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Abstract: In this paper, we mainly consider a eco-epidemiological predator-prey system where delay
is time-varying to study the transmission dynamics of Bacterial white spot disease in Litopenaeus
Vannamei, which will contribute to the sustainable development of shrimp. First, the permanence and
the positiveness of solutions are given. Then, the conditions for the local asymptotic stability of the
equilibriums are established. Next, the global asymptotic stability for the system around the positive
equilibrium is gained by applying the functional differential equation theory and constructing a proper
Lyapunov function. Last, some numerical examples verify the validity and feasibility of previous
theoretical results.
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1. Introduction

The dynamical relationship between biological populations has played an important role in ecology
since Berryman [1] found the dynamical connection between predators and their prey in 1992, which
will develop to be one of vital field. Moreover, a number of scholars have paid much attention to the
dynamical behavior in the context of predator-prey models. It is evident that these dynamical behaviors
encompass various aspects such as stability, periodic oscillations, bifurcation, persistence and chaos
[2–26]. Understanding these dynamics is essential for comprehending the intricate interactions and
patterns exhibited by predator and prey populations in ecological systems.

Furthermore, ecological epidemiology has emerged as a relatively new branch within ecological
theory. The predator-prey model, initially proposed by Lotka and Volterra, served as a foundation for
this field. In subsequent years, Holmes and Bethel reviewed numerous examples demonstrating how
infectious diseases can alter the dynamics of predator-prey interactions. It was then realized that
infectious diseases play a significant role in influencing population dynamics [27]. This realization
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inspired Anderson and May [28] to embark on mathematical and biological studies to explore the
impact of diseases on ecosystems. Their work shed light on the intricate relationship between
infectious diseases and ecological systems, providing insights from both mathematical and biological
perspectives. As a result, the predator-prey model incorporating infectious diseases has gained
increasing attention. In 2002, Venturino [29] introduced a scenario where the disease spreads only
among predators and proposed two types of infectious disease models in ecological systems, shedding
light on the mechanisms of disease transmission within these populations. In recent years, numerous
researchers have made substantial contributions to studying the consequences of diseases on
predator-prey systems [29–34]. Their research has deepened our understanding of how infectious
diseases can impact population dynamics, community structure and ecosystem stability within
predator-prey systems.

Inspired by the work in [29], Guo et al. [33] further considered prey-predator model incorporating
disease transmission and Holling II functional response:



dX
dt
= rX(1 −

X
K

) −
aXS

1 + bX
,

dS
dt
= e

aXS
1 + bX

− d1S − bS I,

dI
dt
= bS I − d2I.

(1.1)

Note that, only healthy predators are capable of hunting. Where X represents the density of prey
population, S represents the density of susceptible predators, I represents the density of infected
predators. All coefficients are positive. r means the intrinsic growth rate of prey, K stands for the
maximum capacity of prey, a refers to the predation coefficient, e means the conversion coefficient of
prey population to susceptible predators population. d1 indicates the mortality rate of susceptible
predators, d2 indicates the mortality rate of infected predators. and d1 < d2. Furthermore, Guo et al.
presented the abundant conditions for the local asymptotic stability of the equilibriums of the
system (1.1) and analyzed the global asymptotic stability of the positive equilibrium in reference [33].

In fact, for any actual system (chemical control system, spacecraft, network system, ecosystem,
etc.), the influence of environmental factors such as climate, temperature and the maturity time of
certain prey populations is not fixed, and the incubation period of a disease is different. As we all
know, the delay sometimes is a constant, sometimes is time-varying, or sometimes is random, which is
a common phenomenon in many practical systems. The delay is also a key factor that directly affects
and determines the stability and performance of systems. At present, the study on the stability of
linear systems with constant time delay has been relatively mature. In recent years, with the delay
differential equation model used widely in biology, physics, economics, medicine and many other
fields, the study of the delay differential equation has become an important field in the differential
equation and dynamical system. Numerous studies show that altering the time delay parameter in a
model can lead to various effects and characteristics, including oscillation and bifurcation [3, 9, 35].

Based on the model (1.1), Xu and Zhang [36] further took into account the pregnancy delay and
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then formulated the following predator-prey model:

dX
dt
= X(t)

(
r − a11X(t)

)
−

a12X(t)S (t)
1 + mX(t)

,

dS
dt
=

a21X(t − τ)S (t − τ)
1 + mX(t − τ)

− r1S (t) − βS (t)I(t),

dI
dt
= βS (t)I(t) − r2I(t),

(1.2)

where X(t) refers to the population number of prey population, S (t) stands for the population number
of susceptible predators, and I(t) stands for the population number of the infected predators. All
coefficients are positive, and τ ≥ 0 indicates the pregnancy period of a predator. Suppose that the
predator population N consists of two populations: Susceptible predators S and infected predators I.
Moreover, the disease can spread only in the predator species through contact, not vertically.

We find that certain delay factors, like in neural network systems, are not necessarily constant. The
signal transmission speed within the neural network node system is limited, and the interconnection
delay between neurons can change over time, making delays in the node system inevitable. Similarly,
in ecosystems, the maturity time of certain prey populations is not fixed due to the influence of
environmental factors such as climate and temperature, and the incubation period of diseases can vary.
Therefore, incorporating variable delays into the model can enhance its practicality, allowing for a
more accurate description of population behavior characteristics and aiding in the protection of
species and ecosystems.

