limited, but deliberately determined
number of times until we reach some complexity trade-off that is better for the adversary
to decode. In the typical parameter domain considered, we will not go into that direction
and the above second direction further. After the dimension reduction, we use FWHT
to get solutions with high correlation. In other words, we evaluate all the parity-check
equations for all the possible values of the remaining information bits and maintain a list
of candidates that have a high ranking according to the FWHT spectrum.
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4.1 Detailed Algorithm
We will describe Algorithm 2 with the first routine, for we usually face the high noise and
high secret dimension parameter domain in cryptanalysis. From the equivalent model after
Gauss elimination, we have ẑ = û ·G⊕ e with Pr(ûi = 0) = 1

2 (1 + ϵ) for 0 ≤ i ≤ k − 1.
In order to have an efficient attack, the method illustrated in Section 3.1 is combined
with a small-scale exhaustive search on the LFSR initial state (û0, û1, . . . , ûk−1), which is
called the parity-checks with memory hereafter. Precisely, for the LFSR of length k, a
small integer number of w bits (ûk−w, . . . , ûk−1) of the initial state are guessed and the
remaining k − w bits (û0, û1, . . . , ûk−w−1) are to be determined later. We first look for
some v-tuple column vectors (gi0 , gi1 , . . . , giv−1) such that

v−1⊕
j=0

ûij = (û0, û1, · · · , ûk−1) ·
v−1⊕
j=0

gij =
k1−1⊕
j=0

cj ûj ⊕
1⊕

j=w

ck−j ûk−j ,

where
⊕v−1

j=0 gij = (c0, c1, · · · , ck1−1, 0, · · · , 0, ∗, . . . , ∗︸ ︷︷ ︸
w

)T with ∗ being an arbitrary value in

GF(2) and k1 < k − w. Accordingly, we have

v−1⊕
j=0

ẑij
= (û0, û1, · · · , ûk−1) ·

v−1⊕
j=0

gij
⊕

v−1⊕
j=0

eij
=

k1−1⊕
j=0

cj ûj ⊕
1⊕

j=w

ck−j ûk−j ⊕
v−1⊕
j=0

eij
,

where Pr{
⊕v−1

j=0 eij
= 0} = 1

2 (1 + ϵt). To simplify the notations, let z′
i =

⊕v−1
j=0 ẑij

⊕⊕1
j=w ck−j ûk−j , g′

i =
⊕v−1

j=0 gij the truncated k1 × 1 column vector and e′
i =

⊕v−1
j=0 eij

and taking the form of g′
i into account, we have

z′
i = (û0, û1, · · · , ûk1−1) · g′

i ⊕ e′
i, (6)

for 0 ≤ i ≤ mv − 1, if we have found mv similar equations like Eq.(6). This means
that we have derived a [mv, k1] linear code with its noisy transmission version {z′

i}
mv−1
i=0 .

The time/memory complexities are 2w ·m
1

1+⌊log v⌋
v v · 2

k−k1
1+⌊log v⌋ and m

1
1+⌊log v⌋
v v · 2

k−k1
1+⌊log v⌋ ,

respectively from Wagner’s k-tree algorithm [Wag02] with the relevant list of size m
1

1+⌊log v⌋
v ·

2
k−k1

1+⌊log v⌋ if the condition mv ≤ 2
k−k1

1+⌊log v⌋ holds. Unlike the original result in [Wag02], there
is a 2w factor in the above time complexity due to the partial exhaustive search of the
initial state of the involved LFSR. Note that we do not need such a factor in the memory
complexity, as the adversary could re-use the same memory stack for all the possible values
of (ûk−w, . . . , ûk−1) by an eraser. On the other hand, we will formally adopt Algorithm
1 of the BKW collision in this setting when v is a small integer like v = 2 or v = 4, for
BKW reduction can make full use of the data samples to generate the parity-checks.

If the code length is N1, then we will have about (N1
2 )

2b parity-checks for one collision-
reduction round. For t collision-reduction rounds, the BKW collision-reduction procedure
can be sped up with a time complexity of

∑t
i=1⌈

N1−ib
f ⌉N1 after a pre-computation of

f2f−1(2f − 2), given 3
2 f · 2f−1(2f − 2) memory by pre-computing some tables of size

around 22f to store the xor of all the possible combinations of two f -bit vectors [ZJW16].
Further, under some parameter settings, we need to optimize the complexity of reading
these pre-computed tables with a constant complexity, which is achieved by dividing some
relatively large value of f into some small factors such that the pre-computed table after
factoring will be of practical size and could be read with a constant complexity. This is a
common assumption in modern cryptanalysis literature that the adversary can read such
small tables (not large tables) with a constant-time complexity. We will illustrate this
issue in more details in Section 5.
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Next, we make the code-reduction on this [mv, k1] linear code. Let z′ = (z′
0, z′

1, · · · ,

z′
mv−1)1×mv

, û = (û0, · · · , ûk1−1)1×k1 , G′ =
(

g′
0, g′

1, · · · , g′
mv−1

)
k1×mv

and e′ = (e′
0, . . . ,

e′
mv−1)1×mv

, first rewrite this code in matrix form as

z′ = û ·G′ ⊕ e′. (7)

Our aim is to construct a [k1, kc] linear code K with covering radius dc to regroup the
columns in G′, i.e., express g′

i = ci ⊕ ēi where ci ∈ K is the nearest codeword to the
random column vector g′

i, i.e., WH(ēi) = WH(g′
i⊕ci) ≤ dc. In the real-world cryptanalysis

setting, the remaining dimension k1 is still of a large size after BKW collision reduction,
e.g., k1 > 100, it is inconvenient to directly select a linear code of such a word length.
Instead, we can build the new desirable linear code from some known good codes according
to some well-understood approach such as the direct sum method, as in Definition 2 and
the following Corollary.

