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Abstract

Introduction
Administrative health records (AHRs) are used to conduct population-based post-market drug safety
and comparative effectiveness studies to inform healthcare decision making. However, the cost of
data extraction, and the challenges associated with privacy and securing approvals can make it
challenging for researchers to conduct methodological research in a timely manner using real data.
Generating synthetic AHRs that reasonably represent the real-world data are beneficial for developing
analytic methods and training analysts to rapidly implement study protocols. We generated synthetic
AHRs using two methods and compared these synthetic AHRs to real-world AHRs. We described
the challenges associated with using synthetic AHRs for real-world study.

Methods
The real-world AHRs comprised prescription drug records for individuals with healthcare insurance
coverage in the Population Research Data Repository (PRDR) from Manitoba, Canada for the 10-
year period from 2008 to 2017. Synthetic data were generated using the Observational Medical
Dataset Simulator II (OSIM2) and a modification (ModOSIM). Synthetic and real-world data were
described using frequencies and percentages. Agreement of prescription drug use measures in PRDR,
OSIM2 and ModOSIM was estimated with the concordance coefficient.

Results
The PRDR cohort included 169,586,633 drug records and 1,395 drug types for 1,604,734 individuals.
Synthetic data for 1,000,000 individuals were generated using OSIM2 and ModOSIM. Sex and age
group distributions were similar in the real-world and synthetic AHRs. However, there were significant
differences in the number of drug records and number of unique drugs per person for OSIM2 and
ModOSIM when compared with PRDR. For the average number of days of drug use, concordance
with the PRDR was 16% (95% confidence interval [CI]: 12%–19%) for OSIM2 and 88% (95% CI:
87%-90%) for ModOSIM.

Conclusions
ModOSIM data were more similar to PRDR than OSIM2 data on many measures. Synthetic AHRs
consistent with those found in real-world settings can be generated using ModOSIM. Synthetic data
will benefit rapid implementation of methodological studies and data analyst training.
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Introduction

Administrative health records (AHRs), which are generated
primarily for healthcare management and billing are also used
for prescription drug safety and comparative effectiveness
studies [1–4]. However, the cost of data extraction, and the
challenges associated with securing ethics and data access
approvals due to health privacy legislation, patient privacy and
confidentiality issues can make it difficult for researchers to
conduct methodological research in a timely manner using
AHRs, and to train analysts to conduct drug safety and
comparative effectiveness studies.

The development of analytic methods can benefit from
the availability of synthetic (i.e., artificial) data, which do
not require ethical approvals and data access permissions.
Synthetic data are generated to preserve some of the statistical
attributes of the original data sources without violating patient
privacy and confidentiality issues. Availability of synthetic
AHRs for developing new study designs and methods, and
statistical programming codes to implement study protocols
can facilitate timely completion of research.

Methods for generating synthetic data can broadly be
classified as data-driven [5] and process driven [6]. Process-
driven methods, including Monte Carlo and discrete-event
simulations, generate synthetic data from computational or
mathematical models of an underlying physical process.
Data-driven methods, such as joint probability distribution,
plasmode [7] and imputation-based methods [8, 9], generate
synthetic data from generative models that use the observed
data.

The Observational Medical Outcomes Partnership (OMOP)
developed a simulation program to generate AHR data
that incorporate the complex relationships among health
conditions and prescription drug use [10]. The original
version of the simulator, known as the Observational Medical
Dataset Simulator (OSIM), employed a sequence of user-
defined probability tables to model population demographic
characteristics and prevalence distributions of prescription
drugs and selected health conditions. However, the initial
version of the simulator was inadequate to model certain
characteristics of real-world data, such as the relationships
among health conditions and drugs [11]. This limitation led
to the development of OSIM2.

OSIM2 is an empirical simulation model of longitudinal
patient data, which incorporates additional complexities
observed in real-world AHR data. These include a depiction
of the relationships between prescription drugs and health
conditions. OSIM2 creates simulated data containing fictitious
individuals with records of their health conditions and
prescription drugs based on the characteristics of real-world
data in the OMOP common data model (CDM). The OMOP
CDM transforms data from different databases into a common
format [10–12].