On the other hand, we also observed an interesting phenomenon that many diseases are not
transmitted vertically [37]. For example, the relationship between the prey algae and the predator
Litopenaeus Vannamei. Bacterial white spot disease (BWSD) is not inherited but spreads among
Litopenaeus Vannamei through contact [38–40]. Furthermore, Litopenaeus vannamei is becoming an
important part of China’s aquaculture industry, which effectively developed the coastal wasteland
area, and made outstanding contribution to the development of agricultural economy [41]. However,
with the expansion of breeding scale, disease problems have become increasingly evident, hindering
industry development. The incidence rate of BWSD in Litopenaeus Vannamei is high, and the
infection spreads rapidly, leading to a high mortality rate. Moreover, there is an incubation period for
the onset of white spot disease, which is a severe ailment that has attracted the attention of several
scholars[42–44]. Even with effective treatment, prevention remains the primary focus. Any outbreak
of disease can be disastrous and result in significant losses. In 1992, an extensive outbreak of BWSD
resulted in significant industry losses. Against this backdrop, Gao et al. [45] established a model that
considers Litopenaeus Vannamei’s infection with Bacterial white spot disease.

So far, a large number of scholars have studied ecological infectious diseases with delay. Although
some scholars have done some research in terms of time-varying delay systems, for example, Ding
and Long et al. [46, 47] studied Nicholson’s blowflies system where mature delay and feedback delay
are time-varying, and Gao et al. [48] studied the neural network system where transmission time
between neurons is time-varying; they paid less attention on the model of ecological infectious
diseases with time-varying delay. In order to better prevent and control the spread of Bacterial white
spot disease, we establish a model to study dynamics where Bacterial white spot disease is transmitted
in Litopenaeus Vannamei with time-varying delay, which is enlightened from a Lotka-Volterra
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predator-prey model with time-varying delay in reference [49] and inspired by the following
Nicholson’s blowflies model [46], where mature delay and feedback delay are time-varying.

dxi(t)
dt
= β(t)

[
− δixi(t) +

n∑
j=1, j,i

ai jx j(t) +
m∑

j=1

ρi jxi(t − τi j(t))e−hi j xi(t−σi j)], (1.3)

where xi represents the population of Nicholson’s blowflies in the patch i at time t, and the meaning of
the other parameters can be referred to in reference [46].

In general, delays in ecological models introduce additional complexity and can lead to
fluctuations among populations. As a result, delay differential equations exhibit more intricate
dynamical behavior compared to ordinary differential equations. Recognizing this, numerous scholars
have focused their research on studying ecological models that incorporate one or multiple types of
delay [50–52]. By investigating the effects of these delays on population dynamics, these studies
contribute to our understanding of the factors that influence ecological systems and provide valuable
insights into the mechanisms driving population fluctuations and ecological patterns.

On the basis of model (1.2), we mostly consider the following facts.
1) Because the infection rate of BWSD is effected during spreading by the quantity of susceptible

Litopenaeus Vannamei, we use the Holling II functional response function βS (t)I(t)
1+αI(t) instead of the linear

infection rate function βS (t)I(t).
2) Holling II functional response function is considered between Litopenaeus Vannamei and algae.
3) The incubation period from BWSD to symptoms is a time-varying delay.
As a result, we establish the following differential model with time-varying delay:

dX
dt
= rX(t) − a11X2(t) −

a12X(t)S (t)
1 + mX(t)

,

dS
dt
=

a21X(t)S (t)
1 + mX(t)

− d1S (t) −
βS (t)I(t)
1 + αI(t)

− a22S 2(t),

dI
dt
=
βS (t − τ(t))I(t − τ(t))

1 + αI(t − τ(t))
− d2I(t) − a33I2(t),

(1.4)

where X(t) represents the population number of algae, S (t) refers to the population number of
susceptible Litopenaeus Vannamei, and I(t) refers to the population number of infected Litopenaeus
Vannamei. a11 represents the competition coefficient of algae, a21 means the energy conversion
efficiency of Litopenaeus Vannamei, a12 represents the predation coefficient, β represents infection
rate BWSD, τ(t) stands for the incubation period of disease to spread. Model (1.4) satisfies the
following initial condition:

X(ϑ) = ϕ1(ϑ) ≥ 0, S (ϑ) = ϕ2(ϑ) ≥ 0, I(ϑ) = ϕ3(ϑ) ≥ 0,
ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0, 0 ≤ τ(t) ≤ τ,

(1.5)

where (ϕ1(ϑ), ϕ2(ϑ), ϕ3(ϑ)) ∈ ([−τ, 0),R3
+),R

3
+ = {(X(t), S (t), I(t)) : X(t) > 0, S (t) > 0, I(t) > 0}.

Generally speaking, this article mostly makes the following contributions:
1) Using some differential inequality methods, we make intensive research on the positivity ,

existence and persistence of the equilibriums for the system (1.4).
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2) We have derived sufficient conditions for the globally asymptotic stability of the system (1.4) at
the positive equilibrium and the certain conditions for the local asymptotic stability of the non-trivial
equilibriums for the system (1.4) using the differential equation theory under some assumptions.

3) In order to account for that the previous theoretical results are reliability and validity, we choose
some different time delay to carry out some numerical simulation to verify it.

The four remaining sections of the article are structured as follows. In Section 2, a number of
required preliminary knowledge is given. In Section 3, the global asymptotic stability of the positive
equilibrium for the system (1.4) is offered by constructing a proper Lyapunov function. Moreover, in
Section 4, numerical simulations means that our previous theoretical results are right. Last, a general
discussion is represented in Section 5.