Corollary 1. For l linear codes Ci = [ni, k′
i, di] (1 ≤ i ≤ l), the direct sum of C1 to Cl is

defined as C1 ∔ C2 ∔ · · ·∔ Cl = {(c1, c2, · · · , cl)|xi ∈ Ci, 1 ≤ i ≤ l}. Then C1 ∔ C2 ∔ · · ·∔ Cl

is a new linear code [
∑l

i=1 ni,
∑l

i=1 k′
i ] with the radius

∑l
i=1⌊

di−1
2 ⌋.

From Corollary 1, the new linear code constructed is also a linear code [CHLL05],
which can be characterized by its generator matrix G′

sys =
(

Ikc×kc
, Akc×(k1−kc)

)
and the

corresponding parity-check matrix H =
(

AT , I(k1−kc)×(k1−kc)

)
, where kc =

∑l
i=1 k′

i and
k1 =

∑l
i=1 ni. The operation of regrouping the g′

is according to the constructed linear
code K can be fulfilled by the well-known syndrome-decoding in coding theory.
Syndrome Decoding. The table-based syndrome decoding is a generic method for
decoding linear codes. There are two columns in the prepared table: one stores the
syndrome H · g′T

i and the other is the corresponding minimum-weight error vector. When
decoding, one just computes the syndrome from the received vector, look up the pre-
computed table to find a match and add the corresponding error vector with the received
vector to get the nearest codeword. Coming back to our context, a constant-time accessible
table Tc of 2k1−kc items is pre-computed with each item storing the syndrome H · g′T

i

and its minimum-weight error vector. Then in the online phase, if a concrete syndrome is
computed, the adversary can make a table look-up of the pre-computed table Tc with a
constant complexity, find the corresponding error vector and xor them together to get the
nearest codeword ci. Since we adopt the direct sum construction of covering codes and
each employed code is of practical size, the syndrome table Tc can be assumed as being
accessible with a constant time complexity. Further, we will resort to this table-based
technique heavily in the attack on Sosemanuk in Section 5.2, for which we also build
pre-computed tables of small size which can be read with a constant complexity.

Since we usually build the syndrome-decoding table Tc for linear codes of a practically
small codeword size, e.g., ni ≤ 23, the time complexity of pre-computing these tables
are relatively low and can be negligible compared to those of the other procedures in the
algorithm. Thus, we have

z′
i = ⟨û, ci⟩ ⊕ ⟨û, ēi⟩ ⊕ ei = ⟨û, xiG′

sys⟩ ⊕ ⟨û, ēi⟩ ⊕ ei

= ⟨ûG′T
sys, xi⟩ ⊕ ⟨û, ēi⟩ ⊕ ei.

Let ẽi = ⟨û, ēi⟩ ⊕ ei be the new noise variable whose average bias can be computed as
described below. We rewrite the above equation as

z′
i = ⟨y, xi⟩ ⊕ ⟨û, ēi⟩ ⊕ ei,
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where y = ûG′T
sys is the derived information vector after code-reduction. Although

the code-reduction is not one-to-one invertible, the adversary can still reveal quite some
information of the initial state, please refer to section 5.5 in [GJL20] for this issue.

For the new noise, we first treat the error ei and ⟨û, ēi⟩ as independent noise variable
which can be combined by the piling-up lemma. From the direct sum construction in
Corollary 1, we also regard the error sub-vector ⟨ûj , ēi,j⟩ oriented from different segments
of ci, i.e., ci,j , for 1 ≤ j ≤ l as independent noise variables and we have

⟨û, ēi⟩ =
l⊕

j=1
⟨ûj , ēi,j⟩.

Hence, it suffices to compute the noise introduced from ⟨ûj , ēi,j⟩, and combine them
together as independent variables. In other words, we need to compute the bias ϵj

corresponding to a linear covering code [nj , k′
j , dj ] for 1 ≤ j ≤ l. In general, there are

two ways to fulfill this task. One is to compute the averaged value of bias ϵj which has
already been verified in many experiments including [GJL20]; the other is the bias analysis
conditioned on the partial key information, as in [GJL20], which yields a bit conservative
estimate compared to the experiments and the former. Thus, we select the averaged bias
analysis to deal with ϵj under some reasonable independent assumption, i.e., we adopt the
well-known random code assumption.

Precisely, we have the bias ϵj = 1 − 2Pr{⟨ûj , ēi,j⟩ = 1} and the event ⟨ûj , ēi,j⟩ = 1
means that for the support set of ēi,j , there is an odd number of the coordinate positions
in the corresponding ûj taking the value 1, i.e.,

Pr{⟨ûj , ēi,j⟩ = 1}

=
dc∑

t=1
t&0x1=1

(
nj

t

)
Prt{ût

j · ēt
i,j = 1}(1− Pr{ût

j · ēt
i,j = 1})nj−t

=
dc∑

t=1
t&0x1=1

(
nj

t

)
Prt{ût

j = 1}Pri{ēt
i,j = 1}(1− Pr{ût

j = 1}Pr{ēt
i,j = 1})nj−t,

(8)

where Pr{ût
j · ēt

i,j = 1} = Pr{ût
j = 1}Pr{ēt

i,j = 1} is the probability that at each coordinate
position t,(1 ≤ t ≤ nj), the event ût

j · ēt
i,j = 1 holds for the chosen covering code. It

is known from coding theory that the covering spheres centered at each codeword are
disjoint for perfect codes and all the random vectors distribute among these covering
spheres uniformly, i.e., if the minimum weight of the considered perfect code is dp, then
each random vector of the same bit-length has a distance less than or equal to ⌊dp−1

2 ⌋ to
exactly one codeword.

