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Abstract: The Archimedes optimization algorithm (AOA) has attracted much attention for its few 
parameters and competitive optimization effects. However, all agents in the canonical AOA are treated 
in the same way, resulting in slow convergence and local optima. To solve these problems, an 
improved hierarchical chain-based AOA (HCAOA) is proposed in this paper. The idea of HCAOA is 
to deal with individuals at different levels in different ways. The optimal individual is processed by an 
orthogonal learning mechanism based on refraction opposition to fully learn the information on all 
dimensions, effectively avoiding local optima. Superior individuals are handled by an Archimedes 
spiral mechanism based on Levy flight, avoiding clueless random mining and improving optimization 
speed. For general individuals, the conventional AOA is applied to maximize its inherent exploration 
and exploitation abilities. Moreover, a multi-strategy boundary processing mechanism is introduced to 
improve population diversity. Experimental outcomes on CEC 2017 test suite show that HCAOA 
outperforms AOA and other advanced competitors. The competitive optimization results achieved by 
HCAOA on four engineering design problems also demonstrate its ability to solve practical problems. 

Keywords: Archimedes optimization algorithm; hierarchical chain; orthogonal learning; Levy flight; 
refraction opposition-based learning 
 

1. Introduction 

Optimization problems that minimize or maximize objective functions are numerous in real life. 
Most of them are extraordinarily complex and challenging, which leads to the inability of gradient-
based deterministic optimization methods to handle them. Because the objective functions of these 
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problems are hardly guaranteed to be differentiable, these traditional methods easily fall into local 
optima. Metaheuristic algorithms have flexibility, no gradient mechanism and local optimal avoidance, 
which make them more popular than deterministic methods. Therefore, metaheuristic algorithms have 
developed rapidly in the past decades and have made significant achievements in optimization 
problems in various fields, such as parameter tuning [1,2], feature selection [3,4], scheduling [5,6], 
system control [7,8] and engineering design [9,10].  

Taking inspiration from nature, metaheuristic algorithms search for optimal solutions through 
iterative stochastic operations that are within a reasonable time. Scholars have divided these algorithms 
into four groups: evolution-based, swarm-based, physics-based and social or human-based. 
Representative metaheuristic algorithms in these four categories are listed in Figure 1. To summarize, 
most of them have the following characteristics: (1) Their update mechanisms are inspired by some 
phenomena in nature, such as biological behaviors, physical theorems and chemical phenomena. (2) 
They have two phases: exploration and exploitation. Exploration is the search for unvisited areas to 
ensure globally optimal solutions. Exploitation is the intensive search for the most probable region 
based on accumulated experience to enhance the local search. (3) They are all population-based search 
schemes, and attention needs to be paid to the interaction between individuals (to promote knowledge 
sharing and improve the quality of solutions) and the population diversity (to explore the unknown 
space and overcome local optima). (4) Stochastic strategies and proper parameter definitions in 
algorithms are essential, and appropriate parameter settings can make algorithms better fits for real 
problems. In addition, the different update mechanisms and stochastic strategies of these algorithms 
lead to their different exploration and exploitation capabilities. Hence, the main difference between 
various algorithms is how to strike a balance between exploration and exploitation [11].  

Swarm-based Physics-based Social or human-based

Metaheuristic algorithms

PSO
Particle Swarm 

Optimization [16]

FA
Firefly 

Algorithm [17]

SHO
 Sea Horse 

Optimizer [18]

HHO
Harris Hawks 

Optimization [19]

BOA
Butterfly Optimization 

Algorithm [20]

DMO
 Dwarf Mongoose 
Optimization [21]

SA
Simulated 

Annealing [22]

GBO
Gradient-based 
Optimizer [23]

MGA
Material Generation 

Algorithm [24]

SCA
Sine Cosine 

Algorithm [25]

SRS
Special Relativity 

Search [26]

AOA
Archimedes Optimization 

Algorithm [27]

IAS
Interactive Autodidactic 

School [28]

PRO
Poor and Rich 

Optimization [29]

PPF
Past Present 
Future [30]

SNS
Social Network

 Search [31]

CDOA
Collective Decision 

Optimization Algorithm [32]

CHIO
Coronavirus Herd 

Immunity Optimizer [33]

Evolutionary-based

GA
Genetic 

Algorithm [12]

DE
Differential 

Evolution [13]

ES
Evolutionary 
Strategy [14]

EP
Evolutionary 

Programming [15]

Figure 1. Categories of metaheuristic algorithms. 

In summary, there are two possible problems with these algorithms: (1) One problem that all 
algorithms are likely to encounter is how to balance exploitation and exploration. Too much 
exploration may lead to slow convergence, and too much exploitation may cause falling into local 
optima. The update mechanisms of some algorithms, such as particle swarm optimization and grey 
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wolf optimizer [34], are based on globally optimal individuals, so these algorithms may converge to a 
local optimum. (2) The “No Free Lunch (NFL)” [35] theorem logically states that there is no 
metaheuristic algorithm that is most effective in every situation. For these two reasons, researchers are 
committed to exploring new algorithms or improving existing ones. This paper is also motivated by 
these two reasons. For convenience, a list of abbreviations is given in Table 1. 

Table 1. List of abbreviations. 

Abbreviation Interpretation  Abbreviation Interpretation 

AGWO 

AOA 

Grey wolf optimizer based on Aquila exploration 

Archimedes optimization algorithm 

 IHAOAVOA Improved hybrid Aquila optimizer and African 

vultures optimization algorithm 

AVOA 

BOA 

African vultures optimization algorithm 

Butterfly optimization algorithm 

 MAOA Hybrid Archimedes optimization algorithm 

enhanced with mutualism scheme 

CQFFA Chaotic quasi-oppositional farmland fertility algorithm  MCWOA Multi-cohort whale optimization algorithm 

CSOAOA Enhanced hybrid arithmetic optimization algorithm  MFO  Moth-flame optimization algorithm 

DAQUILA  Improved Aquila algorithm  MGA Material generation algorithm 

DMO Dwarf mongoose optimization  OBL Opposition-based learning 

ECSOA Elastic collision seeker optimization algorithm  PRO Poor and rich optimization algorithm 

FA Firefly algorithm  PSO Particle swarm optimization 

GBO Gradient-based optimizer:  QLGCTSA  Improved tunicate swarm algorithm 

GJO Golden jackal optimization  ROBL Refraction opposition-based learning 

GWO Grey wolf optimizer  SCA Sine cosine algorithm 

HAO Heterogeneous Aquila optimization algorithm  SCSO Sand cat swarm optimization 

HCAOA Hierarchical chain-based Archimedes optimization 

algorithm 

 SHO 

SNS 

Sea horse optimizer 

Social network search 

HHO Harris hawks optimization algorithm  SRS Special relativity search 

IDARSOA 

 

Individual disturbance and attraction repulsion strategy 

enhanced seagull optimization algorithm 

 STD 

TQA 

Standard deviation 

Termite queen algorithm 

IGWO Improved grey wolf optimizer  WOA Whale optimization algorithm 

This paper focuses on the Archimedes optimization algorithm (AOA) proposed by Hashim et al. 
based on physical laws. Inspired by Archimedes’ buoyancy principle, AOA generates new solutions 
by imitating collisions between objects in a liquid. AOA has few parameters, simple interfaces, easy 
implementation and good optimization effects. As a result, AOA has been extensively applied to 
practical problems with satisfactory results. Abdelbadie et al. [36] used AOA to clarify the best 
conditions of a proportional integral regulator, which controls the charge and discharge of 
superconducting magnetic energy storage systems. Wang et al. [2] employed AOA to tune the main 
parameters in variational mode decomposition to perform better in diagnostic fault characteristics for 
both simulated and real situations. Neggaz and Fizazi [37] proposed a wrapper approach based on 
AOA for feature selection to automatically identify the best facial region features for human gender. 
Balakrishnan et al. [38] utilized AOA to adjust the parameters in the radial basis function neural 
network (RBFNN) to construct a merged algorithm, AOA-RBFNN, to achieve higher competence, and 
it is applied to engineering optimization problems. Annrose [39] applied AOA to improve the 
classification accuracy of multiple single long short-term memory (LSTM) networks and thus 
proposed a hybrid depth learning model for bean disease classification. 
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Like other metaheuristic algorithms, AOA has some drawbacks on some specific issues. All 
agents in the canonical AOA are handled in the same way, which leads to immature convergence and 
a tendency to get stuck at local optima, especially when dealing with complex optimization problems. 
To compensate for these shortcomings, an improved HCAOA is proposed. On the basis of the original 
AOA, this algorithm combines an orthogonal learning mechanism based on refraction opposition and 
an Archimedes spiral mechanism based on Levy flight to deal with individuals at different levels. 
Specifically, the main contributions of this paper are as follows: 

• An ameliorative variant of AOA is presented to handle global optimization problems. The idea 
of hierarchical chains is introduced into AOA and different update strategies are implemented for 
agents at different levels to enhance optimization capability. 

• Orthogonal learning mechanism based on refraction opposition is suggested in AOA, which 
fully learns information on all dimensions of the optimal individual and effectively avoids AOA falling 
into local optimum. 

• Archimedes spiral integrated Levy flight is introduced into AOA to achieve an extensive range 
of random disturbances in searching space, thus improving the search ability of AOA. 

• Computational Experimental Competition (CEC) 2017 suite and four engineering design 
problems are employed to evaluate the comprehensive performance of HCAOA.  

The outline of the remainder of this article is listed here: Section 2 presents the conventional AOA. 
Section 3 details the modification and the framework of HCAOA. The feasibility of HCAOA is 
validated by the CEC 2017 suite in Section 4. The optimization outcomes of HCAOA on engineering 
design problems are presented in Section 5. Section 6 summarizes the study and presents research 
ideas for the future. 

2. The conventional AOA 

AOA treats objects in a fluid as candidate agents, and each object has its density, volume, 
acceleration and position. The location of an individual represents a possible solution and is updated 
by adjusting its density, volume and acceleration. As with other metaheuristic algorithms, the 
optimization process of AOA contains two parts: exploration and exploitation. In the exploration stage, 
collisions with random individuals are implemented to diversify populations. During the exploitation 
phase, there is no collision between objects, and the optimal individual is learned to facilitate local 
search capability. Its mathematical steps in detail are as follows: 

Step 1: Initialize. The initial positions, densities, volumes and accelerations of all individuals are 
generated randomly by Eqs (1)(4). 

  1
ix lb rand ub lb    , (1) 

 1
iden rand , 

(2)
 

 1
ivol rand , (3) 

  1
iacc lb rand ub lb    , (4) 

where the subscript i denotes the i -th individual, and the superscript t indicates the t -th iteration. The
1
ix , 1

iden , 1
ivol and 1

iacc  represent the position, density, volume and acceleration of the i -th agent in 
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the first iteration, respectively. The ub  and lb  are the upper and lower limits of the solution set, 
respectively. The parameter rand is a D -dimensional random vector generated uniformly in [0,1] , 
and D  is the dimension of solutions. Then, all initial individuals are evaluated and the optimal 

individual is selected. The parameter of the best one is expressed as bestx , bestden , bestvol  and bestacc , 

correspondingly. 
Step 2: Update volumes and densities. The volume and density of the i -th individual in the next 

generation are updated according to Eqs (5) and (6): 

  1  t t t
i i best ivol vol rand vol vol     , (5) 

  1t t t
i i best iden den rand den den     . (6) 

Step 3: Update the transfer operator tTF and density factor td . The transfer operator determines 

whether the search behavior changes from exploration to exploitation. The density factor contributes 
to the search scope from global to local. Their values vary with iteration t  using Eqs (7) and (8). The

maxt refers to the maximum iteration number. 

 max

max

expt t t
TF

t

 
  

 
, (7) 

 max

max max

expt t t t
d

t t

   
    

   
. (8) 

Step 4: Update accelerations. Different formulas are applied to update accelerations depending 

on the search phase. When 0.5tTF  , the search process is in the exploration stage. There is a collision 
between the i -th individual and a random one mr , and its acceleration is updated according to Eq (9).  

