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ABSTRACT 

The Douro region is renowned for its quality wines, particularly for the famous Port Wine. 
Vintage years, declared approximately 2–3 times per decade, signify exceptional quality 
linked to optimum climatic conditions driving grape quality attributes. Climate change poses 
challenges, as rising temperatures and extreme weather events impact viticulture. This study 
uses machine learning algorithms to assess the climatic influence on vintage years and climate 
change impacts for the next decades. Historical vintage data were collected from 1850 to 2014. 
Monthly climatic data for the same period were obtained, including temperature, precipitation, 
humidity, solar radiation, and wind components. Various machine-learning algorithms were 
selected for classification, and a statistical analysis helped identify relevant climate variables for 
differentiation. Cross-validation was used for model training and evaluation, with the hits and 
misses (confusion matrix) as the performance metric. The best-performing model underwent 
hyperparameter tuning. Subsequently, future climate projections were acquired for four regional 
climate models from 2030 until 2099 under different socio-economic scenarios (IPCC SSP2, 
SSP3, and SSP5). Quantile mapping bias adjustment was applied to correct future climate data 
and reduce model biases. Past data revealed that vintages occurred 23.6 % of the years, with an 
average of two vintage years per decade, with a slightly positive trend. Climate variables such 
as precipitation in March, air temperatures in April and May, humidity in March and April, solar 
radiation in March, and meridional wind in June were identified as important factors influencing 
vintage year occurrence. Machine-learning models were employed to predict vintage years 
based on the climate variables, with the XGBClassifier achieving the highest performance with 
76 %/88 % hits for the vintage/non-vintage classes, respectively, and an ROC score of 0.86, 
demonstrating strong predictive capabilities. Future climate change scenarios under different 
socio-economic pathways were assessed, and the results indicated a decrease in the occurrence 
vintage years until 2099 (10.3 % for SSP2, 9.1 % for SSP3, and 5.8 % for SSP5). The study 
provides valuable insights into the relationship between climate variables and wine vintage 
years, enabling winemakers to make informed decisions about vineyard management and 
grape cultivation. The predictions suggest that climate change may challenge the wine industry, 
emphasising the need for adaptation strategies.

 KEYWORDS:  Machine learning, statistical models, wine quality, Douro, Portugal, future projections

ORIGINAL RESEARCH ARTICLE

OPEN ACCESS

DOI: https://doi.org/10.20870/oeno-one.2023.57.4.7694

mailto:?subject=
https://doi.org/10.20870/oeno-one.2023.57.4.7694
https://oeno-one.eu/


OENO One | By the International Viticulture and Enology Society2 | volume 57–4 | 2023

INTRODUCTION

The Douro region of Portugal is one of the world’s oldest 
and most renowned winemaking regions (Fraga et al., 2017). 
Located in north-eastern Portugal (Figure 1), the region 
is known for its steep slope and terraced vineyards along 
the Douro River valley (Brochado et al., 2021), yielding 
exceptional table wines that are gaining recognition worldwide 
(Rebelo et al., 2015). The Douro is also the birthplace of the 
Port Wine, a fortified wine known for its high quality, which 
is one of Portugal’s most famous products, accounting for 
approximately 50 % of the total wines exported (IVV, 2021). 
Similar to other wines and regions, Port Wine’s quality 
attributes can vary from one year to the other, largely driven 
by the prevailing climatic conditions during the grapevine 
growing season. In the Douro, a year with top-quality Port 
Wine production is traditionally referred to as a “vintage 
year”. Each company usually declares vintage years, 
depending on the quality of the grapes and, consequently, of 
the wines produced. If all (or nearly all) companies declare it, 
this consensus translates into a generalised Port vintage year. 
According to the Port and Douro Wines Institute (IVDP), 
generalised vintage years are typically declared around 2 or 
3 times per decade (on average) from the existing records 
dating back to 1759. Vintage Port bottles available in the 
market make up approximately 3 % of the total Port, typically 
with high prices (Macedo et al., 2021; Panzone and Simões, 
2009). Some of the most famous vintage years include 1945, 
1963, 1977, 1994, and 2011.