OSIM2 was initially applied to AHRs from the Regie de
l’assurance maladie du Quebec (RAMQ) by the Canadian
Network of Observational Drug Effect Studies (CNODES),
a collaborating centre of the Drug Safety and Effectiveness
Network (DSEN) [13]. The results of the simulation showed
that OSIM2 adequately modeled the baseline characteristics of
the RAMQ database. However, the model did not accurately
capture the number of drug records and unique drugs of the

target data set. This limitation led to the development of the
modified OSIM2 (ModOSIM) simulation model. Specifically,
ModOSIM aims to preserve the structure of OSIM2 with
a number of modifications to the probability tables for
simulating the drug stage, and a pre-processed format applied
to the drug prescription information. This manuscript is
the first study to our knowledge that aims to provide
empirical evidence about the representativeness of synthetic
data generated using the OSIM2 and ModOSIM models.

The overall purpose of this study was to generate AHRs
using both the OSIM2 and ModOSIM models. Our objectives
were to: (1) compare the representativeness of the synthetic
data generated from both models to the real-world AHR data,
and (2) describe the challenges associated with using synthetic
data for real-world study.

Methods

Synthetic data generation methods

Observational medical dataset simulator II (OSIM2)

The OSIM2 simulator uses a Monte Carlo approach,
whereby information for an individual is generated randomly
from the empirical multinomial distributions of the analysis
module. This module extracts individual information as
probability distributions from the source data [11]. The
individual simulation model process has four stages: (i)
creating a simulated population with associated person-
level demographic information and periods of observation;
(ii) generating a set of underlying health conditions
for each individual; (iii) assigning treatments (i.e., drug
exposure) to the cohort members based on their underlying
health conditions, and (iv) introducing associations between
treatments and outcomes. A detailed description of these
stages is described by Murray et al. (2011) [11].

Modified observational medical dataset simulator II
(ModOSIM)

The ModOSIM model incorporates a number of modifications
to the data pre-processing stage and the probability tables
of the OSIM2 simulator. In the data pre-processing phase,
ModOSIM dropped the OSIM2 grouping rule, which combines
two or more prescription drug records of the same drug
together into a "drug era" if the gap between the end date of
the previous record and the start date of the following record
is less than a 30-day window. Instead, ModOSIM used the
database of the prescription drug information directly, which
implies that each drug prescription record is a drug era in itself.

In addition, out of the four probability tables that govern
the distribution of the different aspects of the drug stage
in OSIM2, ModOSIM retained three tables and modified the
fourth probability table. The three probability tables retained
were: (i) a probability table for generating the total number
of unique prescription drugs an individual should have for a
given health condition, (ii) a probability table for generating
the transition days from the given health condition to the
first occurrence of each unique prescription drug, and (iii) a
probability table for generating the number of re-occurrences
for each unique prescription drug.
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The fourth probability table, which generates the total
number of days of each unique prescription drug exposure,
from the initial to the final re-occurrence of that drug
exposure was modified as follows: (i) the total number of
days of exposure to the prescription drug was removed from
the probability table, and, (ii) the total number of days of
exposure associated with the first and last re-occurrence of the
prescription drug was discarded. Instead, ModOSIM simulates
the pair of number of days of exposure and the number of
re-occurrences of that exposure for each unique prescription
drug, until the sum of the latter is equal to the number of
re-occurrences for each unique prescription drug of that drug
exposure.

Illustrative example

In this section, we describe the real-world AHR data source,
study variables and statistical analyses to compare the
representativeness of the synthetic data and the challenges
associated with using synthetic data for real-world study.

Real-World AHR data and study cohort

The Population Research Data Repository (PRDR) housed at
the Manitoba Centre for Health Policy (MCHP), a research
unit at the University of Manitoba in the province of Manitoba,
Canada, was used as the real-world source of AHR data for
this study. The province has a population of approximately
1.3 million, according to the Statistics Canada Census, and
universal healthcare. The PRDR includes Drug Program
Information Network (DPIN) records, hospital discharge
abstracts, and physician billing claims for all individuals eligible
to receive health services (Table 1). The population registry
contains information for all residents registered under the
Health Services Insurance Plan, including healthcare coverage
start and end dates, demographic characteristics, and postal
code of residence.

