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Abstract: As an essential part of electronic component assembly, it is crucial to rapidly and accurately 
detect electronic components. Therefore, a lightweight electronic component detection method based 
on knowledge distillation is proposed in this study. First, a lightweight student model was constructed. 
Then, we consider issues like the teacher and student’s differing expressions. A knowledge distillation 
method based on the combination of feature and channel is proposed to learn the teacher’s rich class-
related and inter-class difference features. Finally, comparative experiments were analyzed for the dataset. 
The results show that the student model Params (13.32 M) are reduced by 55%, and FLOPs (28.7 GMac) 
are reduced by 35% compared to the teacher model. The knowledge distillation method based on the 
combination of feature and channel improves the student model’s mAP by 3.91% and 1.13% on the 
Pascal VOC and electronic components detection datasets, respectively. As a result of the knowledge 
distillation, the constructed student model strikes a superior balance between model precision and 
complexity, allowing for fast and accurate detection of electronic components with a detection 
precision (mAP) of 97.81% and a speed of 79 FPS. 
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1. Introduction 

The rapid progress in artificial intelligence and intelligent manufacturing has established a solid 
theoretical and technical foundation for implementing automation and intelligence across various 
industries [1,2]. Currently, various electronic products have become an important part of people’s 
routine life. As the core components, it is critical to insert and assemble them efficiently and accurately 
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onto the PCB circuit board. However, electronic components come in various types, with small sizes 
and high similarity, making the current manual insertion methods inefficient and prone to assembly 
errors. The automatic assembly of electronic components is of great significance. Electronic 
component detection provides information about the category and two-dimensional position of the 
targets, which can assist robotic arms grasping the required electronic component. Besides, the 
detection method can provide real-time feedback about the assembled and unassembled electronic 
components, facilitating the next assembly steps. Therefore, electronic component detection is a 
crucial step in electronic component assembly. Research on fast and accurate detection methods of 
electronic components based on machine vision is the prerequisite and foundation for realizing 
electronic component assembly. 

Object detection techniques in machine vision classify and localize objects by analyzing their 
features in the image [3]. Hand-designed feature approaches and deep learning-based methods are the 
two major categories of object detection techniques. Hand-designed feature methods involve selecting 
regions of interest using a sliding window approach, extracting handcrafted features from these regions 
and finally feeding them into a classifier for object classification [4]. This approach relies on manually 
designed features to represent the objects in the image. In contrast, deep learning-based methods are 
end-to-end approaches that integrate feature extractors and classifiers into a unified model [5]. They 
use gradient descent methods to train the model, simultaneously learning feature representations and 
object classifications. In recent years, the emergence of convolutional neural networks has greatly 
advanced the development of object detection techniques [6]. Deep learning-based approaches offer 
higher accuracy, faster processing speed and improved robustness compared to Hand-designed feature 
object detection methods. There are two major categories that these methods fall into two-stage and 
one-stage. Two-stage object detection techniques create candidate regions of interest using an RPN 
(Region Proposal Network) and then classify and regress these regions to get the final detections, such 
as RCNN [7], Fast-RCNN [8] and Faster-RCNN [9]. These methods produce excellent accuracy in 
object detection tasks, but their real-time performance is typically low due to their numerous 
parameters and high computing complexity. One-stage object detection methods utilize predefined 
anchor boxes of various scales to directly predict the positions and categories of objects in the image, 
such as SSD [10] and YOLO series [11–13]. The one-stage method’s performance has significantly 
increased, attributable to the FPN (Feature Pyramid Network) [14] and Focal Loss [15] proposals, 
which are more efficient in computation and have fewer parameters than the two-stage method. It also 
performs better in scenarios where high real-time performance is needed. 

As a result, significant research has been carried out on deep learning methods for electronic 
component detection. Sun et al. [16] proposed an enhanced SSD method, in which they added a feature 
fusion module to the SSD framework. This module fuses shallow detail features with deep semantic 
features to enhance the detection of electronic components of different sizes. Researchers have proposed 
several improved algorithms to detect stacked scenes’ electronic components. Huang et al. [17] 
introduced a method based on YOLOv3, replacing the backbone feature extraction network from 
DarkNet53 with MobileNet [18]. This replacement reduced the model’s parameter and computation 
complexity, improving detection speed. Dong et al. [19] presented a method of enhanced Masked R-
CNN [20], which strengthened the feature extraction network of Mask R-CNN, resulting in improved 
overall network performance and a slight increase in speed and accuracy. For the specific scene of 
PCB assembly, Li et al. [21] developed an enhanced YOLOv3. They analyzed the network’s effective 
receptive field and, based on this, designed a prediction head suitable for the size of the electronic 
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components. Furthermore, Xia et al. [22] presented a high-precision electronic component detection 
method, which proposed an adaptive positive and negative sample matching approach based on K-
Means to balance positive and negative samples during training. The model they constructed 
demonstrated outstanding performance in electronic component detection. Remote sensing targets are 
similar to electronic components, with many small targets [23]. Lei et al. [24] proposed an improved 
detection method based on YOLOX-Nano for remote sensing targets, which resulted in a lightweight 
model. In addition, other different fields also make lightweight improvements to the model to adapt to 
practical applications [25–27]. However, the existing detection methods based on improved SSD and 
YOLOv3 achieve fast detection speed with low detection accuracy. The electronic component 
detection method based on Mask-RCNN is relatively complex and has poor real-time performance. 
Electronic component detection methods based on deep learning face some challenges. For instance, 
they often have large model parameters, high computational complexity and limited real-time 
performance. Although model lightweight can reduce the number of parameters and computational 
complexity, it is usually accompanied by a loss of accuracy. Thus, targeted optimization measures are 
needed to balance detection performance and computational efficiency. 