As mentioned above, the term vintage year directly relates 
to the growing season in which the grapes were harvested 
(IVV, 2021; Mayson and Duff, 2018). Therefore, the quality 

of a wine is directly related to the weather patterns during 
the grapevine’s annual cycle, particularly the temperature, 
amount of precipitation, and solar radiation, amongst other 
atmospheric variables (Robinson et al., 2013; Smart et al., 
1991). It is traditional knowledge that vintage years are 
typically declared in years with warm and dry growing 
seasons, as these conditions allow the grapes to ripen fully 
and develop complex flavours resulting in high-quality 
grapes, whereas cooler or wetter growing seasons may 
produce grapes that are less ripe and less flavourful, resulting 
in lower quality wines (Magalhães, 2008; Mayson and Duff, 
2018). The Douro region presents typical Mediterranean 
climatic characteristics, with cool, wet winters followed 
by warm-to-hot dry summers. These summers are ideal for 
ripening grapes, conditions that are typically preferred for 
producing a high-quality vintage. These climatic features 
allow the grapes to ripen fully and develop complex flavours 
and aromas. For example, the 2011 vintage in the Douro 
Valley was considered exceptional, attributed to the hot 
and dry growing season, conferring complex flavours to the 
wines. Similarly, the Bordeaux vintages are characterised 
by warm and dry growing seasons, resulting in high-quality 
wines (Robinson et al., 2013).  

Despite the general linkage between warm and dry conditions 
and high-quality wines, it is expected that this relationship is 
not linear. The changing climate conditions associated with 
anthropogenic forcing can have profound implications for 
the characteristics and quality of wines. Rising temperatures, 
changing precipitation patterns, and altered growing season 
lengths can impact grapevine development and grape 
berry sugar accumulation, acidity, phenolic composition, 
and flavour profiles (Van Leeuwen and Schultz, 2018).  

FIGURE  1. The geographical location of the Douro Demarcated Region in mainland Portugal, along with the 
vineyard land cover areas and main rivers.
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The Douro winemaking region is located in a “climate 
change hotspot”, meaning that the impacts of climate change 
in this region may be particularly severe (Fraga et al., 
2020) in terms of viticultural productivity (Fraga et al., 
2022), particularly due to the increase in extreme weather 
events (Fonseca et al., 2023). Currently, in the Douro, 
temperatures occasionally exceed 40 °C in the summer, with 
an intensification projected for the next decades, which may 
threaten quality wine production (Gambetta and Kurtural, 
2021). As in many other regions worldwide, the region is also 
experiencing increasingly frequent extreme weather events, 
including heavy precipitation and hailstorms, late frosts, and 
heatwaves (C3S, 2023; Clemente et al., 2022; Costa et al., 
2019; Fraga and Santos, 2017; Jones, 2012). These events 
have a vast destructive potential for viticulture, leading to 
losses in yield and quality attributes. As such, under climate 
change, “vintage years” may become infrequent and less 
predictable.

While significant research has been conducted on the impacts 
of climate change on wine production, several knowledge 
gaps still need to be addressed. While some studies attempt to 
assess the linkage between climatic conditions vintage/ wine 
quality and (Biss and Ellis, 2021; Real et al., 2017; 
Davis et al., 2019; Salinger et al., 2015), the knowledge of 
the occurrence of vintage years under climate change is still 
vastly unexplored. One of the main challenges is identifying 
the specific patterns that distinguish the binary vintage 
year time series (0—non-vintage, 1—vintage). Traditional 
statistical (linear) models have been widely used for time 
series prediction, but they often fail to capture the complex 
non-linear relationships in the data (Hastie et al., 2013).  
In recent years, machine-learning models have emerged 
as a powerful alternative for time series prediction due to 
their ability to learn complex patterns (Hastie et al., 2013).  
These models offer several advantages over traditional 
statistical models for predicting time series, such as 
high-dimensional data handling and automatic learning 
of hierarchical representations (Hastie et al., 2013).  
Their ability to learn intricate patterns and relationships in 
data has led to their superior performance, making them 
particularly suitable to handle real-world problems, such as 
analysing vintage year drivers and classifying wine quality.

The current study aims to overcome this knowledge gap 
by modelling the occurrence of vintage years in the Douro 
wine region using machine learning and, subsequently, 
projecting the potential impacts of climate change based 
on the developed models. Therefore, the objectives of the 
present study are five-fold: 1) to examine a long time series 
of vintage years in the Douro Wine Region (1850–2014, 
165 years); 2) to evaluate the existence of periodic behaviour 
in this series; 3) to train machine-learning models that can 
be used to explain the variability of the vintage time series; 
4) to validate these models and analyse the uniqueness of a 
vintage year in climatic terms; and 5) to develop projections 
of vintage years taking into account several future scenarios 
and assess potential climate change impacts.

MATERIALS AND METHODS

1. Vintage data collection and pre-processing 
In the present study, we collected vintage classification data 
from 1850 to 2014 (165 years) from the dataset available 
on the Portuguese IVDP (“Instituto dos Vinhos do Douro 
e Porto, I.P.”) at https://www.ivdp.pt/pt/vinhos/vinhos-do-
porto/vintages/ (while vintage data extends back to 1759, 
this period was selected for consistency, see section 2.5).  
The data contained information about the vintages of port 
wine, including the year of production, a short description 
of the meteorological conditions of each given year, some 
tasting notes, and the classification. In our approach, we 
opted to select only classical vintage years that were declared 
by the majority of producers for the subsequent analysis.  
We pre-processed the data by cleaning the text and 
converting it into structured binary data, where 1 corresponds 
to a vintage year and 0 corresponds to a non-vintage year. 
Discrete Fourier Transform analysis was then applied to this 
binary dataset to isolate possible periodicities in the data.  
An autocorrelation analysis was also performed to investigate 
the patterns and relationships within the vintage year time 
series.