The DPIN is an electronic, online, point-of-sale database
that contains accurate and comprehensive information about
prescriptions filled by community pharmacies [14, 15]. Each
approved drug is assigned a Drug Identification Number
(DIN) by Health Canada; DINs can be linked to the World
Health Organization’s Anatomical Therapeutic Chemical
(ATC) codes [16].

Hospital discharge abstracts contain records of demographic
and clinical information of discharges from acute care facilities.
Each abstract captures up to 25 diagnosis codes that use
the World Health Organization’s International Classification of
Diseases (ICD), 10th revision, Canadian version (ICD-10-CA)
[17], as well as up to 20 procedure codes.

Physician billing claims are submitted by fee-for-service
physicians to the ministry of health for provider remuneration.
Each claim includes a three-digit ICD-9-CM (Clinical
Modification) diagnosis code that corresponds with the reason
for the physician visit.

The study cohort comprised all individuals with health
insurance coverage at any point between 1st April 2008 and
31st March , 2017. All prescription drug records, hospital
discharge abstracts, and physician billing claims for this cohort
were extracted from the PRDR.

Study variables from the real-world AHRs and synthetic
data

Demographic information (i.e., age group, sex) were extracted
from the PRDR population registry for the study cohort. Per-
person measures of prescription drug use were calculated from
DPIN data; measures including the number of prescription
drug records, number of unique prescription drugs, and total
number of days of prescription drug use, were produced. For
the latter measure, all prescription drugs taken concurrently
on the same day contributed to one day of use.

Selected health conditions were identified from diagnoses
in hospital records and physician billing claims. Specifically,
asthma, chronic obstructive pulmonary disease, diabetes
mellitus, heart failure, myocardial infarction, ischemic stroke,
cancer, and dementia were selected as example conditions
[18–20].

To address our second objective, which describes some of
the challenges associated with using synthetic data for real-
world study, we used a study cohort described in one of the
CNODES studies [21]. This study assessed the association
between the risk of hospitalisation for community-acquired
pneumonia (HCAP) and the use of proton pump inhibitors
(PPI) in Canada. The diagnosis codes used to ascertain the
health conditions are reported in Table 2.

Statistical analysis

Descriptive statistics, including means, standard deviations,
and percentages, were used to describe the real-world data
from the PRDR and the synthetic data produced using
the OSIM2 and ModOSIM models for the study cohorts.
Frequency distributions were used to compare demographic
characteristics, number of unique diagnosis codes, number
of unique ATC codes, selected health conditions, selected
medication use, and number of unique drugs in each of the
PRDR, OSIM2 and ModOSIM.

The concordance correlation coefficient with 95%
confidence intervals (95% CIs) was estimated for the average
number of days of drug use from the PRDR and each of
the OSIM2 and ModOSIM models; this coefficient captures
information on both precision and accuracy and evaluates the
degree to which pairs of observations fall on the 45-degree
line through the origin of a scatterplot of two variables [22].
Scatterplots of the average number of days of drug use for the
three data sources were also produced. A 2x2 table to show the
association between the use of PPIs and the risk of HCAP in
the real-world data, OSIM2 and ModOSIM data was provided.

The metrics we considered in comparing the synthetic
and the original data cover all the dimensions for evaluating
administrative data quality [6, 23]. All analyses were conducted
using SAS version 9.4 (SAS Institute, Cary, NC).