 
1 1 1

1
1 1

t t t
t mr mr mr
i t t

i i

den vol acc
acc

den vol

  


 

 



. (9) 

When 0.5tTF  , it is in the exploitation stage. There is no collision between agents, and the 
acceleration of the i -th individual is updated by Eq (10). 

 1
1 1

t best best best
i t t

i i

den vol acc
acc

den vol


 

 



. (10) 

Then, the updated accelerations are standardized according to Eq (11).  

 
 

   

1
1 min

max min

t
it

i norm

acc acc
acc u l

acc acc






  


, (11) 

where u is set to 0.9 and l is set to 0.1. The max( )acc and min( )acc are the maximum and minimum 
of all acc values, respectively. 

Step 5: Renew positions. When 0.5tTF  , the position of the i -th individual is updated by Eq (12).  

  1 1 1
1

t t t t t
i i i norm rand ix x C rand acc d x x  

       , (12) 
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where 1C is set to 2 and randx is the location of a randomly selected individual. 

Otherwise, the position of the i -th individual in the exploitation stage is updated by Eq (13). 

  1 1 1
2

t t t t
i best i norm best ix x F C rand acc d T x x  

         , (13) 

where 2C is a constant equal to 6. The parameters T and F are calculated by Eqs (14) and (15). 

 1
3

tT C TF   , (14) 

 
1          0.5

1         0.5  

if P
F

if P


  

, (15) 

where 42P rand C   . The parameters 3C and 4C are set to 2 and 0.05, respectively. 

Step 6: Evaluate all individuals. Evaluate all individuals and select the optimal one. Assign bestx ,

bestden , bestvol  and bestacc . The process of AOA in detail is shown in Figure 2. 

Start

Initialize the initial positions, volumes, accelerations 
and densities according to Eqs. (1), (2), (3) and (4)

Evaluate all initial individuals and select the optimal 
one. Assign xbest, denbest, volbest, accbest. Set t=1

t<tmax

Update volumes and densities according to Eqs. (5) 
and (6)

Calculate the transfer operator and density factor 
according to Eqs. (7) and (8)

TFt<0.5

Update accelerations 
according to Eqs. (9) and (11)

Update accelerations according 
to Eqs. (10) and (11)

Update postions according to 
Eq. (12)

Update postions according to 
Eq. (13)

Evaluate all individuals, and update 
xbest, denbest, volbest, accbest

Set t=t+1

 Return the xbest

End

Yes No

Yes, exploration No, exploitation

 

Figure 2. The flowchart of AOA. 
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3. The proposed HCAOA 

In the canonical AOA, all individuals are treated in the same way. During the exploration period, 
the positions of individuals are updated by collisions with random individuals. As a result, the 
knowledge of better individuals is not well learned, slowing down optimization speed. In the 
exploitation phase, all individuals move towards the optimal one. This causes the aggregation of all 
individuals to the best one and makes the algorithm get stuck at local optima. Moreover, the whole 
process of the standard AOA does not fully use the optimal individual, leading to slow convergence 
speed. Finally, the same boundary treatment for all individuals somewhat reduces population diversity. 
To address these problems, an improved HCAOA is put forward. On the basis of the original AOA, the 
algorithm combines an orthogonal learning mechanism based on refraction opposition and an 
Archimedes spiral mechanism based on Levy flight to deal with individuals at different levels. In 
addition, a multi-strategy boundary processing mechanism is introduced. 

3.1. Orthogonal learning mechanism based on refraction opposition 

3.1.1. Refraction opposition-based learning 

In metaheuristic algorithms, all individuals move towards the optimal individual, causing the 
disappearance of population variety and the fall into a local optimum. To overcome this shortcoming, 
opposition-based learning (OBL) has been proposed [40] and widely used [7]. OBL is a greedy policy 
that selects a point with better fitness between the initial and the opposite point. 

Definition 1 Opposite number. Suppose there exists a number x  in [ , ]lb ub  , then its opposite 

number x is obtained by Eq (16).                           

 x lb ub x   . (16) 

Definition 2 Opposite spot. Assume 1 2( , , )DX x x x   is a D -dimensional spatial point, 

1x , 2x , , Dx R and [ , ]j j jx lb ub ( 1, 2, )j D  . Then, its opposite spot is calculated by Eq (17). 

 j j j jx lb ub x   . (17) 

In addition, several variants have been derived, such as elite opposition-based learning [41], 
refraction opposition-based learning (ROBL) [10], quasi opposition-based learning [5] and random 
opposition-based learning [3]. ROBL is a dynamic oppositional learning strategy based on OBL and 
the lens imaging principle to help algorithms find better candidate solutions. 

The process of obtaining refraction opposition points is shown in Figure 3. There is an object N
with height h directly on the coordinate x , [ , ]x lb ub . Place a lens at the midpoint o of lb and ub , 

and the height *h of mirror point *N can be obtained based on the lens imaging principle.  

The refraction-opposition point is *x , which is calculated through Eq (18).                          

 
 

 * *

/ 2

/ 2

lb ub x h

x lb ub h

 


 
. (18) 
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Figure 3. The refraction opposition-based learning. 

Let */h h k , where k is the scaling factor. The refraction-opposition spot *x is obtained by Eq (19). 

 * /
2 2

ub lb ub lb
x x k

k

 
   . (19) 

By generalizing to D dimensional space, the refraction-opposition spot is attained by Eq (20). 

 * /
2 2

j j j j
j j

ub lb ub lb
x x k

k

 
   . (20) 

When 1k  , the refraction opposition solution *x in Eq (20) is the opposite point in OBL. The 

opposite point obtained by the OBL strategy is fixed, while the refraction-position point obtained by 
ROBL dynamically changes when k is set to different values. The reason for using ROBL in this paper 
is that ROBL provides a variety of solutions due to the randomness of k . 

3.1.2. Orthogonal learning 

There is a better one when comparing two individuals, but there is no guarantee that this better 
individual outperforms the other in all dimensions. Each individual has several superior dimensions. 
Mining better dimensions from each individual is expected to yield a better individual. This requires 
permutation and combination experiments. However, the number of experiments in traditional 
permutations grows exponentially as the dimensionality increases, which is unsuitable for optimization 
algorithms with multiple iterations and individuals in high dimensions. Therefore, orthogonal learning 
is introduced to find the optimal combination through a few experiments. The orthogonal learning 
experiment consists of two steps: orthogonal design and factor analysis [42]. 

Orthogonal design defines the content and number of experiments through predefined orthogonal 
arrays. Orthogonal arrays provide a series of different combinations that are represented as ( )Q

ML S , 

where S is layers number, Q is factors number and M is test times. For example, for the experiment 

with 7 factors and 2 levels, 7128(2 ) trials are required to get an optimal combination when adopting 

permutation. However, if orthogonal experimental design is employed, the best combination can be 
found through 7

88( (2 ))L trials in Eq (21). 
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  7
8

1 1 1 1 1 1 1

1 1 1 2 2 2 2

1 2 2 1 1 2 2

1 2 2 2 2 1 1
2

2 1 2 1 2 1 2

2 1 2 2 1 2 1

2 2 1 1 2 2 1

2 2 1 2 1 1 2

L

 
 
 
 
 
   
 
 
 
 
  

. (21) 

Factor analysis assesses the influence of every level of different factors on the outcomes of M 
trials. For example, the objective function is the spherical function 2( ) ii

f x x . Two individuals are

[1,3,5, 2,3,1, 2]A   and [2,1,3,1, 2, 2,4]B  . Orthogonal learning is carried out by Eq (21). Table 2 

shows the process of obtaining a new individual newx through factor analysis. The iA and iB denote the 

cumulative fitness value of the i -th factor in the individual A and B, respectively. A smaller cumulative 

value of an individual on a dimension indicates that dimension value of the individual is the dominant 
dimension value. All the predominant dimension values are combined to generate a new individual. 

Table 2. The process of obtaining a new individual by orthogonal learning. 

Times Factor Fitness value 

1 2 3 4 5 6 7 

1 1(1) 3(1) 5(1) 2(1) 3(1) 1(1) 2(1) 53 

2 1(1) 3(1) 5(1) 1(2) 2(2) 2(2) 4(2) 60 

3 1(1) 1(2) 3(2) 2(1) 3(1) 2(2) 4(2) 44 

4 1(1) 1(2) 3(2) 1(2) 2(2) 1(1) 2(1) 21 

5 2(2) 3(1) 3(2) 2(1) 2(2) 1(1) 4(2) 47 

6 2(2) 3(1) 3(2) 1(2) 3(1) 2(2) 2(1) 40 

7 2(2) 1(2) 5(1) 2(1) 2(2) 2(2) 2(1) 46 

8 2(2) 1(2) 5(1) 1(2) 3(1) 1(1) 4(2) 57 

Ai  178 200 216 190 194 178 160 ---- 

Bi   190 168 152 178 174 190 208 ---- 

xnew 1 1 3 1 2 1 2 21 

3.1.3. The proposed orthogonal learning based on ROBL 

In metaheuristic algorithms, the optimal individual plays an essential role. The best one 
determines the convergence speed. In the exploration phase of AOA, all individuals update their 
positions through random collisions, which reduces the optimization speed. In the exploitation phase 
of AOA, all individuals converge to the optimal individual and may fall into a local optimum. 
Therefore, this paper applies an orthogonal learning mechanism based on refraction opposition to 
improve convergence speed and the capacity to escape from a local extremum. 

This approach employs the ROBL mechanism to generate refraction opposition solutions for the 
optimal individual. The randomness of k ensures the diversity of refraction opposition solutions, thus 

reducing the chances of the algorithm immersing a local extremum. In traditional ROBL strategy, the 
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optimal individual is compared with its refraction opposition solution in a greedy way, and the superior 
individual is selected for the next generation. This does not take full advantage of the information 
available on all dimensions of the two individuals because one of the two is inevitably superior to the 
other in some dimensions and inferior to the other in the remaining dimensions. To resolve this issue, 
orthogonal learning is utilized to fully learn the information of the optimal individual and its refraction 
opposition individual, combining the dominant dimensions of both to produce a better solution. 

3.2. Archimedes spiral mechanism based on Levy flight 

An Archimedes spiral describes the trajectory of a point moving away from a stationary point at 
an invariant velocity and revolving around the fixed point at an unchanging angular velocity. Its polar 
coordinate r is defined by Eq (22).  

 r a b  , (22) 

where a is the distance from the point of departure to the coordinate origin in polar coordinates, b is 
the increment of the unit angle of a helix and  is the rotation angle. Altering a means revolving the 
spiral and b determines the distance between two adjacent curves. In this paper, we combine Levy 

flight and Archimedes spiral to discover better solutions in the neighborhood of superior individuals.  