As a key technique for model lightweight, knowledge distillation typically involves a large-
capacity teacher model that provides excellent performance and a student model that needs 
performance improvement [28]. The student model will acquire more profound knowledge and 
representational skills from the teacher model through knowledge distillation, which could improve its 
performance. Output feature distillation, intermediate feature distillation [29], structured feature 
distillation [30] and channel distillation [31] are several types of knowledge distillation. For output 
feature distillation, Hinton et al. [32] minimized the KL (Kullback-Leibler) divergence of probability 
distributions output of the teacher and student model classifiers. Li et al. [33] utilized L2 loss to 
constrain the feature maps output by the student model’s RPN with those from the teacher model, 
achieving knowledge distillation for intermediate features. They discovered that the model’s 
performance would suffer if the pixel-level loss were applied directly to each position of the feature 
maps. Liu et al. [34] constructed spatial attention maps separately for the teacher and student to achieve 
structured feature distillation through these attention maps. Wang et al. [35] considered that current CNN 
models learn the same features for the same class of pixels. To address this issue, they proposed using 
IFV (Inter-class Feature Variation) as a structured feature for knowledge distillation. Shu et al. [36] 
normalized the feature maps in each channel to obtain channel soft-label activation maps. They then 
performed channel distillation by minimizing the KL divergence between the channel activation maps 
of the teacher and student model. However, due to issues such as differences in representation between 
teacher and student models. Existing methods of knowledge distillation let the student model directly 
learn the features of the teacher model in a sub-optimal way. 

In summary, current deep learning-based electronic component detection methods suffer from 
large model parameters and computational complexity, which makes it challenging to deploy on 
marginal devices and embedded systems. Even if using a lightweight model helps to reduce the 
parameters and computational complexity, it also leads to a drop in accuracy. Therefore, we focus on 
researching a lightweight electronic component detection method based on knowledge distillation. 
This approach aims to strike a better balance between accuracy and model complexity, achieving rapid 
and accurate detection of electronic components. The paper’s primary contributions are as follows: 

1) A lightweight student model for electronic component detection is constructed, and a training 
method based on knowledge distillation is proposed, which deals with finding a balance between 
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model accuracy and complexity. 
2) Based on the problems of expression differences between teacher and student, and to learn the 

rich class-related and inter-class difference feature of the teacher. A knowledge distillation method 
based on the combination of feature and channel is proposed, which noticeably enhances the student 
model’s performance. 

3) Experiments on the publicly available Pascal VOC dataset and the electronic component 
detection dataset are performed, demonstrating the validity and robustness of the proposed approach. 

The articles are arranged in the following manner. Section 2 presents the proposed lightweight 
electronic component detection method based on knowledge distillation, Section 3 introduces the 
experimental design and results and Section 4 presents the conclusions. 

2. The proposed method 

This section is divided into four subsections. Subsection 2.1 introduces the teacher model, 
Subsection 2.2 presents the student model, Subsection 2.3 discusses the knowledge distillation method 
and Subsection 2.4 describes the overall model’s loss function. All specialized terms and symbols used 
in this paper are listed in Table 1. 

Table 1. Explanation of specialized terms and symbols used in this paper. 

Name Description 
FD Feature knowledge distillation 
FCD Feature center distillation 
FDD Feature difference distillation 
CD Channel knowledge distillation 
𝐹 Output of the feature fusion network 
𝐹𝐶 Feature center 
𝐹𝐷 Feature difference 
𝑀𝑆𝐸 Mean Square Error 
GAP Global Average Pooling 

2.1. Teacher model 

As a crucial component in knowledge distillation, the teacher model significantly influences the 
quality of the results. The performance of the teacher model should be excellent, thereby providing 
rich semantic features. Additionally, it should demonstrate good robustness, ensuring accurate outputs 
for different input data. In this study, we utilize the high-precision teacher model developed by Xia et 
al. [22], which exhibits remarkable performance in electronic component detection and demonstrates 
strong generalization capabilities on the public dataset. The teacher model’s overall structure, is shown 
in Figure 1, incorporates EfficientNetV2 [37] as the primary feature extraction network, FPN as the 
feature fusion network and a decoupled prediction network. 
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Figure 1. Structure of the teacher model. 

