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ABSTRACT  

 
Distributed real-time process control systems are notoriously difficult to develop. They frequently 

overrun time schedules and break cost constraints. The problems are compounded where there are 

multiple development teams and stakeholders. Conventional model-driven development has been 

examined to see if it can be extended to resolve some of these problems. It may be possible to use 

early system design stages to identify performance issues which would otherwise not be identified 

until late in the development of the system. A functional model is proposed, in addition to those 

conventionally used for model-driven development, based on loosely coupled functional elements, 

to represent the behaviour of each system component. The model complements existing 

requirements and design specifications and addresses the combination of individual component 

abstractions to produce a complete system specification.  

 

The functional model enables the accurate prediction of system performance prior to the detailed 

design of each component. The thesis examines how performance can be calculated and modelled. 

An animator tool and associated code generator are used to predict system and component 

performance in a distributed aircraft navigation system. 

 

The use of the animator to support the system design prior to the generation of the component 

contract specifications and interface control documents provides a means of assessing performance 

which is accessible to domain experts and system designers alike. The model also enables the 

effects of requirements changes and component design issues on the system design to be 

assessed in terms of the system design to provide system wide solutions. 

 

This performance assessment model and animator compliments the existing 'fix-it-later' approach, 

reducing the chances of performance failure detected late during the system development process 

when they are most expensive to fix. 
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Chapter 1                                                                  Introduction 

  
1.1  Introduction 

 

Large distributed real-time systems are time consuming to develop. They frequently overrun cost 

and time schedules. Woodside et al. [1] comment that in a survey of information technology 

executives over 50% had encountered performance issues in over 20% of the applications they 

deployed. McManus et al. [2] state that a survey in 2002 showed only one in eight information 

technology projects can be considered truly successful with huge sums of money having to be 

written off. Pop et al. [3] state that real-time software systems are becoming increasingly difficult 

to design. One of the major problems with large distributed systems is that it is difficult to identify 

mistakes in the system design until they manifest themselves much later in the system 

development. Karimpour et al. [4] explain that the assessment of performance early in the 

software development process is particularly important to risk management. It has been claimed 

that Model Driven Development (MDD) can address some of these issues. Raistrick et al. [5] 

comment that the MDD approach can potentially drive down the rapidly inflating cost of software 

development and maintenance of very complex systems. 

 

Older real-time system components were highly cohesive with all the features concentrated in a 

single component and typically had low coupling with few connections with other components. 

With the advent of integrated systems, functionality is spread between components with many 

interconnections, making it more likely that performance issues will not be discovered until late in 

the system design. Performance issues are also detected later in the system development due to 

the increased system complexity. 

 

Design errors detected late in the development of real-time systems are expensive to rectify 

because of the need to repeat large amounts of the development process. If performance 

shortfalls can be identified early, significant savings should be possible. Making performance 

judgments before system design starts in earnest should result in better-specified systems with 
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less need for redesign and redevelopment. Real-time systems, in particular, are affected by their 

system hardware architecture. 

 

System performance is particularly difficult to assess prior to the specification and purchase of 

system components. Mistakes in the allocation of functional and performance requirements to 

individual components require expensive rework after contracts have been placed. Rework which 

involves hardware modifications after component manufacture has started is particularly 

expensive. 

 

It is therefore worth reviewing the system design phase to identify the likely sources of errors and 

to see if the system design process can be improved to detect and rework potential performance 

problems prior to component specification. 

 

1.2  Research question 

 

The research question is how can performance issues be detected in real-time periodic systems 

prior to specifying system components when they are more expensive to fix. The research aims to 

understand what problems exist in this phase and what can be done to overcome them. 

 

An additional functional model representing system hardware architecture and functional 

requirements is proposed, based on hardware component abstractions which represent the 

hardware components and inter-component communications. A tool which combines and animates 

this specification is also proposed. 

 

1.3  Systems considered 

 

Different system hardware architectures influence design techniques employed to develop them. 

Enterprise systems and business systems are not normally considered real-time systems although 
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they all have timing constraints. In real-time systems the hardware architecture usually impacts 

their performance in such a way that the software and hardware architecture cannot be developed 

independently. The research described in this thesis concentrates on real-time systems which 

contain components that can be represented by abstractions which operate in a periodic manner. 

Examples of this type of system are aircraft flight control systems and process control systems. 

Among the practical examples considered are a simple weather station and parts of an aircraft 

navigation system. 

 
1.4  Context 

 

Large distributed real-time systems comprise interlinked system components which contain system 

specific software, component specific software, sensors, displays and actuators. These systems 

typically operate as open and closed loop process control systems which process information in a 

periodic manner. Typical examples of such systems are aircraft avionic and flight control systems. 

 

Large distributed real-time systems consist of computing and non-computing components 

developed by diverse teams, often operating within several companies and even countries. The 

components themselves are either designed specifically for the system or are Commercial Off The 

Shelf (COTS) components which must either be used as they stand or modified at significant cost. 

 

Initial customer requirements are transformed into a system design specification by the system 

design authority (SDA). The SDA is normally a team containing domain experts who add detail to 

the customer requirements and systems designers who generate the systems design and 

component requirements specifications. The SDA establishes traceability between the customer 

requirements and the component requirements specifications. The SDA is responsible for the 

integration and test of the overall system. 
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Each component design authority is responsible for the design, manufacture and test of a single 

component of the system being developed. Each component is designed to satisfy the component’s 

contract specification and interface control document rather than the system design. 