The target regions at different stages are different. In the exploration stage, some individuals 
explore the area around dominant individuals to learn more about them and avoid clueless random 
search, thus improving optimization speed. Therefore, the update formula in this stage is Eq (23).  

  1 cos 2t t t t
i i i levyx x x x l l      . (23) 

During the exploitation phase, the areas near the best individual are focused on searching to 
enhance optimization ability and avoid local optima. Currently, the locations are updated as in Eq (24). 

  1 cos 2t t
i best best levyx x x x l l      , (24) 

where l stands for a uniform random number in [ 1,1] . Then a in Archimedes spiral corresponds to t
ix

in Eq (23) and bestx in Eq (24), and b in Archimedes spiral corresponds to t t
i levyx x l   in Eq (23) and

t
best levyx x l   in Eq (24). The  cos 2 l  in Eqs (23) and (24) corresponds to  in Archimedes spiral. 

The generated Levy flight solution t
levyx is calculated by Eq (25). 

  1
t t t
levy i bestx x x






   , (25) 

where  and conform to a normal distribution, correspondingly, 2(0, )N   , 2(0, )N   .  is 

1 and  is obtained by Eq (26). 
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 

 

1

1

2

1 sin
2

1 / 2 2



 




 


           
        

, (26) 

where the value range of  is typically (0,2], and  is taken as 1 in this paper.  

Levy flight adopts a random search method combining small steps and long jumps, which can 
effectively expand the search area. Archimedes spiral mechanism helps to search the neighborhood of 
excellent individuals, avoiding missing part of the solution space and ensuring mining meticulousness 
to the maximum extent. In the exploration stage, the integration of the two means allows the proposed 
algorithm to not only fully learn from the excellent individuals, but also to avoid clueless random 
mining. In addition, this combination is applied in the exploitation stage to fully explore the 
neighborhood of the best individual. This can ensure the rigor and accuracy of the search process to 
enhance local search ability, and improve population diversity to avoid premature convergence 
phenomena. 

3.3. Multi-strategy boundary processing mechanism 

In the standard AOA, all individuals are treated with the same boundary processing method at all 
stages. If the values of new individuals are greater than the upper limits, they are set to the upper limits. 
Similarly, the values less than the lower bounds are set to the lower bounds. This is the most common 
boundary processing mechanism in previous algorithms. However, this may affect the diversity of 
populations to some extent, especially in the exploration phase. There may be multiple individuals 
who exceed the boundary values in the same dimension and are set to the boundary values. Therefore, 
this study proposes a multi-strategy boundary processing mechanism that treats individuals differently 
at different stages. In the exploration phase, the dimension values of individuals outside their range are 
set to random numbers to increase population diversity. When it comes to the exploitation stage, the 
traditional boundary treatment is continued. The pseudo-code of the multi-strategy boundary 
processing mechanism is algorithm 1. 

Algorithm 1: The pseudo code of multi-strategy boundary processing mechanism. 

Update the positions of all individuals ijxnew  

1:  if 0.5tTF     # exploration phase 

2:      for 1 to popsizei   

3:          for 1 to dimj   

4:              if ij jxnew ub or ij jxnew lb   

5:                ( )ij j j jxnew lb ub lb rand     

6:              end if 

7:          end for 

8:      end for 

9:  end if  

10: if 0.5tTF    # exploitation phase 

11:     for 1 to popsizei   

12:          for 1 to dimj   
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13:              if ij jxnew ub  

14:                 ij jxnew ub  

15:              end if 

16:              if ij jxnew lb  

17:                 ij jxnew lb  

18:              end if 

19:          end for 

20:     end for 

21: end if  

22: return ijxnew  

3.4. The frame of HCAOA 

All individuals are treated in the same manner in the standard AOA, which does not efficiently 
learn the information of the optimal and better individuals, thus reducing the convergence speed and 
possibly leading to a local optimum. Therefore, the HCAOA is proposed in this paper. 

All individuals in a population are classified into three classes according to their fitness: the 
optimal individual, superior individuals and general individuals. The optimal individual is treated 
through the orthogonal learning mechanism based on refraction opposition, which effectively avoids 
local optima and improves convergence speed to a certain extent. Superior individuals are processed 
by Archimedes spiral mechanism based on Levy flight to conduct information mining from better 
individuals. This avoids clueless random search and improves optimization speed during the 
exploration period, while ensuring population diversity and reducing the probability of local optimality 
during the exploitation period. For general individuals, the conventional AOA is applied to effectively 
utilize its exploration and exploitation capabilities. Among them, the optimal individual is the one with 
the best fitness in a population, and there is only one. The general individuals make up %a  of a 
population. The rest are superior individuals, and the number is [(1 %) 1]a popsize   . Finally, the 

multi-strategy boundary processing mechanism is employed to increase population diversity. In 
accordance with the above analysis, its pseudocode is listed in algorithm 2 in detail. Moreover, the 
flowchart of HCAOA is depicted in Figure 4.  

Algorithm 2: The pseudo code of HCAOA algorithm. 
1: Input: the proportion of general individuals %a , the population size N , maximum iterations

maxt  and the 

parameters 1 2 3 4,  ,  ,  C C C C  

2: Initialize the positions, densities, volumes and accelerations of all individuals according to Eqs (1)–(4)  
3: Set iteration 1t   

4: While maxt t do 

5:     Evaluate the fitness of all individuals and rank them. Reassign serial numbers to all individuals in sorted order 

6:     Record the optimal individual of the whole population 

7:     Update volumes and densities of all individuals though Eqs (5) and (6) 

8:     Update transfer operator and density factor by Eqs (7) and (8) 

9:     For 1k  do   # The optimal individual 

10:        Calculate the refraction opposition solution of the optimal individual by formula (20). Perform orthogonal 

learning mechanism to update the position 

11:    End for  
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12:    For 2 to [(1 %) ]k a N   do  # The superior individuals 

13:        If 0.5tTF   

14:            Update positions by Eq (23) 

15:        Else  

16:            Update positions by Eq (24) 

17:        End if 

18:    End for 
19:    For [(1 %) 1] to k a N N    do  # The general individuals 

20:        If 0.5tTF   

21:            Update accelerations by Eqs (9) and (11) 

22:            Update positions by Eq (12) 

23:        Else  

24:            Update accelerations by Eqs (10) and (11) 

25:            Update positions by Eq (13) 

26:        End if 

27:    End for  

28:    Boundary processing according to Algorithm 1 

29:    Evaluate the fitness values of each individual before and after the update, and select the better one to enter the 

next generation 

30:    Set 1t t   

31: End while 

The superior individualsThe optimal individual

Start

t<tmax

Update volumes and densities according to Eqs. (5) and (6).  Calculate TFt and dt  though Eqs.(7) and (8)

 Return the xbest

End

Yes, exploration

Evaluate the fitness values of individuals and rank them. Reassign serial numbers to them in sorted order

Initialize the initial positions, volumes, accelerations and densities according to Eqs. (1), (2), (3) and (4)

TFt<0.5

Update positions 
by Eq. (23)

Update positions 
by Eq. (24)

Boundary processing according to 
Algorithm 1

Set t=t+1

Yes, exploration No, exploitationCalculate ROBL by 
Eq. (20)

 Perform orthogonal 
learning

for k=1 for k=2: [(1-a%) *N]

Yes

No

The general individuals
for k=[(1-a%) *N+1]:N

TFt<0.5

Update accelerations by 
Eqs. (9) and (11).
Update positions 

by Eq. (12)

Update accelerations by 
Eqs. (10) and (11).
Update positions 

by Eq. (13)

No, exploitation

 

Figure 4. The flowchart of HCAOA. 
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3.5. Computational complexity  

In the worst scenario, the time complexity of HCAOA is calculated based on its pseudocode. Here,
N is population size, D is problem dimension and maxt is max iterations. 

It takes ( )O N D time to initialize the population. The assessment of the fitness values of all 

individuals needs max( )O N t time. Sorting according to the fitness values takes 2
max( )O N t time. It 

takes 2
max( )O D t time to implement the orthogonal learning strategy based on refraction opposition 

for the optimal individual. It takes max((1 %) )O a N D t     time to perform Archimedes spiral 

mechanism based on Levy flight for superior individuals. It takes max( % )O a N D t   time to perform 

AOA for general individuals. The multi-strategy boundary processing mechanism needs

max( )O N D t  time. It takes max( )O N t time to carry out greedy selection technique in HCAOA. 

On the whole, the total time of HCAOA is 2
max max( )O N D t N t    . Thus, in terms of time 

complexity, HCAOA is more complex than the original AOA. 

3.6. Parameters sensitivity analysis 

In the new HCAOA, five parameters 1C , 2C , 3C , 4C and %a need to be specified. Among them,

1C  , 2C  , 3C  and 4C  are the parameters in the traditional AOA, and %a  is a new parameter that 

indicates the proportion of general agents in a population. In the proposed HCAOA, the parameter
%a is insensitive to these four parameters, so these four parameters are deferred to the values in the 

original AOA. Multiple tests are executed to judge the parameter %a in this subsection. Sensitivity 

analysis is performed on four benchmark functions (f1, f10, f11 and f29) picked from various classes 
of the CEC 2017 test suite. The dimensionality is set to 30. The values of the parameter %a  are 

assigned to  0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 . The outcomes of different %a are offered in Table 
3. It is evident that when parameter %a is set to 80%, HCAOA realizes excellent results. 

Table 3. The experimental results of HCAOA using different a% value. 

a% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

f1 1.25 × 106 1.51 × 106 5.78 × 104 3.59 × 103 3.21 × 103 3.35 × 103 3.54 × 103 2.66 × 103 6.07 × 103 

f10 4.26 × 103 4.24 × 103 4.43 × 103 4.17 × 103 4.39 × 103 4.42 × 103 4.23 × 103 4.13 × 103 4.20 × 103 

f11 1.30 × 103 1.28 × 103 1.25 × 103 1.24 × 103 1.25 × 103 1.23 × 103 1.24 × 103 1.21 × 103 1.23 × 103 

f29 3.91 × 103 3.80 × 103 3.78 × 103 3.69 × 103 3.70 × 103 3.74 × 103 3.69 × 103 3.67 × 103 3.71 × 103 

4. Experimental results 

The optimization capability of HCAOA is examined on the CEC 2017 test suite, and the effects 
are weighed against nine other classical or new metaheuristics. First, the specific knowledge of the 
CEC 2017 test suite and parameter settings of different algorithms are presented. Next, the 
effectiveness of the various strategies in HCAOA are rated. Finally, the proposed HCAOA is evaluated 
from various perspectives, including qualitative analysis, statistical analysis, stability analysis, 
convergence analysis and statistical tests.  
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4.1. Parameter setting and CEC 2017 test suite 

The optimization ability of HCAOA is further assessed with the CEC 2017 suite, which is a 
universal measurement for modern algorithms. There are four types of problems in this suite: unimodal 
(f1f3), multimodal (f4f10), hybrid (f11f20) and composite cases (f21f30). As f2 has been 
removed from this test suite due to its instability, 29 test functions with distinct modalities and 
complexity are employed to test HCAOA and other competing algorithms. All functions take values 
in the range [100,100]. In conclusion, CEC 2017 suite is quite sophisticated and appropriate for 
studying algorithms’ exploration and exploitation abilities. 