Algorithm 3 Computing Pr{ēt
i,j = 1} for a fixed position t

Parameter: [nj , k′
j , dj ] code Cj with its parity-check matrix H, t

1: Initialize the array A[nj ] = {0}
2: for each 0 ≤ x ≤ 2nj − 1 do
3: compute the syndrome H · xt

4: decode x into the nearest codeword cx by syndrome-decoding
5: A[x] = x⊕ cx

6: Initialize a counter c = 0
7: for each 0 ≤ x ≤ 2nj − 1 do
8: if A[x]t = 1 then c← c + 1

Output: Pr{ēt
i,j = 1} = c

2nj



96 Improved Fast Correlation Attacks on the Sosemanuk Stream Cipher

Table 1: All the binary perfect codes with the codeword/information length and the
covering radius

Code Codeword Information Covering radius
Hamming 2i − 1 2i − i− 1 1

Repetition 2i + 1 1 i
Golay 23 12 3
{0}i i 0 i
{0, 1}i i i 0

Table 2: Coordinate distribution in the error vector of the Repetition Codes

Repetition Codes
i 2 3 4 5 6 7 8

Pr{ēt
i,j = 1} 5

16
11
32

95
256

193
512

793
2048

1619
4096

26333
65536

It is well-known that there are very limited types of perfect codes in binary domain,
which is listed in Table 1 with the corresponding basic attributes. We need to compute
Pr{ēt

i,j = 1} for each t and for each perfect code in Table 1. Given a code Cj , we have
devised Algorithm 3 to fulfill this task. We have run Algorithm 3 for each perfect code in
Table 1 and found that for a [2i−1, 2i− i−1, 3] Hamming code, we have Pr{ēt

i,j = 1} = 1
2i

for 1 ≤ t ≤ 2i − 1; for the [23, 12, 7] Golay code and each t-th coordinate in the error
vector, we have Pr{ēt

i,j = 1} = 127
1024 . Table 2 shows the relevant value for a repetition code

of some relevant sizes. Accordingly, we can come back to Eq.(8) with the corresponding
probability Pr{ēt

i,j = 1}.
Now given [k1, kc], we need to explicitly configure the direct sum C1 ∔ C2 ∔ · · · ∔ Cl

which will yield the maximized bias after code-reduction. In other words, with a given
Pr{ût

j = 1}, let ϵi
Hamming be the bias of a [2i − 1, 2i − i− 1, 3] Hamming code for such i that

2i − 1 ≤ k1 and 2i − i− 1 ≤ kc, ϵi
Repet be the bias of a [2i + 1, 1, 2i + 1] Repetition code for

such i that 2i + 1 ≤ k1, ϵGolay be the bias of the [23, 12, 7] Golay code, ϵ{0}i be the bias
when substituting the vector with a bit-string of 0 and ϵ{0,1}i be the bias when keeping
the vector as it is. Similarly, let λi

Hamming be the number of identical [2i − 1, 2i − i− 1, 3]
Hamming code in the direct sum C1 ∔C2 ∔ · · ·∔Cl, λi

Repet be the number of [2i+1, 1, 2i+1]
Repetition code, λGolay be the number of the [23, 12, 7] Golay code and λ{0}i , λ{0,1}i be the
relevant numbers of the two trivial codes in the direct sum. Then the optimal configuration
of the direct sum is equivalent to the maximized solution of

max
∑

i:2i−1≤k1
2i−i−1≤kc

λi
Hamming log ϵi

Hamming +
∑

i:2i+1≤k1

λi
Repet log ϵi

Repet

+λGolay log ϵGolay + λ{0}i log ϵ{0}i + λ{0,1}i log ϵ{0,1}i

under the constraint of

∑
i:2i−1≤k1

2i−i−1≤kc

(2i − 1)λi
Hamming +

∑
i:2i+1≤k1

(2i + 1)λi
Repet + 23λGolay + λ{0}i + λ{0,1}i = k1

∑
i:2i−1≤k1

2i−i−1≤kc

(2i − i− 1)λi
Hamming +

∑
i:2i+1≤k1

λi
Repet + 12λGolay + λ{0,1}i = kc.

This is a typical integer linear programming which can be solved efficiently by Sage-
math. Thus, the solution to this linear programming problem will provide us an optimal
configuration of the direct sum construction for the deployed covering codes.
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4.2 Complexity Analysis

Now we present a summary of the theoretical justification of the new framework for fast
correlation attacks in Algorithm 2. Note that some analysis has already been involved
above, here we just put them together in the following Theorem 1. We adopt the finite
field operations such as multiplication with fixed values as the time complexity unit in
this paper. As stated before, the pre-processing phase can be divided into two parts,
i.e., the BKW collision-reduction and the code-reduction. The time complexity of the
code-reduction depends on the involved parameters of the linear covering code, e.g., kl and
kc according to the syndrome-decoding based on some small tables, which can be assumed
as a constant access complexity as explained before. Thus, this part of complexity will not
be dominant at all compared with the time complexities of the other parts of the attack.
We will adopt the sort-and-match routine as described before in Section 3.2 when the
BKW collision-reduction procedure is adopted in Algorithm 2, whose time complexity is
O(N + ( 4·k1·ln 2

ε2 ) · (k + 1− b)) after one-round of BKW reduction, where N is the available
keystream length, k1 is the remaining information bits after the corresponding dimension
reduction step.

Theorem 1. Let εg, εc be the correlations introduced in the BKW collision-reduction and
the code-reduction procedure, respectively. Denote εf = εg · εc, then Algorithm 2 has the
following complexities.

