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Abstract. This paper presents new generic attacks on Feistel ciphers that incorporate
the key addition at the input of the non-invertible round function only. This feature
leads to a specific vulnerability that can be exploited using multidimensional linear
cryptanalysis. More specifically, our approach involves using key-independent linear
trails so that the distribution of a combination of the plaintext and ciphertext can
be computed. This makes it possible to use the likelihood-ratio test as opposed to
the χ2 test. We provide theoretical estimates of the cost of our generic attacks and
verify these experimentally by applying the attacks to CAST-128 and LOKI91. The
theoretical and experimental findings demonstrate that the proposed attacks lead to
significant reductions in data-complexity in several interesting cases.
Keywords: Multidimensional linear cryptanalysis · Likelihood-ratio test · Generic
attack · Feistel ciphers · CAST-128 · LOKI91

1 Introduction
Linear cryptanalysis, proposed by Matsui [Mat94], is one of the most general methods in
cryptanalysis. It relies on probabilistic linear approximations, which are linear relations
between a cipher’s input and output bits. A traditional linear key recovery attack recovers
information about a cipher’s key using only one linear approximation. Matsui proposed
two methods: Algorithm 1 and Algorithm 2. Algorithm 1 extracts one bit of information
about the secret key, whereas Algorithm 2 can recover multiple key bits.

Matsui’s attack was extended significantly by later work. One improvement is to use
many linear approximations simultaneously, known as multiple linear cryptanalysis. Kaliski
and Robshaw [KR94] used several linear approximations to reduce the data-complexity of
Matsui’s algorithms. Biryukov, De Cannière, and Quisquater [BDCQ04] later analyzed
the complexity of extracting several key bits with generalized versions of Algorithm 1
and Algorithm 2. Hermelin et al. [HCN08, HCN09, HCN19] introduced multidimensional
linear cryptanalysis as a special case of multiple linear cryptanalysis where the masks form
a vector space. The latter property leads to an equivalent description of the distinguisher
in terms of the non-uniformity of the probability distribution of a combination of the
plaintext and ciphertext.

One difficulty in multidimensional linear cryptanalysis is the key-dependence of the
signs of trail correlations, leading to incomplete knowledge about the aforementioned
probability distribution. A potential solution is to guess the correlation signs, but this
often requires guessing too many key bits. Alternatively, Vaudenay proposed the Chi-
squared (χ2) test [Vau96] to test for non-uniformity instead of a specific distribution. In
the case of known signs and therefore known probability distributions, the likelihood-ratio
test [BJV04] was proposed as an optimal distinguisher. Indeed, compared to the case with
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unknown signs, the data-complexity in the case with known signs is lower by a factor equal
to the square root of the number of approximations.

The Feistel structure is a well-known and widely analyzed design pattern for block
ciphers. Hence, there is considerable interest in determining the minimal number of rounds
to ensure the security of a Feistel cipher. Patarin proposed generic attacks on Feistel ciphers
in a series of papers [Pat92, Pat01, Pat04] and these results were summarized in 2017 by
Nachef et al. in [NPV17]. Several papers also focus on special cases of the generic Feistel
construction. In this paper, we focus on Feistel ciphers that incorporate key addition at
the input of the round function, as shown in Figure 1. Isobe and Shibutani [IS13a, IS13b]
propose generic key-recovery attacks using an enhanced meet-in-the-middle approach on
such Feistel ciphers.

F1

k1

F2

k2

Figure 1: Two-round Feistel cipher with key additions at the input of the round function.

The block ciphers CAST-128 and LOKI91 are examples of Feistel ciphers that follow
the structure shown in Figure 1. They have been extensively analyzed, as seen in Table 2
and Table 3. Isobe and Shibutani [IS13b, IS13a] applied their generic attacks to 7 and 8
rounds of CAST128. The first linear attack on reduced-round CAST-128 was proposed
by Nakahara et al. [JR07]. With 237 known plaintexts, their attack recovers 37 subkey
bits for 4-round CAST-128. Wang et al. [WWH09] then gave a known-plaintext attack on
6-round CAST-128 using 253.96 plaintexts as well as a ciphertext-only attack on 4-round
CAST-128 using 233.38 ciphertexts. The first linear cryptanalysis on LOKI91 was carried
out by Tokita et al. [TSM95]. The authors evaluated reduced-round versions of LOKI91
and retrieved 13 key bits for 4-round LOKI91 using 223 known plaintexts. Knudsen et al.
improved these results by using multiple non-linear approximations [KR96]. Their analysis
showed that seven more bits can be retrieved using less than a quarter of the plaintexts
required in [TSM95]. Lastly, Sakurai et al. [SF97] introduced a technique to enhance the
linear cryptanalysis method and applied this technique to improve existing attacks on
LOKI91. According to [SF97], breaking 4-round LOKI91 with 218.51 known plaintexts is
possible. In previous works, other reduced round versions of LOKI91 were also attacked,
as shown in Table 3.

Contribution In this work, we use key-independent multidimensional linear approxima-
tions to reduce the data-complexity of linear attacks on Feistel ciphers that add round
keys before the round function as in Figure 1. Our approach leads to new generic attacks,
as well as new concrete attacks on the ciphers CAST-128 and LOKI91.

The multidimensional linear property is turned into a distinguisher using the likelihood-
ratio test. We also investigate the χ2 test to highlight the difference between both
methods. For r ≥ 2 rounds, the data-complexities of the generic χ2 and likelihood-ratio
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Table 1: Comparison of generic attacks on r-round Feistel ciphers of the type shown in
Figure 1 with block size 2n and key length k. All work efforts and data-complexities are
given up to constant factors. All distinguishers are in the known-plaintext model.

Types k r Data Ref. Work effort

Distinguisher†

2 2n/2 [NPV17] 2n/2

1 Section 3 1

3 2n/2 [NPV17] 2n/2

1 Section 3 1

4 2n [NPV17] 2n

2n Section 3 2n

5 23n/2 [NPV17] 23n/2

2n Section 3 2n

6 22n [NPV17] 22n

22n Section 3 22n

7 23n [NPV17] 23n

22n Section 3 22n

Key
recovery

2n

4 1 [IS13b] 2n

1 Section 5.1 2n

5 2n/2 [IS13b] 2n

6 2n [IS13a] 23n/2

2n Section 5.1 n2n

4n

4 1 [IS13b] 2n

1 Section 5.1 2n

5 2n/2 [IS13b] 2n

1 Section 5.1 22n

6 1 Section 5.1 23n

2n Section 5.1 n2n

7 2n [IS13a] 23n/2

2n Section 5.1 n22n

8 1 [IS13b] 23n

2n Section 5.1 n23n

9 25n/6 [IS13b] 23n

† Only distinguishers in the known-plaintext model are listed.
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Table 2: Key recovery results of r-round CAST-128.
r PS Data Ref. Work effort
3 1† 237 [JR07] 291

4 1† 233.38 [WWH09] 291

1 25.80 Section 5.2 237

5 1 26.80 Section 5.2 274

6
1† 253.96 [WWH09] 291

1 27.39 Section 5.2 2118.39

1 235 Section 5.2 240

7 1 6 [IS13a] 2114

1 235 Section 5.2 277

8 1 8 [IS13b] 2118

1 235 Section 5.2 2114

† Derived from Matsui’s estimate [Mat94].