The proposed HCAOA is compared with AOA, PSO, GWO, SCA, FA, WOA, HHO, BOA and 
SHO to evaluate the optimization performance of these algorithms from both qualitative and 
quantitative perspectives. Their parameters are demonstrated in Table 4. It is rational and appropriate to 
regulate parameters to default values [43]. The dimensions of these testing functions are typed to 30, the 
population size is 100 and the maximal iteration is 1000. Since the results of these algorithms are 
randomized, they run separately 30 times to ensure the fairness and objectivity of competitions. 

Table 4. Parameter settings of HCAOA and all other algorithms. 

Algorithms Parameter setting 

AOA[27] 1 2 3 42, 6, 2, 0.5C C C C     

PSO[16] m ax m in10, 10, 1 2, 2 2, 0.8v v c c w       

GWO[34] Convergence constant [0,2]a   

SCA[25] 2A  

FA[17] 0 1, 1,  0.2,  0.98,  2m         

WOA[9]  descends proportionally from 2 to 0, 
2a linearly reduces from −1 to −2 

HHO[19] 1.5   

BOA[20] 0.01,  0.1  0.3,  0.8c a to p    

SHO[18] 1 0,  2 0.1r r   

HCAOA 1 2 3 42,  6,  2,  0.5,  % 80%C C C C a      

4.2. Impact of strategies 

To overcome the shortcomings of the traditional AOA, this paper proposes an improved HCAOA. 
There are three improvement strategies in HCAOA. The first strategy is to perform the orthogonal 
learning mechanism based on refraction opposition on the optimal individual. The second is that 
superior individuals are handled by Archimedes spiral mechanism based on Levy flight. The third 
strategy is to implement a multi-strategy boundary processing mechanism for all individuals. To 
evaluate the impact of each strategy, this subsection fuses each of the three strategies into the AOA 
and constructs three improved versions: AOA-S1, AOA-S2 and AOA-S3. The means and standard 
deviations (STD) obtained by AOA and its improved versions on CEC 2017 test functions are listed in 
Table 5. The optimal means on all functions are shown in bold. 

Comparing AOA-S1 with AOA, it is clear that AOA-S1 achieves lower means than AOA, except 
for f18 and f21. The STD values obtained by AOA-S1 are smaller than those obtained by AOA in most 
cases. These indicate that the first strategy improves the optimization ability of AOA. The optimization 
results of AOA-S2 are in comparison with those of AOA. AOA-S2 offers lower means on 24 functions 
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and significant improvements on several functions, suggesting that the second strategy enhances the 
search capability to some extent. AOA-S3 slightly outperforms AOA in terms of averages on 23 
functions, and the differences between the two are not great for the other 6 functions. The third strategy 
is a slight improvement over AOA. The main reason is that the third strategy does not change the 
exploitation and exploration strategy of AOA, but simply increases population diversity through 
boundary treatments. Finally, HCAOA with all three strategies applied simultaneously produces more 
competitive results than the use of any one strategy alone.  

Table 5. Comparison results of AOA, AOA-S1, AOA-S2, AOA-S3 and HCAOA. 

Function AOA AOA-S1 AOA-S2 AOA-S3 HCAOA 

Measure MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD 

f1 2.83 × 

1010 

6.03 × 

109 

1.01 × 

1010 

6.07 × 109 3.72 × 103 3.56 × 103 2.68 × 1010 6.82 × 109 2.66 × 103 2.78 × 103 

f3 5.29 × 

103 

2.80 × 

103 

3.98 × 

103 

1.85 × 103 3.02 × 104 1.20 × 104 4.83 × 103 1.85 × 103 1.51 × 104 6.62 × 103 

f4 7.04 × 

103 

2.15 × 

103 

2.32 × 

103 

2.12 × 103 5.08 × 102 1.40 × 101 5.98 × 103 1.71 × 103 5.03 × 102 1.74 × 101 

f5 6.84 × 

102 

1.94 × 

101 

6.75 × 

102 

2.90 × 101 5.50 × 102 1.08 × 101 6.79 × 102 1.46 × 101 5.62 × 102 1.25 × 101 

f6 6.49 × 

102 

4.16 6.35 × 

102 

8.42 6.04 × 102 9.39 × 10-

1 

6.00 × 102 9.84 × 10-

5 

6.03 × 102 1.25 

f7 1.13 × 

103 

5.74 × 

101 

1.05 × 

103 

7.94 × 101 7.90 × 102 1.33 × 101 1.10 × 103 4.33 × 101 7.85 × 102 1.37 × 101 

f8 9.23 × 

102 

1.03 × 

101 

9.19 × 

102 

1.69 × 101 8.55 × 102 1.17 × 101 9.24 × 102 1.23 × 101 8.51 × 102 1.18 × 101 

f9 3.83 × 

103 

4.52 × 

102 

3.38 × 

103 

5.09 × 102 1.09 × 103 7.96 × 101 3.86 × 103 5.88 × 102 1.07 × 103 7.74 × 101 

f10 4.52 × 

103 

5.76 × 

102 

4.48 × 

103 

6.19 × 102 5.10 × 103 8.03 × 102 4.42 × 103 5.62 × 102 4.13 × 103 5.56 × 102 

f11 2.72 × 

103 

9.83 × 

102 

2.30 × 

103 

7.60 × 102 1.28 × 103 6.47 × 101 2.34 × 103 8.24 × 102 1.21 × 103 4.17 × 101 

f12 4.69 × 

109 

1.15 × 

109 

1.75 × 

109 

1.98 × 109 3.93 × 105 3.02 × 105 4.63 × 109 1.51 × 109 3.43 × 105 2.20 × 105 

f13 2.49 × 

109 

1.34 × 

109 

2.17 × 

109 

1.84 × 109 9.26 × 103 2.63 × 103 2.44 × 109 1.91 × 109 8.16 × 103 3.29 × 103 

f14 3.61 × 

104 

7.11 × 

104 

1.85 × 

104 

1.86 × 104 2.64 × 104 2.00 × 104 2.10 × 104 2.81 × 104 1.05 × 104 7.23 × 103 

f15 1.25 × 

107 

2.26 × 

107 

5.51 × 

106 

1.22 × 107 4.98 × 103 6.71 × 103 1.22 × 107 2.84 × 107 2.16 × 103 4.39 × 102 

f16 2.86 × 

103 

2.26 × 

102 

2.82 × 

103 

2.40 × 102 2.42 × 103 2.52 × 102 2.95 × 103 3.34 × 102 2.39 × 103 2.11 × 102 

f17 2.38 × 

103 

2.51 × 

102 

2.27 × 

103 

1.93 × 102 1.94 × 103 1.07 × 102 2.35 × 103 2.65 × 102 1.91 × 103 1.25 × 102 

Continued on next page 
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Function AOA AOA-S1 AOA-S2 AOA-S3 HCAOA 

Measure MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD 

f18 1.71 × 

105 

1.43 × 

105 

1.72 × 

105 

1.85 × 105 2.70 × 105 1.69 × 105 1.58 × 105 1.61 × 105 1.23 × 105 9.25 × 104 

f19 2.03 × 

107 

2.76 × 

107 

1.93 × 

107 

3.39 × 107 6.18 × 103 3.82 × 103 1.85 × 107 4.08 × 107 5.50 × 103 1.87 × 103 

f20 2.31 × 

103 

7.58 × 

101 

2.29 × 

103 

5.15 × 101 2.42 × 103 1.42 × 102 2.35 × 103 1.08 × 102 2.26 × 103 1.07 × 102 

f21 2.46 × 

103 

2.31 × 

101 

2.46 × 

103 

1.99 × 101 2.36 × 103 9.15 2.46 × 103 1.16 × 101 2.35 × 103 1.38 × 101 

f22 3.51 × 

103 

8.88 × 

102 

2.96 × 

103 

5.21 × 102 4.85 × 103 2.14 × 103 4.30 × 103 1.22 × 103 2.30 × 103 3.16 

f23 3.09 × 

103 

7.13 × 

101 

3.01 × 

103 

1.14 × 102 2.69 × 103 1.33 × 101 3.10 × 103 5.45 × 101 2.72 × 103 1.52 × 101 

f24 3.41 × 

103 

1.20 × 

102 

3.06 × 

103 

7.65 × 101 2.89 × 103 1.28 × 101 3.56 × 103 1.13 × 102 2.88 × 103 1.58 × 101 

f25 3.81 × 

103 

2.96 × 

102 

3.32 × 

103 

2.19 × 102 2.90 × 103 9.98 3.76 × 103 2.18 × 102 2.89 × 103 6.44 

f26 8.55 × 

103 

3.64 × 

102 

8.11 × 

103 

8.38 × 102 4.18 × 103 1.32 × 102 8.44 × 103 6.14 × 102 4.69 × 103 2.41 × 102 

f27 3.72 × 

103 

2.18 × 

102 

3.60 × 

103 

2.71 × 102 3.25 × 103 6.20 3.70 × 103 1.77 × 102 3.24 × 103 1.34 × 101 

f28 5.33 × 

103 

4.15 × 

102 

4.30 × 

103 

5.52 × 102 3.26 × 103 1.12 × 101 5.32 × 103 4.46 × 102 3.23 × 103 2.26 × 101 

f29 4.87 × 

103 

3.56 × 

102 

4.83 × 

103 

4.56 × 102 3.74 × 103 1.71 × 102 4.86 × 103 3.93 × 102 3.67 × 103 1.50 × 102 

f30 2.35 × 

108 

1.82 × 

108 

6.14 × 

107 

1.06 × 108 8.07 × 103 1.78 × 103 8.90 × 107 1.04 × 108 7.00 × 103 1.11 × 103 

4.3. Qualitative analysis results 

Five benchmark functions are randomly selected from different categories to present qualitative 
measures of HCAOA. The qualitative results in Figure 5 include five subplots, namely (1) 2D 
visualization of benchmark functions, (2) search history, (3) the trajectory in 1st dimension, (4) average 
fitness of populations and (5) convergence curve. 

2D visualization of benchmark functions shows the changes in function values corresponding to 
the first and second dimensional data. As the dimensions increase, the results become more complex 
and difficult to plot. 
  



20898 

 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20881-20913. 

 

Figure 5. Qualitative results of HCAOA. 

The search history charts illustrate the positions of all individuals from the first to the last 
generation. The search space is described by chromatic contours, starting with blue (lowest value) and 
ending with yellow (highest value). Two conclusions can be drawn from these search history graphs. 
First, the locations of search agents cover almost the entire search space, which indicates that HCAOA 
has good exploration capability. Second, search agents gather more around the blue line, suggesting 
that HCAOA achieves good exploitation. In summary, these two points demonstrate that HCAOA has 
an outstanding collaboration between exploration and exploitation.  