- The time complexity of one-round BKW collision-reduction is O(N + ( 4·k1·ln 2
ε2 ) · (k +

1− b)).

- The online decoding time complexity for recovering the kc-bit part of the LFSR initial
state is O

(
4·kc·ln 2

ε2
f

+ kc2kc

)
. The other bits in the LFSR initial state can be recovered

similarly with a much lower complexity.

- The required length N of the observed keystream segment for Algorithm 2 to have
a non-negligible success probability higher than 0.5 has to satisfy the relation mv =(

N/2b

2
)
· 2b = 4·kc·ln 2

ε2
f

.

Proof. For the complexity of BKW collision-reduction, it suffices to note that the adversary
puts the captured keystream before the first row of the generator matrix G and exploit LF2
to eliminate b bits for the columns. If there is k1 bits left, then from the unique distance
in correlation attacks and linear cryptanalysis [CJS01], we have the remaining number of
columns as 4·k1·ln 2

ε2 . Besides, N is the complexity of sorting in the BKW sort-and-match
partition.

For the online decoding complexity, it suffices to note that now the length of the new
code is 4·kc·ln 2

ε2
f

and from FWHT and the arguments behind Definition 4, we will have the
complexity expression 4·kc·ln 2

ε2
f

+ kc2kc .

For the data complexity N , it suffices to note that
(

N/2b

2
)
· 2b is the expected number

of samples after one round of LF2, which have to meet the requirement of the unique
distance decoding. This completes the proof.

Based on the framework established in this section, we will present an improved fast
correlation attack on Sosemanuk in the next section, in which we will have some further
optimization of the complexity results shown in Theorem 1 based on a delicate usage of
some carefully pre-computed tables.
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5 Application to Sosemanuk
In this section, we will demonstrate a new state recovery attack against Sosemanuk by the
newly developed Algorithm in Section 4.

5.1 Specification of Sosemanuk
Sosemanuk inherits the design spirit of SNOW 2.0, which is depicted in Fig.2. It consists
of three main components, i.e., a LFSR of length 10 with each cell of 32-bit, a Finite State
Machine (FSM) consisting of 2 32-bit words, and a non-linear output function Serpent1
that operates in a bitsliced manner.
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Figure 2: The keystream generation of Sosemanuk

The feedback polynomial of the LFSR is x10 ⊕ x9 ⊕ α−1x3 ⊕ α ∈ GF(232)[x], where
α ∈ GF(232) is a root of the primitive polynomial y4 ⊕ β23y3 ⊕ β245y2 ⊕ β48y ⊕ β239 ∈
GF(28)[y], and β is a root of the polynomial x8 ⊕ x7 ⊕ x5 ⊕ x3 ⊕ 1 ∈ GF(2)[x]. Denote
the LFSR state at time t by (st+9, st+8, · · · , st) for each st+i ∈ GF(232) (0 ≤ i ≤ 9). The
FSM state at time t is denoted by (R1t, R2t). Then the FSM is updated as

R1t = R2t−1 ⊞ (st+1 ⊕ lsb(R1t−1)st+8),
R2t = Trans(R1t−1) ≜ (M ×R1t−1 mod 232)≪7,

where M = 0x54655307 is the constant value in the hexadecimal expression of the first
ten decimals of π and ≪ is the bitwise rotation of a 32-bit word by 7 bits. The FSM has
the output ft = (st+9 ⊞R1t)⊕R2t for each time t. The keystream words are generated as
follows,

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st),

where Serpent1 denotes the fastest Serpent [BAK98] S-box S2 which is applied in a
bitsliced manner and t ≡ 1(mod 4), i.e., four words are output vs 4 LFSR clockings.
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5.2 An Improved Attack on Sosemanuk
According to the theoretical result on keystream generators with memory [Gol96], there
should exist some linear approximation relation between the LFSR bits and the corre-
sponding keystream bits when 2 consecutive steps of the FSM update are considered, e.g.,
t and t + 1. From the description of keystream generation, we have

ft ⊕R2t = st+9 ⊞ Trans−1(R2t+1)
ft+1 ⊕R2t+1 = st+10 ⊞ (R2t ⊞ (st+2 ⊕ atst+9)).

Applying the linear masks, we have

⟨Γ, ft⟩ ⊕ ⟨Γ, R2t⟩ = ⟨Γ, st+9⟩ ⊕ ⟨Γ, R2t+1⟩,
⟨Λ, ft+1⟩ ⊕ ⟨Λ, R2t+1⟩ = ⟨Λ, st+10⟩ ⊕ ⟨Λ, R2t⟩ ⊕ ⟨Λ, st+2⟩ ⊕ ⟨Λat, st+9⟩,

(9)

where at = lsb(R1t) as shown in Fig.2 and Γi, Λi ∈ GF(2)32 are the corresponding linear
masks. If we let Γ = Λ, then we can consider the following associated approximation
relation

⟨Γ, (ft ⊕ ft+1)⟩ ⊕ ⟨Γ, zt⟩ ⊕ ⟨Γ, st⟩ ⊕ ⟨Γ, zt+3⟩ ⊕ ⟨Γ, st+3⟩ = 0, (10)

and atΓ · st+9 = Γ · st+9 which holds with the correlation 1
2 . By the relations Eq.(9) and

Eq.(10), we can derive

⟨Γ, zt⟩ ⊕ ⟨Γ, zt+3⟩ = ⟨Γ, st⟩ ⊕ ⟨Γ, st+2⟩ ⊕ ⟨Γ, st+3⟩ ⊕ ⟨Γ, st+10⟩, (11)

where Γi ∈ GF(2)32 are the corresponding linear masks. We will not go into the search
details of the linear masks making Eq.(11) hold with a large bias, which is actually
similar to the previous work in [LLP08], as our aim is to make a better decoding by the
newly developed framework given some fixed linear correlation, as stated before. When
Γ = 0x03004001, we found this is the best linear mask found so far with a correlation of
2−21.41 for Eq.(11). Based on the framework presented in Algorithm 2, we can mount a
bitwise fast correlation attack on Sosemanuk as follows.