2. Preliminary results

We first give one definition and two lemmas to prove our main results.

Definition 2.1. ([53]). System (1.4) has permanence provided that there exist positive constants M̃1,
M̃2, M̃3, l̃1, l̃2, and l̃3 such that for any positive solution (X(t), S (t), I(t)) of system (1.4) satisfying

l̃1 ≤ lim
t→+∞

inf X(t) ≤ lim
t→+∞

sup X(t) ≤ M̃1,

l̃2 ≤ lim
t→+∞

inf S (t) ≤ lim
t→+∞

sup S (t) ≤ M̃2,

l̃3 ≤ lim
t→+∞

inf I(t) ≤ lim
t→+∞

sup I(t) ≤ M̃3.

(2.1)

Lemma 2.1. ([54]).(i) If a > 0, b > 0 and ẋ ≥ x(b − ax), when t ≥ 0 and x(0) > 0, we have

lim
t→+∞

inf x(t) ≥
b
a
.

(ii) If a > 0, b > 0 and ẋ ≤ x(b − ax), when t ≥ 0 and x(0) > 0, we have

lim
t→+∞

sup x(t) ≤
b
a
.

Lemma 2.2. ([54]).(i) If a > 0, b > 0 and ẋ ≥ b − ax, when t ≥ 0 and x(0) > 0, we have

lim
t→+∞

inf x(t) ≥
b
a
.

(ii) If a > 0, b > 0 and ẋ ≤ b − ax, when t ≥ 0 and x(0) > 0, we have

lim
t→+∞

sup x(t) ≤
b
a
.
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Theorem 2.3. If there are positive constants Mi, li (i = 1, 2, 3) defined by (2.4), (2.6), (2.8), (2.10),
(2.13) and (2.16) respectively and they are independent of the solution of the system (1.4) such that for
each positive solution (X(t), S (t), I(t)) of system (1.4) with the initial condition (1.5), then system (1.4)
is permanent. That is

l1 ≤ lim
t→+∞

inf X(t) ≤ lim
t→+∞

sup X(t) ≤ M1,

l2 ≤ lim
t→+∞

inf S (t) ≤ lim
t→+∞

sup S (t) ≤ M2,

l3 ≤ lim
t→+∞

inf I(t) ≤ lim
t→+∞

sup I(t) ≤ M3.

(2.2)

Proof. It is not difficult to obtain that model (1.4) with initial values (X(0), S (0), I(0)) has the
positive solution (X(t), S (t), I(t)) passing through (X(0), S (0), I(0)).

Based on the first equation of model (1.4), we get

dX
dt
= rX(t) − a11X2(t) −

a12X(t)S (t)
1 + mX(t)

≤ X(t)[r − a11X(t)]. (2.3)

It is direct from Lemma 2.1 that
M1 :=

r
a11
≥ lim

t→+∞
sup X(t). (2.4)

From the definition of the limit, for any positive constant ε1 > 0, there is a T1 > 0 from (2.4), such that
for ∀ t > T1, we can derive

X(t) ≤ M1 + ε1.

It follows from the second equation of system (1.4), we can obtain

dS
dt
=

a21X(t)S (t)
1 + mX(t)

− d1S (t) −
βS (t)I(t)
1 + αI(t)

− a22S 2(t) − a22S (t)2

≤
a21S (t)

m
− d1S (t) − a22S 2(t)

≤ S (t)(
a21

m
− d1 − a22S (t)).

(2.5)

From the Lemma 2.1, we get

M2 :=
a21 − d1m

a22m
≥ lim

t→+∞
sup S (t). (2.6)

Consequently, according to (2.6), for any positive constant ε2 > 0, there is a T2 > 0, such that for each
t > T2,

S (t) ≤ M2 + ε2.

Then, according to the third equation of model (1.4), for t ≥ T1 + τ, we gain

dI
dt
=
βS (t − τ(t))I(t − τ(t))

1 + αI(t − τ(t))
− d2I(t) − a33I2(t)

≤
βS (t − τ(t))

α
− d2I(t) − a33I2(t)

≤
β(M2 + ε2)
α

− d2I(t).

(2.7)
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Similarly, we get

M3 :=
β(M2 + ε2)
αd2

≥ lim
t→+∞

sup I(t). (2.8)

Thus, for any positive constant ε3 > 0, there exists a T3 > 0 from (2.8), such that for ∀ t > T3, we get

I(t) ≤ M3 + ε3.

For another thing, according to the first equation of model (1.4), when t ≥ T1 + τ, we obtain

dX
dt
= rX(t) − a11X2(t) −

a12X(t)S (t)
1 + mX(t)

≥ rX(t) − a11X2(t) − a12X(t)M2

= X(t)(r − a12M2 − a11X(t)).

(2.9)

From Lemma 2.2, we can derive that

l1 :=
r − a12(M2 + ε2)

a11
≤ lim

t→+∞
inf X(t). (2.10)

Combined with (2.4), we get

l1 ≤ lim
t→+∞

inf X(t) ≤ lim
t→+∞

sup X(t) ≤ M1. (2.11)

Based on the second equation of system (1.4), we have

dS
dt
=

a21X(t)S (t)
1 + mX(t)

− d1S (t) −
βS (t)I(t)
1 + αI(t)

− a22S 2(t) − a22S (t)2

≥
a21l1S (t)

1 + m(M1 + ε1)
− d1S (t) −

βS (t)
α
− a22S 2(t)

= S (t)
[ a21l1

1 + m(M1 + ε1)
− d1 −

β

α
− a22S (t)

]
.