Table 3: Key recovery results of r-round LOKI91.
r PS Data Ref. Work effort

4

0.90 221.77 [KR96] 249

0.86 220.86 [KR96] 244

‡ 218.51 [SF97] 240

1† 219.60 [TSM95] 251

1 25.55 Section 5.2 237

5 1† 223.20 [TSM95] 251

6
1† 231.70 [TSM95] 251

‡ 227.58 [SF97] 240

0.90 223 Section 5.2 237

7

1† 240.10 [TSM95] 251

0.90* 239.21 [KR96] 251

0.86* 237.88 [KR96] 244

‡ 236.67 [SF97] 240

9 1† 249.80 [TSM95] 251

‡ 245.74 [SF97] 245.74

10

1† 258.30 [TSM95] 251

0.90* 257.21 [KR96] 251

0.86* 255.88 [KR96] 244

‡ 254.83 [SF97] 254.83

* Extrapolated from experimental results.
† Derived from Matsui’s estimate [Mat94].

‡ Not explicitly provided.
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distinguishers are O(2n⌊r/2⌋−n/2) and O(2n⌊r/2⌋−n) respectively, with 2n the block size.
The data-complexities obtained using the likelihood-ratio test are comparable to the
best-known attacks on generic Feistel ciphers, which are also the best-known results on
Feistel ciphers of the type shown in Figure 1 without guessing round keys1. However, our
approach yields known-plaintext distinguishers, whereas previous work relies on chosen
plaintexts or adaptively chosen ciphertexts. This is particularly useful when extending
these distinguishers to key-recovery attacks. As shown in Table 1, our distinguishers
improve over previous work in the known-plaintext model.

Moreover, we propose generic key-recovery attacks that combine the multidimensional
linear distinguisher with two key-recovery methods: the naive approach and a variant of
the Fast-Fourier transform method [CSQ07]. As can be seen in Table 1, our key-recovery
attacks improve over previous work in some – but not all – cases. In particular, when
the key is more than twice as long as the block length, the meet-in-the-middle attacks of
[IS13a, IS13b] usually perform better. However, our approach is beneficial for shorter key
lengths and leads to the best-known attack on six rounds.

Finally, we apply our attacks to CAST-128 and LOKI91 and support our analysis
with experimental results. Key-recovery results are presented in Table 2 and Table 3.
Our findings show that we can distinguish 3- and 5-round CAST-128 with improved data
and time complexities compared to prior dedicated attacks. Indeed, the likelihood-ratio
distinguisher for 5-round CAST-128 requires fewer plaintexts than the dedicated 3-round
distinguisher presented in [JR07]. Moreover, we enhanced the time and data-complexities
of existing key recovery attacks on 4-, 5- and 6-round CAST-128. For 7- and 8-round
CAST-128, we also have an improvement in time complexities. Note that this is despite the
fact that the meet-in-the-middle attack from [IS13a, IS13b] is generically better for these
parameters. The reason is that each round of CAST-128 involves five additional key bits
that control a secret rotation. Previous studies on LOKI91 have primarily focused on key
recovery. Our key recovery results demonstrate a notable improvement over the previous
findings on 4- and 6-round LOKI91 regarding data and time complexities. However, as
the number of rounds increases, better linear attacks on LOKI91 are available. This is
because our generic linear trails are suboptimal for many rounds of LOKI91.

2 Preliminaries
Standard linear cryptanalysis relies on probabilistic linear approximations, which are linear
relations between a cipher’s input and output bits. In linear cryptanalysis, one attempts
to find appropriate linear approximations with high absolute correlations. A vectorial
Boolean function F : Fm

2 → Fn
2 maps a binary vector of length m to a vector of length

n. A function F : Fn
2 → Fn

2 is called iterative if there are r vectorial Boolean functions
such that F = Fr ◦Fr−1 ◦ · · · ◦F1. The correlation matrix of the function Fi is denoted by
CFi [DGV95], which is a 2n × 2n matrix with coordinates

CFi
v,u = C(vT Fi(x) + uT x) = 1

2n

∑
x∈Fn

2

(−1)vT Fi(x)+uT x (1)

for each input mask u ∈ Fn
2 and output mask v ∈ Fn

2 .
To analyze the linear approximations of iterative functions, we need to specify the

input and output mask for each round function: a tuple of r + 1 masks αi such that
(α1, α2, · · · , αr+1), is called a linear trail. Hence, the ith round function has the input
mask αi and output mask αi+1. Then, the correlation of the trail can be obtained by

1This can be formalized by allowing the key to be randomized between queries.
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multiplying correlations of the individual functions Fi:

CF =
r∏

i=1
CFi . (2)

The correlation of a linear approximation can be obtained by summing the correlations of
all linear trails that share the same input and output masks as the approximation

CF
αr+1,α1

=
∑

α2,··· ,αr

r∏
i=1

CFi
αi+1,αi

. (3)

Thus, the piling-up lemma [Mat94] is valid when a single trail is dominant, which means
the correlation is approximately equal to the correlation of the dominant trail.

In the case of the key-alternating cipher, the round functions are parameterized by
round keys such that Fi(x) = G(x)⊕ ki. Then, we have

CF
αr+1,α1

=
∑

α2,...,αr

r∏
i=1

(−1)αT
i+1kiCG

αi+1,αi
. (4)

In other words, the key only affects the signs of the trail correlations. Multidimensional
linear cryptanalysis involves multiple linear approximations whose respective masks col-
lectively form a vector space. Multidimensional linear approximations hold particular
significance as they are associated with distinguishers that rely on the probability distri-
bution of linear projections of plaintext and ciphertext. The key theoretical consequence
of multidimensional linear cryptanalysis is Theorem 1, known as the Poisson summation
formula in Fourier analysis. In [HCN08], authors discuss the idea of Theorem 1, but it is
presented in a different manner that requires a change-of-basis.