The trajectories of the first individual in the first dimension reflect the search behavior. The third 
column of Figure 5 shows that the trajectories vary greatly in the early phase and tend to flatten out in 
the late stage. This process highlights a gradual shift from exploration to exploitation of HCAOA as 
the iterations progress. The trajectories of some graphs have some oscillations, which denotes that 
HCAOA has the ability to escape from a local extremum. In addition, the more complex the function 
is, the greater the number of trajectory fluctuations and the longer the oscillation time. These graphs 
show the global search capability of HCAOA. 
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The fourth column of Figure 5 displays the average fitness of whole population, reflecting the 
changes in fitness of entire population during iterations. Overall, the average fitness continues to 
decrease due to the greedy strategy in HCAOA, which guarantees continuous optimization. It is also 
found that the average fitness values decrease rapidly in the early period and gradually taper off in the 
later phase, demonstrating a transition of HCAOA from exploration to exploitation. 

Convergence curves represent the behavior of the optimal solution up to now. As described in the 
fifth column of Figure 5, the convergence curves on all functions are gradually decreasing, indicating 
that HCAOA is continuously optimizing the results as iterations continue. In addition, convergence 
curves fall rapidly in the early stage and slowly in the late stage, revealing that HCAOA has a high 
cooperation between exploration and exploitation. 

4.4. Statistical analysis results 

This subsection measures the performance of HCAOA and the other nine algorithms by statistical 
analysis. The results of 30 independent optimizations are summarized and four indictors including 
mean, standard deviation, best value and worst value are selected for statistical analysis. The statistical 
grades are shown in Table 6, and optimal values are indicated in bold. Overall, HCAOA scores are best 
in 97 out of 116 comparisons of four indicators on 29 functions. First, HCAOA gets the best mean values 
on 26 functions. For f3, AOA and HHO perform better, and HCAOA is third. GWO outperforms 
HCAOA on f16 and f26, with HCAOA in second place. Second, HCAOA has the 24 best values out 
of 29 functions for the standard deviation indicator. HCAOA ranks second on f8 and f29, third on f3 
and f16, and fourth on f10. Furthermore, from the perspective of best value, HCAOA achieves the 
optimal value on 21 functions. HCAOA is third on f3 and second on f5, f10, f19, f21, f23, f26 and f27. 
Finally, HCAOA achieves the best on 26 functions for the worst value metric. For the worst value, 
HCAOA ranks third on f3 and second on f16 and f29. Even for many functions, the worst results 
acquired by HCAOA are even more satisfactory than the best value by other algorithms. In summary, 
HCAOA achieves the best results in terms of mean, standard deviation, best and worst on most 
benchmarks. 

Table 6. Statistical results on the CEC 2017 functions with Dim = 30. 

Function Measure AOA PSO GWO SCA FA WOA HHO BOA SHO HCAOA 

f1 

 

 

MEAN 2.83 × 1010 9.00 × 1010 1.00 × 109 1.47 × 1010 5.54 × 1010 6.52 × 107 1.24 × 107 3.90 × 1010 1.37 × 1010 2.66 × 103 

STD 6.03 × 109 1.76 × 1010 5.55 × 108 1.91 × 109 8.70 × 109 2.50 × 107 2.58 × 106 6.38 × 109 4.08 × 109 2.78 × 103 

BEST 1.38 × 1010 5.07 × 1010 1.45 × 108 1.19 × 1010 3.24 × 1010 1.69 × 107 7.42 × 106 2.81 × 1010 6.33 × 109 4.16 × 102 

WORST 3.90 × 1010 1.18 × 1011 2.19 × 109 2.08 × 1010 7.60 × 1010 1.11 × 108 1.67 × 107 5.32 × 1010 2.46 × 1010 1.64 × 104 

f3 MEAN 5.29 × 103 2.27 × 105 3.54 × 104 4.70 × 104 9.83 × 104 2.10 × 105 1.32 × 104 6.41 × 104 5.08 × 104 1.51 × 104  

STD 2.80 × 103 6.33 × 104 1.12 × 104 1.01 × 104 1.53 × 104 5.87 × 104 3.60 × 103 7.92 × 103 9.35 × 103 6.62 × 103  

BEST 1.12 × 103 1.24 × 105 1.52 × 104 2.64 × 104 6.70 × 104 1.19 × 105 6.79 × 103 4.55 × 104 3.68 × 104 7.19 × 103  

WORST 1.38 × 104 3.84 × 105 6.13 × 104 6.58 × 104 1.26 × 105 3.58 × 105 1.96 × 104 7.44 × 104 7.09 × 104 3.99 × 104 

f4 

 

 

MEAN 7.04 × 103 2.85 × 104 5.55 × 102 1.76 × 103 1.39 × 104 5.93 × 102 5.34 × 102 1.68 × 104 1.86 × 103 5.03 × 102 

STD 2.15 × 103 8.09 × 103 4.40 × 101 4.02 × 102 2.43 × 103 5.70 × 101 3.77 × 101 2.67 × 103 8.41 × 102 1.74 × 101 

BEST 4.01 × 103 8.82 × 103 4.88 × 102 1.16 × 103 7.64 × 103 5.25 × 102 4.73 × 102 1.17 × 104 7.71 × 102 4.72 × 102 

WORST 1.23 × 104 4.53 × 104 6.55 × 102 2.90 × 103 1.80 × 104 7.60 × 102 6.04 × 102 2.30 × 104 4.44 × 103 5.16 × 102 

  Continued on next page 
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Function Measure AOA PSO GWO SCA FA WOA HHO BOA SHO HCAOA 

f5 

 

 

MEAN 6.84 × 102 9.90 × 102 5.93 × 102 7.96 × 102 8.99 × 102 7.89 × 102 7.52 × 102 8.80 × 102 6.96 × 102 5.62 × 102 

STD 1.94 × 101 6.39 × 101 3.34 × 101 1.51 × 101 3.18 × 101 4.91 × 101 3.12 × 101 2.27 × 101 3.29 × 101 1.25 × 101 

BEST 6.49 × 102 8.58 × 102 5.39 × 102 7.67 × 102 8.15 × 102 6.82 × 102 6.86 × 102 8.27 × 102 6.43 × 102 5.45 × 102 

WORST 7.32 × 102 1.14 × 103 7.28 × 102 8.21 × 102 9.64 × 102 9.14 × 102 8.14 × 102 9.22 × 102 7.62 × 102 6.00 × 102 

f6 

 

 

MEAN 6.49 × 102 6.93 × 102 6.05 × 102 6.53 × 102 6.75 × 102 6.72 × 102 6.62 × 102 6.78 × 102 6.37 × 102 6.03 × 102 

STD 4.16 1.20 × 101 2.21 4.54 6.39 1.26 × 101 5.93 6.57 8.80 1.25 

BEST 6.42 × 102 6.65 × 102 6.02 × 102 6.40 × 102 6.63 × 102 6.50 × 102 6.49 × 102 6.60 × 102 6.23 × 102 6.01 × 102 

WORST 6.56 × 102 7.13 × 102 6.13 × 102 6.63 × 102 6.97 × 102 7.02 × 102 6.74 × 102 6.90 × 102 6.62 × 102 6.06 × 102 

f7 

 

 

MEAN 1.13 × 103 2.42 × 103 8.48 × 102 1.15 × 103 1.76 × 103 1.21 × 103 1.22 × 103 1.33 × 103 1.06 × 103 7.85 × 102 

STD 5.74 × 101 2.73 × 102 3.69 × 101 4.77 × 101 1.04 × 102 8.18 × 101 7.47 × 101 3.91 × 101 6.82 × 101 1.37 × 101 

BEST 9.99 × 102 1.74 × 103 7.94 × 102 1.07 × 103 1.56 × 103 1.09 × 103 1.05 × 103 1.27 × 103 9.41 × 102 7.59 × 102 

WORST 1.24 × 103 2.90 × 103 9.35 × 102 1.25 × 103 1.96 × 103 1.49 × 103 1.37 × 103 1.41 × 103 1.26 × 103 8.16 × 102 

f8 

 

 

MEAN 9.23 × 102 1.22 × 103 8.82 × 102 1.07 × 103 1.14 × 103 1.01 × 103 9.63 × 102 1.11 × 103 9.48 × 102 8.51 × 102 

STD 1.03 × 101 6.19 × 101 3.48 × 101 1.83 × 101 2.85 × 101 5.04 × 101 3.13 × 101 1.84 × 101 3.02 × 101 1.18 × 101 

BEST 8.99 × 102 1.10 × 103 8.46 × 102 1.02 × 103 1.06 × 103 9.28 × 102 8.84 × 102 1.07 × 103 9.04 × 102 8.19 × 102 

WORST 9.40 × 102 1.36 × 103 1.00 × 103 1.10 × 103 1.17 × 103 1.17 × 103 1.02 × 103 1.14 × 103 1.01 × 103 8.76 × 102 

f9 

 

 

MEAN 3.83 × 103 1.68 × 104 1.43 × 103 5.96 × 103 9.26 × 103 7.63 × 103 6.75 × 103 9.76 × 103 4.63 × 103 1.07 × 103 

STD 4.52 × 102 4.88 × 103 2.35 × 102 1.16 × 103 1.53 × 103 1.87 × 103 7.10 × 102 9.35 × 102 6.46 × 102 7.74 × 101 

BEST 2.79 × 103 8.81 × 103 1.06 × 103 4.16 × 103 7.15 × 103 4.44 × 103 5.19 × 103 7.66 × 103 3.24 × 103 9.51 × 102 

WORST 5.03 × 103 3.42 × 104 1.95 × 103 9.30 × 103 1.34 × 104 1.07 × 104 8.48 × 103 1.14 × 104 5.77 × 103 1.24 × 103 

f10 

 

 

MEAN 4.52 × 103 8.08 × 103 4.21 × 103 8.38 × 103 7.82 × 103 6.65 × 103 5.48 × 103 8.62 × 103 4.97 × 103 4.13 × 103 

STD 5.76 × 102 6.93 × 102 1.39 × 103 2.83 × 102 5.25 × 102 7.85 × 102 6.39 × 102 3.91 × 102 5.89 × 102 5.56 × 102 

BEST 3.67 × 103 6.86 × 103 2.72 × 103 7.85 × 103 6.56 × 103 5.00 × 103 4.55 × 103 7.40 × 103 3.75 × 103 2.86 × 103 

WORST 5.62 × 103 9.39 × 103 9.22 × 103 8.93 × 103 8.76 × 103 8.06 × 103 6.94 × 103 9.16 × 103 6.08 × 103 5.02 × 103 

f11 

 

 

MEAN 2.72 × 103 2.73 × 104 1.48 × 103 2.39 × 103 7.41 × 103 2.88 × 103 1.26 × 103 4.72 × 103 2.28 × 103 1.21 × 103 

STD 9.83 × 102 1.23 × 104 2.18 × 102 5.86 × 102 2.09 × 103 1.24 × 103 4.83 × 101 1.25 × 103 8.07 × 102 4.17 × 101 

BEST 1.22 × 103 1.12 × 104 1.27 × 103 1.85 × 103 3.71 × 103 1.48 × 103 1.18 × 103 2.42 × 103 1.36 × 103 1.14 × 103 

WORST 5.14 × 103 6.68 × 104 2.24 × 103 4.38 × 103 1.13 × 104 7.19 × 103 1.40 × 103 8.06 × 103 4.50 × 103 1.28 × 103 

f12 

 

 