(2.12)

From Lemma 2.2, we obtain

l2 :=
a21l1

1+m(M1+ε1) − d1 −
β

α

a22m
≤ lim

t→+∞
inf S (t). (2.13)

Combined with (2.6), we get

l2 ≤ lim
t→+∞

inf S (t) ≤ lim
t→+∞

sup S (t) ≤ M2. (2.14)

According to the third equation of system (1.4), we obtain

dI
dt
=
βS (t − τ(t))I(t − τ(t))

1 + αI(t − τ(t))
− d2I(t) − a33I2(t)

≥
βl2I(t − τ(t))

1 + αM3
− d2I(t) − a33I2(t).

(2.15)
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From Lemma 2.2, it is fairly easy to get that

l3 :=
βl2

1+α(M3+ε3) − d2

a33
≤ lim

t→+∞
inf I(t). (2.16)

Combined with (2.8), we get

l3 ≤ lim
t→+∞

inf I(t) ≤ lim
t→+∞

sup I(t) ≤ M3, (2.17)

which together with (2.11) and (2.14), reveal that system (1.4) is permanent from Definition 2.1.
Therefore the proof is finished.

Corollary 2.1. There exist positive constants l∗i and M∗i (i = 1, 2, 3) according to Theorem 2.3, such
that for all t > t0,

l∗1 = min( lim
t→+∞

inf X(t)), M∗1 = max( lim
t→+∞

sup X(t)),

l∗2 = min( lim
t→+∞

inf S (t)), M∗2 = max( lim
t→+∞

sup S (t)),

l∗3 = min( lim
t→+∞

inf I(t)), M∗3 = max( lim
t→+∞

sup I(t)).

(2.18)

Lemma 2.4. The solutions of system (1.4) have positiveness on interval [t0,+∞).

Proof. Set the maximal right-interval of existence be the interval [t0, ϖ(φ)) for I(t0), I(t0) ≤ ∥ φ ∥,
C+ = C([−τ, 0], [0,+∞)) .

Based on the first equation of system (1.4), we can easily obtain

˙X(t)
X(t)
= r − a11X(t) −

a11S (t)
1 + mX(t)

. (2.19)

Integrating simultaneously two sides of Eq (2.19) from 0 to t, we get

X(t) = ϕ1(0)e
∫ t

0

(
r−a11X(u)− a11S (u)

1+mX(u)

)
du > 0.

Thus, X(t) > 0, for ∀t ≥ t0.

In the same way, we can gain

S (t) = ϕ2(0)e
∫ t

t0

(
a21X(u)
1+mX(u)−d1−

βI(u)
1+αI(u)−a22

)
du
> 0,

and then S (t) > 0, for ∀t ≥ t0.

Based on the Theorem 5.2.1 in reference [55], from the third equation of system (1.4), for all
t ∈ [t0, ϖ(φ)), we have I(t0) ∈ C+. Consequently,

I(t) = ϕ3(0)e−
∫ t

t0
(d2−a33I(s))ds

+ e−
∫ t

t0
(d2−a33I(s))ds

×

∫ t

t0

βS (s − τ(s))I(s − τ(s))
1 + αI(s − τ(s))

e
∫ s

t0
(d2−a33I(v))dvds > 0, ∀ t ∈ [t0, ϖ(φ)).

(2.20)
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Next, we need to demonstrate that ϖ(φ) = +∞. For t ∈ [t0, ϖ(φ)), on the basis of Corollary 2.1, set

M(t) = max
t0−τ≤s≤t

I(s), Π1(t) = max M(t),

L(t) = min
t0−τ≤s≤t

I(s), Π2(t) = max L(t),

N(t) = max
t0−τ≤s≤t

S (s), Π3(t) = max N(t).

(2.21)

Then

I(t) ≤ I(t0) +
∫ t

t0

βΠ3(s)Π1(s)
1 + αΠ2(s)

ds ≤ ∥ φ ∥ +
∫ t

t0

βΠ3(s)Π1(s)
1 + αΠ2(s)

ds, for all s ∈ [t0, t]. (2.22)

Combined with the definition of Π1(t), it reveals

∥ φ ∥ +

∫ t

t0

βΠ3(s)Π1(s)
1 + αΠ2(s)

ds ≥ Π1(t), ∀ t ∈ [t0, ϖ(φ)). (2.23)

By applying the Gronwall-Bellman inequality to the inequality (2.23), we gain

0 < I(t) ≤ M(t) ≤ Π1(t) ≤ ∥ φ ∥ e
∫ t

t0

βΠ3(s)Π1(s)
1+αΠ2(s) ds

, ∀ t ∈ [t0, ϖ(φ)), (2.24)

which reveals that ϖ(φ) = +∞ according to the works of reference [56]. So the solutions of
system (1.4) have positiveness on [t0,+∞).

3. The stability of equilibriums

We investigate the local stability of the equilibriums of system (1.4) when τ(t) = 0 in
Subsection (3.1), and construct a proper Lyapunov function to achieve the sufficient conditions for the
global asymptotic stability of system (1.4) around the positive equilibrium when delay is time-varying
in Subsection (3.2).

3.1. The local stability

It is easy to see that E0 = (0, 0, 0) is a trivial equilibrium of system (1.4). We can get the following
non-trivial equilibriums:

E1 = (
r

a11
, 0, 0), E2 = (X̃, S̃ , 0), and E∗ = (X∗, S ∗, I∗).