Theorem 1 (Theorem 4.1. [Bey21]). Let z be a random variable on Fd
2, V ⊆ Fd

2 a vector
space and V ⊥ an orthogonal complement of the subspace V . For any η ∈ Fd

2 it holds that

p(η) = Pr(z = η mod V ⊥) = 1
|V |

∑
v∈V

(−1)vT ηC(vT z)

where C(vT z) = 2 Pr[vT z = 0]− 1 is the correlation of vT z.

2.1 Statistical hypothesis testing
A statistical hypothesis test [NP92] aims to determine the extent to which the observed
data support a given hypothesis. This involves formulating two opposing hypotheses,
namely the null hypothesis and the alternative hypothesis:

null hypothesis H0 : data comes from the real primitive
alternative hypothesis H1 : data comes from an ideal primitive

(5)

The acceptance region A is a range of test statistic values that support the null
hypothesis. If the test statistic treal (t when interacting with the real cipher) falls within
this range, then the null hypothesis is accepted; otherwise, the null hypothesis is rejected
in favor of the alternative hypothesis. The success probability PS represents the proportion
of correctly identified positive instances in a hypothesis test, while the false positive rate
PF is the fraction of negative cases inaccurately identified as positive. Adversaries aim to
maximize Adv, which is defined as Adv = |PS − PF|.

In statistics, several hypothesis testing methods are available, each presenting unique
strengths and weaknesses. The data-complexity for given PS and PF of a distinguishing
attack depends on the statistical test employed, such as the χ2 and the likelihood-ratio
tests.
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2.2 Multidimensional linear distinguisher
The objective of a cryptanalyst is to present a distinguisher and/or to retrieve the crypto-
graphic key. The distinguisher operates by estimating the correlation of the approximation
using q pairs of known plaintext and ciphertext. Given a function F : Fm

2 → Fn
2 , Theorem 1

can be applied to the case where z = (x, F (x)) is a random variable, with x uniformly
distributed on Fm

2 and Λ a vector space of mask pairs. In other words, if we know the corre-
lations CF

v,u for approximations (v, u) ∈ Λ including their signs, we can fully determine the
probability distribution of linear projections of the plaintext and ciphertext. Consequently,
we have

Pr
(
(x, F (x)) = (t1, t2) mod Λ⊥)

= 1
|Λ|

∑
(u,v)∈Λ

(−1)uT t1+vT t2CF
v,u. (6)

The required amount of data q for the distinguisher can be estimated, by choosing q
large enough to ensure that the distributions of treal and tideal exhibit a significant difference
in means. For a successful attack, the data-complexity should be large enough to ensure the
inequality µreal−µideal ≫ σideal. However, the values of µ and σ are subject to change based
on the statistical test, leading to different data complexities. Evaluating the inequality
for both known and unknown sign cases reveals that the data complexities of both cases
are inversely proportional to the capacity of the multidimensional linear approximation
Λ over the function F : Fm

2 → Fn
2 , which is defined as Cap(Λ) =

∑
(u,v)∈Λ (CF

v,u)2. In
the case of unknown correlation signs, precise probability distribution estimation requires
guessing. To mitigate this challenge, Vaudenay [Vau96] proposed using the χ2 test to detect
non-uniformity rather than a specific distribution. In this case, the rough data-complexity
of the multidimensional distinguisher is q ≈

√
|Λ|/Cap(Λ). On the other hand, the exact

probability distribution can be obtained if correlations are known. For this case, Vaudenay
et al. [BJV04] have proposed the likelihood-ratio test as an optimal distinguisher, effectively
employed when two distributions are known. The rough data-complexity of the known sign
case is q ≈ 1/Cap(Λ). Thus, the data-complexity in the case with known signs is lower by
a factor equal to the square root of the number of approximations of the data-complexity
of the case with unknown signs.

In the standard linear cryptanalysis, the data-complexity is inversely proportional
to the squared correlation of a single approximation. Therefore, the known sign case of
multidimensional linear cryptanalysis implies a significant reduction in data-complexity
compared to the unknown sign case and standard linear cryptanalysis.

3 Generic multidimensional linear distinguishers
This section presents the multidimensional linear distinguisher that the key-recovery
attacks in Section 5 rely on. As discussed in the introduction, our attacks are applicable
to Feistel ciphers with round functions of the form x 7→ Fi(x + ki). The analysis in
this section is generic, i.e. we assume that the public functions F1, F2, . . . , Fr have been
chosen independently and uniformly at random. Particular aspects for the concrete ciphers
CAST-128 and LOKI91 will be investigated in Section 4.

Equation (4) shows that the signs of the correlations of linear trails in a key-alternating
cipher with independent round keys all depend on the key. However, as illustrated by
the linear trail in Figure 2, trails with a key-independent correlation can exist in Feistel
ciphers even if round keys are independent. Although the existence of such trails is of little
consequence in ordinary linear cryptanalysis, it can be exploited to significantly reduce
the data-complexity of multidimensional linear attacks.

To determine the correlation of the iterative trail in Figure 2, we use the following result
due to Daemen and Rijmen [DR07]. The formulation in Theorem 2 is due to [Bey21].
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Figure 2: Two-round linear trail for a Feistel cipher with key-independent correlation.

Theorem 2 (Theorem 3.1. [Bey21]). Let c be the correlation of a nontrivial linear
approximation for a uniform random function F : Fn

2 → Fn
2 . The random variable

2n−1(c+1) follows a binomial distribution with mean 2n−1 and variance 2n−2. In particular,
as n approaches infinity, the distribution of 2n/2c converges to the standard normal
distribution N (0, 1).

Let ci be the correlation of the linear approximation with input mask zero and output
mask u over the (uniformly random) function F2i−1. By Theorem 2, this is a random
variable with an asymptotically normal distribution centered around zero and with standard
deviation 2−n/2. Since the trail in Figure 2 only activates the functions in odd-numbered
rounds, its correlation for r ≥ 2 rounds is equal to

cu =
⌊r/2⌋∏
i=1

ci .

Note that, in the expression above, we round down r/2 since if r is odd, one can choose the
input mask equal to (0, u) to skip the first round. This is also a good approximation for
correlation of the corresponding r-round linear approximation, since the trail in Figure 2
is dominant. Since the random variables are independent by the strong assumption
that the random functions F1, . . . , Fr are independent, the variance of cu is equal to
E

(
c2

u

)
= 2−⌊r/2⌋n.

A multidimensional linear distinguisher can be set up by simultaneously working with
all possible masks u. Specifically, the vector space of input-output mask pairs is equal to

Λ =
{(

(u, 0), (u, 0)
)
| u ∈ Fn

2

}
.