Results

The PRDR study cohort comprised of 169,586,633 drug
records and 1,395 unique prescription drugs for 1,604,734
individuals with healthcare coverage at any point in a 10-year
period between 1st April, 2008 and 31st March , 2017. For each
of the OSIM2 and ModOSIM simulation models, synthetic
data were generated for a total of 1,000,000 individuals.
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Table 1: Attributes in synthetic data (OSIM2 and ModOSIM) compared with real-world data (AHRs)

Database Real-world data OSIM2 and ModOSIM
Attributes Role Attributes Limitations

Health Insurance
Registry

• De-identified
PHIN

• Sex
• Age
• Date of birth
• Registry

cancellation code
• Health coverage

start date
• Health coverage

end date

• To develop observation
and person tables for the
CDM. The observation
table identifies the start
and end dates of
healthcare coverage, and
the person table contains
demographic information
for each individual in the
observation table.

• Identification
number

• Sex
• Age
• Date of birth
• Health coverage

start date
• Health coverage

end date

• The health coverage dates
do not respect real-time
ordering.

Hospital Discharge
Abstracts

• De-identified
PHIN

• Date of hospital
admission

• Hospital
separation date

• Diagnosis code
• Type of diagnosis
• Transaction code
• ICD9/10
• ICD9, 3 digits

• To create a condition era
table for the CDM.

• Identification
number

• ICD9, 3 digits
• Date

• Hospital discharge
abstracts and physician
billing claims formed a
database for diagnosis.

• The attribute “Date” in
the synthetic data does
not indicate dates of
hospital admission or
separation.

Physician Billing
Claims

• De-identified
PHIN

• Diagnosis code
• Number of

services
• Date of service

• To create a condition era
table for the CDM.

Drug Prescription
Information
Network

• De-identified
PHIN

• Drug
identification
number

• Days of
prescription drug
supply

• Metric quantity
claim

• Dispensing date
• ATC code

• To build a drug era table
for the CDM. This table
contains all the
prescription dispensation
records for each individual
in the observation table.

• Identification
number

• Duration of
prescription drug
supply

• Date provided
• ATC code

• Drug identification
number is not available in
the synthetic datasets.

PHIN: Personal Health Identification Number; ICD: International Classification of Diseases; ATC: Anatomical Therapeutic Chemical;
CDM: Common Data Model.

Tables 3, 4 and 5 show the descriptive information for
the demographics, prescription drug use measures and health
conditions, respectively. Overall, the study cohort from the
real-world AHR data were almost equally split in terms of male

and female representation. The majority of the cohort was in
the under 10 years age group (20.8%); 14.6% were 60 years or
older. Over the 10-year period, slightly more than half (52.4%)
of the cohort had less than 10 different prescription drugs; the
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Table 2: Diagnosis codes used to define selected health conditions and medications in the real-world and synthetic data

Condition Diagnosis codes ATC Code
ICD-9-CM ICD-10-CA

Diabetes Mellitus 250.x E10.x–E14.x

Cancer, excluding
non-melanoma skin cancer

140.x–172.x
174.x

C00.x–C43.x
C45.x–C97.x
F00.0–F00.2, F00.9,
F01.0-F01.3, F01.8,
F01.9,
F02.0–F02.4, F02.8,
F03.x

Asthma 493.x J45
J46

Heart Failure 402.01
402.11
402.91
404.01
404.03
404.11
404.13
404.91
404.93
428.x

I11.0
I13.0
I13.2
I50.x

Myocardial Infarction 410.x I21.x

Ischemic Stroke 433.x
434.x

I63.x
I64.x

Dementia 290.0
331.0
331.2
797.x

F05.1
F06.5
F06.6
F06.8
F06.9
F09.x
G30.0
G30.1
G30.8
G30.9
G31.0
G31.1
R45.x

Drug
Acetylsalicylic Acid B01AC06, B01AC30, C08CA55,

C10BX02, M03BC51, N02AA79

DPP-4 Inhibitors A10BH01, A10BH03, A10BH04,
A10BH05, A10BD07, A10BD09,
A10BD10, A10BD11, A10BD13,
A10BD19, A10BD21

Insulin A10BD01, A10AB02, A10AB03,
A10AB04, A10AB05, A10AB06,
A10AB30, A10AC01, A10AC02,
A10AC03, A10AC04, A10AC30,
A10AD01, A10AD02, A10AD03,
A10AD04, AD10AD05, A10AD06,
A10AD30, A10AE01, A10AE02,
A10AE03, A10AE04, A10AE05,
A10AE06, A10AE30, A10AE54,
A10AE56, A10AF01