For E2(X̃, S̃ , 0), we know that X̃ satisfies

a0X̃3 + a1X̃2 + a2X̃ + a3 = 0, (3.1)

where
a0 = −a22a11m, a1 = a22rm2 − 2a22a11 − a21a12 + a12d1m,

a2 = 2a22rm − a22a11 + a12d1, a3 = a22r.
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Set t = X̃ + a1
3a0

, then the Eq (3.1) is equal to

t3 + b0t + b1 = 0,

where

b0 =
3a0a2 − a2

1

3a2
0

, b1 =
2a2

1 − 9a0a1a2 + 27a2
0a3

27a3
0

.

Then, we can get the positive solution

t1 =
3

√√√
−

b1

2
+

√
b2

1

4
+

b3
0

27
+

3

√√√
−

b1

2
−

√
b2

1

4
+

b3
0

27
.

Consequently,

X̃ = t1 −
a1

3a0
, S̃ =

3a0a22t1 − a1a21 + d1(3a0mt1 − a1m + 3a0)
a22(3a0mt1 − a1m + 3a0)

.

If (H1): t1 −
a1

3a0
> 0, 3a0a22t1 − a1a21 > 0, 3a0a2 − a2

1 > 0 and 3a0mt1 − a1m + 3a0 > 0 is satisfied,
then X̃ and S̃ are positive.

E∗ = (X∗, S ∗, I∗) satisfies

X∗ =
rm − a11

2ma11
, S ∗ =

(rm − a11)2 + 4a11rm
4ma11a12

, I∗ =
f1 + f2

2a33
,

where
f1 = −(d2α + a33), f2 =

√
(d2α + a33)2 − 4a33(d2 − βS ∗). (3.2)

If (H2): rm−a11 > 0 and
√

(d2α + a33)2 − 4a33(d2 − βS ∗) > d2α+a33 is satisfied, then E∗ is the interior
equilibrium.

Next, we will be devoted to exploring the local stability of E0, E1, E2 and E∗ when τ(t) = 0
respectively.

The characteristic equation of model (1.4) at E0(0, 0, 0) is

(λ − r)(λ + d1)(λ + d2) = 0. (3.3)

The trivial equilibrium E0(0, 0, 0) is always unstable because the Eq (3.3) has the only one positive root
λ = r.

The characteristic equation of model (1.4) at E1 = ( r
a11
, 0, 0) is

(λ + d1 −
a21r

a11 + mr
)(λ + r)(λ + d2) = 0. (3.4)

The Eq (3.4) has two negative solutions λ1 = −r, and λ2 = −d2. Hence, if a21r > d1(a11 + mr), the
non-trivial equilibrium E1 = ( r

a11
, 0, 0) is unstable. If a21r < d1(a11 + mr), the non-trivial equilibrium

E1 = ( r
a11
, 0, 0) is stable.
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Next, we can obtain that the characteristic equation at E2(X̃, S̃ , 0) of model (1.4) is

λ3 + c1λ
2 + c2λ + c3 = 0, (3.5)

where
c1 = −(ā11 + ā22 + ā33), c3 = −ā33ā11ā22 + ā33ā12ā21,

c2 = ā11ā22 − ā12ā21 + ā33ā11 + ā33ā22,

ā11 = r − 2a11X̃ −
a12S̃

(1 + mX̃)2
, ā12 = −

a12X̃

1 + mX̃
, ā21 =

a21S̃

(1 + mX̃)2
,

ā22 =
a21X̃

1 + mX̃
− d1 − 2a22S̃ , ā23 = −βS̃ , ā33 = βS̃ − d2.

According to Routh-Huruitz theorem, when (H3): c1 > 0, c1c2 > c3 is satisfied, then the non-trivial
equilibrium E2(X̃, S̃ , 0) is locally asymptotically stable.

The characteristic equation of the system (1.4) at E∗ = (X∗, S ∗, I∗) is

λ3 + g1λ
2 + g2λ + g3 = 0, (3.6)

where
g1 = −(a∗11 + a∗22 + a∗33), g2 = a∗11a∗22 − a∗12a∗21 + a∗33a∗11 + a∗33a∗22 − a∗32a∗23,

g3 = a∗11a∗23a∗32 − a∗11a∗22a∗33 + a∗12a∗21a∗33,

a∗11 = r − 2a11X∗ −
a12S ∗

(1 + mX∗)2 , a∗12 = −
a12X∗

1 + mX∗
, a∗21 =

a21S ∗
(1 + mX∗)2 ,

a∗22 =
a21X∗

1 + mX∗
− d1 − 2a22S ∗ −

βI∗
1 + αI∗

, a∗23 = −
βS ∗

(1 + αI∗)2 ,

a∗32 =
βI∗

1 + αI∗
, a∗33 =

βS ∗
(1 + αI∗)2 − d2 − 2a33I∗.

According to Routh-Huruitz theorem, when (H4): g1 > 0, g1g2 > g3 is satisfied, then E∗ = (X∗, S ∗, I∗)
is locally asymptotically stability.

As a result, we can get following theorem.

Theorem 3.1. When a21r < d1(a11 + mr), the equilibrium E1( r
a11
, 0, 0) is stable. If (H3) is satisfied,

then the equilibrium E2(X̃, S̃ , 0) is locally asymptotically stable. If (H4) is satisfied, then the unique
positive equilibrium E∗(X∗, S ∗, I∗) is locally asymptotically stable. The trivial equilibrium E0 = (0, 0, 0)
is always unstable.

3.2. The global asymptotical stability

We have known that model (1.4) has one unique positive solution according to Lemma 2.4, denote
it (X∗(t), S ∗(t), I∗(t)).