As explained in Section 2.2, the correlations of the linear approximations in Λ completely
determine the distribution of (x, F (x)) mod Λ⊥ with uniform random x and F the r-round
Feistel cipher. Note that for odd r, the value (x, F (x)) mod Λ⊥ is equal to the sum of the
right half of the plaintext x and the left half of the ciphertext F (x). To implement this
multidimensional distinguisher, one can estimate the empirical distribution of (x, F (x))
mod Λ⊥ by sampling plaintext-ciphertext pairs and observing the number of occurrences
for each value of the sum of the left halves (assuming r is even) of the plaintext and
ciphertext.

As discussed in Section 2.2, the data-complexity of multidimensional linear distinguish-
ers depends on the sum of the squared correlations of the approximations in Λ. The same
is true in particular for the distinguishers we present in Sections 3.1 and 3.2. The sum
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of the squared correlations is well approximated by the sum of the squares of the trail
correlations, which can be calculated in time O(n2n) given the round functions F1, . . . , Fr.
Additional details will be given in Section 4. In the generic case, the sum of squared
correlation is a random variable. However, since its distribution is strongly concentrated
around the mean, its average is a good estimate:

E

 ∑
u∈Fn

2 \{0}

c2
u

 = 2nE
(

c2
u⋆

)
= 2n−⌊ r

2⌋n ,

where u⋆ is an arbitrary nonzero mask.
The following two sections show how the χ2- and likelihood-ratio tests can be used to

detect the multidimensional linear approximation with mask space Λ. The χ2 approach is
only discussed for background and comparison because the choice of linear approximations
implies that we know the signs of all correlations. This makes it possible to use the more
efficient likelihood-ratio test.

3.1 Distinguisher using the χ2 test
The χ2 test is a frequently employed statistical hypothesis test that compares an empirical
distribution with an ideal distribution using the sum of the squared differences between
the observed and expected frequencies divided by the expected frequencies. In our case,
the ideal distribution is the uniform distribution, and the empirical distribution is that of
the sum of the left halves of the plaintext and ciphertext for uniform random plaintext-
ciphertext pairs.

Let (xi
1, xi

2) and (yi
1, yi

2) be q plaintext and corresponding ciphertext samples respec-
tively, for i ∈ {1, 2, . . . , q}. Store the number of occurrences of each of the 2n possible
values of xi

2 + yi
2 (assuming r is odd) in a table T . The χ2 statistic is then calculated by

χ2 =
2n∑

i=1

(
T [xi

2 + yi
2]− q/2n

)2

q/2n
.

Pseudo-code to calculate the χ2 statistic can be found in Appendix C. One can show that
(see Appendix B) the χ2 statistic is closely related to the number of collisions Ncoll between
the observed values xi

2 + yi
2. Hence, counting these collisions provides an alternative

approach to implementing the χ2 test. Furthermore, up to a constant factor, the average
number of collisions equals the sum of the squared correlations of the linear approximations
in Λ. This leads to Proposition 1.

Proposition 1. Given q samples z1, . . . , zq in Fn
2 , let Ncoll be the number of unordered

collisions between them. The χ2 statistic (for uniform expected frequencies) computed using
the values z1, . . . , zq is related to Ncoll by

χ2 = 2n+1

q
Ncoll + 2n − q.

Furthermore, if the samples are independent and identically distributed, then

E
(
Ncoll

)
= 1

2n

(
q

2

) ∑
u∈Fn

2

C(uT z)2 ,

where z is a random variable with distribution equal to the distribution of the sample.

Proof. See Appendix B.
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In Section 3, it was shown that the sum of the squared correlations is equal to
1 + 2n−n⌊r/2⌋. Hence, by Proposition 1, the multidimensional linear approximation leads
to approximately 2−n⌊r/2⌋q2/2 additional collisions on average. The standard deviation
of the number of collisions is approximately q/

√
2n, so that the data-complexity of the

multidimensional χ2 distinguisher is roughly

q = O
(
2n⌊r/2⌋−n/2)

.

Hence, the data-complexity is 2n/2 and 23n/2 for 2 & 3- and 4 & 5- round distinguishers,
respectively.

In attacks on concrete primitives, such as those in Section 4, finer estimates are desired.
In Section 4, an experimental approach is used to estimate the success probability in terms
of q. However, this still requires choosing the decision threshold t of the test given the
desired false-positive rate. Let χ2

ideal be the random variable equal to the χ2 statistic when
the data is uniformly random. In an asymptotic sense, when 2n and q both approach
infinity, the distribution of χ2

ideal converges towards the normal distribution N (ν, 2ν) where
ν = 2n − 1 is the number of degrees of freedom. Hence, the false-positive rate satisfies

PF = Pr
[
χ2

ideal ≥ t
]

= 1− Φ
(

t− ν√
2ν

)
.

where Φ(x) is the cumulative normal distribution function. Hence, the threshold equals

t = (2n − 1) +
√

2(2n − 1) Φ−1(1− PF). (7)

Once the threshold value t is determined for fixed PF, the success probability can be
computed experimentally for a given data-complexity by counting the number of times the
χ2

real statistic (χ2 statistic when interacting with the real cipher) exceeds t.

3.2 Distinguisher using the likelihood-ratio test
The Neyman-Pearson lemma [NP92] states that the uniformly most powerful statistical
method for distinguishing between two hypotheses is the likelihood-ratio test. Since the
correlations of the trails in Figure 2 are key-independent, the probability distribution of
the sum of the left half of the plaintext and ciphertext can be fully determined using
Theorem 1. This makes it possible to use the likelihood-ratio test.

Let p0 be the distribution of the sum of the right half of the plaintext and ciphertext
for the real cipher with uniform random input, and let p1 be the uniform distribution
on Fn

2 . Given samples z1, . . . , zq defined by zi = xi
2 + yi

2, the logarithmic likelihood-ratio
(LLR) statistic is equal to

λ = log
q∏

i=1

preal(zi)
pideal(zi)

=
q∑

i=1
log preal(zi)

pideal(zi)
,

when testing to reject the null hypothesis (interaction with the real cipher). Swapping
preal and pideal in the formula above yields the statistic for testing to reject the alternative
hypothesis (equal to −λ). Note that this form of the test assumes that samples are
independent. Pseudo-code to calculate the LLR test statistic can be found in Appendix C.

As mentioned in Section 2.2, the asymptotic data-complexity of the LLR test is inversely
proportional to the sum of squared correlations. That is,

q = O
(
2⌊r/2⌋n−n

)
Thus, the data-complexities are constant, 2n and 22n for 2 & 3, 4 & 5 and 6 & 7 rounds.
Note that this is a factor 2n/2 lower than for the χ2 test.
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For the 3-round distinguisher, it is likely that when interacting with a random permuta-
tion, values of zi such that preal(zi) = 0 will be observed. In this case, the test statistic is
undefined — although formally, it could be taken to equal −∞ and the test would give the
correct result. In fact, this case leads to an interesting simplification of the distinguisher.
Since zero likelihoods signify that one is not interacting with the real cipher, a decision
can be made immediately. More specifically, we can define two cases:

1. If preal(zi) = 0 for some i, we immediately decide not to interact with the real cipher
(reject the null hypothesis).

2. If preal(zi) ̸= 0 for all i, then compare λ to a threshold value t to reach a decision. If
it does not exceed the threshold, reject the null hypothesis.