Continued5
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Table 2: Continued

Condition Diagnosis codes ATC Code
ICD-9-CM ICD-10-CA

SGLT2 Inhibitors A10BK01, A10BK02, A10BK03,
A10BK04, A10BD15, A10BD16,
A10BD19, A10BD20, A10BD21

Statins C10AA01, C10AA02, C10AA03,
C10AA04, C10AA05, C10AA06,
C10AA07, C10AA08, C10BA01,
C10BA02, C10BA03, C10BA04,
C10BA05, C10BA06, C10BX01,
C10BX02, C10BX03, C10BX04,
C10BX05, C10BX06, C10BX07,
C10BX08, C10BX10, C10BX11,
C10BX12, C10BX13, C10BX14,
C10BX15

Note: ICD-9-CM is the International Classification of Diseases, 9th revision, Clinical Modification; ICD-10-CA is the International
Classification of Diseases, 10th revision, Canadian version.

Table 3: Percentages of demographic characteristics for the real-world AHR data and the OSIM2 and ModOSIM synthetic data

Characteristic Real-world data OSIM2 ModOSIM
(N = 1,604,734) (N = 1,000,000) (N = 1,000,000)

Sex
Female 49.7 49.9 50.1
Male 50.3 50.1 49.1

Age, years
Less than 10 20.8 21.0 21.0
10–19 12.9 13.1 13.0
20–29 14.5 14.2 14.2
30–39 13.3 13.1 13.2
40–49 13.1 13.1 13.1
50–59 10.8 10.9 10.9
60–69 6.9 7.0 6.9
70–79 4.4 4.4 4.4
80–89 2.7 2.7 2.7
90+ 0.6 0.6 0.6
Mean (SD) 32.7 (23.5) 32.7 (23.6) 32.7 (23.6)

Year of birth
Before 1922 1.2 0.8 0.8
1922–1927 1.8 1.8 1.8
1928–1945 9.2 9.4 9.4
1946–1954 8.8 8.6 8.6
1955–1964 12.5 12.6 12.6
1965–1980 20.0 20.4 20.4
1981–1996 23.2 22.7 22.6
1997–2017 23.3 23.8 23.8

OSIM2: Observational Medical Dataset Simulator II; ModOSIM: Modified OSIM2.

average was 12.1. Three quarters of the cohort had less than
100 total drug records; the average number of drug records was
113.5. The percentages of individuals with diagnosed diabetes
mellitus, cancer and dementia in the cohort were 10.8%, 7.1%
and 2.8%, respectively.

The study cohorts from the OSIM2 and ModOSIM data
sources had a similar distribution of males and females when
compared to the study cohort defined from the real-world
AHR data. Moreover, the percentages of males and females
were similar in both OSIM2 and ModOSIM data sources. The
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Table 4: Percentages for drug characteristics in real-world AHR data and OSIM2 and ModOSIM synthetic data

Characteristic Real-world data OSIM2 ModOSIM

Number of unique drugs per person, (%)
Less than 5 26.7 40.2 40.8
5–9 25.6 29.4 30.3
10–14 17.2 15.3 15.4
15–19 11.2 7.0 7.0
20+ 19.3 8.1 6.5
Mean (SD) 12.1 (11.0) 7.7 (7.1) 7.6 (6.5)

Number of drug records per person, (%)
0–19 45.5 62.6 48.3
20–39 13.4 15.1 13.8
40–59 7.7 7.8 8.5
60–79 5.2 4.8 5.9
80–99 3.8 3.1 4.4
100+ 24.6 6.7 19.0
Mean (SD) 113.5 (313.2) 28.1 (40.6) 60.5 (94.5)

Duration of drug use, (%)
1–10 31.3 35.1 39.8
11–20 8.3 13.8 9.3
21–30 41.9 12.2 38.6
>30 18.4 38.9 12.3
Mean (SD) 29.4 (26.3) 41.3 (79.7) 24.1 (22.4)

Prevalence of prescription drug use, (%)
Acetylsalicylic Acid 6.8 7.1 5.9
DPP-4 inhibitors 0.9 0.3 0.2
Insulin 2.3 2.8 2.4
SGLT2 inhibitors 0.6 0.1 0.1
Statins 14.2 7.7 6.7

OSIM2: Observational Medical Dataset Simulator II; ModOSIM: Modified OSIM2.