2.2. Student model 

The teacher model exhibits high accuracy but lacks real-time performance, making it unsuitable 
for edge devices and embedded systems. The student model should be designed with minimum 
parameters and computational complexity since it will serve as the ultimate target model. After 
analyzing the model complexity of the teacher model, its main computational parameters come from 
the backbone and the fusion network. Therefore, we follow the lightweight idea of the Ghost module 
and chooses GhostNetV2 [38] serves as the backbone feature extraction network, and will be 
introduced in detail later. The fusion module GhostPAN is the integration of the Ghost module into the 
PAN (Path Aggregation Network). The prediction module remains consistent with the teacher model, 
using a decoupled prediction module. Figure 2 shows the general organization of the student model. 

GhostNetV2 is improved based on GhostNetV1 [39] by adding a lightweight spatial attention 
module to GhostBlock. It slightly increases the parameter number, which can make the feature 
extraction capability more excellent. The overall structure of GhostNetV2 is more efficient, making it 
well-suited for resource-constrained devices such as edge devices and embedded systems. In Figure 3, 
the GhostBlock structure is displayed, where the Ghost module is a lightweight convolution module 
proposed in GhostNet, which can maintain the performance of the whole feature extraction module 
with fewer parameters. When the quantity of feature map channels in the network is extensive, many 
feature maps are more similar and can be obtained by a simple linear transformation. Therefore, the 
Ghost module divides the output channel into two parts. The first portion is created using conventional 
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convolution, while the second part builds upon the output of conventional convolution by performing 
depthwise separable convolution. Finally, the two parts are concatenated to get the output feature map. 

 

Figure 2. Structure of the student model. 

Due to the Ghost module in GhostNetV1, where half of the extracted features are obtained 
from 1 × 1 point-wise convolutions and the other half from 3 × 3 depth-wise convolutions, the spatial 
relationships between the features are primarily captured by the 3 × 3 depth-wise convolutions. As a 
result, the spatial relationships between the features are limited in GhostNetV1, leading to a lack of 
spatial context. GhostNetV2 incorporates a lightweight spatial attention module in GhostBlock. The 
lightweight attention module divides the acquisition of feature spatial relationships into two steps: 

1) First, the corresponding spatial relationships in the vertical direction are obtained using a K × 1 
convolutional kernel to perform convolution on the feature map. The computational complexity of this 
step is 𝐻 𝑊. 

2) Then, the corresponding spatial relationships in the horizontal direction are obtained using a 1 × K 
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convolutional kernel to perform convolution on the feature map generated in step 1). The 
computational complexity of this step is 𝐻𝑊 . 

After completing steps 1) and 2) to obtain the spatial relationships across the entire feature map, 
the spatial attention map is created using a sigmoid function. The overall computational complexity 
for these steps is 𝐻 𝑊 𝐻𝑊 . In contrast, directly utilizing a fully connected layer to obtain the 
spatial attention map would result in a computational complexity of 𝐻 𝑊 . When the feature maps 
W and H are larger, the advantages of the lightweight attention module are more prominent, and its 
computational complexity is lower. Therefore, it is more suitable for capturing the spatial relationships 
of feature maps in lightweight networks. 

 

Figure 3. GhostBlock structure diagram. 

Since the student network is relatively lightweight, in order to maximize the capability of the 
student network, a PAN feature fusion network is chosen. PAN is a top-down and bottom-up bilateral 
feature fusion network, which first transfers the rich semantic information from the deeper layer to the 
shallower layer and fuses it with the shallow features. Then, the bottom-up layer transfers the rich 
location information from the shallow layer to the deep layer and fuses it with the deep feature layer. 
This bidirectional feature fusion network can better improve the performance of the network. To avoid 
introducing too many parameters, the convolutional modules in PAN are replaced with Ghost modules. 
This replacement reduces the parameter count and computational complexity while preserving the 
original feature extraction capability. Therefore, the final feature fusion network is named GhostPAN, 
which maintains computational efficiency and model lightweight while achieving effective fusion of 
rich semantic information from deep layers and rich spatial information from shallow layers. 

2.3. Knowledge distillation method 

Knowledge distillation is a training strategy that involves constructing a complex deep teacher 
network along with a relatively simple and shallow student network. During the training process of the 
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student network, the teacher network is used to guide and enhance the performance of the student 
network, as shown in Figure 4. 

 

Figure 4. Knowledge distillation schematic diagram. 

 

Figure 5. Structure of the combined feature and channel knowledge distillation method. 
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The knowledge distillation method based on the combination of feature and channel proposed in 
this study consists of two parts. The first part is feature knowledge distillation (FD) based on the output 
features of the feature fusion network, which includes feature center distillation (FCD) and feature 
difference distillation (FDD). The second part is channel-related knowledge distillation (CD) based on 
the final class predictions output by the overall network, which includes channel soft label knowledge 
distillation. The overall knowledge distillation structure is illustrated in Figure 5. 