First, we derive the bitwise state transition matrix of the LFSR in Sosemanuk, as
shown in Appendix B and then exploit the LF2 routine in BKW collision-reduction to
find the desirable parity checks, which sort the corresponding query matrix G into 2b

partitions according to the last b bits, thus there are on average N
2b samples in each partition.

There is little dependency introduced by one round of LF2. Fortunately, this problem
has been addressed by several previous papers on fast correlation attacks on non-linearly
filtered keystream generators already. The final conclusion of the previous work is that the
dependency does not affect the performance of the subsequent decoding. In some cases,
this little dependency will facilitate the statistical decoding, as here the dependency is
linear statistical dependency not the usual algebraic dependency. Then from the depiction
of LF2 in Algorithm 1, we can get

mv = 2b

(
N/2b

2

)
for v = 2.

Thus, the correlation ϵg introduced in the BKW collision-reduction procedure is ϵg =
(2−21.41)2 = 2−42.82. By the tuned parameters of the code-length k = 320 and k1 = 185,
we have reduced 135 bits of the secret information. The process is shown in Fig.3 below.

By solving the integer program formulated in Sec.4, we construct a covering code with
the parameters k1 = 185, kc = 127, which are the best parameters we have found through a
exhaustive search over feasible parameter domain in terms of the total time/memory/data
complexities via Sagemath, which can be seen from the accompanying Sagemath codes.
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Figure 3: The description of the adopted BKW collision-reduction

Figure 4: Schematic of the 64-dimensional xor in BKW collision-reduction

By applying the method in Section 4, we have found the following optimal problem for
code-reduction and the corresponding constraint in this phase is

∑
i:2i−1≤185

2i−i−1≤127

(2i − 1)λi
Hamming +

∑
i:2i+1≤185

(2i + 1)λi
Repet + 23λGolay + λ{0}i + λ{0,1}i = 185

∑
i:2i−1≤185

2i−i−1≤127

(2i − i− 1)λi
Hamming +

∑
i:2i+1≤185

λi
Repet + 12λGolay + λ{0,1}i = 127

We have solved the above objective function by SageMath and get the optimal cascaded
perfect codes for the direct sum construction. By concatenating twoH4 = [15, 11] Hamming
codes, oneH6 = [63, 57] Hamming code, and four G = [23, 12] Golay codes, we can construct
a [185, 127] linear code, i.e., the direct sum construction of the covering code C exploited
in Algorithm 2 for Sosemanuk is

C = 2 · H4 ∔ H6 ∔ 4 · G.

For this specified code construction, the bias introduced in the code-reduction phase can
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Figure 5: Detailed schematic of 16-dimensional xor in BKW collision-reduction

be computed as:

εc = bias(15, 11, 1, 1
16 )2 · bias(63, 57, 1, 1

64 ) · bias(23, 12, 3, 127
1024 )4

=

 ∑
0≤i≤1

i & 0x1=1

(15
i

) ( 1
16

)i ·
( 15

16
)15−i

2

·

 ∑
0≤i≤1

i & 0x1=1

(63
i

) ( 1
64

)i ·
( 63

64
)63−i


·

 ∑
0≤i≤3

i & 0x1=1

(23
i

) ( 127
1024

)i ·
( 897

1024
)23−i

4

= 2−19.53215483015486

Hence, the final correlation introduced in both BKW collision-reduction phase and code-
reduction phase is εf = εg · εc = 2−42.82 · 2−19.53 .= 2−62.35.

To optimize the collision-reduction procedure, we will adopt the table-based strategy
to save the sum of 2 columns, each of which has f -dimension. The kc-dimensional xor
is divided into ⌈kc

f ⌉ parts, and we store a table of all possible xors of two f -dimensional
vectors and read it up to ⌈kc

f ⌉ times. Then the computational complexity of this step is
⌈kc

f ⌉ ·mv, and the cost for constructing the relevant table is estimated as f · 2f−1 · (2f − 2)
with the memory complexity 3

2 f2f−1(2f − 2) as in [ZJW16]. As shown in Fig.4 and Fig.5,
if we choose f = 64, then we need to store the table for all the possible xors of the 2
64-dimensional vectors which will not be accessible by a constant complexity in general.
Instead, we proceed as follows to avoid this huge table and frequent reading problem. For
computing the xor of two 64-dimensional vectors, we continue to divide the 64-dimensional
vectors into 4 parts, each of which has a dimension of 16. Similar to accessing the pre-
computed tables, say Table Tc for syndrome-decoding, since the size of such tables is usually
small enough to be loaded into the memory that can be fast accessed by CPU, we adopt the
common assumption in modern cryptanalysis literature that the adversary can read such
small tables with a constant complexity. This is also a common assumption in symmetric
key cryptanalysis. Note that this issue is quite different from the large table access case,
which will have a complexity dependent on the concrete table size. That is why the small
tables we constructed as above can be accessed with a constant complexity. Further, after
BKW collision-reduction procedure, we get about 4·kc·ln2