2. Climatic data
As potential predictors of vintage wine quality, we used 
climatic data retrieved from the 20th Century Reanalysis 
dataset v3 (henceforth 20CR) from the National Oceanic and 
Atmospheric Administration (NOAA) over the period from 
1850 to 2014 (while 20CR data began in 1836, this period 
was selected for consistency, see section 2.5). Reanalysis is a 
methodology that uses state-of-the-art earth models, archived 
atmospheric analysis, and updated data assimilation techniques 
to reconstruct past weather and climate conditions. The output 
of climate reanalysis is a dataset that provides information 
about atmospheric variables over a specified period, which 
can then be used to study past weather and climatic trends, 
variability, and extremes and calibrate and validate climate 
models for future projections. Climate reanalysis datasets are 
widely used in a variety of fields, including climate science 
and meteorology (Saha et al., 2010), environmental science 
(Fuka et al., 2014), and agriculture (Uniyal et al., 2019). 
They are particularly useful for studying long-term climate 
variability, as they provide a consistent and comprehensive 
record of past climate conditions that can be used to identify 
trends and patterns over time (Bengtsson et al., 2004).  
The 20CR gridded dataset contains data from the model NCEP 
GFS v14.0.1(Compo et al., 2011) at a resolution of ~75 km at 
the equator. Data over the Douro Region (40.75º−41.25º N; 
6.0º−8.0º W; Figure 1) were selected and spatially averaged 
(corresponds to 2 grid boxes). The following 20CR variables 
were retrieved over the Douro region and used as features in 
the machine-learning models: monthly minimum, mean and 
maximum temperatures (TN, TM and TX, ºC), precipitation 
(PR, mm), relative humidity (RH, %), solar radiation 
(RD, W/m2), zonal and meridional wind components 
(UW and VW, ms-1), from January to September (months: 
01, 02, …, 09), during grapevine annual growing cycle.  
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The diurnal temperature range (DTR) was also computed for 
each month (TX minus TN).

3. Machine-learning models
We selected several classical machine-learning classification 
algorithms included in the scikit-learn v1.3.2 library 
(Fabian, 2011) in Python v3.11, comprising Logistic 
Regression (LogisticRegression; (Cox, 1958)), Decision 
Trees (DecisionTreeClassifier; (Fisher, 1936)), Random 
Forest (RandomForestClassifier; (Breiman, 2001)), 
Support Vector Machines (SVC; (Cortes and Vapnik, 
1995)), K-Nearest Neighbor (KNeighborsClassifier; (Fix 
and Hodges, 1989)), Gaussian Naive Bayes (GaussianNB; 
(Bayes, 1958)), Multi-layer Perceptron (MLPClassifier; 
(Rumelhart et al., 1987)), AdaBoost (AdaBoostClassifier; 
(Freund and Schapire, 1997)), Gradient Boosting 
(GradientBoostingClassifier; (Friedman, 2001)), Quadratic 
Discriminant Analysis (QuadraticDiscriminantAnalysis; 
(Fisher, 1936)), and XGBoost (XGBClassifier; (Chen et al., 
2016)). These algorithms were chosen based on previous 
research outcomes, documented in the specialised literature, 

and their suitability for the nature of our data. A comparison 
between the strengths and weaknesses of each model can be 
found in Table 1.

4. Model Training
From the historical climate dataset, a set of 64 features are 
potential candidates for model selection (8 climatic variables 
× 8 months). A statistical analysis was conducted to identify 
the most important climate variables that differentiate vintage 
years from non-vintage years. The Kolmogorov–Smirnov 
test was applied to compare the distribution of each climate 
variable between the two groups (Massey, 1951). Variables 
that showed statistical significance at a 5 % significance 
level (p < 0.05) were considered features with discrimination 
power. Subsequently, all models were run using only this 
sub-group of features. This preliminary approach is important, 
taking into account the computational resources needed for 
the modelling. To assess all possible combinations of the 
resulting sub-group of features, the bestFeatures v1.0 python 
package was used (Fraga, 2023). To evaluate the performance 
of each algorithm, this script uses a cross-validation scheme 

Model Nature Strengths Weaknesses

Logistic Regression Linear Simple and interpretable; Efficient for linear 
relationships

Limited to linear relationships; May not perform well 
with complex data patterns