 

A method called CoRE [6] [7] was sometimes used to define system requirements using 

viewpoints, processes and data. CoRE was suitable for domain experts to use but did not translate 

easily into component detailed design. CoRE did not use the object oriented paradigm and was not 

readily translatable into UML based specifications.  

 

The Unified Modelling Language (UML) [8] was included as a graphical language as part of the 

Rational Unified Process (RUP), which offered a means of specifying systems using the object-

oriented paradigm. UML is a graphical modelling language rather than a design method and is used 

to communicate design features rather than to specify a full set of requirements.  

 

A major problem exists in the development of systems during their transition between a set of 

outline customer requirements, through the emergence of a system hardware architecture, to the 

generation of component requirements specifications. The problem consists of making sure the 

combination of individual components and component intercommunications will support the overall 

system requirements prior to details of the component design being available from the component 

design authorities. Smith et al. [9] describe the problems of early validation of software 

performance before a system is fully implemented. If any system level issues are discovered, 

changes to the component requirement specifications will require renegotiation which may incur 

extra costs. If the problem remains unidentified it may only be discovered during system 

integration or even deployment when changes to components and component documentation are 

most expensive to make. 

 

The existing and new requirements and the design for each stage of the system design can be 

traced back to their origin using a database system such as DOORS (Dynamic Object-Oriented 

Requirements System) [10]. Non-functional requirements are much more difficult to manage. 
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Performance requirements are needed for each subsystem and system component derived from an 

overall system requirement as the subsystems and components are identified. Close inspection of 

the current methodologies (Chapter 2) reveals a weakness in this process which allows some 

performance shortcomings to remain hidden until system integration occurs. 

 

It is, however, currently not possible to animate or simulate the proposed system prior to 

finalisation of the component contract specifications and interface control documents. Actual 

component performance outcomes start to become available after the component design 

authorities commence their design activities. The components design authority’s target is to satisfy 

the contract specifications and interface control documents rather than the overall system 

requirements, so problems in the system domain may remain undetected. If the system design 

authority discovers an error in the system design after the component contracts have been placed, 

the component suppliers will impose financial penalties. 

 

Several development methods are currently used including prototyping and phasing. Prototyping 

usually involves rework (sometimes extensive) following implementation testing. Phasing involves 

developing systems in a number of increasingly complex versions which involves developing the 

system several times. Whilst a ‘fix-it-later’ approach described by Smith [11] can be used, it is not 

suitable for systems involving many stakeholders, where system testing occurs using a systems 

integration test rig right at the end of the development process. Prototyping is successfully used 

for small systems under the control of a single organisation but much more difficult when tried on 

larger systems. Ewusi-Mensah [12] examines a number of projects to see why they fail. He claims 

that management and organisation are at the core of failed projects and identifies the following 

factors which are dominant in abandoned projects; unrealistic project goals and objectives, 

inappropriate project team composition, project management and control problems, inadequate 

technical know-how, problematic technology base/infrastructure and changing requirements.  

Douglas [13] describes the interactive approaches available for developing real-time systems. 

Phasing or iterative development enables early system testing but usually means the whole system 

is designed several times. For smaller systems where the development is undertaken by a single 



Thesis                                                                                                                             Introduction

 
 

 
Michael Giddings                         Page 28 of 277                             12/10/2016 

organisation good communication between departments can overcome these problems. For larger 

systems involving different organisations, companies, and even countries where communication is 

more formal, coordination problems arise. Whilst existing performance management is generally 

adequate, unpredicted system performance issues occasionally emerge during the latter stages of 

development. These shortcomings occur even though the component design authorities meet their 

individual performance requirements. 

 

Model Driven Development (MDD) provides a methodology to enable, define and communicate a 

solution to a set of system requirements. Using models early in the development process enables 

analysis and provides communication between development teams so that design errors can be 

detected early. Although the Object Management Group definition of MDD [14] is broad, MDD is 

mostly used in the development of system software used in business systems where the impact of 

the physical architecture of the system on performance is more predictable. 

 

There are three main types of models: Computation Independent Model (CIM), Platform 

Independent Model (PIM) and Platform Specific Model (PSM). Automatic translation between 

PIMs and PSMs is a key feature of MDD. Figure 1 shows how these models relate to each other. 

The CIM provides an overview of the system and the PIMs and PSMs typically describe the 

software of individual components. 

 

One of the main themes of Model Driven Design is the translation between individual system 

models. The translation between a requirements model based in the user domain and the 

components contract specifications and interface control documents should also be included.  

 

Direct translation between the user domain requirements and component specifications is not 

possible as extra detail is required between the system requirements and component 

requirements definition stages. Translation is possible, however, between a system level 

functional model and the actual contract specifications and interface control documents. Figure 

2 shows how a functional model based on the information contained in component contract 
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specifications and interface control documents helps to link the system requirements and the 

component requirements. The dotted lines show existing links and the solid lines show links 

associated with a functional model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Translation between CIM, PIM and PSM models. 
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Figure 2 Relationship between system requirements and component specifications.  
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design has yet to start. Translation between requirements and component contract specifications 

and interface control documents requires system design information to be added. 

 

One of the main themes of MDD is the translation between individual system representations. 