For concrete attacks, finer estimates of the data-complexity are necessary. Hence,
below we provide such estimates for the above procedure. In Section 4, experiments
will be done to estimate the true success probability for a given false-positive rate and
data-complexity. For the standard LLR test, estimates are given by Baignères, Junod, and
Vaudenay [BJV04]. For the case-by-case approach, the false-positive rate equals

PF = Pr[preal(zi) = 0 for some i]PF1 +
(
1− Pr[preal(zi) = 0 for some i]

)
PF2 (8)

where PF1 and PF2 are the conditional false-positive rates for the cases above. In particular,
PF1 = 0. If Nzero is the number values of z such that preal(z) = 0, then Equation (8)
implies

PF ≤ 1− Pr[preal(zi) = 0 for some i] =
(

1− Nzero

2n

)q

.

For the conditional false-positive rate PF2 of the second case, the results of [BJV04] can be
applied. In particular, asymptotically the distribution of λreal (the test-statistic based on
random samples from the cipher) converges to N (µreal, σ2) and the distribution of λideal
(the test-statistic based on uniform random samples) converges to N (µideal, σ2), where

µreal = DKL(preal ∥ pideal) :=
∑

z∈Fn
2

preal(z) log preal(z)
pideal(z)

µideal ≈ −µreal

σ2 ≈ 2µreal ,

where DKL is the relative entropy or Kullback-Leibler divergence between preal and pideal.
Hence, the false-positive rate PF2 satisfies

PF2 = Pr[λideal ≥ t] ≈ 1− Φ
(

t + µreal√
2 µreal

)
.

Hence, the required threshold to achieve false-positive rate PF2 equals

t = −µreal +
√

2µreal Φ−1(1− PF) . (9)

Once the threshold value is calculated for fixed PF, the success probability can be empirically
estimated for a given data-complexity. Finally, it is worth noting that the success probability
can be estimated as

PS = Pr[λreal ≥ t] ≈ 1− Φ
(

t− µreal√
2 µreal

)
.
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4 Application to CAST-128 and LOKI91
The Feistel ciphers CAST-128 and LOKI91 are designed to include a key addition at
the round function’s input, allowing for the application of our proposed method. In this
section, we briefly introduce the target ciphers and present the experimental verification
of our approach in detail.

4.1 CAST-128
CAST is a family of block ciphers. CAST-128 [Ada97] is a Feistel network with 64-bit
blocks, and the key sizes range from 40 to 128 in 8-bit increments. The cipher employs
12 rounds for key sizes up to and including 80 bits, whereas for key sizes that exceed 80
bits, the cipher utilizes the complete 16 rounds. The algorithm employs three types of
round functions F1, F2, and F3 identical in structure but differ in the operations used:
addition, subtraction, and XOR. For F1, ⊛, ⊙, and ⊚ in Figure 3 correspond ⊕, ⊞,
and ⊟ respectively. For F2 and F3, the same operations are used in changing positions.
The designers of the algorithm aimed to achieve efficiency in both software and hardware
implementations, and it was later standardized by ISO/IEC [ISO].

S1 S2 S3 S4

≪

∗

input

∗

output

ki

ri

8 8 8 8

32 32 32 32

Figure 3: The round function of CAST-128 algorithm.

4.2 LOKI91
LOKI is a family of block ciphers that uses the Feistel network structure. LOKI91, a
variant of the LOKI family, is designed with a block size and key size of 64 bits. The
LOKI91 block cipher consists of 16 rounds that employ a substitution-permutation network
for its round function, similar to the Data Encryption Standard (DES). The round function
in LOKI91 receives a 32-bit branch and a 32-bit round key as input and performs a bitwise
XOR operation between them. The resulting 32-bit value is expanded to 48 bits and
divided into 12-bit blocks. These blocks are then processed by four S-boxes, with each
S-box generating an 8-bit output. The round function output is obtained by permuting
the 32-bit value.
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Figure 4: The round function of LOKI91.

4.3 Experimental verification and results
This section includes information regarding the χ2 and the LLR distinguisher for reduced-
round CAST-128 and LOKI91. Recall that the data-complexity of the r-round multidimen-
sional distinguisher is proportional to 2n⌊r/2⌋−n/2 using the χ2 test and 2n⌊r/2⌋−n using
the LLR test, for r ≥ 2.

Table 4: Capacity and approximate data-complexity q for the r-round LLR distinguishers
of CAST-128 and LOKI91.

Cipher r Round functions Capacity q

CAST-128

3
F1 1 1
F2 1 1
F3 1 1

5
F1, F2 2.3200× 10−10 231.998

F1, F3 2.3290× 10−10 231.999

F2, F3 2.3297× 10−10 231.999

7 F1, F2, F3 5.4308× 10−20 263.997

LOKI91

3 F 1 1
5 F , F 2.8332× 10−6 221.434

7 F , F , F 6.3678× 10−11 239.212

9 F , F , F , F 9.1587× 10−16 256.346

For CAST-128 and LOKI91, the block size is 64-bit, so the expected data-complexities
are a constant close to one, 232 and 264 for 3-, 5- and 7-round respectively. However, these
estimates are based on the assumption that the round functions are sampled independently
and uniformly at random. Hence, it is worthwhile to experimentally verify these estimates
by calculating the capacity of the distinguisher.

To compute the sum of the squared correlations efficiently, we use the Fast-Fourier
Transform. Firstly, all possible 2n values are encrypted by the active round functions, and
histograms of the output values of each function are stored in separate vectors. Then,
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the Fast-Fourier Transform is applied to each vector. Finally, the sum of the squared
correlations is calculated by taking the sum of the squares of the pointwise product of
the obtained vectors. Note that the 5-round CAST-128 distinguisher includes two active
functions: F1 and F2. Similarly, in the 7-round distinguisher, F1, F2, and F3 are active
functions. Since LOKI91 employs the same round function in each round, only one function
has to be analyzed. Detailed calculations are given in Appendix A.

As shown in Table 4, experimental results show that capacities for the 3-, 5-, and
7-round CAST-128 distinguishers are roughly as expected: constant, 2−31.99, and 2−63.99,
respectively. Hence, in this respect, CAST-128 round functions behave like random
functions. For LOKI91, capacities for the 3-, 5-, 7-, and 9-round distinguishers are
constant, 2−21.43, 2−39.21, and 2−56.34, respectively. Note that these values are significantly
higher than for the generic case. The related pseudo-code is given in Appendix C.