2.3.1. Feature knowledge distillation (FD) 

As the teacher model is more complex and the number of network layers is deeper, its feature 
fusion network output features contain rich semantic information and location information. Using these 
outputs as supervision for the student enables it to learn deeper representations, thereby enhancing its 
expressive capabilities. However, letting the student directly get deeper expressions of the teacher will 
be counterproductive because of the significant difference between the number of layers of the two. 
Therefore, we propose a method to decouple the direct learning of feature-level knowledge into two 
parts. One part is feature center knowledge distillation, which first calculates the feature center about 
the teacher model and the student model output feature. Afterward, minimize the distance between 
their feature center. Another part is to calculate the feature differences between the output features of 
the teacher and student networks and their respective feature centers. Then minimize the feature 
difference between the two. This decoupling method is an excellent way to avoid the problem of 
“difference” in the expression of networks. Furthermore, it helps the student better understand the 
characteristics of the teacher. 

1) Feature center knowledge distillation (FCD) 
The feature centers of the teacher model and student models’ feature centers must first be obtained 

for feature center knowledge distillation. GAP (Global Average Pooling) is used to get the feature 
centers to retain the feature information better. As shown in the following Eq (1). 

𝐹𝐶 𝐺𝐴𝑃 𝐹 1  

𝐹  is the i-th feature output from the teacher model feature fusion network, where 𝐹𝐶  denotes 
its feature center. 𝐺𝐴𝑃 ∙  is global average pooling. 

After obtaining the feature centers of the teacher model as well as the student model. Then, they 
are constrained using the MSE (Mean Square Error). The aim is to reduce the distance between the 
student and teacher’s feature centers. As shown in the following Eq (2). 

𝑀𝑆𝐸 𝐹𝐶 , 𝐹𝐶 2  

2) Feature differences knowledge distillation (FDD) 
The feature difference is expressed as the difference between the feature and its corresponding 

feature center. The teacher and student models feature centers have been obtained in Eq (1). The cosine 
distance is used to calculate the difference between the output features with their feature centers. It can 
better characterize the similarity between high-dimensional vectors. 

𝐹𝐷 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐹 , 𝐹𝐶 3  

As in Eq (3), 𝐹𝐷  is the feature difference between the i-th feature output from the feature fusion 
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module of the teacher model and its feature center. 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ∙   is the cosine distance 
calculation function. The 𝑀𝑆𝐸 is then used to restrict the feature differences between the student and 
teacher models. 

𝑀𝑆𝐸 𝐹𝐷 , 𝐹𝐷 4  

Feature center knowledge distillation ensures that the feature centers learned by the student 
network are not too far away from the teacher’s feature center, similar to “aligning centroids as much 
as possible.” Feature difference distillation ensures that the feature difference learned by the student is 
more similar to the feature difference of the teacher, similar to “making the radii as equal as possible.” 
These two steps make it possible to make the features learned by the student closer to those of the 
teacher’s, thus enhancing the expressive power of the student model. 

2.3.2. Channel knowledge distillation (CD) 

The various channels in the class prediction results signify different categories of prediction data. 
These categories are then converted into soft labels with probabilistic values. By learning the soft 
labels, the student network is not only able to learn richer class-related features but also to learn the 
inter-class differences. Therefore, it consists of two steps, first converting class prediction information 
into probabilistic soft labels. Second, let the student get probabilistic soft labels from the teacher. 

For each channel of the class prediction result, the Softmax function generates the soft label of 
the corresponding category so that the sum of the probability of each channel is 1. The response is 
large where there is a high correlation with the class, and small where there is a low correlation. As 
shown in the following Eq (5). 

𝜙 𝑦
𝑒𝑥𝑝

𝑦 ,
𝜏

∑ 𝑒𝑥𝑝 ∙ 𝑦 ,
𝜏

5  

where 𝜙 𝑦  is the transformation function that converts the category prediction information into 
probabilistic soft labels, W and H are the corresponding feature maps’ width and height. 𝜏  is a 
hyperparameter. By adjusting 𝜏, the label can be made softer and the learning range wider. 

Then KL divergence is used to reduce the gap between the probability soft label distribution of 
the teacher model and the student model to realize knowledge distillation. As shown in the following 
Eq (6). 

𝐾𝐿 𝑦 , 𝑦
𝜏
𝐶

𝜙 𝑦 ,

∙

∙ 𝑙𝑜𝑔
𝜙 𝑦 ,

𝜙 𝑦 ,
6  

where 𝑦   and 𝑦   are the teacher and student model classification outputs, respectively. When 

𝜙 𝑦 ,   is large, 𝜙 𝑦 ,   will correspondingly increase, and when 𝜙 𝑦 ,   is small, 𝜙 𝑦 ,   will 

correspondingly decrease. Therefore, KL divergence can enable the student to learn the probability 
distribution of the teacher, thereby improving the student’s performance. 
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2.4. Loss function 

Algorithm 1 The lightweight electronic component detection method based on knowledge distillation
Input: Image: 𝑥, hyper-parameter: 𝜆 , 𝜆 , 𝜆 , Student: 𝑆, Teacher: 𝑇, label: 𝑦 
1: Getting the feature 𝐹  and output 𝑃  of Image 𝑥 utilizing S 
2: Getting the feature 𝐹  and output 𝑃  of Image 𝑥 utilizing 𝑇 
3: Get the class prediction results 𝑦 , 𝑦  in 𝑃  and 𝑃  
4: Calculating the feature center 𝐹𝐶  and 𝐹𝐶  for 𝐹  and 𝐹  using Eq (1) 
5: Calculating feature difference 𝐹𝐷  and 𝐹𝐷  using Eq (3) 
6: Calculating the loss of student model: 𝐿 (𝑃 , 𝑦) 
7: Calculate the channel distillation loss in Eq (6): 𝐿 (𝑦 , 𝑦 ) 
8: Calculate the feature distillation loss in Eq (10): 