Table 5: Percentages of health condition characteristics for the real-world AHR data and OSIM2 and ModOSIM synthetic data

Characteristic Real-world OSIM2 ModOSIM

Number of unique health conditions per person
Less than 10 32.6 42.2 42.0
10–19 34.1 34.5 32.5
20–29 19.5 15.4 15.5
30–39 8.8 6.7 6.7
40–49 3.3 2.4 2.4
50–59 1.1 0.7 0.7
60+ 0.5 0.2 0.2
Mean (SD) 16.5 (11.9) 13.9 (11.1) 13.9 (11.1)

Health condition
Asthma 12.4 9.7 9.8
Chronic obstructive pulmonary disease (COPD) 14.3 14.1 14.1
Diabetes mellitus 10.8 9.0 9.0
Heart failure 3.6 3.9 3.9
Myocardial infarction 1.5 1.4 1.3
Ischemic stroke 2.6 3.1 3.0
Cancer (excluding non-melanoma skin cancer) 7.1 10.6 10.6
Dementia 2.8 3.3 3.3

OSIM2: Observational Medical Dataset Simulator II; ModOSIM: Modified OSIM2.
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Figure 1: Scatter plots for the average number of days of prescription drug use in real-world administrative health data from the
Population Research Data Repository (PRDR) and synthetic data from the OSIM2 (top) and ModOSIM (bottom) models

same was true for most age groups, with the exception of
the 20-29 years and 50-59 years age groups. The percentages
of individuals with diagnosed diabetes mellitus, cancer, and
dementia, respectively, were similar in OSIM2 (9.2%, 10.6%,
and 3.3%) and ModOSIM (9.0%, 10.6%, and 3.3%).

The numbers of drug records and unique drugs were
different in OSIM2 and ModOSIM when compared with
PRDR. However, the percentage of drug records in each
category was similar for ModOSIM and PRDR. For OSIM2,

the percentages of the numbers of drug records were most
often higher than when compared to PRDR.

The estimated concordance correlation for the average
number of days of drug use for PRDR and OSIM2 was 0.16
(95% CI: 0.12 - 0.19). For PRDR and ModOSIM the estimated
concordance correlation was 0.88 (95% CI: 0.87 - 0.90).
Scatter plots (Figure 1) revealed a strong linear relationship
between the number of days for the PRDR and ModOSIM and
a weak relationship for PRDR and OSIM2.
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Information on the association between the number of
prescription drugs and each of the demographic variables
(i.e., sex and age group) in the real-world and synthetic
data are presented in Figures 2 and 3, respectively. The
frequency distribution of demographic variables and number
of prescription drugs generated from ModOSIM was similar
to the distributions from the real-world data. However, for
the OSIM2 data there were substantial differences. In the
ModOSIM cohort, two-thirds of individuals had fewer than
100 drug records, while more than 90% had fewer than 100
drug records in OSIM2 cohort, which is an overestimation of
the 75.6% in the real-world data.

Table 6 reveals the association between the use of PPIs and
the risk of HCAP in the real-world data, OSIM2 and ModOSIM
data. The fraction (i.e., number of individual/total number)
associated with the use of PPI were 2185/45215 (4.83%),
40/6595 (0.61%), and 18/6225 (0.30%) in the PRDR, OSIM2
and ModOSIM data, respectively. The number of individuals
that use PPIs and at risk of HCAP was zero in the synthetic
data.