More precise estimates of the data-complexity can be obtained experimentally in terms
of the false-positive rate PF and success probability PS. To demonstrate the effectiveness of
the likelihood ratio method, we also test the χ2 distinguisher for three rounds. A summary
of experimental data-complexities of the reduced-round multidimensional distinguishers
for CAST-128 and LOKI91 is presented in Table 5.

Table 5: Data-complexities of multidimensional distinguishers of r-round CAST-128 and
LOKI91 for PS ≈ 1 and PF ≈ 0.

Cipher r Type Data

CAST-128 3 χ2 218

LLR 23.32

5 LLR 235

LOKI91 3 χ2 218

LLR 23.80

5 LLR 224.51

More detailed results are presented below.

3-round χ2 distinguisher Based on Table 4 and Section 3.1, the data-complexity of the
3-round χ2 distinguishers on CAST-128 and LOKI91 is close to 216. To experimentally
determine the success probability for a given false-positive rate, we determine the decision
threshold based on Equation (7):

t = (232 − 1) +
√

2(232 − 1)Φ−1(1− PF).

After obtaining the threshold value t, we calculate the data-complexity for a given success
probability experimentally by comparing 210 χ2 test statistics to t. Figure 6a and Figure 6b
show the results for three rounds of CAST-128 and LOKI91, respectively. Further details
can be found in Table 8 and Table 9 in Appendix B.

3-round LLR distinguisher As the probability mass function preal contains a rather large
number of zeros for 3-rounds of CAST-128 and LOKI91, considering only the first case of
the analysis in Section 3.2 already yields a good distinguisher with PS = 1. The number
of zeros is equal to 1580108708 and 1638446404 for CAST-128 and LOKI91, respectively.
The data-complexity can be calculated for fixed false-positive rate PF using Equation (8).
Hence, the advantage of the distinguisher can be estimated as

1−
(

1− Nzero

232

)q

.
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Figure 5: Advantage as a function of data-complexity for 3-round χ2 distinguishers.

Figure 7 presents the experimental advantage for both target algorithms in terms of the
data-complexity with 210 attempts.
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LOKI91

Figure 7: Advantage as a function of data-complexity for 3-round LLR distinguishers.

5-round LLR distinguisher Examining the probability distribution preal for 5-round
CAST-128 and LOKI91 shows that no zeros are present. As a result, only the second case
in the analysis from Section 3.2 needs to be considered. Consequently, the threshold value
t can be obtained using Equation (9), after calculating the value of µreal. The success
probability is estimated by comparing the computed LLR test statistics with t, similar to
the experiments for the χ2 test. The experimental results about the data-complexity for
target ciphers are provided in Figure 8.

5 Key-recovery attacks
The distinguisher can be extendable to a key recovery attack by appending one or more
rounds to the distinguisher. Let r′ be the number of rounds added to the r-round
distinguisher for r + r′ round key recovery. Then, one can estimate the correlation for each
key guess by means of partial decryption of the last r′ rounds. A test statistic is derived
for each guess, and when an incorrect key is utilized, it is assumed that the test statistics
behave similarly to those for a random permutation.

Maintaining a low false-positive rate is essential to increase the number of guessed
key bits ℓ. To reduce the candidates to one or a few keys, one should have PF × 2ℓ ≈ 1.
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Figure 8: Advantage as a function of data-complexity for 5-round LLR distinguishers.

Once the false-positive rate is determined, a suitable decision threshold can be calculated.
The data-complexity to achieve a given PS is then computed. Note that the total time
complexity (T ) is equal to the sum of the time complexity required to recover part of the
subkey (Tcheck) and to guess the remaining bits (Tguess). If only a few candidates remain
for the last round key, the remaining key bits can be determined by an r − 1 round attack
so that Tguess ≤ Tcheck. Hence, the total time complexity of the naive key-recovery method
is O(q2ℓ), where q is the data-complexity to recover ℓ bits of the key with the fixed PF.

5.1 Generic key-recovery attacks

The generic multidimensional distinguishers from Section 3 can be used to obtain a generic
multidimensional key recovery attack. Hence, we can use the data-complexity results for
the r-round distinguishers that we calculated in Section 3 to determine the data-complexity
of an r + r′ rounds key recovery attack. Recall that the data-complexity is 2n⌊r/2⌋−n for
an r ≥ 2 round multidimensional distinguisher using the likelihood-ratio test.

constantck

u

0 u

u 0

F

xL constant

distinguisher

yL yR

Figure 9: Key recovery with FFT method.

To improve the work effort of the naive key-recovery method, we now describe a variant
of the Fast Fourier Transform method [CSQ07] for key-recovery. Suppose we prepend one
round to the distinguisher as in Figure 9. Fix the right half of the input to a constant.



Betül Aşkın Özdemir, Tim Beyne and Vincent Rijmen 17

Table 6: Generic key recovery attack on an r-round Feistel cipher with block size 2n and
k-bit master key.

k r + r′ r′ Data Method Work effort

2n

4 1 1 naive 2n

1 1 FFT n2n

6 1 2n naive 22n

1 2n FFT n2n

4n

4 1 1 naive 2n

1 1 FFT n2n

5 2 1 naive 22n

2 1 FFT n22n

6

3 1 naive 23n

3 1 FFT n23n

1 2n naive 22n

1 2n FFT n2n

7 2 2n naive 23n

2 2n FFT n22n

8 3 2n FFT n23n

The LLR statistic for the key-dependent constant ck is equal to

λ(xL + yL + ck) =
q∑

i=1
λ(xiL + yiL + ck)

=
q∑

i=1

∑
z∈Fn

2

λ(xiL + yiL + ck)δz,xiL+yiL

=
∑

z∈Fn
2

λ(z + ck)
q∑

i=1
δz,xiL+yiL

=
∑

z∈Fn
2

Mck,z wz ,

(10)

where w is a vector of occurrences of z = xiL + yiL values and M is a matrix with entries
Mck,z = λ(z + ck). The time complexity of computing the matrix M is O(22n) without
a trick. We exploit the circulant structure of M using the FFT method to reduce the
time complexity. Since M is a circulant matrix, it is enough to compute M0,z. Indeed,
we compute the matrix-vector product by taking the pointwise product of the FFT of
the first row and the FFT of w, followed by taking the inverse Fourier transform. Then
the complexity of calculating matrix M becomes O(n2n). The complexity of computing
the vector w is O(2n + q). Thus the total complexity becomes O(n2n + q), corresponding
to O(n2n) when q ≤ n2n. If we incorporate additional rounds after the distinguisher
for the key recovery, the same operations must be performed for each key guess. The
data-complexity must remain below the input size 2n for a successful attack since the right
half of the input is constant. Thus, our proposed r + r′-round generic key recovery attack
is viable with an r ≤ 5 round distinguisher.
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Table 7: Key recovery results of r-round CAST-128 and LOKI91.
Cipher r + r′ r′ q T