ε2
f

= 2133.16 parity check equations
and the data complexity is N = 2135. For constructing the pre-computed tables, the time
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Figure 6: The distinguishing effect of the two distributions (correct vs. random) in the
attack on Sosemanuk

complexities is about ⌈k1+1
f ⌉ ·

4kc ln 2
ε2

f

+ f2f−1(2f − 2) = 2134.798 and the computational
complexity of the online decoding phase is 4kc ln 2

ε2
f

+ kc2kc = 2134.634, we can recover the
kc = 127 bits of the initial state of LFSR, the other bits can be recovered with a much
lower complexity. Fig.6 depicts the distinguishing effect of the two involved distribution
between the correct and random wrong candidates when the adversary launches the attack.
Therefore, the final time/memory/data complexities are all below 2134.80, which is about
220 times faster than the previous best result at Asiacrypt 2008 in [LLP08], and the fastest
attack available so far among all known attacks on Sosemanuk. Though the 220 times
complexity reduction is the comprehensive result of several factors such as the 320-bit
LFSR internal state size in Sosemanuk, the 2−21.41 bias of the found linear approximation,
the essential improvement comes from the covering code reduction as can be seen from the
computation of ϵc. By the covering code method, the dimension of the secret information
has been decreased to kc = 127 with a total bias of εf = 2−62.35, which becomes easier
to decode by FWHT. This obviously confirms the advantages of the newly developed
Algorithm 2.

5.3 Experimental Results
We also applied the new framework to a reduced-version of Sosemanuk to check the validity
of our attack. In general, the essential covering code procedure has been successfully
verified not only on the reduced version but also on Sosemanuk itself. The theoretical
prediction of the bias after covering code matches well with the simulation results, which
clearly support the validity of the new framework.

Below is a description of the experimental flow on the reduced version of Sosemanuk,
called s-Sosemanuk. The s-Sosemanuk stream cipher consists of a LFSR of length 5 with
16-bit cells and two 16-bit register words in the FSM part, whose detailed specification is
given in Appendix C. We randomly choose some fixed values for 48 bits of the LFSR initial
state and try to restore the remaining 32-bit state by the attack. First, we run s-Sosemanuk
to generate the keystream {zt} for a randomly generated 80-bit LFSR initial state generated
by AES-128. We generated 228 keystream words, associated with the corresponding LFSR
output sequence {st}, stored in two arrays respectively. The linear approximation with the
largest bias found in experiments is It = Γ · zt⊕Γ · zt+3⊕Γ · st⊕Γ · st+2⊕Γ · st+3⊕Γ · st+4
for t ≥ 0,where Γ = 0x0019 ∈ GF(2)16 and the bias is around ε = 2−3.607. Second, for
each It, we express each st (t > 4) as the linear combination of the LFSR initial state
(s0, s1, s2, s3, s4) according to its feedback polynomial. Now we get the equivalent model
in Eq.(3) with the generator matrix being in the systematic form. Third, we make the
BKW collision-reduction by LF2 and the essential code-reduction to reduce the dimension
of the secret information to kc = 22 bits. We can get k1 = 28, kc = 22 and construct a
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[28, 22] linear code as
C = H2 ∔ H4 ∔ 10 · {0, 1}i,

where k1 denotes the number of information bits after BKW collision-reduction and kc

is the dimension of the employed linear code in code-reduction, i.e., the length of the
remaining secret information. The final correlation is ϵf = (2−3.607)2 ·2−2.345 = 2−9.559.
The bias introduced by covering code are shown in Table 3 for each component perfect
code listed in Table 3.

Table 3: Comparison of the bias introduced by covering code and estimated in theory on
the reduced version of Sosemanuk

Experimental Theoretical Experimental Theoretical
H2 0.425 0.425 H3 0.405 0.403
H4 0.398 0.398 H5 0.396 0.396
H6 0.3946 0.3948 H7 0.3940 0.3938
G 0.0676 0.0665

The results in Table 3 shows that the bias introduced by covering code are well consistent
with the theoretical predictions. Note that the comparison between the experimental and
theoretical results for the covering code has no restriction on the way how the checked
pseudo-random sequence is generated, which means that this code-reduction procedure
can be verified on Sosemanuk itself as well. Then, for each possible value of the kc = 22-bit
partial state, we use FWHT to compute the correlations and get solutions with the high
correlation. We ran the experiments 100 times with different LFSR initial states generated
randomly, and we found that the correct key always ranks in the top 10 in the candidates
list, which clearly verified the theoretical analysis.

Therefore, the experimental results have proved the correctness of the newly developed
method in Algorithm 2 and we can make reliable theoretical analysis when the simulation
is infeasible to execute.

6 Conclusion
In this paper we have presented a new framework for fast correlation attack on stream
ciphers with the integrated algorithmic procedures Gauss elimination, BKW collision-
reduction and code-reduction to efficiently reduce the dimension of the secret information
in the involved LFSR initial state. We further carefully revisit the Sosemanuk stream
cipher, one of the 7 finalists in the eSTREAM project based on the new framework and
have achieved improved and fine-grained cryptanalysis results on it with a time complexity
of 2134.8, which is around 220 times faster than the best previously known results at
Asiacrypt 2008. Our result indicates an inefficiency in longer keys than 135 bits and shows
that the security margin of Sosemanuk is around 28 for the 128-bit security for the first
time, which is somewhat contrary to the official conclusion of the eSTREAM final report
in 2008. A natural future work is to investigate the applicability of the new algorithm to
other related symmetric key ciphers and hard problems such as solving LPN and LWE
algorithms.
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A Details of the FWHT Procedure when Evaluating the
Parity-checks

When the adversary comes to the step of evaluating the resultant parity-checks on the
target bits r = (u0, u1, · · · , uk1−1) with N1 such parity-checks, we can regard this problem
as the decoding of a [N1, k1] linear code of length N1 and dimension k1 with the generator
matrix Ĝ =