Decision Trees Non-Linear Intuitive and easy to understand; Handles non-
linearity well

Prone to overfitting; Sensitive to small variations in 
data

Random Forest Non-Linear Reduces overfitting through ensemble; Handles non-
linearity well

Lack of interpretability; Computationally expensive for 
large datasets

Support Vector 
Machines Non-Linear Effective in high-dimensional spaces; Versatile kernel 

functions
Can be sensitive to choice of kernel parameters; 

Memory-intensive for large datasets

K-Nearest Neighbour Non-Linear Simple and easy to implement; Non-parametric and 
adaptable

Computationally expensive for large datasets; 
Sensitivity to irrelevant features

Gaussian Naive 
Bayes Non-Linear Simple and computationally efficient; Works well with 

high-dimensional data
Assumes independence between features; May not 

handle complex relationships well

Multi-layer Perceptron Non-Linear Suitable for complex relationships; Can learn 
hierarchical features

Prone to overfitting; Requires careful tuning of 
hyperparameters

AdaBoost Non-Linear Combines weak learners for improved accuracy; 
Robust to overfitting

Sensitive to noisy data; Can be computationally 
expensive

Gradient Boosting Non-Linear Sequential improvement over weak learners; Handles 
complex relationships

Prone to overfitting; Sensitive to hyperparameter 
tuning

Quadratic 
Discriminant Analysis Non-Linear Effective for non-linear relationships; Can handle 

multivariate normal distributions
Assumes normality and equal covariance for classes; 

May be sensitive to outliers

XGBoost Non-Linear Scalable and efficient implementation; Improved 
regularisation for better performance

Requires careful parameter tuning; Can be 
computationally expensive

TABLE 1. Each model/algorithm used in the present study along with the strengths and weaknesses.
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when running each model for each combination of features. 
Specifically, a k-fold cross-validation technique with 5 folds 
means each algorithm is effectively evaluated multiple times 
with the split dataset. The k-fold method entails partitioning a 
given dataset into k distinct subsets, with one of these subsets 
designated as the validation set and the remaining k-1 subsets 
serving as the training data (Stone, 1974). This process is then 
repeated k times, with each subset being different. As such, 
there are always parts of the data that are unseen/withheld 
from the algorithm. The outcomes are then averaged or 
other prescribed methods to derive a singular estimate of the 
model’s performance. As such, this methodology provides 
several benefits over other ways of statically train-test 
splitting the dataset. k-fold cross-validation plays a critical 
role in addressing the issue of overfitting, ensuring a robust 
evaluation of the model’s capacity to generalise to previously 
unseen data.

During training, we used the default hyperparameters 
for each algorithm, which can be found in the scikit-learn 
library (Fabian, 2011). Cross-validation helped us to avoid 
model overfitting and obtain a more accurate estimate 
of the model performance. A confusion matrix (hits vs 
misses) was used to test the performance of each algorithm.  
This metric is commonly used for evaluating the performance 
of classification models. Furthermore, confusion matrixes 
depicting hits and misses for each model were also 
analysed. The best-performing model was selected based 
on the overall performance of the metrics. Hyperparameter 
Tuning was subsequently applied to the best-performing 
model, as determined by the evaluation metrics. Grid search 
techniques were employed to find the optimal combination 
of hyperparameters that maximised the model performance 
(Murphy, 2012). A comparison between the strengths and 
weaknesses of each model can be found in Table 1.

5. Future projections
The future climate data used in this research was obtained 
from the Copernicus Climate Change Service (C3S) platform 
(Service, 2323), which provides access to a comprehensive 
range of climate data and information. The climate data 
were sourced from four widely recognised climate models: 
CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, and 
IPSL-CM6A-LR (Boucher et al., 2020; Séférian et al., 2019; 
Voldoire et al., 2019). These models are part of the Earth 
System Model ensemble provided by the Copernicus Climate 
Data Store (CDS) (Service, 2323). The Copernicus platform 
is a collaborative initiative of the European Union and the 
European Space Agency, offering free and open access to 
climate data and information for research and decision-making 
purposes. All climatic variables were obtained from each 
model for the periods 1850–2014 and 2030–2099 (the 
former period was obtained for bias-correction reasons, 
which is explained below). Similarly to the historical 
climate data, the data from each model were selected and 
spatially averaged over the Douro Region (40.75º−41.25º N; 
6.0º−8.0º W;  Figure 1) (spatial resolution differs for each 
model, resulting in a different number of gridboxes extracted).