Translation is needed between system requirements and individual component contract 

specifications and interface control documents. Requirements models define requirements in terms 

of real-world objects in the user domain. System design models describe what the system is 

required do in the system design domain. Both types of requirements models use system 'end 

events' associated with system wide requirements which are observable externally, to specify 

performance. A typical example of a system 'end event' is the display of aircraft heading in an 

aeroplane. 

 

1.5  Overview of research 

 

The research comprises a literature review which identifies what real-time systems are and how 

they are currently developed. The review assesses current performance management 

techniques used in the development of all types of system.  

 

The research comprises of three phases.  

 

The first investigates how a functional model comprising independent functional elements might 

be constructed to specify system components prior to the generation of formal system 

component specifications and interface control documents. The proposed functional model 

consists of a functional element diagram and an associated functional element scheduler. 

Functional element chains are identified which associate functional elements with performance 

end events to provide a means of calculating dynamic and stochastic error levels. The first 

investigation uses, as an example, a simple weather station consisting of a single processing 

component and a number of sensors and a display. 
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The second investigates how component functional models can be combined to generate 

system functional models.  A simple animator which combines functional element chains and 

component functional element schedulers is developed to overcome the difficulties of error 

calculation methods.  The second investigation, as an example, uses a more complex system of 

multiple components to display aircraft heading generated from a gyro compass. 

 

The third investigates an animator which can be automatically generated from a database 

representation of a functional model, a more complex example of a multiple component system 

which comprises two sensors, a gyro compass and a GPS to generate a course to steer display.  

This more complex system provides an example of a closed loop system. 

 

1.6  Contribution and significance 

 

Distributed real-time systems are notoriously difficult to develop frequently overrunning time 

schedules and budgeted costs. The development of large distributed systems can involve multiple 

stakeholders and teams where the management of mistakes and requirement changes suffer from 

poor communication. During the early system design the initial system hardware architecture is 

frequently established based on ‘previous experience’ prior to the generation of component 

contract specifications and interface control documents. This leads to an initial system design 

which will not support all the system requirements. These design shortcomings are subsequently 

discovered in later design phases; sometimes as late as system integration where they are the 

most expensive to fix. 

 

Conventional model-driven development has been examined to see whether it can be extended to 

resolve some of these problems. It may be possible to use early system design stages to identify 

performance issues which would otherwise not be identified until late in the development of the 

system. A functional model, in addition to those conventionally used for model driven 

development, based on loosely coupled functional elements, is proposed to represent the 

behaviour of each system. 
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The research establishes the current status of performance management techniques that are used 

to bridge the gap between the customer outline requirements and the allocation of system 

components requirements to other design responsible teams. Functional and non-functional 

requirement specifications and management techniques were examined. The risk of performance 

requirements being inappropriately apportioned when the system architecture is also established 

and investigated.  In order to mitigate the risk a combined functional model suitable for early 

performance analysis and modelling is investigated to see if performance shortcomings, which 

might not be identified until system integration, may help. 

 

The research identifies a method using abstractions for each processing and non-processing 

system hardware component which enables performance analysis prior to the finalisation of system 

component contract specifications and interface control documents. The method is centred on an 

additional functional model made up of functional elements associated with a scheduler which 

represents each component abstraction. The method relies on the extraction of functional chains 

from this additional model from which analysis can be undertaken. An animator has been 

developed enabling functional chains to be simulated thus avoiding complex calculation. A method 

of recording the functional model in a database has been established to enable the animator 

software to be automatically generated. The model both establishes an opportunity to undertake 

performance analysis prior to choosing components and provides a method for managing late 

requirements changes. It also provides a means of resolving component design difficulties by 

considering system wide solutions. 

 

The significance of the proposed approach may be that, in certain circumstances, it may reduce 

the number of performance problems that are not discovered until late in the design of real time 

systems. 
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1.7  Thesis road map 

 

Chapter 1 provides an introduction to the thesis and the research it reports and it summarises the 

background and motivation for the activities which have been undertaken. 

 

Chapter 2 reviews the current development of distributed real-time systems focusing on the 

management of performance identifying the research problem based on a literature review. 

Chapter 3 contains a description of a functional model which enables the initial allocation of 

requirements to system components to be assessed.  

 

Chapter 4 consists of a description of three investigations undertaken to investigate the structure 

of the proposed functional model, how the model could be used and how performance could be 

calculated and animated. 

 

Chapter 5 contains an investigation of the functional model, animator and animator code 

generator. 

 

Chapter 6 describes the conclusions from the research undertaken. It provides a summary of the 

thesis and identifies further work that may be undertaken. 
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Chapter 2                 Distributed real-time systems 
   
2.1  The problem 

 

During the early system design phase, after the hardware architecture independent requirements 

are generated, requirements are allocated to components. Smith [11] currently describes this as 

being undertaken on a 'fix-it-later' basis using ‘previous experience’.  Many performance issues 

arising from these assumptions are identified in later design phases, causing expensive rework. In 

systems where multiple stakeholders from different organisations or even countries are involved, 

poor communication may mean that some performance issues are not identified until system 

integration or even worse deployment. 

 

This chapter considers how to detect performance related problems early in the development life 

cycle using abstractions representing system hardware components. 