(
ĝ0, ĝ1, · · · , ĝN1−1

)
with ĝi being the i-th k1 × 1 column vector. Assume the

resultant keystream is ẑ = r · Ĝ⊕ ẽ′ with ẽ′ being the corresponding 1×N1 noise vector.
Let û = r · Ĝ = (u0, u1, · · · , uN1−1), we introduce an integer-valued function,

h(û′) =
∑

0≤i≤N1−1:û′=ĝT
i

(−1)ẑi ,

for all û′ ∈ GF(2)k1 . We compute the Walsh transform Ĥ of h and then we can get a
2k1-dimensional array storing the correlation indexed by û′, which is

Ĥ(r) =
∑

û′∈GF (2)k1

h(û′)(−1)⟨r,û′⟩ =
N1−1∑
i=0

(−1)ẑi⊕⟨r,ĝT
i ⟩ =

N1−1∑
i=0

(−1)ẑi⊕ui

=
N1−1∑
i=0

(−1)ẽ′
i = Nst −Nus,

where Nst is the number of parity-checks that evaluates to 0 and Nus is the number of
parity-checks that evaluates to 1. Note that we can make a ranking of the candidates
according to the Walsh spectrum Ĥ(r) and take r = rmax with the highest maxr∈GF (2)k1

Ĥ(r). In cryptanalysis, the adversary could take a list of candidates that rank in the top
to assure a good success probability. Since the preparation of the function h takes time
N1 and the time complexity for computing Ĥ is k1 · 2k1 with a memory complexity of
2k1 , the final time complexity of FWHT is N1 + k12k1 . Please refer to [BGM06] for more
information.

B Binary State Transition Matrix of the LFSR over GF(232)
in Sosemanuk

Sosemanuk uses multiplications and divisions of elements in GF(232) by α, which is the
root of the primitive polynomial over GF(28)[x]. Multiplication of z ∈ GF(232) by α
corresponds to a left shift by 8 bits of z, followed by an xor with a 32-bit value which
depends only on the most significant byte of z. Thus we can change the LFSR recurrence
from GF(232) to GF(2), and derive the binary generator matrix G accordingly.

Precisely, from the feedback polynomial of the LFSR in Sosemanuk x10⊕ x9⊕α−1x3⊕
α ∈ GF(232)[x], where α ∈ GF(232) is a root of the primitive polynomial y4 ⊕ β23y3⊕
β245y2 ⊕ β48y⊕ β239 ∈ GF(28)[y] and β is a root of the polynomial x8 ⊕ x7 ⊕ x5 ⊕ x3 ⊕ 1
∈ GF(2)[x], we have

st+10 = st+9 ⊕ α−1st+3 ⊕ αst.
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Thus, it suffices to represent the multiplication α−1st+3 and αst in GF(2) form. We will
first look at α · st. Without loss of generality, let us represent the relation as x = α · y,
where x = (x31, x30, · · · , x0) and y = (y31, y30, · · · , y0) with xi and yi belong to GF(2).
First we have

α4 = β23α3 ⊕ β245α2 ⊕ β48α⊕ β239

and rewrite x as x = x3α3⊕x2α2⊕x1α⊕x0 based on the polynomial basis {α3, α2, α1, 1},
where x3 = (x31, · · · , x24), x2 = (x23, · · · , x16), x1 = (x15, · · · , x8) and x0 = (x7, · · · , x0).
We can further represent each byte xi = (x8i+7, · · · , x8i) for 0 ≤ i ≤ 3 based on the
polynomial basis of {β7, β6, β5, β4, β3, β2, β1, 1}. Finally, we get

x31 = y26 ⊕ y24 ⊕ y23,
x30 = y31 ⊕ y26 ⊕ y25 ⊕ y24 ⊕ y22,
x29 = y30 ⊕ y25 ⊕ y24 ⊕ y21,
x28 = y31 ⊕ y29 ⊕ y26 ⊕ y20,
x27 = y30 ⊕ y28 ⊕ y25 ⊕ y19,
x26 = y29 ⊕ y27 ⊕ y26 ⊕ y18,
x25 = y28 ⊕ y26 ⊕ y25 ⊕ y17,
x24 = y27 ⊕ y25 ⊕ y24 ⊕ y16,
x23 = y30 ⊕ y28 ⊕ y27 ⊕ y26 ⊕ y25 ⊕ y24 ⊕ y15,
x22 = y30 ⊕ y29 ⊕ y28 ⊕ y14,
x21 = y31 ⊕ y29 ⊕ y28 ⊕ y27 ⊕ y13,
x20 = y31 ⊕ y25 ⊕ y24 ⊕ y12,
x19 = y30 ⊕ y24 ⊕ y11,
x18 = y31 ⊕ y30 ⊕ y29 ⊕ y28 ⊕ y27 ⊕ y26 ⊕ y25 ⊕ y24 ⊕ y10,
x17 = y30 ⊕ y29 ⊕ y28 ⊕ y27 ⊕ y26 ⊕ y25 ⊕ y24 ⊕ y9,
x16 = y31 ⊕ y29 ⊕ y28 ⊕ y27 ⊕ y26 ⊕ y25 ⊕ y24 ⊕ y8,
x15 = y31 ⊕ y27 ⊕ y24 ⊕ y7,
x14 = y30 ⊕ y27 ⊕ y26 ⊕ y24 ⊕ y6,
x13 = y29 ⊕ y26 ⊕ y25 ⊕ y5,
x12 = y28 ⊕ y27 ⊕ y25 ⊕ y4,
x11 = y31 ⊕ y27 ⊕ y26 ⊕ y24 ⊕ y3,
x10 = y30 ⊕ y27 ⊕ y26 ⊕ y25 ⊕ y24 ⊕ y2,
x9 = y29 ⊕ y26 ⊕ y25 ⊕ y24 ⊕ y1,
x8 = y28 ⊕ y25 ⊕ y24 ⊕ y0,
x7 = y31 ⊕ y30 ⊕ y29 ⊕ y28 ⊕ y27,
x6 = y26,
x5 = y25,
x4 = y31 ⊕ y30 ⊕ y29 ⊕ y28 ⊕ y27 ⊕ y24,
x3 = y30 ⊕ y29 ⊕ y28 ⊕ y27 ⊕ y26,
x2 = y31 ⊕ y30 ⊕ y26 ⊕ y25,
x1 = y31 ⊕ y30 ⊕ y29 ⊕ y25 ⊕ y24,
x0 = y31 ⊕ y30 ⊕ y29 ⊕ y28 ⊕ y24,