Furthermore, the future climate data were obtained under 
three different future scenarios. The Shared Socioeconomic 
Pathway (SSP) was developed by the Intergovernmental 
Panel on Climate Change (IPCC), namely SSP2, SSP3, 
and SSP5. These scenarios represent different plausible 
socio-economic futures and their associated greenhouse gas 
emissions trajectories (IPCC, 2021; Voldoire et al., 2019). 
SSP2 is a middle-of-the-road scenario that assumes moderate 
population growth, intermediate levels of technological 
progress, and a balanced approach to economic and 
environmental goals (Riahi et al., 2017). SSP3 portrays 
a world where regional competition takes precedence 
over global cooperation (Gidden et al., 2019). It assumes 
high population growth, slow technological progress, and 
fragmented efforts to address environmental challenges. 
SSP5 is considered a severe scenario, which projects rapid 
economic growth, high population, and heavy reliance on 
fossil fuels (Kriegler et al., 2017). Environmental concerns 
are typically disregarded in favour of economic development.

It is important to acknowledge that future climate projections 
are subject to uncertainties inherent to climate modelling, 
which typically result in bias from the observed climate (IPCC, 
2021). As such, a quantile mapping bias adjustment method 
was applied to correct future climate data (Thrasher et al., 
2012). The quantile mapping bias correction is a widely 
used statistical method for adjusting biases in climate model 
projections, including future climate data. It aims to align the 
empirical distributions and corresponding statistical moments 
of the model-simulated data with observed data, thereby 
reducing systematic errors and improving the reliability 
of climate projections. This bias correction technique 
involves comparing the cumulative distribution functions 
of the model-simulated data with those of observed data, 
as this represents the probability distribution of a variable 
and provides information about its relative frequency of 
occurrence at different values. To apply quantile mapping, 
the cumulative distribution functions of the model-simulated 
data and observed data are first calculated for the same 
period (1850–2014). The bias correction is then performed 
by adjusting the model-simulated data to match the observed 
CDF and then applying the same principle to the modelled 
future data. This method is currently widespread in climate 
research studies (Lafon et al., 2012; Martins et al., 2021). 

RESULTS

1. Historical Vintage Year Analysis
The analysis of the historical dataset revealed an occurrence 
of a vintage in approximately 23.6 % of the years from 1850 
to 2014 (Figure 2). Analysing the occurrence of vintage years 
per decade (Figure 3), it is clear that there are, on average, 
two vintage years per decade. The 1920s and 2000s decades 
had the highest number of vintages (4), while the 1860s, 
1880s, and 1950s had no vintage years. A slight positive trend 
is apparent (+0.01 vintages per decade), indicating a higher 
occurrence of vintages in the most recent decades, likely 
being a manifestation of the warming and drying trends in 
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FIGURE 2. Occurrence of each vintage year between 1850 and 2019.

FIGURE 3. Sum of vintage years for each decade from 1850 and 2014. The mean number of vintages for the full 
period is also shown (red line), along with the linear regression trend line (LT, linear trend).
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the Douro Wine Region, but also may be due to viticultural 
and oenological advances since 1990. Regarding the spectral 
analysis (Figure 4 top), it reveals a leading four-year cycle, 
i.e., vintage years tend to occur every four years, which is in 
line with the two vintages per decade. However, the spectral 
power density is significantly spread over other frequencies, 
thus also highlighting that vintage years are not a cyclic 
occurrence. Regarding the autocorrelation (Figure 4 bottom), 
no clear periodic behaviour is found, which also stresses the 
irregularity in the occurrence of vintage years.

2. Climate influence
The Kolmogorov–Smirnov test was performed to identify the 
climate variables that significantly differentiate vintage years 
from non-vintage years. The results indicated that several 
variables showed statistical significance (p < 0.05). These 
important climate variables include March precipitation 
(PR03), May mean temperature (TM05), May minimum 
temperature (TN05), April maximum temperature (TX04), 
March and April relative humidity (RH03, RH04), March 

solar radiation (RD03), and June meridional (north-south) 
wind component (VW06) (Table 2).

Figure 5 shows the distribution (left panels), as well as the 
annual time series (right panels) (1850–2014) of the vintage 
vs non-vintage years for the significantly different features 
abovementioned. From the empirical distributions associated 
with vintage/non-vintage years, it can be concluded that 
settled and relatively dry weather conditions in early 
spring tend to be favourable to the occurrence of vintage 
years. Anomalously low precipitation in March (PR03), 
anomalously low values of relative humidity in March and 
April (RH03, RH04), anomalously high values in solar 
radiation (RD03), and anomalously high values of April 
maximum temperature (TX04) are coherently associated 
with the occurrence of vintage years. Conversely, the 
prevalence of moist air masses driving cloudy, humid, and 
rainy conditions tends to be unfavourable to wine quality. 
In May, when grapevine flowering typically develops, 
mean (TM05) and minimum (TN05) temperatures above 
average are generally favourable. For June, the meridional  
(north–south) wind component (VW06) reveals that vintage 

FIGURE 4. (Top panel) Autocorrelation between the lagged timeseries 1850–2014. (Bottom panel) Power spectral 
density of the occurrence of a vintage year.