 

2.1.1 Performance management of real-time systems 

 

Large distributed real-time systems have common characteristics which make their development 

difficult. They have critical performance requirements, and mistakes made at an early stage in their 

development may not be detected until the system is finally assembled, when the cost of 

correction is at its highest. Karimpour et al. [4] state that most techniques for qualitative 

assessment of software are undertaken during the testing phase of system development. They go 

note that the early testing of system software is an important feature of risk management, but 

performance needs to be assessed using abstractions to represent system components prior to the 

software development of individual components. It is important to discover whether the 

management of functionality and performance can be improved. This analysis must take into 

account the method used, the development route and the stakeholders involved. Becker et al. [19] 

have undertaken a survey of performance prediction methodologies for component based systems. 

These approaches cover measurement, model-based and combined measurement and model-
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based techniques.  A common feature of the approaches described is that they rely on the 

availability of detailed component design information. This means they do not help to determine 

the suitability of component contract specifications and interface control documents during the 

system design phase prior to detailed component design becoming available as they rely on 

detailed component design information. 

 

A number of papers summarise performance assessment methods and tools. Smith [20] reviews 

the origin of Software Performance Engineering (SPE), lists the software performance models and 

describes the SPE process.  Koziolek [21] considers component based software systems integrating 

classical performance models such as queuing networks, stochastic Petri nets, and stochastic 

processing algebras. Woodside et al. [6] state that in a survey of information technology 

executives over fifty per cent had encountered performance issues in over twenty per cent of the 

applications they deployed. Balsamo et al. [7] have analysed fifteen performance prediction 

approaches. These methods apply to a broad range of software systems and performance 

requirements, covering shared resources, client/servers and event driven systems but the main 

focus is business systems. Each of the performance methods could contribute to the performance 

analysis of distributed real-time process control systems but rely on the existence of more detailed 

component design information.  

 

Balsamo et al. [22] address fifteen methodologies including queuing network based methodologies, 

process-algebra-based approaches, Petri net based approaches, simulation methods and stochastic 

processes. They also undertook a review of performance models which characterise the 

quantitative behaviour of software systems. However, this review does not fully address the 

hardware architecture (which in real-time systems affects performance more) of the system or 

components which do not contain software. 

 

Performance shortfalls identified late in the design process require one of two types of remedial 

action: hardware changes or software changes. Hardware changes, are often the most expensive 
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to fix. Systems often include extra unused capacity to cope with unexpected problems. All changes 

require substantive changes to the project documentation. 

 

One of the main purposes of the literature review is to find out whether management of 

performance requirements early in the system design process has been already considered. Smith 

[11] describes performance assessment during this early development phase as a ‘fix-it-later’ 

approach. Performance management is typically undertaken after components have been specified 

using information arising from the detailed design of system components. 

 

Three main approaches to performance management are assessed in this chapter, formal 

methods, UML and MDA. 

 

UML [8] and its extensions are examined to see whether they offer performance management. 

UML is found to offer advantages in the specification of real-time systems but, on their own do not 

offer performance prediction. Systems can, however, be specified using UML at an early design 

stage.  

 

It has been suggested that MDD might aid the development of systems using models. This chapter 

reveals that MDE requires an additional model which combines requirements and a system 

hardware architecture to be available during the early system design stages. 

 

This chapter also reviews formal methods but these are not usually used to calculate performance 

before a design exists. Their use to calculate performance based on the proposed additional 

functional model is possible but the difficulty of the calculation methodology involved means 

something simpler is needed. 
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2.1.2 Types of system under consideration 

 

2.1.2.1  Systems of interest 

 

The design techniques employed to develop systems are influenced by their hardware 

architectures. Real-time systems have specific timing requirements, which if not met will lead to 

catastrophic consequences. Enterprise systems and business systems are not normally regarded as 

real-time systems although they all have timing constraints. In real-time systems the hardware 

architecture usually impacts performance in such a way that the software and hardware 

architecture cannot be developed independently. The research described in this thesis concentrates 

on real-time systems containing components which can be represented by abstractions operating 

in a periodic manner. Aircraft flight control systems and process control systems are examples of 

this type of system. 

 

2.1.2.2  Real-time systems 

 

Real-time systems are diverse in size, components and function. Their defining feature is their 

strict performance requirements. Kavi et al. [9] give a broad overview of real-time systems, 

providing a broad appreciation of the range of applications, different types of requirements and the 

available software and hardware design tools. They emphasise the need for specialised experience 

in their design.  

 

Real-time process control systems may contain sensors, general purpose computers, processing 

components, actuators and displays. The examples examined in this thesis contain examples of 

these components. 

 

They consist of bespoke and commercial off-the-shelf components (with potentially long 

development times). Alenljung et al. [10] describe the difficulties in specifying the requirements of 
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complex bespoke components. This represents a challenge for any early system functional model 

which goes beyond a personal experience approach. He concludes with a list of sixty eight 

comments from IT consultants about the establishment of requirements and the management of 

requirement changes. Jilani [11] describes some of the issues of integrating COTS software and 

the prediction of behavioural properties prior to purchase. These issues include component 

configuration, component certification and component predictability. Although the paper deals with 

COTS software, the issues also apply to COTS hardware equipment. Real-time systems may also 

have hardware architectures which substantially contribute to the system’s overall performance. 

Whilst the systems aim to have high cohesion and low coupling between components, some 

functionality may be distributed between components from several suppliers reducing cohesion and 

increasing coupling. 