CAST-128

4 1 25.80 237

5 2 26.80 274

6 3 27.39 2111

1 235 240

7 2 235 277

8 3 235 2114

LOKI91 4 1 25.55 237

6 1 224 237

5.2 Application to CAST-128 and LOKI91

In the case of CAST-128 and LOKI91, the block size is 64 bits, and the subkey size is 32
bits, meaning that m = ℓ = n = 32. To achieve 4-round and 6-round key recovery, we can
utilize a 3- and 5-round distinguisher, respectively. We use the FFT method since the
data-complexity q is always greater than 32 in practice. As both cases satisfy q < n2n,
the time complexity is determined as 237 for the 4-round key-recovery attack. The same
operations must be repeated for each key guess when any additional rounds are appended,
resulting in a time-complexity of 237+32(r′−1) for the r-round key recovery attack, where
r = 3 + r′ or r = 5 + r′ using a 3-round or 5-round distinguisher, respectively. In the
case of CAST-128, due to the subkey rotation before the round function, one needs to
guess an additional 5 bits for every round and the time complexity becomes O(237(r′)).
However, guessing 5 more key bits in the first round is not required. Moreover, unlike the
MITM attack, which requires key guessing in every round, our approach only involves key
guessing in a limited number of rounds for CAST-128, usually one or two. Hence, our
work efforts are better than existing key recovery results on 7- and 8-round CAST-128.
On the other hand, the data-complexity of the MITM attacks from [IS13b, IS13a] is better
than our findings for 7- and 8-round CAST-128. On the bad side, more than 8-round
key recovery attacks on CAST-128 are not feasible due to the key-dependent rotation.
Another particular feature of CAST-128 is its utilization of three distinct round functions,
F1, F2, and F3. When we add one round before the distinguisher, F3 is active instead of
F2. However, as shown in Section 4, the effect on the data-complexity is negligible. Key
recovery results using the FFT method are given in Table 7.

Which values of r′ are admissible depends on the key size. For instance, in the case of
CAST-128, which utilizes a 128-bit key size, 37× r′ bits of a subkey from 3 + r′ rounds
can be successfully retrieved by exploiting the 3-round distinguisher, where r′ = 1, 2, 3.
However, in the case of LOKI91, which employs a 64-bit key, the only viable option for r′

is 1. Consequently, we can recover a 32-bit subkey of the 4-round and 6-round LOKI91 by
utilizing the 3-round and 5-round distinguisher, respectively.

For the attacks on 6, 7 and 8 round CAST-128, the amount of data exceeds 232 despite
the fact that we need to fix the right half of the plaintext when using the FFT method for
key-recovery (so only 232 plaintexts are available). Since the false-positive rate will not
be sufficiently low to filter the keys, it is necessary to repeat the attack several times (we
estimate 8 times should be enough) and to combine the test statistics. To do this, it is
necessary to translate the list of candidate constants to a longer list of candidates for the
key of the first round. This can be done in time 237. Overall, the work effort increases by
a factor approximately equal to the number of repetitions of the attack.
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6 Conclusion
This work presents a new approach to reduce the data complexity of linear attacks on
Feistel ciphers that incorporate the key addition to the input of the round function
only. We introduced efficient generic multidimensional linear attacks on Feistel ciphers by
exploiting key-independent trails. Our work also provides a detailed comparison between
the χ2 and likelihood-ratio tests in linear cryptanalysis. In particular, our theoretical and
experimental findings support that the likelihood-ratio method is more powerful. Based
on our distinguishers, efficient generic key recovery attacks were obtained using a variant
of the FFT method.

Theoretical estimates of the costs of our generic attacks were provided and subsequently
validated through experiments on the concrete Feistel ciphers CAST-128 and LOKI91. In
several cases, our approach improves over previous dedicated attacks.

Overall, our results emphasize the effectiveness of key-independent multidimensional
approximations and the likelihood-ratio test in the context of multidimensional linear
attacks.
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cases, the data complexities for the 3-, 5-, and 7-round CAST-128 distinguishers are:

q3r ≈ 1
/∑

u

(
CF2

u,0
)2 = 1

q5r ≈ 1
/ ∑

u

(
CF2

u,0 × CF1
u,0

)2 = 231.99

q7r ≈ 1/
/ ∑

u

(
CF3

u,0 × CF2
u,0 × CF1

u,0
)2 = 263.99

In LOKI91, all round functions are the same, so data complexities of 3-, 5-, 7- and 9-round
distinguishes are

q3r ≈ 1
/ ∑

u

(
CF

u,0
)2 = 1

q5r ≈ 1
/ ∑

u

(
CF

u,0
)4 = 221.434

q7r ≈ 1
/ ∑

u

(
CF

u,0
)6 = 239.212

q9r ≈ 1
/ ∑

u

(
CF

u,0
)8 = 256.346.

B Proof of Proposition 1
Proof. Let Oz denote the number of observations of value z. The number of collisions
Ncoll is related to these values by

Ncoll =
∑

z∈Fn
2

Oz(Oz − 1)
2

= 1
2

∑
z∈Fn

2

O2
z −

1
2

∑
z∈Fn

2

Oz

= 1
2

∑
z∈Fn

2

O2
z −

1
2q .

(11)

Hence, we obtain ∑
z∈Fn

2

O2
z = 2Ncoll + q. (12)

Similarly, the χ2 test statistic can be expressed using Oz and the expected number of
observations of value z, i.e. Ez:

χ2 =
∑

z∈Fn
2

(Oz − Ez)2

Ez

=
∑

z∈Fn
2

O2
z

Ez︸ ︷︷ ︸
Ez = q

2n

−2
∑

z∈Fn
2

Oz︸ ︷︷ ︸
= q

+
∑

z∈Fn
2

Ez︸ ︷︷ ︸
= q

= 2n

q

∑
z∈Fn

2

O2
z − q ,

(13)
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where the expected values Ez are calculated for a uniform distribution. Eventually, the
link is demonstrated replacing

∑
z∈Fn

2
O2

z with 2Ncoll + q:

χ2 = 2n+1

q
Ncoll + 2n − q.