TABLE 2. Climatic variables with statistically significant empirical probability distributions between vintage and 
non-vintage years, using the Kolmogorov–Smirnov test (p-value < 0.05).

Climatic variable Abbreviation p-value

March precipitation PR03 0.019

May mean temperature TM05 0.004

May minimum temperature TN05 0.017

April maximum temperature TX04 0.011

March relative humidity RH03 0.008

April relative humidity RH04 0.003

March solar radiation RD03 0.003

June meridional (north-south) wind component VW06 0.006
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years are commonly linked to weak winds, which also agrees 
with the occurrence of settled weather conditions. Northerly 
winds prevail in Portugal during summer, but strong northerly 
winds may bring cool and relatively moist air masses from 
the North Atlantic, thus not being the optimal conditions for 
grape berry ripening and synthesis of complex compounds.

3. Machine-Learning Model Performance 
Comparison

Various machine-learning classification models were trained 
and evaluated using the historical vintage year dataset 
to predict vintage years. As previously explained, model 

FIGURE 5. Distribution plots for the climatic variables with statistically significant differences (p-value < 0.05) in 
their empirical probability distributions between vintage and non-vintage years (Table 2). The plots include: March 
precipitation (PR03), May mean temperature (TM05), May minimum temperature (TN05), April maximum temperature 
(TX04), March and April relative humidity (RH03, RH04), March solar radiation (RD03), and June meridional  
(north–south) wind component (VW06).
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FIGURE 6. Confusion matrix for each model. The percentage of each plot considers all folds in the k-fold validation.
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evaluation was performed using a 5-fold cross-validation, 
while the performance of each model was assessed by 
analysing the respective confusion matrices, representing 
the hits and misses. Each matrix details the hits and misses 
for each vintage class, taking into account the k-fold 
methodology (average percentage for the results of each 
fold). The results demonstrated that the machine-learning 
models achieved varying performance levels in predicting 
vintage years (Figure 6). The XGBClassifier exhibited the 
highest performance among the models, with 76 % hits for 
the vintage class and 88 % hits for the non-vintage class. 
SVC and LogisticRegression also performed adequately, 
with 74 %/64 % and 71 %/72 %, respectively. All other 
models performed poorly, not adequately simulating the 
vintage class. For example, QuadraticDiscriminantAnalysis 
placed all years as non-vintage, resulting in 100 %/0 % 
scores. Summarising, the XGBClassifier shows higher 
performance, predicting both class 0 and 1 (non-vintage and 
vintage, respectively, with LogisticRegression and SVC also 
showing relatively good performances. All other models 
show problems in assessing class 1, which indicates lower 
performances. Given these results, hyperparameter tuning 
was applied to the XGBClassifier to optimise its performance 
further. The hyperparameters were then tuned using the 
grid search technique (Murphy, 2012). The importance of 
the XGBClassifier feature indicated that the model selects 
TM05, RH04, and VW06 as the most important predictors 
(not shown).

A ROC curve was then created by varying the classification 
threshold (0 to 1) of the XGBClassifier model and calculating 
TPR (true-positive rate) and FPR (false-positive rate) at each 
threshold. This curve represents the ability to distinguish 
between two classes by displaying the trade-off between 

sensitivity and specificity at various decision thresholds, with 
a better model producing a curve closer to the top-left corner 
and having a higher Area Under the Curve (AUC) value.  
The ideal classifier would have a TPR of 1 and an FPR 
of 0, while a random classifier would have a score of 0.5. 
XGBClassifier achieved an ROC score of 0.86. From 
Figure 7, the curve starts at the bottom left corner of the 
graph and moves steadily upwards and to the right, indicating 
that as the FPR increases, the TPR also increases. This is 
what we would expect to see for a classifier that is good at 
distinguishing between vintage and non-vintage years.

4. Predictions for Future Climate Change 
Scenarios
Considering the most important climatic features for the 
XGBClassifier algorithm (TM05, RH04, and VW06), 
these were analysed regarding their future anomalies 
(differences between future and present). Three IPCC Shared 
Socioeconomic Pathway (SSP) scenarios: SSP2, SSP3, and 
SSP5, were analysed, and changes were assessed for each 
scenario. Figure 8 shows that the climatic conditions will 
change, with stronger modifications in the most severe future 
scenarios (SSP5). TM05 points to a warming trend from 
3.4 °C (SSP2) to 4.9 °C (SSP5). RH4 will decrease in all 
future scenarios, ranging from –7 to –8 %. VW06 suggests a 
strong northerly wind influence in the future (except in SSP2, 
where changes are small).