 

Flight control and power plant management systems are examples of large distributed real-time 

process control systems consisting of many system components. Failure to operate properly will 

have catastrophic results. Aircraft booking systems and stock market management systems are 

examples of large distributed real-time systems where failure to operate properly have less 

business critical consequences.  

 

Distributed real-time systems contain a wide range of components. Some components typically 

contain software but many do not. Each component is connected to at least one other component. 

The components may be general purpose computers, processing components, sensors, controls, 

actuators, displays and inter-component communications links. The components may be bespoke 

components developed for a specific system or commercial off-the-shelf components which already 

exist.  

 

Naganathan et al. [12] state that security, reliability, accuracy and trustworthiness are also key 

requirements which require early assessment for many real-time systems. It is important that 

these features are not overlooked during their development. 

 



Thesis                                                                 Distributed real-time systems

 
 

 
Michael Giddings                         Page 40 of 277                             12/10/2016 

Real-time systems which fail to meet performance requirements may lead to catastrophic shortfalls 

in the operation of the system, resulting in loss of equipment or loss of life. Non-real-time systems 

have temporal requirements but they are not critical. There are no clear boundaries between these 

categories, so even though the use of the terms is common, the allocation of a system to one of 

these two groups may not be consistent. This research focuses on the development of real-time 

systems which process data on a periodic repeating basis. 

 

Some real-time systems are described as embedded systems. An embedded system is 

a computer system with a dedicated function within a larger mechanical or electrical system, often 

with real-time computing constraints. They contain computer(s) as part of a larger system which 

does not exist primarily to provide standard computing services to a user. The systems interact 

with hardware at a low level. Bonjour et al. [13] describe how embedded systems can be defined 

in terms of functional elements which can be mapped onto system components – a key feature of 

the approach proposed in this thesis. Embedded systems can be associated with a single 

processing component such as a weather station or as part of a distributed system such as an 

aircraft avionic system. Both contain periodic processing and are used as examples in this thesis. 

Kopetz [14] states that as the functionality of embedded systems increase in complexity, the 

system level models must remain simple and understandable. He emphasises that abstraction can 

be used to reduce the emerging complexity by focusing on the relevant properties leading to a 

simpler model representation. Sangiovanni-Vincentelli [15] emphasises that as systems became 

more complex the need for a higher level of abstraction has been identified. Abstractions 

consisting of functional elements are used to represent system components in the proposed 

additional model. The functional elements in the model can also be combined to provide a higher 

level of abstraction. 

 

Many real-time systems are process control systems operating as closed or open loop systems 

(with and without feedback respectively). Typical examples are used for the display of sensor data 

and control of actuators within a flight control autopilot. Sinha [30] provides a simple description of 

process control systems which contain a mixture of periodic and event driven processing, with 
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events occurring much less frequently than individual periodic processing steps. The functional 

model proposed uses this structure to represent system components as abstractions. 

 

Distributed real-time process control systems are real-time systems which tend to have co-located 

independent linked system components. 

 

Distributed real-time systems can also be described as cyber-physical systems (a system of 

collaborating computational elements controlling physical entities). Lee [17] describes the design 

challenges associated with cyber-physical systems as systems containing collaborating computation 

elements which control real-world actions. He indicates that it will not be sufficient to improve 

design processes, raise the level of abstraction or verify (formally or otherwise) designs based on 

current abstractions. He says these abstractions will have to embrace hardware systems and 

computation in a unified way. The proposed additional functional model described in Chapter 3 

combines software and hardware aspects of the systems considered. Rajkumar et al. [18] describe 

cyber physical systems as physical and engineered systems whose operations are monitored, 

coordinated, controlled and integrated by a computing and communication core. He states that 

they must operate dependably, safely, securely and efficiently in real-time. Lashermanan et al. [19] 

state that both the supplier and the integrator need new system science which enables reliable and 

cost-effective integration of independently developed system components.  

 

In addition to functional requirements, non-functional requirements are also needed to describe 

the desired operation of real-time software systems. Non-functional requirements include 

performance requirements. Performance requirements are varied and depend on the particular 

system to which they refer. Other non-functional requirements which affect real-time systems 

include mission criticality, safety criticality, redundancy and failure. The proposed additional system 

model specifies these requirements as they contribute to the complexity of individual system 

components. 
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2.1.3 Design routes 

 

It is important to take into account the system design route, as it might affect the available 

performance assessment opportunities. Design routes include the waterfall method, prototyping, 

incremental, spiral and rapid application development. The incremental and spiral methods are a 

combination of linear and iterative approaches. In practice all those approached have to deal with 

error rectification and change. CMS [34] describe the advantages and disadvantages of each 

approach. 

 

All these design routes consist of five major phases to some degree or other: 

 

• Requirements definition 

• Design 

• Development 

• Implementation 

• Deployment 

 

Prototyping and phasing approaches are commonly used. Prototyping is normally reserved for 

smaller systems or components of larger systems. Larger real-time systems are sometimes 

developed in phases consisting of a number of versions of the final system with increasing 

complexity. 

 

2.1.4 Stakeholders in the process 

 

The difficulty in developing large real-time systems is compounded by the multiple stakeholders 

being involved in their development, potentially located in different teams, companies and 

countries. It is important to understand how these stakeholders combine to develop systems. This 
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section describes the major development stakeholders involved and highlights how the problems 

associated with the stakeholders manifest themselves. 