Definition 3.1. For any other arbitrary solution (X(t), S (t), I(t)) of system (1.4) is positive and
bounded, which satisfies the equality as follows, then a bounded positive solution (X∗(t), S ∗(t), I∗(t))
of system (1.4) is globally asymptotically stable,

lim
t→+∞

(∣∣∣X(t) − X∗(t)
∣∣∣ + ∣∣∣S (t) − S ∗(t)

∣∣∣ + ∣∣∣I(t) − I∗(t)
∣∣∣) = 0. (3.7)
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Definition 3.2. Set f̃ be a nonnegative function defined on [h̃,+∞), and h̃ is a real number, moreover
f̃ is integrable and uniformly continuous on interval [h̃,+∞), then lim

t→+∞
f̃ (t) = 0.

Theorem 3.2. Suppose that (H1), (H2) and the following assumptions are true:
(H5) lim

t→+∞
in f Ai > 0,

where the expression of Ai(i = 1, 2, 3) can be found in (3.12),
(H6) I(t) is continuous at [t0,+∞), i.e., for ∀ ε02 > 0,∃ δ = τ, when |t1 − t2| < δ, we have∣∣∣I(t1) − I(t2)

∣∣∣ < ε0

2
,

(H7) S (t) is continuous at [t0,+∞), i.e., for ∀ ε2 > 0,∃ δ = τ, when |t1 − t2| < δ, we have∣∣∣S (t1) − S (t2)
∣∣∣ < ε

2
.

Then the model (1.4) has a unique positive and globally asymptotically stable solution
(X∗(t), S ∗(t), I∗(t)).

Proof. Based on the results of Theorem 2.3, there are positive constants li,Mi(i = 1, 2, 3), for t > T
and a T = max{T1,T2,T3} > 0 such that

l1 ≤ X∗(t) ≤ M1, l2 ≤ S ∗(t) ≤ M2, l3 ≤ I∗(t) ≤ M3.

Define
V(t) =

∣∣∣lnX∗(t) − lnX(t)
∣∣∣ + ∣∣∣lnS ∗(t) − lnS (t)

∣∣∣ + ∣∣∣lnI∗(t) − lnI(t)
∣∣∣. (3.8)

Computing the upper-right derivative of V(t) at the positive solution (X∗(t), S ∗(t), I∗(t)) of the
system (1.4), and for t > T , we can obtain

D+V(t) =
( ˙X∗(t)
X∗(t)

−
˙X(t)

X(t)
)
sgn(X∗(t) − X(t)) +

( ˙S ∗(t)
S ∗(t)

−
˙S (t)

S (t)
)
sgn(S ∗(t) − S (t))

+
( ˙I∗(t)
I∗(t)

−
˙I∗(t)

I∗(t)
)
sgn(I∗(t) − I(t))

=
∣∣∣∣a11(X∗(t) − X(t)) +

a12S (t)
1 + mX(t)

−
a12S ∗(t)

1 + mX∗(t)

∣∣∣∣
+
∣∣∣∣ a21(X∗(t) − X(t))
(1 + mX(t))(1 + mX∗(t))

+
β(I∗(t) − I(t))

(1 + αI(t))(1 + αI∗(t))

+ a22(S ∗(t) − S (t))
∣∣∣∣ + ∣∣∣∣βS ∗(t − τ(t))I∗(t − τ(t))(1 + αI∗(t − τ(t)))I∗(t)

−
βS (t − τ(t))I(t − τ(t))
(1 + αI(t − τ(t)))I(t)

+ a33(I∗(t) − I(t))
∣∣∣∣.

(3.9)

According to Corollary 2.1, it is not difficult to get∣∣∣∣a11(X∗(t) − X(t)) +
a12S (t)

1 + mX(t)
−

a12S ∗(t)
1 + mX∗(t)

∣∣∣∣
≤a11

∣∣∣X∗(t) − X(t)
∣∣∣ + a12

∣∣∣S ∗(t) − S (t)
∣∣∣

+ma12M∗2
∣∣∣X∗(t) − X(t)

∣∣∣ + a21

∣∣∣X∗(t) − X(t)
∣∣∣,

(3.10)
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and ∣∣∣∣ a21(X∗(t) − X(t))
(1 + mX(t))(1 + mX∗(t))

+
β(I∗(t) − I(t))

(1 + αI(t))(1 + αI∗(t))

∣∣∣∣
≤a21

∣∣∣X∗(t) − X(t)
∣∣∣ + β∣∣∣S ∗(t) − S (t)

∣∣∣. (3.11)

From (H6), we get ∣∣∣∣βS ∗(t − τ(t))I∗(t − τ(t))(1 + αI∗(t − τ(t)))I∗(t)
−
βS (t − τ(t))I(t − τ(t))
(1 + αI(t − τ(t)))I(t)

∣∣∣∣
=
∣∣∣∣βS ∗(t − τ(t))I∗(t − τ(t))I(t)(1 + αI(t − τ(t)))

I(t)I∗(t)(1 + αI∗(t − τ(t)))(1 + αI(t − τ(t)))

−
βS (t − τ(t))I(t − τ(t))I∗(t)(1 + αI∗(t − τ(t)))
I(t)I∗(t)(1 + αI∗(t − τ(t)))(1 + αI(t − τ(t)))

∣∣∣∣
≤βS ∗(t − τ(t))I∗(t − τ(t))I(t)(1 + αI(t − τ(t)))