The tuned XGBClassifier model was then applied to 
future climate change projections under these scenarios.  
These projections aimed to assess the potential impact of 
climate change on vintage year occurrence from 2030 to 
2099. The results indicated a decrease in the occurrence 
of vintage years under all three climate change scenarios 

FIGURE 7. ROC AUC curve (true versus false positive rate) for the XGBclassifier model.
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compared to the historical period (Figure 9). Considering 
the Ensemble mean of the 4 climate models, the vintage 
year occurrence rates were estimated to be 10.3 % for SSP2, 
9.1 % for SSP3, and 5.8 % for SSP5. The CNRM-CM6-
1-HR model generally presents the highest percentages 

of vintage years per decade, while the IPSL-CM6A-LR 
shows the lowest. These outputs show the importance of 
using future climate data sources to consider the uncertainty 
tied to models. Nonetheless, all models point to a decrease 
in vintage occurrence in relation to the historical data.  

FIGURE 8. Differences between future (a) SSP2, (b) SSP3, (c) SSP5 and present (in % relative to the present) for each 
variable selected by XGBclassifier model. Differences in original units are also shown.
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These findings suggest that climate change is expected to 
reduce the number of vintage years, posing challenges to 
the wine industry and emphasising the need for adaptation 
strategies. Overall, the results demonstrate the effectiveness 
of machine-learning models in predicting vintage years 
based on climate variables. The tuned XGBClassifier 
model exhibited the highest performance and captured 
the relationships between climate variables and vintage 
year occurrence. The predictions for future climate change 
scenarios highlight the potential impacts of climate change 
on wine vintage patterns.

DISCUSSION

The results of this study provide valuable insights into the 
relationship between climate variables and wine vintage 
years. The identification of important features (potential 
predictors), such as mean temperature in May (TM05), 
relative humidity in April (RH04), and meridional wind 
component in June (VW06), highlights the key climate 
factors that contribute to vintage year occurrence.  
These findings align with previous research that has 
emphasised the significance of these variables in determining 
wine quality and vintage suitability (Biss and Ellis, 2021; 

Real et al., 2017; Davis et al., 2019). Jones (2005) conducted 
a study in the Douro Valley, Portugal, and identified 
mean temperature in May as a crucial factor influencing 
vintage quality. Similarly, Tonietto and Carbonneau (2004) 
emphasised the importance of temperature and precipitation 
during the growing season in determining wine quality and 
vintage characteristics. Real et al. (2017) identified that 
the growing season mean temperatures (April–September) 
above the region’s average, warm winters, cool July through 
veraison, and cool temperatures during ripening are important 
factors for vintage quality. Nonetheless, the previous study 
was based on a 30-year time window (1980–2009), and 
longer periods should be analysed to understand and confirm 
the relationships between vintage quality and climatic 
parameters. Interestingly, Davis et al. (2019) indicate that the 
most important climatic factor in distinguishing high-quality 
Burgundy vintages is the growing season temperature, 
especially the high diurnal temperature range (for red wines) 
and high average maximum temperatures (for white wines). 
Biss and Ellis (2021) modelled the Chablis vintage score 
using the growing season mean temperature, minimum 
temperature, and rainfall during the ripening period.  
Our results enhance the understanding of the relationship 
and connection between vintage quality and climate factors, 
using a much longer time series than the mentioned studies. 

FIGURE 9. Projections for the percentage of vintage years in the future period (2030–2100), for the three selected 
SSP scenarios (SSP2, SSP3 and SSP5) and the four outlined climate models (see legend).
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Three machine-learning models employed in this study, SVC, 
LogisticRegression, and particularly the XGBClassifier, 
demonstrated strong predictive capabilities, detecting both 
classes (vintage and non-vintage). This high performance 
indicates the effectiveness of the selected climate variables 
in distinguishing between vintage and non-vintage years. 
Similar studies using modelling techniques have reported 
promising results in predicting wine quality (Biss and Ellis, 
2021; Cortez et al., 2009). Cortez et al. (2009) employed 
machine-learning algorithms to predict wine quality 
parameters. Their study highlighted the effectiveness of 
machine-learning models in assessing wine quality. 

The findings of this research may have significant 
implications for the wine industry and vineyard 
management. Understanding the influence of climate 
variables on vintage years enables winemakers to make 
informed decisions regarding grape cultivation, harvesting, 
and winery management. The predicted decrease in vintage 
year occurrence under future climate change scenarios raises 
concerns about the potential challenges wine producers 
face. The prospect of higher temperatures in May, lower 
humidity in April, and stronger northerly winds in June 
present a complex set of challenges for viticulture in the 
future. Traditionally, grapevines have thrived within specific 
atmospheric conditions, particularly optimum temperatures, 
ensuring ideal ripening. However, as temperatures increase, 
the pace of ripening accelerates, potentially pushing grapes 
ahead of their optimum conditions for flavour and balance 
(White et al., 2006). Elevated May temperatures may also 
pose risks of sunburn and heat stress for the vines and 
grape berries if not carefully managed. Lower humidity in 
April may increase water stress, affecting vine health and 
grape development. Furthermore, the combination of lower 
humidity and stronger northerly winds in June may contribute 
to increased evaporation rates and water loss from the soil, 
exacerbating the risk of drought conditions.