 

Ramos et al. [35] state that collaborative world teams must speak the same language and work on 

the same ‘matter’. The ‘matter’ being the system model and its communication mechanisms in 

terms of a model based engineering approach to systems design. In order to understand the 

communications needs you must first identify the stakeholder affected. 

 

Large distributed real-time process control systems developed by multiple stakeholders typically 

have similar hierarchical development responsibility structures. The key stakeholders typically 

include a customer, domain experts, system design authority, component design authorities and 

component manufacturers. 

 

If these stakeholders are located in different teams, companies or countries the communication 

between stakeholders begins to affect the consistency of the overall system design. McManus [36] 

suggests that the successful delivery of software engineering projects is directly related to the way 

in which the project manager involves stakeholders in the decision making process within the 

various stages of the project. 

 

2.1.4.1 The customer 

 

The customer, supported by users, define top level system requirements. These usually take the 

form of a textual list of the main characteristics of the overall system, sometimes called a concept 

of operation, and a number of functional end events. It may contain a list of the main components 

of the system. The customer may also supplement these top level requirements with another 

textual document called an operational requirement describing how the system will be used. 

Cellucci [37] describes the process of developing operational requirements. He describes good 

requirements as necessary, verifiable, unambiguous, complete, consistent, traceable, concise and 

expressed using standard constructs. 
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The customer’s main point of contact, in general, is with the system design authority. They 

sometimes have links with the component design authorities for large bespoke system components 

with long development times. 

 

2.1.4.2   The System Design Authority 

 

The system design authority’s main points of contact are the customer, and the subsystem and 

component design authorities. The system design authority fulfils two key functions; performing 

the detailed elaboration of requirements and the system level design. The research focuses on the 

activities of the system design authority during the early stages of the system development prior to 

the generation of component requirement specifications. 

 

The elaboration phase is a requirements definition activity as it extends the outline customer 

requirements into a full system requirements specification. The detailed system requirements 

specification is then agreed with the customer. Traceability is established between the customer 

outline requirements and the detailed requirements specification and recorded in a database. New 

requirements included in the detailed requirements specification are identified and added to the 

traceability database. A key feature of these detailed requirements is a list of system end events 

and associated performance requirements. Domain experts and end users undertake the 

requirements elaboration rather than system developers, so an intuitive requirements specification 

methodology is required. 

 

The system design authority transforms the detailed system requirements into a system design. 

System hardware components and inter-component communication links are identified and the 

functionality and system end events are shared between the components. Each component is 

given its own component end events and end event performance requirements. Bonjour et al. [27] 

describe a method for allocating functions to hardware architectures by considering interconnection 

matrices. They identify functional elements and map them to system components. They focus on 

the synthesis of subsystems and components from identified functional elements but does not 
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consider performance. Lakshmanan et al. [33] suggest that abstractions for system components 

can be used in this allocation process. Without a detailed design for each system component, 

however, it is difficult to be sure that the system architecture can support all the identified system 

end event performance requirements. Bonjour et al. [27] describe how system architects validate 

the selection by inspection but an automatic validation may help with some end events which are 

distributed across several components. 

 

The system design phase is a design phase rather than a requirements elicitation phase, as it 

constrains the system requirements. Traceability ensures that all the system requirements are 

satisfied within the system design. As the design process adds extra requirements, (known as 

derived requirements) they are added to the design requirements traceability definition. 

 

The system design process incorporates information from the contract specifications and interface 

control documents of selected COTS components and generates contract specifications and 

interface control documents for non-COTS components. The system design authority appoints 

subsystem and component design authorities. The normal interface between subsystem and 

component design authorities is based on a component specification which describes the operation 

of the component and an interface control document which describes its external interface. 

Rahmani et al. [38] discuss the importance of interface control documents.  

 

These contact specifications and interface control documents are used on a commercial basis as a 

contract between the system design authority and the component design authority. Changing 

these documents after the contract has been agreed usually incurs costs. 

 

Figure 3 shows the flow of information between the system and component design authorities 

after the component design has started and is the context of the research reported in this thesis. 

The system design authority receives details of the hardware and software design of system 

components from the component design authorities as they progress. It uses this information 

either to update early system models and/or to develop a more complex description of the system 
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design. Three types of information need to be compared: the elaborated system requirements, the 

system design, and the component design.  

 

The system design authority is also responsible for system integration, validation and deployment 

of the final system once the component design and implementation are complete. System design 

functional and performance shortcomings may be discovered here when it is most expensive to 

rectify. 

 

2.1 4.3  The Subsystem Design Authorities 

 

The subsystem design authorities are responsible for the management of the requirements, design 

and manufacture of a group of components for a subset of the system under development and act 

as intermediaries between the overall system design authority and the system component design 

authorities. They take their requirements from the component specifications generated by the 

systems design authority.  

 

They may be responsible for the integration testing of a subset of the overall system but they are 

not directly responsible for overall system performance. The subsystem design authority may add 

extra detail to the system level component specifications. The subsystem design authority 

manages the component manufacturing organisations and are not usually the same team as the 

system design authority.  

 

2.1.4.4  The Component Design Authorities 

 

The component design authorities are appointed by the system design authority to undertake the 

detailed design and manufacture of each component. Each component is specified in a contract 

specification and interface control document, and will have no knowledge of, or be concerned with 
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the integration of the system being developed. As part of their activities they may need to 

generate sub components specification and interface control documents to procure them. 