−βS (t − τ(t))I(t − τ(t))I∗(t)(1 + αI∗(t − τ(t)))

≤
∣∣∣β(S ∗(t − τ(t))I∗(t − τ(t))I(t) − S ∗(t − τ(t))I∗(t − τ(t))I∗(t)

+S ∗(t − τ(t))I∗(t − τ(t))I∗(t) − S (t − τ(t))I(t − τ(t))I∗(t))
∣∣∣

+
∣∣∣αβI∗(t − τ(t))I(t − τ(t))(S ∗(t − τ(t))I(t) − S ∗(t − τ(t))I∗(t)

+S ∗(t − τ(t))I∗(t) − S (t − τ(t))I∗(t))
∣∣∣

≤β(S ∗(t − τ(t))I∗(t − τ(t))
∣∣∣I∗(t) − I(t)

∣∣∣
+I∗(t)

∣∣∣S ∗(t − τ(t))I∗(t − τ(t)) − S ∗(t − τ(t))I(t − τ(t))

+S ∗(t − τ(t))I(t − τ(t)) − S (t − τ(t))I(t − τ(t))
∣∣∣)

+αβI∗(t − τ(t))I(t − τ(t))(S ∗(t − τ(t))
∣∣∣I∗(t) − I(t)

∣∣∣
+I∗(t)

∣∣∣S ∗(t − τ(t)) − S ∗(t) + S ∗(t) − S (t) + S (t) − S (t − τ(t)))
∣∣∣.

(3.12)

Combined with (3.9)–(3.12), we obtain the upper-right derivative of V(t):

D+V(t) ≤ (a11 + ma12M∗2 + a21)
∣∣∣X∗(t) − X(t)

∣∣∣
+ (a12 + βM∗3

2
+ a22 + αβM∗3

3)
∣∣∣S ∗(t) − S (t)

∣∣∣
+ (β + 2βM∗2 M∗3 + αβM

∗
2 M∗3 + a33)

∣∣∣I∗(t) − I(t)
∣∣∣

+ βM∗3ε0 + αβM∗2
2ε + βM∗3

2ε

= A1

∣∣∣X∗(t) − X(t)
∣∣∣ + A2

∣∣∣S ∗(t) − S (t)
∣∣∣ + A3

∣∣∣I∗(t) − I(t)
∣∣∣

+ βM∗3ε0 + αβM∗2
2ε + βM∗3

2ε,

(3.13)
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where

A1 = a11 + ma12M∗2 + a21, A2 = a12 + βM∗3
2
+ a22 + αβM∗3

3, A3 = a33 + αβM∗2 M∗3 + βM
∗
2.

Integrating simultaneously two sides of the Eq (3.13) on [T ∗, t] and setting ε → 0, ε0 → 0, which
yields

V(t) − V(T ∗) +
∫ t

T ∗

(
A3

∣∣∣I∗(s) − I(s)
∣∣∣ + A2

∣∣∣S ∗(s) − S (s)
∣∣∣ + A1

∣∣∣X∗(s) − X(s)
∣∣∣)ds ≤ 0. (3.14)

By (H5), there exist constants αi (i = 1, 2, 3) and there is a T ∗ > T such that

Ai ≥ αi > 0 (i = 1, 2, 3), for t ≥ T ∗. (3.15)

It is evident to get

V(T ∗) ≥
∫ t

T ∗

(
A3

∣∣∣I∗(s) − I(s)
∣∣∣ + A2

∣∣∣S ∗(s) − S (s)
∣∣∣ + A1

∣∣∣X∗(s) − X(s)
∣∣∣)ds. (3.16)

From Theorem 2.3, X∗(t), S ∗(t), I∗(t) are bounded for t ≥ T ∗, so
∣∣∣X∗(t) − X(t)

∣∣∣, ∣∣∣S ∗(t) − S (t)
∣∣∣, and∣∣∣I∗(t) − I(t)

∣∣∣ are uniformly continuous on [T ∗,+∞) from Definition 3.2. From Barbalat’s Lemma [57],
we have

lim
t→+∞

∣∣∣X∗(t) − X(t)
∣∣∣ = 0, lim

t→+∞

∣∣∣S ∗(t) − S (t)
∣∣∣ = 0, lim

t→+∞

∣∣∣I∗(t) − I(t)
∣∣∣ = 0.

From the Theorems 7.4 and 8.2 in reference [58], we get that the positive solution (X∗(t), S ∗(t), I∗(t))
is uniformly asymptotically stable. So, the demonstration of Theorem 3.2 is completed.

4. Numerical simulations

In this part, we use MATLAB software to give some numerical simulations to verify the theoretical
results.

Suppose that r = 1.5, a11 = 0.8, a12 = 1.5,m = 1, a21 = 1.25, d1 = 0.16, β = 0.95, α = 0.001,
a22 = 0.2, d2 = 0.2, a33 = 0.15. Thus, the model (1.4) is

dX
dt
= 1.5X(t) − 0.8X2(t) −

1.5X(t)S (t)
1 + X(t)

,

dS
dt
=

1.25X(t)S (t)
1 + X(t)

− 0.16S (t) −
0.95S (t)I(t)
1 + 0.001I(t)

− 0.2S 2(t),

dI
dt
=

0.95S (t − τ(t))I(t − τ(t))
1 + 0.001I(t − τ(t))

− 0.2I(t) − 0.15I2(t).