MEAN 4.69 × 109 1.99 × 1010 5.50 × 107 1.43 × 109 1.07 × 1010 9.90 × 107 1.05 × 107 7.12 × 109 5.72 × 108 3.43 × 105 

STD 1.15 × 109 4.85 × 109 6.46 × 107 4.58 × 108 2.24 × 109 7.40 × 107 7.42 × 106 2.83 × 109 6.30 × 108 2.20 × 105 

BEST 1.49 × 109 6.28 × 109 2.29 × 106 6.77 × 108 7.09 × 109 6.22 × 106 2.53 × 106 2.20 × 109 2.45 × 107 5.43 × 104 

WORST 6.46 × 109 2.96 × 1010 2.30 × 108 2.54 × 109 1.49 × 1010 2.56 × 108 2.99 × 107 1.53 × 1010 3.00 × 109 8.52 × 105 

f13 

 

 

MEAN 2.49 × 109 1.58 × 1010 3.08 × 106 5.87 × 108 6.54 × 109 1.77 × 105 4.53 × 105 4.76 × 109 3.94 × 107 8.16 × 103 

STD 1.34 × 109 7.85 × 109 9.00 × 106 2.25 × 108 2.79 × 109 8.51 × 104 6.13 × 105 1.71 × 109 1.15 × 108 3.29 × 103 

BEST 3.57 × 107 2.86 × 109 3.74 × 104 1.63 × 108 7.90 × 108 5.42 × 104 1.13 × 105 4.86 × 108 7.45 × 104 2.38 × 103 

WORST 5.48 × 109 4.03 × 1010 3.48 × 107 1.16 × 109 1.32 × 1010 4.05 × 105 3.67 × 106 7.61 × 109 5.52 × 108 1.49 × 104 

f14 MEAN 3.61 × 104 8.23 × 106 1.39 × 105 2.57 × 105 1.42 × 106 1.67 × 106 1.24 × 105 6.86 × 105 4.61 × 105 1.05 × 104  

STD 7.11 × 104 1.04 × 107 2.00 × 105 2.63 × 105 1.49 × 106 1.64 × 106 1.61 × 105 5.19 × 105 4.19 × 105 7.23 × 103 
 

BEST 1.98 × 103 8.06 × 104 2.07 × 103 2.06 × 104 1.15 × 104 3.05 × 104 4.37 × 103 4.91 × 104 5.25 × 104 1.95 × 103  

WORST 3.24 × 105 5.45 × 107 9.19 × 105 1.30 × 106 5.71 × 106 5.79 × 106 6.81 × 105 1.98 × 106 2.22 × 106 3.19 × 104 

f15 

 

 

MEAN 1.25 × 107 1.42 × 109 7.20 × 104 2.73 × 107 4.10 × 108 9.08 × 104 6.60 × 104 8.45 × 107 2.70 × 105 2.16 × 103 

STD 2.26 × 107 9.99 × 108 1.03 × 105 3.23 × 107 2.88 × 108 4.94 × 104 3.87 × 104 9.67 × 107 7.23 × 105 4.39 × 102 

BEST 3.75 × 103 1.58 × 107 1.49 × 104 1.31 × 106 1.65 × 107 3.45 × 104 1.51 × 104 4.75 × 106 3.00 × 103 1.62 × 103 

  Continued on next page 
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WORST 1.00 × 108 4.00 × 109 5.84 × 105 1.45 × 108 1.35 × 109 2.38 × 105 1.85 × 105 4.97 × 108 3.42 × 106 3.46 × 103 

f16 

 

 

MEAN 2.86 × 103 5.55 × 103 2.33 × 103 3.75 × 103 5.17 × 103 3.79 × 103 3.33 × 103 6.00 × 103 2.72 × 103 2.39 × 103 

STD 2.26 × 102 1.01 × 103 1.91 × 102 2.08 × 102 8.44 × 102 4.96 × 102 4.57 × 102 7.31 × 102 2.89 × 102 2.11 × 102 

BEST 2.33 × 103 3.03 × 103 1.93 × 103 3.39 × 103 3.67 × 103 2.92 × 103 2.40 × 103 4.70 × 103 2.04 × 103 1.87 × 103 

WORST 3.22 × 103 8.61 × 103 2.74 × 103 4.11 × 103 8.22 × 103 4.77 × 103 4.48 × 103 8.02 × 103 3.59 × 103 2.78 × 103 

f17 

 

 

MEAN 2.38 × 103 5.16 × 103 1.95 × 103 2.53 × 103 3.25 × 103 2.61 × 103 2.47 × 103 4.40 × 103 2.19 × 103 1.91 × 103 

STD 2.51 × 102 3.07 × 103 1.53 × 102 1.82 × 102 5.61 × 102 2.56 × 102 2.55 × 102 1.30 × 103 1.82 × 102 1.25 × 102 

BEST 1.96 × 103 2.74 × 103 1.77 × 103 2.09 × 103 2.34 × 103 2.17 × 103 1.96 × 103 2.91 × 103 1.93 × 103 1.75 × 103 

WORST 2.97 × 103 1.70 × 104 2.34 × 103 2.76 × 103 4.88 × 103 3.18 × 103 2.88 × 103 7.99 × 103 2.66 × 103 2.16 × 103 

f18 

 

 

MEAN 1.71 × 105 1.35 × 108 8.32 × 105 5.38 × 106 2.31 × 107 4.74 × 106 1.53 × 106 1.00 × 107 1.11 × 106 1.23 × 105 

STD 1.43 × 105 1.32 × 108 9.64 × 105 2.70 × 106 2.47 × 107 4.12 × 106 1.63 × 106 1.09 × 107 1.57 × 106 9.25 × 104 

BEST 4.00 × 104 8.73 × 105 3.99 × 104 1.18 × 106 9.63 × 105 8.42 × 104 7.05 × 104 5.43 × 105 5.87 × 104 2.97 × 104 

WORST 5.48 × 105 4.53 × 108 3.33 × 106 1.30 × 107 9.96 × 107 1.32 × 107 7.90 × 106 4.66 × 107 8.05 × 106 4.95 × 105 

f19 

 

 

MEAN 2.03 × 107 2.17 × 109 3.24 × 105 4.35 × 107 6.28 × 108 5.87 × 106 3.90 × 105 8.83 × 107 7.59 × 104 5.50 × 103 

STD 2.76 × 107 1.60 × 109 3.99 × 105 2.22 × 107 4.88 × 108 4.50 × 106 3.16 × 105 8.05 × 107 1.16 × 105 1.87 × 103 

BEST 3.35 × 103 2.38 × 108 1.59 × 104 1.30 × 107 4.09 × 107 1.63 × 106 3.04 × 104 8.60 × 106 2.25 × 103 2.80 × 103 

WORST 1.09 × 108 7.84 × 109 1.68 × 106 1.17 × 108 1.82 × 109 2.01 × 107 1.18 × 106 3.62 × 108 3.63 × 105 1.12 × 104 

f20 

 

 

MEAN 2.31 × 103 3.14 × 103 2.35 × 103 2.74 × 103 2.71 × 103 2.77 × 103 2.65 × 103 2.90 × 103 2.51 × 103 2.26 × 103 

STD 7.58 × 101 2.27 × 102 1.26 × 102 1.66 × 102 1.08 × 102 1.66 × 102 1.74 × 102 1.10 × 102 1.28 × 102 1.07 × 102 

BEST 2.25 × 103 2.64 × 103 2.17 × 103 2.43 × 103 2.48 × 103 2.41 × 103 2.34 × 103 2.65 × 103 2.28 × 103 2.08 × 103 

WORST 2.54 × 103 3.46 × 103 2.66 × 103 3.10 × 103 2.92 × 103 3.08 × 103 3.18 × 103 3.10 × 103 2.76 × 103 2.48 × 103 

f21 

 

 

MEAN 2.46 × 103 2.77 × 103 2.39 × 103 2.57 × 103 2.69 × 103 2.56 × 103 2.55 × 103 2.52 × 103 2.48 × 103 2.35 × 103 

STD 2.31 × 101 6.50 × 101 2.32 × 101 1.35 × 101 3.27 × 101 5.74 × 101 4.64 × 101 1.42 × 102 2.68 × 101 1.38 × 101 

BEST 2.42 × 103 2.60 × 103 2.36 × 103 2.54 × 103 2.63 × 103 2.43 × 103 2.46 × 103 2.30 × 103 2.43 × 103 2.33 × 103 

WORST 2.51 × 103 2.88 × 103 2.49 × 103 2.59 × 103 2.76 × 103 2.68 × 103 2.64 × 103 2.74 × 103 2.53 × 103 2.38 × 103 

f22 MEAN 3.51 × 103 9.66 × 103 4.61 × 103 8.47 × 103 8.62 × 103 6.64 × 103 5.78 × 103 3.64 × 103 5.28 × 103 2.30 × 103  

STD 8.88 × 102 9.30 × 102 1.59 × 103 2.40 × 103 6.11 × 102 2.22 × 103 2.09 × 103 3.41 × 102 1.32 × 103 3.16 

BEST 2.70 × 103 7.30 × 103 2.39 × 103 3.50 × 103 7.49 × 103 2.34 × 103 2.32 × 103 2.95 × 103 3.43 × 103 2.30 × 103 

WORST 5.87 × 103 1.15 × 104 7.28 × 103 1.04 × 104 9.58 × 103 9.70 × 103 8.27 × 103 4.37 × 103 7.89 × 103 2.31 × 103 

f23 

 

 

MEAN 3.09 × 103 3.60 × 103 2.75 × 103 3.02 × 103 3.66 × 103 3.07 × 103 3.09 × 103 3.31 × 103 2.92 × 103 2.72 × 103 

STD 7.13 × 101 1.32 × 102 4.72 × 101 3.35 × 101 1.67 × 102 1.03 × 102 8.33 × 101 8.92 × 101 3.94 × 101 1.52 × 101 

BEST 2.89 × 103 3.36 × 103 2.68 × 103 2.96 × 103 3.33 × 103 2.87 × 103 2.94 × 103 3.17 × 103 2.80 × 103 2.69 × 103 

WORST 3.22 × 103 3.79 × 103 2.88 × 103 3.08 × 103 3.99 × 103 3.25 × 103 3.29 × 103 3.57 × 103 3.01 × 103 2.75 × 103 

f24 

 

 

MEAN 3.41 × 103 3.90 × 103 2.90 × 103 3.19 × 103 4.07 × 103 3.19 × 103 3.35 × 103 3.76 × 103 3.21 × 103 2.88 × 103 

STD 1.20 × 102 1.99 × 102 3.81 × 101 2.60 × 101 1.99 × 102 1.08 × 102 1.39 × 102 2.23 × 102 5.58 × 101 1.58 × 101 

BEST 3.13 × 103 3.49 × 103 2.87 × 103 3.15 × 103 3.47 × 103 2.94 × 103 3.13 × 103 3.30 × 103 3.11 × 103 2.85 × 103 

WORST 3.64 × 103 4.30 × 103 3.04 × 103 3.25 × 103 4.38 × 103 3.37 × 103 3.74 × 103 4.09 × 103 3.33 × 103 2.92 × 103 

f25 MEAN 3.81 × 103 1.14 × 104 2.96 × 103 3.31 × 103 5.85 × 103 3.02 × 103 2.92 × 103 5.15 × 103 3.23 × 103 2.89 × 103  