 

2.1.5  Types of performance problem 

 

The performance of a system can be defined as the way the system meets its requirements. In 

real-time systems we need to focus on functional requirements which have some temporal issue.  

The most common of these are requirements which require a response within a specific time. This 

research focuses on stochastic errors and the effects system delays. Stochastic errors are errors 

caused by sensor noise and the effects of data quantisation. System delays are either the time 

taken for the system to respond to an event or data transiting the system arriving late. 

 

2.1.6 Performance errors 

 

Bondi [39] claims performance requirements are one of the main drivers for architectural decisions. 

He states that poor software performance is a principal cause of software risk and that many 

performance problems have their root in architectural decisions. He says that poor computer 

system performance has been named the single most frequent cause of the failure of all software 

projects. 
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Figure 3 The flow of design information prior to component procurement. 
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It is important to understand how the performance errors affect the operation of real-time 

systems. There are four main types of error that occur in real-time systems: 

 

• Static errors 

Static errors occur as fixed offsets. They are caused by misalignments in sensors and can be 

easily removed by mechanical sensor re-alignment or digital bias. 

 
 

• Stochastic errors 

Stochastic errors are caused by noisy sensors and quantisation errors and can only be removed 

by changing the design of individual components or how data is recorded in the software 

design. Vignes [40] describes an arithmetic method that can be used to calculate 

computational stochastic errors. The methods are complex and generally only apply to 

implementation code.  

 

• Delays  

Delays occur when a system changes from one system mode to another. Typically these 

manifest themselves as the time to respond to a system or user command. If a number of 

different components are involved these are difficult to calculate, and modelling or 

measurement is required. 

• Dynamic errors  

Dynamic errors cause an end event display to lag in real-time due to the time taken for a 

system to process information. These errors occur as information is processed on a periodic 

basis. Tipsuwan et al. [41] describe the effects of delays in control systems. 

 

• Other errors 

Other errors can occur as a result of design errors, intermittent sensor failures, communication 

system and CPU overload and component failures. Such errors are managed by including extra 

functionality within the design to manage abnormal operation and failure modes. 
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Communication system and CPU overload can occur when a system design incorrectly 

estimates the capacity required. For example, in avionic systems the navigation system is 

designed to degrade gracefully as sensors become unavailable. A system failure mode analysis 

may be undertaken to analyse system failures – this is associated with Mission Criticality 

Analysis (MCA). Extra system functions and hardware duplication are added to the system to 

provide reversionary operation in the event of a failure. 

 

All the above errors can be illustrated using an example of a radar driven optical telescope as 

shown in figure 4. The end event considered is the ability of the RADAR-telescope system to point 

the cross wires of the optical telescope in the direction of a target detected by the RADAR. The 

performance requirement might be that the target remains visible within the telescope’s field of 

view for targets with less than a specific angular crossing rate. 

 

For example the end event functional requirement might be: 

 

“An optical telescope with a two degree field of view shall be pointed at an airborne target 

identified by a RADAR” 

 

The performance requirement would be specified by either customer or the system design 

authority’s domain experts based on system requirements model for example: 

 

The target has a maximum crossing rate of ten degrees per second and the target must be 

kept permanently in view. 

 

Static errors can be caused by a static offset between the observed target and the telescope cross 

wires. This error results from equipment misalignment and is fixed by either a mechanical or 

software alignment adjustment. 
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Stochastic errors can be made up of varying errors caused by sensor noise, calculation, 

quantisation errors, scheduling and queues. Ignoring the effects of the telescope mass and 

steering mechanical control system of the telescope results in the target appearing to move 

randomly with relation to the telescope cross wires. 

 

Delays are caused by the system changing from one mode to another. An example occurs when 

the RADAR is reallocated to another target. The system response time is the time taken for the 

telescope to align to the new target. This time delay is likely to be further compromised by 

mechanical effects in the telescope control system.  

 

Dynamic errors are caused by the time taken to process sensor information and are proportional to 

the rate of change of the sensor data. This error causes an offset between the target and the 

telescope cross wires. The larger the angular rate of the target the greater the offset. If the target 

angular rate is zero, the offset is zero. If the target angular rate is large, then the target will move 

outside the field of view of the telescope. Dynamic errors occur in closed and open loop systems. 

Target 

Optical 
Telescope 

RADAR Software control of 
optical telescope 

Figure 4  A RADAR controlled Optical Telescope 
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In closed loop systems, delays in the forward and feedback loops can have a dramatic effect on 

the performance of the overall control system. Sinha [30] describes how the behaviour of open 

and closed loop digital control systems can be calculated. The calculation becomes much more 

difficult if multiple components with independent clocks are involved as the time delays are no 

longer consistent. Measurement during integration is the most reliable method for system 

characterisation, but is also the most expensive to rectify as it is detected late in the system 

development. Modelling early in the design process, component abstractions may identify 

performance issues when they are cheaper to rectify. 

 

2.1.7  System development failures 

 

The system development process cannot avoid mistakes and omissions. They all cost money to 

rectify. The further into the development and the more development phases that are involved the 

more expensive they are to rectify. The cost of these activities are covered by a contingency 

budget set at the beginning of the system development. Details of how much the contingency 

budget is and how it is spent is rarely revealed. There are some systems where the development 

failure issues have been published. Finklestein et al, [42] discuss the London Ambulance Service 

and Grettke et al, [43] discuss the Patriot Missile System. 