In addition to its relation with the χ2 statistic, the number of collisions can also
be employed as an independent method for distinguishing a cipher. The probability of
obtaining a collision can be computed using the following equation:

Pr[xi = xj ] =
∑

x∈Fn
2

p(x)2 = 2−n
∑

(u,v)∈Λ

(CF
v,u)2.

where p is the probability mass function and assuming |Λ| = 2n. Hence, the average
number of collisions in a sample of size q equals

Ncoll =
(

q

2

)
Pr[xi = xj ] = 2−n

(
q

2

) ∑
(u,v)∈Λ

(CF
v,u)2. (14)

As CF
0,0 = 1, Equation (14) becomes

Ncoll = 2−n

(
q

2

)(
1 +

∑
(u,v)̸=(0,0)

(CF
v,u)2

)
= 2−n

(
q

2

)
︸ ︷︷ ︸

same as random

+ 2−n

(
q

2

) ∑
(u,v) ̸=(0,0)

(CF
v,u)2

︸ ︷︷ ︸
extra collisions

.

(15)

For a successful attack, it is necessary that the difference between the means of the
real and ideal distributions of valid pairs surpass the standard deviation of the ideal
distribution [BG09]: µreal − µideal = µreal ≫ σideal. Then we have D(preal − pideal) ≫√

Dpideal where D =
(

q
2
)
. When we rewrite the equation, we get(

q

2

)
≥ pideal

(preal − pideal)2 , (16)

where preal and pideal are the probability of obtaining collisions for the real primitive and a
random permutation, respectively. For 3-round CAST-128 and LOKI91, pideal = 2−32 and
preal = 2−32 ∑

u∈F32
2

(CF
u,0)2 ≈ 2−31. So, the amount of data is close to 216 theoretically.

Table 8 and Table 9 contain the average number of collisions, estimated using 210 different
keys.
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Table 8: The average number of collisions for 3-round CAST-128.
Total Random

Dataset Theoretical Experimental Theoretical Experimental

214 0.062 0.056 0.032 0.027
215 0.249 0.223 0.125 0.121
216 0.999 1.011 0.5 0.496
217 3.999 3.914 2 1.943
218 15.999 15.922 8 7.932
219 63.999 63.94 32 31.92
220 256 256.014 128 127.451
221 1024 1024.561 512 511.387

Table 9: The average number of collisions for 3-round LOKI91.
Total Random

Dataset Theoretical Experimental Theoretical Experimental

214 0.065 0.061 0.032 0.032
215 0.259 0.304 0.125 0.111
216 1.038 1.051 0.5 0.503
217 4.155 4.034 2 1.982
218 16.422 16.124 8 8.048
219 65.486 62.94 32 32.232
220 265.945 262.014 128 127.451
221 1024 1030.456 512 511.651

C Pseudo-code
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Algorithm 1: Computation the theoretical data complexity of multidimensional
linear distinguisher for an r-round Feistel cipher.

Input : input mask: (0 ∥ u)
output mask: (0 ∥ u)

1 Set n← 232 ;
2 for i = 0 to 2n do
3 + + p0[f2(i)];
4 + + p1[f4(i)];

...
5 + + pk[f2k(i)]; //k =

⌊
r
2
⌋

6 end
7 for i = 0 to k do
8 pi ← FFT (pi);
9 end

10 for i = 1 to n do
11 p0 ← p0[i]p1[i] . . . pk[i];
12 c2+← p2

0;
13 end
14 q ← 1

c2 ;

Algorithm 2: Computation the χ2 test statistic for an r-round Feistel cipher
with a multidimensional approximations.

Input : input mask: (0 ∥ u)
output mask: (0 ∥ u)

1 Set e← q2−32;
2 for i = 0 to q do
3 xi: xi

1 ∥ xi
2;

4 Fr(x)← yi: yi
1 ∥ yi

2;
5 zj ← xi

2 + yi
2;

6 + + o[zj ];
7 end
8 for each zj do
9 χ2+← (o[zj ]− e)2/e;

10 end
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Algorithm 3: Computation the LLR test statistic for an r-round multidimensional
distinguisher.

Input : input mask: (0 ∥ u)
output mask: (0 ∥ u)

1 Set n← 232 ;
2 Set p← 2−32;
3 for i = 0 to q do
4 xi : xi

1 ∥ xi
2;

5 Fr(x)← yi : yi
1 ∥ yi

2; //Fr = f1 ◦ · · · ◦ fr

6 + + η[xi
2 ⊕ yi

2];
7 end
8 for i = 0 to n do
9 + + p0[f2(i)];

10 + + p1[f4(i)];
...

11 + + pk[f2k(i)]; //k =
⌊

r
2
⌋

12 end
13 for i = 0 to k do
14 pi ← FFT (pi);
15 end
16 for i = 0 to n do
17 p0[i]← p0[i]p1[i] . . . pk[i];
18 end
19 if r ≥ 4 then
20 p0 ← FFT (p0);
21 end
22 for i = 0 to n do
23 λ0+← log p0[η[i]]

p ;
24 end
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Algorithm 4: FFT-based key recovery attack using r-round multidimensional
distinguisher.

Input : input mask: (0 ∥ u)
output mask: (0 ∥ u)

1 Set n← 232 ;
2 Set p← 2−32;
3 Set master key ← k;
4 Set number of runs ← t; //Run the code t times
5 for i = 0 to n do
6 xi : i ∥ c;
7 Fr(x) = yi : yi

1 ∥ yi
2; //Fr+1 = f1 ◦ · · · ◦ fr

8 zi = i⊕ yi
2;

9 end
10 for i = 0 to n do
11 + + p0[f3(i)];
12 + + p1[f5(i)];

...
13 + + pℓ[f2ℓ+1(i)]; //ℓ =

⌊
r
2
⌋

14 end
15 for i = 0 to ℓ do
16 pi ← FFT (pi);
17 end
18 for i = 0 to n do
19 p0[i]← p0[i]p1[i] . . . pk[i];
20 end
21 if r ≥ 4 then
22 p0 ← FFT (p0);
23 end
24 for i = 0 to n do
25 λ0[i]← log p0[i]

p ;
26 end
27 λ0 ← FFT (λ0);
28 for i = 0 to n do
29 + + w[zi];
30 end
31 for i = 0 to n do
32 w[i]← w[i]/n;
33 end
34 w ← FFT (w);
35 for i = 0 to n do
36 w[i]← w[i] ∗ λ0[i];
37 end
38 w ← FFT (w);
39 Sort w in descending order with indeces s[i];
40 ck1 ← f1(k1, c); //ki : subkey of ith − round function
41 na ← # of attempts;
42 for i = 0 to n do
43 if ck1 = s[i] & ℓ = {#i | s[i] ≥ PF ∗ 2n} then
44 PS ← ℓ

na
;

45 The data complexity ← na ∗ 2n;
46 end
47 end
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