(4.1)

Through calculation, it is easy to achieve that the system (4.1) satisfies the conditions (H1)–(H4) and
the conditions of Theorem 3.1, and it is evident to gain the non-trivial equilibriums E1 = (1.8750, 0, 0),
E2 = (0.43747, 1.10208, 0), the unique positive equilibrium E∗ = (1.66097, 0.30375, 0.58929). By
numerical simulations, the non-trivial equilibrium E2 and the positive equilibrium of the system (4.1)
when τ(t) = 0 are locally asymptotically stable according to Theorem 3.1 (see Figures 1 and 2).
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Figure 1. The infected predator free equilibrium E2 = (0.43747, 1.10208, 0) of the
system (4.1) is locally asymptotically stable with the initial value (1.6, 0.5, 0). (a) algae and
Litopenaeus Vannamei, (b) phase plot.
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Figure 2. The system (4.1) is locally asymptotically stable with delay τ(t) = 0 and the initial
value (1.6, 0.5, 0.3) around the positive equilibrium E∗ = (1.66097, 0.30375, 0.58929). (a)
algae and Litopenaeus Vannamei, (b) phase plot.

In addition, Figure 1 indicates that the population of Litopenaeus Vannamei is stable and develop
sustainably without Bacterial white spot disease. Figure 2 reveals that even if Litopenaeus Vannamei
are infected with Bacterial white spot disease, as long as there is no incubation period for Bacterial
white spot disease, the disease is controllable and the population of Litopenaeus Vannamei can develop
sustainably.

Now, we choose
τ(t) = | sin(t)| + 5, (4.2)

and

τ(t) =
| sin(1 + t2)|

1 + t2 . (4.3)

It is evident to see the system (4.1) is permanent from Figure 3, which indicates the conclusions in
the Theorem 2.1 is true. Meanwhile, we observe that the positive equilibrium of the system (4.1) is
periodic oscillation when τ(t) = | sin(t)| + 5 from Figure 3, and the positive equilibrium is stable when
τ(t) = | sin(1+t2)|

1+t2 from Figure 4.
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Figure 3. The system (4.1) is unstable with delay (4.2) and the initial value (1.6, 0.5, 0.3)
around the positive equilibrium E∗ = (1.66097, 0.30375, 0.58929). (a) algae, (b) susceptible
Litopenaeus Vannamei, (c) disease Litopenaeus Vannamei, (d) phase plot.
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Figure 4. The system (4.1) is locally asymptotically stable with delay (4.2) and the initial
value (1.6, 0.5, 0.3) around the positive equilibrium E∗ = (1.66097, 0.30375, 0.58929). (a)
algae and Litopenaeus Vannamei, (b) phase plot.

Based on the discussion and numerical simulations, it is evident that time-varying delay is a critical
factor that directly influences the performance and asymptotic stability of system (4.1). When the
value of τ(t) is zero or sufficiently small, the system (4.1) is stable. This provides an opportunity
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to take action to control a widespread outbreak of Bacterial white spot disease. However, a larger
time-varying delay can destabilize the system, leading to chaotic oscillations. Thus, early prevention
and diagnosis are crucial steps in effectively preventing the spread of Bacterial white spot disease
and reducing associated losses. By identifying the factors that impact the stability and behavior of
ecological systems, we can develop effective control strategies that mitigate the impact of diseases and
other disturbances on predator-prey dynamics.

Moreover, Figure 5 indicates that for system (4.1), the unique positive equilibrium is globally
asymptotically stable, confirming the conclusions reached in the Theorem 3.2.

Figure 5. The system (4.1) is globally asymptotically stable with delay (4.2) and
five different initial values: (1.6, 0.5, 0.3), (0.2, 0.1, 0.1),(1.2, 0.6, 1.5),(1, 1.2, 0.7) and
(1, 0.01, 1.5) at its positive equilibrium E∗ = (1.66097, 0.30375, 0.58929).

5. Conclusions

In this paper, we have discussed the dynamics of Bacterial white spot disease spreads in Litopenaeus
Vannamei where the incubation time delay of a disease to spread is time-varying. By making use
of the theory of functional differential equation and the principle of differential inequality, we have
obtained some delay-dependent criteria to declare the persistence and global asymptotical stability
for system (1.4) at its unique positive equilibrium. The results we obtained substantiate that it is
possible to control the Bacterial white spot disease spreads in Litopenaeus Vannamei in time, which can
promote sustainable development of Litopenaeus Vannamei. Some numerical simulations agree with
the theoretical results, which is an improvement and supplement of some existing ones. In addition,
the method in this paper can be extended to study other dynamical problems of time-varying delay
systems.

We also establish the permanence and asymptotic stability of system (1.4), and our numerical
simulations suggest that our theoretical results which can be extended to other systems as well.
According to the above simulations, we make the following observations. First, sufficiently small
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delays will lead to the asymptotic stability of the positive equilibrium. Second, large delays or
time-varying delays can result in complex behaviors, as reported in previous studies [3, 10, 18]. It is
evident that the conclusions drawn from the works cited above cannot fully elucidate the dynamics of
systems that involve time-varying delays.

Indeed, the investigation of Hopf bifurcation and its properties has received significant attention in
the case of constant delay. However, it is intriguing to explore the existence and properties of Hopf
bifurcation, as well as methods to control or mitigate oscillations, in the presence of time-varying
delays. Furthermore, when multiple time-varying delays are involved, it raises questions about the
dynamic behavior of the system. These aspects serve as potential directions for our future research. By
delving into these areas, we aim to advance our understanding of the system’s dynamics and potentially
contribute to the development of strategies for effective control and reduction of oscillations.
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