STD 2.96 × 102 2.19 × 103 2.70 × 101 1.01 × 102 6.37 × 102 4.51 × 101 1.91 × 101 4.16 × 102 1.45 × 102 6.44 

BEST 3.28 × 103 6.73 × 103 2.93 × 103 3.07 × 103 4.44 × 103 2.93 × 103 2.89 × 103 4.20 × 103 3.05 × 103 2.88 × 103 

WORST 4.56 × 103 1.56 × 104 3.05 × 103 3.51 × 103 6.92 × 103 3.14 × 103 2.96 × 103 5.79 × 103 3.56 × 103 2.91 × 103 

f26 MEAN 8.55 × 103 1.26 × 104 4.50 × 103 7.17 × 103 1.13 × 104 7.78 × 103 7.30 × 103 1.07 × 104 6.52 × 103 4.69 × 103 

 Continued on next page 
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STD 3.64 × 102 1.73 × 103 3.62 × 102 3.41 × 102 8.49 × 102 1.02 × 103 7.85 × 102 7.07 × 102 8.23 × 102 2.41 × 102 

BEST 7.79 × 103 9.45 × 103 3.43 × 103 6.48 × 103 9.46 × 103 5.91 × 103 5.99 × 103 8.81 × 103 4.62 × 103 4.07 × 103 

WORST 9.51 × 103 1.75 × 104 5.38 × 103 7.72 × 103 1.31 × 104 9.97 × 103 9.52 × 103 1.19 × 104 7.72 × 103 5.15 × 103 

f27 

 

 

MEAN 3.72 × 103 4.63 × 103 3.24 × 103 3.45 × 103 4.66 × 103 3.43 × 103 3.40 × 103 3.91 × 103 3.40 × 103 3.24 × 103 

STD 2.18 × 102 3.34 × 102 1.60 × 101 4.65 × 101 2.92 × 102 1.25 × 102 1.01 × 102 1.88 × 102 5.52 × 101 1.34 × 101 

BEST 3.33 × 103 3.93 × 103 3.20 × 103 3.39 × 103 4.02 × 103 3.26 × 103 3.28 × 103 3.51 × 103 3.28 × 103 3.21 × 103 

WORST 4.08 × 103 5.29 × 103 3.29 × 103 3.58 × 103 5.24 × 103 3.70 × 103 3.78 × 103 4.21 × 103 3.56 × 103 3.27 × 103 

f28 

 

 

MEAN 5.33 × 103 9.83 × 103 3.38 × 103 3.97 × 103 6.96 × 103 3.37 × 103 3.28 × 103 7.27 × 103 3.89 × 103 3.23 × 103 

STD 4.15 × 102 1.77 × 103 5.56 × 101 1.77 × 102 6.35 × 102 5.13 × 101 2.78 × 101 3.82 × 102 3.22 × 102 2.26 × 101 

BEST 4.64 × 103 6.17 × 103 3.27 × 103 3.60 × 103 5.90 × 103 3.26 × 103 3.22 × 103 6.58 × 103 3.43 × 103 3.20 × 103 

WORST 6.49 × 103 1.29 × 104 3.51 × 103 4.57 × 103 8.41 × 103 3.49 × 103 3.34 × 103 7.90 × 103 4.59 × 103 3.27 × 103 

f29 

 

 

MEAN 4.87 × 103 8.63 × 103 3.69 × 103 4.85 × 103 6.62 × 103 5.07 × 103 4.49 × 103 8.10 × 103 4.10 × 103 3.67 × 103 

STD 3.56 × 102 2.45 × 103 1.21 × 102 2.33 × 102 9.63 × 102 4.56 × 102 3.80 × 102 1.59 × 103 2.07 × 102 1.50 × 102 

BEST 4.20 × 103 5.82 × 103 3.46 × 103 4.39 × 103 5.10 × 103 4.27 × 103 3.66 × 103 5.67 × 103 3.69 × 103 3.43 × 103 

WORST 5.68 × 103 1.54 × 104 3.94 × 103 5.54 × 103 9.42 × 103 6.23 × 103 5.26 × 103 1.23 × 104 4.53 × 103 4.11 × 103 

f30 

 

 

MEAN 2.35 × 108 1.46 × 109 6.33 × 106 9.81 × 107 6.98 × 108 1.97 × 107 1.90 × 106 4.08 × 108 2.70 × 106 7.00 × 103 

STD 1.82 × 108 9.75 × 108 4.38 × 106 3.23 × 107 3.22 × 108 1.96 × 107 1.03 × 106 2.90 × 108 3.02 × 106 1.11 × 103 

BEST 1.71 × 105 9.44 × 107 6.69 × 105 4.35 × 107 2.22 × 108 2.16 × 106 2.86 × 105 3.83 × 107 3.33 × 105 5.46 × 103 

WORST 7.24 × 108 4.16 × 109 2.00 × 107 1.79 × 108 1.67 × 109 8.18 × 107 4.74 × 106 1.34 × 109 1.20 × 107 1.10 × 104 

4.5. Stability analysis results 

 

Figure 6. The box plots of different algorithms on 8 functions. 

To observe the stability of HCAOA, all algorithms are analyzed through box diagrams on 30 
optimization results. The box plots of various algorithms on 8 functions from diverse classifications 
are exhibited in Figure 6. Medians, lower quartiles, upper quartiles and outliers are presented in box 
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plots. The narrow block indicates that the results obtained by an algorithm are relatively steady. Three 
conclusions can be drawn from Figure 6. First, HCAOA can get lower boxes than other algorithms in 
most cases, which means that HCAOA has good optimization effects. Second, the boxplots obtained 
by HCAOA are always narrowest, which means that HCAOA receives stable optimization results. 
Finally, there are relatively few outliers in the box charts of HCAOA. In combination, HCAOA 
produces superior and stable optimization results. 

4.6. Convergence analysis results 

To validate the convergence efficiency of HCAOA, the same functions are selected from 
subsection 4.5, and their convergence curves are presented in Figure 7. Their global exploration and 
local exploitation are more intuitively represented in convergence curves. Figure 7 reveals that 
HCAOA achieves better results and faster convergence than the other nine algorithms on most 
functions. In the early stages, GWO converges faster than HCAOA on f1, f4 and f9, WOA has faster 
convergence on f13 and f15, and the early convergence of HHO on f30 is faster than that of HCAOA. 
However, as the iterations progress, GWO, HHO and WOA converge slower and enter the local 
exploitation phase earlier, which may fall into local optima. In contrast, HCAOA has a stronger 
exploration capability and applies more iterations to search for the global best solution. Therefore, 
from the final optimization results, it can be concluded that HCAOA maintains fast convergence for a 
longer time and has better optimization effects. In addition, Figure 7 shows that the curve shapes of 
HCAOA are very similar to those of AOA. They transfer from global exploration to local exploitation 
at the same iteration, mainly because they employ the same transfer operator. However, a hierarchical 
chain, with different processing mechanisms for agents at different levels, allows HCAOA to have 
faster convergence and better local search capabilities. 

 

Figure 7. The convergence curves of different algorithms on 8 functions. 
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4.7. Statistical test results 

In the previous subsections, it has been verified that HCAOA has a superior optimization ability 
compared to other algorithms from the statistical results, convergence analysis results and stability 
analysis results. To avoid chance, this subsection analyses whether the optimization capability of 
HCAOA is significantly superior to other algorithms. In the statistical results in subsection 4.3, the 
mean values of 30 optimization results of different algorithms on 29 functions are compared. It is found 
that AOA and HHO outperform HCAOA on f3, GWO is superior to HCAOA on f16 and f26, and 
HCAOA wins over other algorithms on the remaining functions. Statistical tests are conducted based 
on 30 optimization results, using Wilcoxon rank-sum statistical method to test the null hypothesis of 
no remarkable distinction between the optimized effects of two algorithms. If 0.05p value   , it 

implies that the distinction between the optimization effects is not noticeable. In contrast, if
0.05p value  , it denotes the divergence is statistically significant, namely 1H  . 

Table 7 lists Wilcoxon rank-sum test results for HCAOA against other algorithms on CEC 2017. 
It can be judged that HCAOA wins 251 times, is equal 8 times and loses 2 times in the 261 (29 × 9) 
comparisons. Among them, the optimization effects of AOA are superior to that of HCAOA on f3, and 
the optimization effects of GWO on f26 have a marked predominance over that of HCAOA. However, 
the hypotheses that the results obtained by HHO are significantly better than that obtained by HCAOA 
on f3 and GWO beats HCAOA on f16 do not hold. In addition, the optimization outcomes of AOA and 
HCAOA have no apparent distinctions on f14 and f18. On f10, f16, f17, f27 and f29, the differences 
between the optimization effects obtained by GWO and those obtained by HCAOA are not significant. 
There is no significant difference between the optimization results of HHO and HCAOA on f3. Finally, 
the effects of HCAOA are apparently superior to others on the remaining functions. Therefore, from 
the perspective of statistical tests, the optimization results of HCAOA have a marked predominance 
over that of other algorithms on most cases. 

Table 7. Wilcoxon rank-sum test results for HCAOA against other algorithms on CEC 2017. 

 AOA vs 

HCAOA 

PSO vs 

HCAOA 

GWO vs 

HCAOA 

SCA vs 

HCAOA 

FA vs 

HCAOA 

WOA vs 

HCAOA 

HHO vs 

HCAOA 

BOA vs 

HCAOA 

SHO vs 

HCAOA 

 P H P H P H P H P H P H P H P H P H 

f1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f3 8.89 × 

10-10 

1 3.02 × 

10-11 

1 4.57 × 

10-9 

1 6.70 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.95 × 

10-1 

0 3.02 × 

10-11 

1 4.98 × 

10-11 

1 

f4 3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.03 × 

10-6 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 8.29 × 

10-6 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f5 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.57 × 

10-6 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f6 3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.17 × 

10-2 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f7 3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.33 × 

10-10 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f8 3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.60 × 

10-7 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

 Continued on next page 
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 AOA vs 

HCAOA 

PSO vs 

HCAOA 

GWO vs 

HCAOA 

SCA vs 

HCAOA 

FA vs 

HCAOA 

WOA vs 

HCAOA 

HHO vs 

HCAOA 

BOA vs 

HCAOA 

SHO vs 

HCAOA 

f9 3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.86 × 

10-9 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f1

0 

3.78 × 

10-2 

1 3.02 × 

10-11 

1 4.12 × 

10-1 

0 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.34 × 

10-11 

1 3.20 × 

10-9 

1 3.02 × 

10-11 

1 6.74 × 

10-6 

1 

f1

1 

1.09 × 

10-10 

1 3.02 × 

10-11 

1 6.70 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.37 × 

10-4 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f1

2 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f1

3 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f1

4 

5.79 × 

10-1 

0 3.02 × 

10-11 

1 9.83 × 

10-8 

1 4.08 × 

10-11 

1 7.39 × 

10-11 

1 3.34 × 

10-11 

1 2.83 × 

10-8 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f1

5 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.69 × 

10-11 

1 

f1

6 

8.48 × 

10-9 

1 3.02 × 

10-11 

1 2.97 × 

10-1 

0 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 9.76 × 

10-10 

1 3.02 × 

10-11 

1 5.46 × 

10-6 

1 

f1

7 

1.07 × 

10-9 

1 3.02 × 

10-11 

1 2.23 × 

10-1 

0 5.49 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.16 × 

10-10 

1 3.02 × 

10-11 

1 1.47 × 

10-7 

1 

f1

8 

3.11 × 

10-1 

0 3.02 × 

10-11 

1 1.07 × 

10-7 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 2.87 × 

10-10 

1 6.12 × 

10-10 

1 3.02 × 

10-11 

1 1.85 × 

10-8 

1 

f1

9 

4.20 × 

10-10 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.02 × 

10-5 

1 

f2

0 

1.76 × 

10-2 

1 3.02 × 

10-11 

1 1.08 × 

10-2 

1 4.98 × 

10-11 

1 3.34 × 

10-11 

1 4.08 × 

10-11 

1 2.15 × 

10-10 

1 3.02 × 

10-11 

1 1.31 × 

10-8 

1 

f2

1 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.07 × 

10-9 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 6.53 × 

10-8 

1 3.02 × 

10-11 

1 

f2

2 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f2

3 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 4.71 × 

10-4 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f2

4 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 6.55 × 

10-4 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f2

5 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.29 × 

10-9 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f2

6 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 1.99 × 

10-2 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 6.12 × 

10-10 

1 

f2

7 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 8.65 × 

10-1 

0 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.69 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f2