𝐿 (𝐹𝐶 , 𝐹𝐶 , 𝐹𝐷 , 𝐹𝐷 , 𝜆 , 𝜆  ) 
9: Total knowledge distillation loss: 𝐿 𝐿 𝜆 𝐿  
10: Using 𝐿 𝐿 𝐿  to update 𝑆 
Output: 𝑺 

The constructed lightweight electronic component detection method based on knowledge 
distillation involves only the student in the backpropagation process. The teacher, which is a trained 
model, does not participate in the backpropagation and is used only to provide supervisory information 
for the student model. Thus, the overall model contains two parts of loss. The first part is the student 
model loss, specifically including regression loss, classification loss and center-ness loss. The other 
part is knowledge distillation loss, which specifically includes feature and channel distillation loss. 

𝐿 𝐿 𝐿 7  

where 𝐿  is the student model loss as shown in Eq (8), and  𝐿  is the knowledge distillation loss as 
shown in Eq (9). 

𝐿 𝐿 𝐿 𝐿 8  

where 𝐿   is the classification loss, specifically the Focal Loss. 𝐿   is the regression loss, 
specifically the GIoU. 𝐿  is the center-ness loss [40]. 

𝐿 𝐿 𝐿 9  

where 𝐿   stands for channel distillation loss, described in Eq (6), and 𝐿   stands for feature 
distillation loss, shown in Eq (10). 

𝐿 𝜆 𝑀𝑆𝐸 𝐹𝐶 , 𝐹𝐶 𝜆 𝑀𝑆𝐸 𝐹𝐷 , 𝐹𝐷 10  

where the first half is the feature center distillation loss and the second half is the feature difference 
distillation loss. Q is the number of effective feature layers output by the feature fusion module, and 
in this paper, it is 5 effective feature layers. 𝜆  and 𝜆  are the hyper-parameters for balancing the 
two parts of the loss. 

The lightweight electronic component detection method based on knowledge distillation includes 
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a teacher, student, knowledge distillation method and loss function. The general procedure is displayed 
in Algorithm 1. 

In summary, a lightweight student model is proposed. It utilizes GhostNetV2 as the feature 
extraction network and introduces GhostPAN, a feature fusion network incorporating Ghost modules. 
Additionally, in order to transfer the knowledge from the teacher to the student without changing the 
student model structure to improve its accuracy, a knowledge distillation method based on the 
combination of features and channels is proposed. It performs knowledge distillation from feature 
centers, feature differences and feature channels. 

3. Experiments 

3.1. Dataset 

This study conducted extensive experiments on the electronic component detection dataset and 
the widely used Pascal VOC dataset to assess the presented approach’s efficacy and reliability. 
Experiments on the electronic component detection dataset validate the performance of electronic 
component detection. Furthermore, the experiments on Pascal VOC allowed us to evaluate the 
approach’s generalization ability and universality. 

 

Figure 6. Samples of electronic component detection dataset. (a) and (b) are pre-assembly 
scenes, (c) is an in-assembly scene and (d) is a post-assembly scene. 



20983 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 20971–20994. 

1) Public dataset Pascal VOC [41] 
The utilization of the public dataset offers a substantial volume of data, which effectively evaluates 

the model’s robustness and object detection capabilities. The Pascal VOC dataset, a renowned and 
authoritative public dataset in object detection, is widely adopted for assessing the performance of 
various models, including classification, detection and segmentation. The commonly employed versions 
of this dataset are 2007 and 2012, containing 21 categories for comprehensive analysis. 

For the training and validation sets in this work, a total of 21,380 images from the Pascal VOC 2007 
training set, validation set and Pascal VOC 2012 training set are combined. Pascal VOC 2007 test set 
is used as the testing set, consisting of 4952 images. This approach ensures more sufficient training 
data and allows us to evaluate the method’s performance on a larger dataset. 

2) Electronic component detection dataset [22] 
The electronic component dataset is used to evaluate the model’s performance on electronic 

component detection. Which used in this study consists of a total of 3 assembly scenes, 14 types of 
electronic components and 1040 images. Figure 6 displays a few of the dataset’s samples, where 
Figure 6(a),(b) are pre-assembly scenes, Figure 6(c) is an assembly scene and Figure 6(d) is a post-
assembly scene. The specific electronic component categories can be seen in Figure 7. The different 
categories and their corresponding numbers in the dataset are shown in Table 2. 

 

Figure 7. categories of electronic components and corresponding pictures. 

Table 2. Different categories and numbers in the electronic components dataset. 