Discussion

This study compared the attributes of real-world AHR data
from one Canadian province to the data derived from two
models for simulating AHR data. The OSIM2 model developed
by OMOP was designed to overcome some of the limitations
identified with the original simulation model, OSIM. The
ModOSIM model was created by CNODES to address some

of the limitations of OSIM2. The results of this study showed
that synthetic data generated using ModOSIM model were
more similar to real-world AHR data than OSIM2 on many
attributes, which reflect the modifications incorporated in the
ModOSIM simulator. The results of the association between
the use of PPIs and the risk of HCAP from the synthetic data
generated with OSIM2 and ModOSIM models showed a quasi-
separation, which occurs when the outcome variable separates
the exposure variable or a combination of exposure variables to
a certain degree. Quasi-separation can result in large standard
errors and infinite parameter estimates, making it difficult
to draw meaningful conclusions from the statistical model.
However, there are a number of techniques to address quasi-
separation including penalized or regularization methods. This
is one of the limitations associated with using synthetic dataset
for real-world study.

Synthetic data are a valuable and important resource to
gain hands-on experience in data exploration, transformation
and validation. In observational studies, such as drug safety
and comparative effectiveness studies, synthetic data can be
used to train analysts in several areas. These include model
development to address confounding using propensity scores
models, and implementation of the sequence of steps required
to complete a study protocol.

In Canada, each provinces/territories have its own health
privacy legislation as well as its own process for data access
approvals. No individual-level data are allowed to leave any of
the provinces or territories; linked data can only be shared in
aggregate form. Consequently, synthetic data are beneficial to:
(i) test methods for conducting drug safety and effectiveness

Figure 2: Distribution of number of prescription drug records, stratified by sex, in real-world administrative health data from the
Population Research Data Repository (PRDR) and synthetic data from the OSIM2 and ModOSIM models

9



Ayilara OF et al. International Journal of Population Data Science (2023) 8:1:26

Figure 3: Distribution of number of prescription drug records, stratified by age group, in real-world administrative health data from
the Population Research Data Repository (PRDR) and synthetic data from the OSIM2 and ModOSIM models

Table 6: Frequency of hospitalization for community-acquired pneumonia (HCAP) and the use of proton pump inhibitors (PPI) in
the real-world PRDR, OSIM2, and ModOSIM synthetic data

Data source Use of PPI HCAP Row total Total
Yes No

PRDR Yes 20 2,165 2,185 45,215
No 182 42,848 43,030

OSIM2 Yes 0 40 40 6,595
No 126 6,429 6,555

ModOSIM Yes 0 18 18 6,225
No 99 6,108 6,207

OSIM2: Observational Medical Dataset Simulator II; ModOSIM: Modified OSIM2.

studies and (ii) test program simultaneously by analysts in
different provinces to ensure reproducibility and facilitate
collaborative research.

There are, however, some limitations to the ModOSIM
simulator. The longitudinal causal structure of the synthetic
data is unlikely to follow the real-world time ordering of study
variables [24]. This is because the model does not follow
a causal framework. Other simulation methods that aim to
preserve elements of the longitudinal causal structure include
the Plasmode simulation approach, which relies on resampling
real-world data [25], and simulation using marginal structural
models or structural nested models with marginal parameters
[26]. However, the latter simulator requires access to real-world
data each time researchers wish to implement these models, in

order to accurately model different sources of bias in the data;
this can be challenging to achieve because of health privacy
legislation. Future studies may consider generating synthetic
data that follow the real-world time ordering of variables
in real-world AHR data using general adversarial networks,
which provide a promising framework for simulating complex
distributions.

Conclusions

A key consideration when generating synthetic data is to
ensure that they mirror many of the attributes of the source
data. This study examined the representativeness of data
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generated from two different simulation models. Synthetic
data generated using the ModOSIM model showed a greater
similarity to real-world AHR data when compared to OSIM2
data on several measures. Synthetic AHRs consistent with
those found in real-world settings can be generated using
ModOSIM. Synthetic data will benefit rapid implementation
of methodological studies and data analyst training. However,
there is a need to further enlighten the research community on
the limitations of using synthetic data for real-world studies.
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