8 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.34 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.69 × 

10-11 

1 4.31 × 

10-8 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

f2

9 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 2.97 × 

10-1 

0 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 2.87 × 

10-10 

1 3.02 × 

10-11 

1 2.67 × 

10-9 

1 

 Continued on next page 
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 AOA vs 

HCAOA 

PSO vs 

HCAOA 

GWO vs 

HCAOA 

SCA vs 

HCAOA 

FA vs 

HCAOA 

WOA vs 

HCAOA 

HHO vs 

HCAOA 

BOA vs 

HCAOA 

SHO vs 

HCAOA 

f3

0 

3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 3.02 × 

10-11 

1 

Wi

n 

26/29 2

6 

29/29 2

9 

23/29 2

3 

29/29 2

9 

29/29 2

9 

29/29 29 28/29 28 29/29 29 29/29 2

9 

Lo

se 

1/29 1 0/29 0 1/29 1 0/29 0 0/29 0 0/29 0 0/29 0 0/29 0 0/29 0 

Eq

ual 

2/29 2 0/29 0 5/29 5 0/29 0 0/29 0 0/29 0 1/29 1 0/29 0 0/29 0 

Finally, Friedman rank test is applied to sort ten algorithms on 29 functions of CEC 2017. The 
test is a nonparametric approach to compare the comprehensive average performance. From the 
Friedman test grades in Table 8, HCAOA ranks first, followed by GWO, HHO, SHO, AOA, WOA, 
SCA, BOA, FA and PSO. The results of Friedman rank test show that HCAOA is effective and stable. 

Table 8. Friedman rank test results for ten algorithms on CEC 2017.  

Algorithm Friedman rank test Rank Rank 

AOA 4.844828 5 

PSO 9.793103 10 

GWO 2.672414 2 

SCA 5.948276 7 

FA 8.62069 9 

WOA 5.706897 6 

HHO 4.103448 3 

BOA 8.034483 8 

SHO 4.12069 4 

HCAOA 1.155172 1 

5. The application of HCAOA to engineering design problems 

This section evaluates the ability of HCAOA to solve practical problems through four classical 
engineering problems. The optimization consequences are compared with those of methods proposed 
in recent literature. The possible optimal results are deepened in bold. 

5.1. Welded beam design 

The welded beam design problem aims to minimize the cost by specifying four parameters, 
including weld thickness ( h ), length connected to bar ( l ), bar height ( t ) and bar thickness (b). The 
optimization results obtained from HCAOA are compared with those of IGWO [44], AGWO [45], 
DAQUILA [46], DMO [21], MAOA [47], GJO [48], AVOA [49], MCWOA [50], CQFFA [51], HAO 
[52] and IHAOAVOA [53]. Based on the results in Table 9, it is clear that HCAOA has the lowest cost. 
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Table 9. Optimization results for welded beam design problem. 

Algorithm h l t b Optimal cost 

IGWO [44] 0.20573 3.47049 9.036624 0.20573 1.724853 

AGWO [45] 0.20555 3.4744 9.0378 0.20572 1.7253 

DAQUILA [46]  0.20572964 3.47048867 9.03662391 0.20572964 1.72452751 

DMO [21] 0.2055705 3.2567724 9.036177 0.2057696 1.6953 

MAOA [47] 0.2057 3.4705 9.0366 0.2057 1.7246 

GJO [48] 0.20562 3.4719 9.0392 0.20572 1.72522 

AVOA [49] 0.205730  3.470474 9.036621 0.205730  1.724852 

MCWOA [50] 0.2024 3.3292 9.0486 0.2057 1.7023 

CQFFA [51] 0.20573  3.47041  9.03661  0.20573  1.72485 

HAO [52] 0.19952608 3.384869727  9.064048595  0.206681757 1.715727482 

IHAOAVOA [53] 0.20573 3.4705  9.0366  0.20573 1.7249 

HCAOA 0.20573 3.25312 9.036624 0.20573 1.69524 

5.2. Pressure vessel design 

The pressure vessel design problem is to determine four parameters including head thickness ( hT ), 

shell thickness ( sT ), inner radius ( R ) and cylindrical cross-section length without considering the head 

( L ), so as to reduce the total fee. IGWO [44], AGWO [45], MAOA [47], GJO [48], AVOA [49], SCSO 
[54], QLGCTSA [55], CQFFA [51] and HAO [52] are applied to solve this problem. The optimal 
solutions obtained by them are contrasted with those optimized by HCAOA. Table 10 indicates that 
HCAOA and CQFFA achieve competitive results and outperform the other algorithms. 

Table 10. Optimization results for pressure vessel design problem. 

Algorithm hT  ST  R  L  Optimal cost 

IGWO [44] 0.779031 0.385501 40.36313 199.4017 5888.34 

AGWO [45]  0.778496 0.386451 40.32684 199.9135 5892.243 

MAOA [47] 0.7953 0.3931 41.2274 187.7371 5914.48511 

GJO [48] 0.7782955 0.3848046 40.32187 200 5887.07112 

AVOA [49] 0.778954 0.3850374 40.360312 199.434299 5886.67659 

SCSO [54] 0.7798 0.939 40.3864 199.2918 5917.46 

QLGCTSA [55] 13.39411  7.075665  42.09845  176.636596 6059.7143 

CQFFA [51] 0.778168  0.384649  40.319618  199.9900 5885.3 

HAO [52] 0.810726461  0.400897167  42.16466765  175.8460143  5935.56831 

HCAOA 0.778169 0.384649 40.319619 200 5885.33277 

5.3. Cantilever beam design 

The cantilever beam design problem consists of five squares with heights to be determined, and 
vertical forces act on their free nodes. So the decision variables are the heights of five hollow squares, 
and the objective is to lessen a cantilever’s weight. TQA [56], ECSOA [57], GBO [23], AGWO [45], 
MFO [58], SHO [18], MGA [24], QLGCTSA [55] and IHAOAVOA [53] are also applied to address 
the cantilever beam design problem and the best solutions optimized by them are shown in Table 11. 
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It is evident that the HCAOA proposed in this paper provides high-quality optimization results and has 
the reliable ability to solve practical problems. 

Table 11. Optimization results for cantilever beam design problem. 

Algorithm 1x  2x  3x  4x  5x  Optimal weight 

TQA[56] 6.013593  5.307230  4.498556  3.502111  2.152181  1.339957 

ECSOA[57] 5.993352 5.332166 4.470567 3.542109 2.137287 1.339958 

GBO[23] 6.0124 5.3129 4.4941 3.5036 2.1506 1.339957 

AGWO[45] 6.015647 5.310255 4.500563 3.494626 2.15301 1.339984 

MFO[58]  5.984871 5.316726 4.497332 3.513616 2.16162 1.339988 

SHO[18] 6.0049 5.3227 4.4737 3.5065 2.16637 1.339987 

MGA [24] 6.011660 5.315676 4.510682 3.485698 2.150251 1.339975661 

QLGCTSA[55] 6.01604  5.30915 4.4943  3.5015  2.1527  1.3401 

IHAOAVOA[53] 6.0108 5.3170 4.4678 3.5324  2.1466  1.3400 

HCAOA 6.016837 5.307664 4.494078 3.501990 2.153092 1.339956 

5.4. Three-bar truss design 

This problem is resolved by designing two cross-sectional areas 1 2( , )A A  to ensure the stress 

constraints on each of the truss members, with the aim of reducing the overall weight. The optimization 
results obtained by HCAOA on this problem are compared with those obtained by algorithms such as 
GJO [48], PRO [29], IDARSOA [59], CSOAOA [60], AVOA [49], SNS [31], MCWOA [50], SRS [26], 
CQFFA [51] and QLGCTSA [55]. Table 12 indicates that HCAOA obtains the competitive 
optimization results. 

Table 12. Optimization results for three-bar truss design problem. 

Algorithm  1A
  2A

 Optimal weight 

GJO [48] 0.788657163 0.408299125 263.8958439 

PRO [29] 0.7886475 0.4083262 263.8958439 

IDARSOA [59] 0.788906 0.4076 263.8960  

CSOAOA [60] 0.78867513 0.40824831 263.8958434 

AVOA [49] 0.788680395 0.408233412 263.895843396802  

SNS [31] 0.78868473 0.4082211 263.8958434 

MCWOA [50] 0.7937 0.3943 263.914 

SRS [26] 0.78863 0.40837 263.958434 

CQFFA [51] 0.7886684  0.4082672 263.8958434 

QLGCTSA [55] 0.78866378  0.40828041 263.8958435 

HCAOA 0.788673916 0.408251736 263.895843377559 

6. Conclusions  

This paper discusses in detail the shortcomings of the canonical AOA. To compensate for these 
deficiencies, this paper introduces a new idea of hierarchical chains to AOA and proposes an improved 
HCAOA. This algorithm combines an orthogonal learning mechanism based on refraction opposition 
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and an Archimedes spiral mechanism based on Levy flight to deal with individuals at different levels, 
effectively avoiding local optimization, preventing clueless random mining and improving 
optimization speed. Apart from that, a multi-strategy boundary processing mechanism is introduced to 
maintain the variety of populations. 

To validate the effectiveness of HCAOA, multiple experiments based on the CEC 2017 test suite 
are conducted. The qualitative results demonstrate that HCAOA has outstanding exploration and 
exploitation abilities and strikes a good collaboration between exploitation and exploration. The 
quantitative outcomes prove that HCAOA can obtain superior and more stable optimization results 
than the other nine recent algorithms. In addition, four real-world engineering problems are used to 
test the ability of HCAOA to solve practical problems. HCAOA achieves competitive optimization 
results when comparing with the optimal results in the recent literature for the same problems. 

In summary, the proposed HCAOA provides outstanding and stable optimization effects, fast 
convergence and a good ability to jump out from a local extremum. In the future, HCAOA will be 
extended to complex single-objective optimization problems, for example, imaging segmentation, 
feature selection, workshop scheduling and parameter optimization. Meanwhile, HCAOA is being 
developed to solve unconstrained and constrained multi-objective problems. Furthermore, the idea of 
hierarchical chains can be generalized to other algorithms. 
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