Categories Number Categories Number 

Cap22uF 2121 Cap220uF 3037 

Cap470uF 2226 Yellow capacitor 1781 

Inductance 2341 Inductance_1 551 

Relay 993 Rectifier diode 2618 

Varistor 2797 White pin 1051 

Resistance 4309 Chip 2328 

Capacitor 2298 Red pin 1420 

To guarantee the model’s strong performance and generalization capability, a 7:3 data partitioning 
ratio was adopted in this research. Precisely, 70% of images were allocated to the training and 
validation, comprising 600 images for training and 140 images for validation. 30% of the images 
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formed the test set of 300 images. This data partitioning approach facilitates optimal data utilization 
during training and mitigates the risk of overfitting. 

3.2. Experimental environment 

1) Experimental hardware platform 
To ensure fairness in the experiments, we conducted comparative evaluations of the presented and 

other methods on the same hardware platform The hardware setup included an E5-2678 V3 CPU, 16 GB 
of RAM and an NVIDIA 3090 graphics card with 24 GB of VRAM. 

2) Training parameter 
The experiment is based on the PyTorch framework, and the Adam optimizer is chosen, where 

𝛽   = 0.9 and 𝛽   = 0.999. The learning rate was adjusted using the StepLR scheduler, where the 
learning rate was decreased by gamma for every “step” number of epochs. Gamma was altered in 
this case to 0.92 and step to 1, meaning the learning rate dropped by 0.92 after each epoch. All methods 
were trained for 100 episodes with an initial learning rate 0.001. Hyperparameters for the loss function 
were set as follows: 𝜆 0.01, 𝜆 200 and 𝜆 5. 

3.3. Evaluation metrics 

The AP (Average Precision) and mAP (mean Average Precision) are used to evaluate accuracy. 
The speed is measured in terms of Params (Parameters), FLOPs (Floating Point Operations) and FPS 
(Frames Per Second). 

𝑅𝑒𝑐𝑎𝑙𝑙
𝑇𝑃

𝑇𝑃 𝐹𝑁
11  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑇𝑃

𝑇𝑃 𝐹𝑃
12  

𝐴𝑃 𝑝 𝑟 𝑑𝑟 13  

𝑚𝐴𝑃
∑ 𝐴𝑃

𝑁
14  

𝑇𝑃, 𝐹𝑁 and 𝐹𝑃 represent the corresponding true positives, false negatives and false positives. AP 
is a measure of the accuracy of a single category, N stands for total categories and mAP is a measure 
of the average accuracy of all categories in the dataset. 𝑝 𝑟  denotes the precision-recall curve. 

Essential metrics for judging a model’s complexity and speed are FLOPs and Params. FLOPs 
measure the network’s computational load, while Params represents the number of parameters that can 
be learned from the model. Typically, higher values of FLOPs and Params indicate a more complex 
model, which can result in slower detection speed. 

In order to ensure the reliability and accuracy of the experimental results, we adopt the strategy 
of conducting multiple experiments. The average value is then calculated to avoid the influence of 
chance, particularly for the mAP and FPS metrics. 
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3.4. Results and discussion 

3.4.1. Performance analysis of the student model 

First, to verify the effectiveness of the proposed method in the field of general object detection, 
comparative experiments on the public dataset Pascal VOC are made, including mainstream object 
detection methods SSD, Faster-RCNN and YOLO series methods. Second, comparative experiments 
with other electronic component detection methods are added to the electronic component data set to 
verify the specificity and advancement of the proposed method. 

1) The public dataset 
Table 3 presents a comparison of the student model with the teacher and other object detection 

methods on the public dataset. It can be seen that the constructed student network has a lighter structure, 
with 35% less computation and 55% fewer parameters than the teacher model. Compared to the 
computationally intensive Faster-RCNN, the student model requires approximately 16 times fewer 
computations. Additionally, compared to the parameter-heavy YOLOv3 and YOLOv4, the student 
model has approximately five times fewer parameters. However, it’s important to note that while the 
network is lightweight, it may cause a drop in precision, with the student model achieving an accuracy 
of 70.16%. 

Table 3. Comparing the performance of the teacher model and the student model with 
other object detection models on the public dataset. 

Model FLOPs Params mAP 

SSD 90.54 GMac 26.42 M 71.44% 

Faster-RCNN 461.76 GMac 28.48 M 76.84% 

YOLOv3 49.7 GMac 61.59 M 77.73% 

YOLOv4 45.37 GMac 64.05 M 80.49% 

Teacher [22] 44.26 GMac 29.3 M 83.44% 

Student 28.7 GMac 13.32 M 70.16% 

2) Electronic component detection dataset 
Table 4 compares the student model with the teacher and other object detection methods on the 

electronic components detection dataset. Compared to the teacher, the student is more lightweight in 
structure but achieves a slightly lower accuracy of 2.15%. Compared to Huang’s proposed lightweight 
electronic components detection method, the student model reduces the parameter count by 47%. 
Although the computational complexity is slightly higher, it achieves a 0.92% improvement in 
accuracy. Furthermore, compared to other object detection methods on the electronic components 
detection dataset, the student model is more lightweight while maintaining a high accuracy of 96.68%. 
This accuracy is higher than classical object detection methods such as SSD, Faster-RCNN and 
YOLOv4. The student model achieves the highest FPS, with improvements of 10 frames per second 
compared to SSD, 32 frames per second compared to YOLOv3 and 34 frames per second compared 
to YOLOv4. Compared to Faster-RCNN, there is a substantial improvement of 57 frames per second. 
Compared to the methods proposed by Huang and Li, there are improvements of 10 and 37 frames per 
second, respectively. 
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Table 4. Comparing the performance of the teacher model and the student model with 
other object detection models on the electronic components detection dataset. 