which is the bitwise representation of x = α · y. Similarly for x = α−1 · y, from

α−1 = β16α3 ⊕ β39α2 ⊕ β6α⊕ β64,

we can get

x31 = y7 ⊕ y6 ⊕ y3,
x30 = y7 ⊕ y5 ⊕ y3 ⊕ y2,
x29 = y7 ⊕ y6 ⊕ y4 ⊕ y2 ⊕ y1,
x28 = y5 ⊕ y1 ⊕ y0,
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x27 = y4 ⊕ y0,
x26 = y6,
x25 = y5,
x24 = y7 ⊕ y4 ⊕ y1,
x23 = y31 ⊕ y7 ⊕ y6 ⊕ y4,
x22 = y30 ⊕ y5 ⊕ y4 ⊕ y3,
x21 = y29 ⊕ y4 ⊕ y3 ⊕ y2,
x20 = y28 ⊕ y6 ⊕ y4 ⊕ y31 ⊕ y2 ⊕ y1,
x19 = y27 ⊕ y7 ⊕ y5 ⊕ y3 ⊕ y2 ⊕ y1 ⊕ y0,
x18 = y26 ⊕ y7 ⊕ y2 ⊕ y1 ⊕ y0,
x17 = y25 ⊕ y6 ⊕ y1 ⊕ y0,
x16 = y24 ⊕ y7 ⊕ y5 ⊕ y0,
x15 = y23 ⊕ y6 ⊕ y5 ⊕ y3 ⊕ y2 ⊕ y1,
x14 = y22 ⊕ y6 ⊕ y4 ⊕ y3 ⊕ y0,
x13 = y21 ⊕ y5 ⊕ y3 ⊕ y0,
x12 = y20 ⊕ y6 ⊕ y5 ⊕ y4 ⊕ y3,
x11 = y19 ⊕ y5 ⊕ y4 ⊕ y3 ⊕ y2,
x10 = y18 ⊕ y6 ⊕ y5 ⊕ y4,
x9 = y17 ⊕ y7 ⊕ y5 ⊕ y4 ⊕ y3,
x8 = y16 ⊕ y7 ⊕ y6 ⊕ y4 ⊕ y2,
x7 = y15 ⊕ y6 ⊕ y3 ⊕ y0,
x6 = y14 ⊕ y6 ⊕ y5 ⊕ y3 ⊕ y2 ⊕ y0,
x5 = y13 ⊕ y7 ⊕ y5 ⊕ y4 ⊕ y2 ⊕ y1,
x4 = y12 ⊕ y4 ⊕ y1,
x3 = y11 ⊕ y3 ⊕ y0,
x2 = y10 ⊕ y6 ⊕ y3 ⊕ y2 ⊕ y0,
x1 = y9 ⊕ y5 ⊕ y2 ⊕ y1,
x0 = y8 ⊕ y7 ⊕ y4 ⊕ y1 ⊕ y0,

which is the bitwise representation of x = α−1 · y. We have made experiments to
check the correctness of the above relations and have got the confirmed results. With
these bitwise representations, we can rewrite the state transition matrix of the LFSR in
Sosemanuk as shown in Eq.(12):



I32×32

0160×32

A−1

064×32

A

I288×288

032×288


, (12)

where Ii×i for i = 32, 128 is the identity matrix of size i×i, 0i×j for (i, j) = (160, 32), (64, 32),
(32, 288) are the sub-matrices of size i× j and the sub-matrices denoted by A associated
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with α and by A−1 associated with α−1 are depicted below.

A =



0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1
0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1
0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1
0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0
1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0
0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0
1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0



A−1 =



0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1
1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0
0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1



.
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C A Reduced Version of Sosemanuk
The LFSR consists of 5 cells and each cell is a 16-bit word in GF(216). The feedback
polynomial of the LFSR is π(x) = αx5 ⊕ α−1x3 ⊕ x2 ⊕ 1 ∈ GF(216)[x], where α is a root
of the primitive polynomial x4 ⊕ β10x3 ⊕ β6x2 ⊕ x ⊕ β11 and β is a root of x4 ⊕ x ⊕ 1
∈ GF(2)[x]. The FSM has two 16-bit memory registers R1 and R2 updated as

R1t = R2t−1 ⊞ (st+1 ⊕ lsb(R1t−1)st+3),
R2t = Trans(R1t−1) ≜ (M ×R1t−1 mod 216)≪7,

where M = 0x0021 is the constant value in the hexadecimal expression and ≪ is the
bitwise rotation of a 16-bit word by 7 bits. The FSM has the output ft = (st+4 ⊞ R1t)
⊕R2t for each time t. The generated keystream is zt = ft ⊕ st.
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