These shifts may also lead to imbalances in sugar content, 
acidity, and the development of flavour compounds, which 
are the hallmarks of high-quality wines (White et al., 2006). 
Our study indicates that a tipping point may be close or 
already passed, manifesting in terms of fewer vintage years 
in the future. These results align with Jones et al. (2005), 
which projected that in regions currently producing high-
quality wines, such as the Douro, climate change impacts 
may point toward unbalanced ripening of grapes, resulting in 
an overall quality loss and difficulty maintaining wine styles. 
Hence, by considering the identified important climatic 
factors, winemakers can adapt their practices to optimise 
wine quality in specific vintages. Adaptation strategies, 
such as implementing new viticultural techniques, adjusting 
grape varieties, and exploring alternative wine regions, may 
be necessary to maintain wine quality and sustainability 
under changing climatic conditions (Hannah et al., 2013; 
van Leeuwen and Darriet, 2016; van Leeuwen et al., 2019). 
For example, Bramley (2005) suggested that grape quality 
sensing technology should be invested in. These findings 
support the growing consensus among researchers and 

industry professionals that climate change poses significant 
risks to wine production (Fraga et al., 2016; Jones and Alves, 
2012).

The present study builds upon these earlier works by 
modelling wine vintage years over a broader temporal scale 
and incorporating future climate change scenarios. By using 
a wider range of machine-learning models and assessing the 
impact of different climate scenarios, this research provides 
a comprehensive understanding of vintage year prediction 
and its implications for wine production under changing 
climatic conditions. Despite the valuable insights gained 
from this study, some limitations should be acknowledged. 
Firstly, it is important to recognise the potential limitations 
of using reanalysis data for climate analysis, as discussed 
by Thorne and Vose (2010). While reanalysis data are not 
the ideal choice for trend analysis, our research primarily 
focuses on characterising the climate disparities between 
vintage and non-vintage years, minimising the impact of 
this issue on our research. Additionally, the analysis focused 
primarily on monthly climate variables, overlooking other 
possible important factors, such as soil characteristics, 
viticultural practices, and vineyard management techniques. 
Future research may consider incorporating these additional 
variables to enhance the accuracy and robustness of the 
predictive models. Moreover, this study specifically focuses 
on the Douro wine region and its historical and future climate 
data. The extrapolation of the findings to other wine-growing 
regions may be hampered by variations in climate, grape 
varieties, and viticultural practices. Future research may 
explore the applicability of the developed models and their 
performance across different wine regions on a global scale. 
Additionally, the analysis considered a limited number of 
climate models for future climate projections. Expanding 
the scope to include a broader range of climate models and 
scenarios would provide a more comprehensive assessment 
of the potential impacts of climate change on wine vintage 
occurrence, thus incorporating a wider spectrum of 
uncertainties.

Despite the above-stated limitations, this study contributes 
to the existing body of knowledge by advancing our 
understanding of the relationship between climate variables 
and wine vintage years. The findings also underscore the 
importance of proactive measures to adapt to changing 
climatic conditions, as climatic variables play a key role 
in wine quality. These measures should envision the 
maintenance of the long-term socioeconomic sustainability 
of the wine sector, promoting the production of high-quality 
wines, but always allied with environmental protection and 
sustainable use of natural resources, such as soils, water, and 
biodiversity.

CONCLUSIONS

This research successfully modelled wine vintage 
years using monthly climate variables as predictors.  
The machine-learning models, particularly the XGBClassifier, 
demonstrated strong predictive performance, enabling a 
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clear differentiation between vintage and non-vintage years.  
The identified driving climate variables, namely mean 
temperature in May (TM05), relative humidity in 
April (RH04), and northerly wind in June (VW06), 
significantly contribute to the vintage year occurrence. 
The findings have practical implications for winemakers 
and vineyard managers, aiding in decision-making related 
to grape cultivation, harvesting, and wine production.  
Furthermore, the predictions for future climate change 
scenarios suggest a decrease in vintage year occurrence, 
highlighting the need for adaptation strategies to mitigate 
the potential impacts of climate change on wine production.  
This research expands upon previous studies by incorporating 
machine-learning techniques, assessing a wider range of 
climate models and scenarios, and modelling vintage years 
over a longer historical period. Despite its limitations, the 
study improves our understanding of wine vintage prediction 
potential and its implications for the wine industry under 
changing climatic conditions.
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