Model FLOPs Params FPS mAP 

SSD 90.54 GMac 26.42 M 69 95.67% 

Faster RCNN 461.76 GMac 28.48 M 22 96.19% 

YOLOv3 49.7 GMac 61.59 M 47 97.98% 

YOLOv4 45.37 GMac 64.05 M 35 88.40% 

Huang [17] 15.46 GMac 25.24 M 70 95.76% 

Li [21] 53.97 GMac 61.86 M 42 88.56% 

Teacher [22] 44.26 GMac 29.3 M 41 98.83% 

Student 28.7 GMac 13.32 M 79 96.68% 

Based on the comprehensive analysis and discussion, the teacher model demonstrates high 
accuracy and outstanding performance in the electronic components detection task. Furthermore, it 
can extract rich feature information, but its Params and FLOPs are high, making it unsuitable for edge 
and embedded devices. On the other hand, the constructed student model is lightweight, significantly 
reducing the Params and FLOPs compared to the teacher model, making it suitable for devices with 
limited computational resources. However, as compared to the teacher model, it is less accurate. Thus 
to increase accuracy, it needs to use the knowledge distillation approach to allow the student model to 
learn the extensive feature information of the teacher model. 

3.4.2. Performance analysis and discussion of knowledge distillation methods 

To validate the effectiveness of the proposed knowledge distillation method and assess whether 
it can improve the accuracy while keeping the student model structure unchanged. This section 
conducts comparative experiments on the Pascal VOC and electronic component datasets. These 
experiments provide a visual understanding of the changes in the student model’s accuracy before and 
after knowledge distillation. 

Table 5. Performance of the proposed knowledge distillation method on the public dataset 
Pascal VOC. 

Model FLOPs Params mAP 

Teacher 44.26 GMac 29.3 M 83.44% 

Student 28.7 GMac 13.32 M 70.16% 

After distillation 28.7 GMac 13.32 M 74.07% 

Tables 5 and 6 present the proposed knowledge distillation method’s performance on the public 
and electronic components detection datasets, respectively. As observed, the proposed knowledge 
distillation method based on the combination of feature and channel operates superbly. It enhances the 
mAP of the student by 3.91% on the public dataset and by 1.13% on the electronic components 
detection dataset. The final accuracy of the student model on the electronic components detection 
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dataset reaches 97.81%, demonstrating its capability to fulfill the need for fast and accurate detection 
of electronic components. The constructed student model has the highest FPS, reaching 79 frames per 
second, which can meet real-time detection requirements. Compared to the teacher network FPS, it 
has significantly improved by 38, indicating that the student network is more lightweight. Table 7 
shows the detection accuracy of different categories of the student model after knowledge distillation. 
Except for Cap22uF, Cap470uF and Cap220uF, the detection accuracy of the remaining 11 categories 
exceeds 98%. Therefore, after knowledge distillation, the student model demonstrates strong 
detection performance. 

Table 6. Performance of the proposed knowledge distillation method on the electronic 
components detection dataset. 

Model FLOPs Params FPS mAP 
Teacher 44.26 GMac 29.3 M 41 98.83% 
Student 28.7 GMac 13.32 M 79 96.68% 
After distillation 28.7 GMac 13.32 M 79 97.81% 

Table 7. Different categories and AP of student model after knowledge distillation. 

Categories AP Categories AP 
Cap22uF 0.94 Cap220uF 0.95 
Cap470uF 0.95 Yellow capacitor 1.0 
Inductance 0.99 Inductance_1 0.98 
Relay 0.99 Rectifier diode 0.98 
Varistor 0.98 White pin 0.99 
Resistance 0.98 Chip 1.0 
Capacitor 0.98 Red pin 0.98 

 

Figure 8. Comparison of mAP on the public dataset Pascal VOC. 
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Figure 9. Comparison of mAP on the electronic components detection dataset. 

Figures 8 and 9 show the mAP comparison of the teacher, student and student models trained with 
the proposed knowledge distillation method on the public and electronic components detection datasets, 
respectively. From the figures, it is evident that the presented knowledge distillation approach not only 
improves the performance of the student model but also accelerates the convergence of the model. 

3.4.3. Ablation experiments of the proposed knowledge distillation method 

To further validate the effectiveness of each part of the proposed knowledge distillation method, 
this section conducts ablation experiments to explore them separately, which allows for a visual 
understanding of the contributions of each part to the overall accuracy improvement. 

The teacher model’s accuracy is increased through the proposed knowledge distillation method 
based on feature and channel fusion by transferring high-precision knowledge to the student model. 
This part conducts ablation experiments for analysis and discussion to verify the efficacy of each 
element of the proposed knowledge distillation approach based on the combination of feature and 
channel. First, feature knowledge distillation method experiments are conducted, and then channel 
knowledge distillation is added to verify the performance of feature distillation and channel distillation, 
respectively. The results of the ablation experiments on the public dataset are displayed in Table 8; the 
results of the experiments on the electronic component detection dataset are displayed in Table 9. 

According to Table 8, on the public dataset, the feature knowledge distillation method improves 
the mAP of the student model by 1.26%. When combined with channel knowledge distillation, it 
further increases by 2.65%. The overall knowledge distillation method based on the combination of 
feature and channel improves the mAP of the student model by 3.91%, significantly improving the 
precision of the student model. It effectively compensates for the accuracy loss caused by the 
lightweight model, achieving a better balance between speed and precision. 
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Table 8. Results of ablation experiments for the public dataset Pascal VOC. 

Knowledge distillation method mAP 

Teacher: FLOPs (44.26 GMac), Params (29.3 M), mAP (83.44%) 

Student: FLOPs (28.7 GMac), Params (13.32 M), mAP (70.16%) 

Feature distillation 71.42% (+1.26%) 

Feature distillation + Channel distillation 74.07% (+3.91%) 

According to Table 9, on the electronic components detection dataset, the feature knowledge 
distillation method improves the mAP of the student model by 0.74%. When combined with channel 
knowledge distillation, it further increases by 0.39%. The overall knowledge distillation method based 
on the combination of feature and channel improves the mAP of the student model by 1.13%, 
ultimately achieving a mAP of 97.81% on the electronic components detection dataset. Therefore, the 
knowledge distillation method based on the combination of feature and channel can significantly 
enhance the precision of the student, resulting in an outstanding performance on electronic component 
detection. It enables the student model to achieve fast and accurate detection, making it highly effective 
in electronic component detection. 

In conclusion, the proposed knowledge distillation method demonstrates excellent performance. 
It enables the student to effectively learn the feature representation from the teacher, significantly 
improving its precision. 

Table 9. Results of ablation experiments for the electronic component detection dataset. 

Knowledge distillation method mAP 

Teacher: FLOPs (44.26 GMac), Params (29.3 M), mAP (98.83%) 

Student: FLOPs (28.7 GMac), Params (13.32 M), mAP (96.68%) 

Feature distillation 97.42% (+0.74%) 

Feature distillation + Channel distillation 97.81% (+1.13%) 

3.4.4. Visual analysis and discussion 

Figure 10 compares the partial detection results of the student model before and after knowledge 
distillation on the electronic components dataset. From Figure 10, it can be observed that knowledge 
distillation effectively mitigates issues such as missing detections and redundant detections. In 
Figure 10(a), the rectifier diode is undetected, while in Figure 10(c), two resistances are mistakenly 
detected as one. Moreover, Figure 10(e),(g) show instances of redundant detections. After knowledge 
distillation, these problems are significantly reduced, proving the validity of the proposed method in 
achieving fast and accurate detection of electronic components. 
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Figure 10. Comparison of detection results before and after knowledge distillation. (a), (c), 
(e) and (g) represent the detection results of the student model before knowledge. 
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3.4.5. Discussion of limitations 

While we have constructed a lightweight student model and proposed knowledge distillation to 
enhance its accuracy, a performance gap exists between the student and teacher models. As shown in 
Figure 7, for classes like Cap22uF, Cap220uF and Cap470uF, their inter-class features are relatively 
similar, resulting in detection accuracies below the average, specifically 94%, 95% and 95%, 
respectively. Therefore, in the future, we will further explore the internal mechanisms of knowledge 
distillation and consider ways to address the issue of low detection accuracy caused by inter-class 
similarities and intra-class differences in the dataset. 

4. Conclusions 

This study introduces a novel lightweight object detection method based on knowledge 
distillation, enabling swift and precise detection of electronic components. By utilizing the knowledge 
distillation method based on the combination of feature and channel, the student model effectively 
learns the feature representation from the teacher model, thus improving its performance. The 
following are the key research conclusions. 

1) A lightweight student model is constructed. Compared with the teacher model, its Params are 
reduced by 55%, FLOPs are reduced by 35% and the detection accuracy on the electronic component 
detection dataset reaches 96.68%. 

2) A knowledge distillation method based on the combination of feature and channel is proposed. It 
can improve the mAP of the student model by 3.91% and 1.13% on the publicly available dataset Pascal 
VOC and the electronic components detection dataset, respectively. The student model’s ultimate 
detection accuracy is 97.81%, making detecting electronic components quickly and precisely possible. 

In the future, we plan to conduct more in-depth research into the internal mechanisms of 
knowledge distillation, with the aim of further improving the accuracy of the student model. Given the 
limited computational resources available in the manufacturing process, we will also work on reducing 
the model’s complexity through pruning and quantization, ensuring its suitability for edge and 
embedded devices. Moreover, in the future, we will apply this method to optoelectronic chip defect 
detection tasks to verify its effectiveness and advancement. 
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