 

2.2  Modelling real-time systems 

 

Modelling is used in real-time systems in all phases of their development. The purposes of each 

model and the results obtained are diverse. Great care must be taken to understand the limitations 

of each model and the results obtained. The models are only useful when the correct information 

is available to populate them. 
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2.2.1 Modelling opportunities 

 

The main modelling opportunities used to describe the function and performance of real-time 

systems are: 

 

• Real-world models 

Real-world models describe systems in the real-world and are used to characterise the 

system requirements.  These models say how a system should operate, not how the 

implementation of that system will work. 

 

• System functional models 

Models the operation of systems against real-world requirements.  The models consist 

of abstractions representing the hardware and software. 

 

• System performance models 

Extends system functional models to examine the performance of a system using real-

world inputs. 

 

• System level component functional models 

Models a single component using inputs derived from a system model. 

 

• System level component performance models 

Extends component functional models to examine the performance of a component 

using inputs derived from a system model. 
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• Component abstractions 

A model representing a component derived from a components functional 

specification and interface control document without specifying how that component 

will be implemented. 

 

• Component functional models 

Functional models of a hardware component based on the hardware and if present, 

component software design. 

 

• Component performance models 

Functional models to examine the performance of a component based on the 

hardware and if present, component software design. 

 

During the early system design phase component design information does not exist so the only 

models available are real-world models, system functional models based on component 

abstractions and system performance models based on component abstractions. 

 

2.2.2  Abstraction in modelling 

 

For this research, an abstraction is defined as a representation of a hardware system component of 

a distributed real-time system. The abstraction describes the operation of the component in terms 

of its external interfaces. The external data interfaces reflect the system implementation. 

Perathoner et al [44] emphasise the need for early performance analysis in real-time systems. 

They promote the use of abstractions to represent components and their approach deals with the 

design of system components rather than the early system designs.  

 

The idea of using abstractions has been extended to represent system components in the 

functional model proposed in Chapter 3 where they describe the function and performance of the 
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component independently of how that component is designed.  The abstraction needs to have the 

following characteristics 

 

• Capable of describing all types of system components that contain and do not contain 

software. 

 

• Describe the operation of the component in terms of its external interface in sufficient 

detail to generate its component requirements specification. 

 

• Identify the component external interfaces in sufficient detail to generate its component 

interface control document. 

 

• Capable of being associated with other component's abstracts so that the whole system 

can be analysed. 

 

• Simple enough for system design authority domain experts to understand. 

 

• In sufficient detail to assess the performance in terms of its external interfaces. 

 

Animation 

 

Animation of software systems can be used as a means of analysing software. Li et al, [45] 

illustrate how formal specifications are used based on the software for a bank ATM system. This 

approach can be extended to enable performance assessment of system models that take into 

account a mixture of hardware and software performance requirements represented as component 

abstractions. 
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Currently most system performance management activities occur during the component design 

phase after the component design authorities are appointed. 

 

Ammar et al. [46] suggest that performance often does not become an issue until software 

implementation and integration. They emphasise the need to undertake performance evaluation to 

compare different design alternatives and detect performance short comings. They say that it is 

performance that is a key criterion that makes software developers able to select the system that 

best fits the requirements and achieve longer design stability. 

 

Babamir et al. [47] discuss architecture, scheduling and application of distributed real-time 

systems. They address a wide variety of issues including mode changes, schedulability and time 

tags whilst considering client server systems and queues. The systems considered in this research 

use periodic processing to satisfy system end events with mode changes. This book stresses 

architecture, scheduling, specification and verification in real-world applications of real-time 

systems. In particular it includes a cross-fertilization of ideas and concepts between the academic 

and industrial worlds. It is for this reason that the context and users of any model must be taken 

into account in its development. 

 

2.2.3  Measurement 

 

The aim of the research described in this thesis is to find ways of discovering performance failures 

prior to being discovered during system integration and deployment. Measurement is the most 

reliable method of determining system and component performance but is only available during 

the later phases of development. Sometimes it is not possible to measure performance and 

modelling has to be used instead.  
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2.2.4  Calculation 

 

The calculation of performance from early system functional and performance models is possible 

but becomes much more complex as the size of the system increases.     

 

2.2.4.1  Manual calculation 

 

Performance can be calculated manually for simple systems.  For large complex systems manual 

performance becomes too complex. Chapter 3 describes how the calculation of dynamic errors can 

be undertaken.  The results of this calculation are minimum and maximum system delays. 

 

2.2.4.2  Formal methods 

 

Formal methods are a mathematically based set of tools for the specification and analysis in the 

development of software and hardware systems. Hinchey et al. [48] state that formal methods are 

difficult to apply and require significant mathematical experience. Pfleeger et al. [49] investigate 

the use of formal methods to develop an air-traffic control system. They say that the benefits of its 

use were not conclusive. Bowen et al. [50] say that the use of formal methods is not as 

widespread as expected. 

 

Formal methods define notations, which can be used to express models, just as UML is a modelling 

notation. The difference is that the notations of formal methods have mathematically rigorous 

semantics. 

 

Clarke et al. [51] describe how mathematically based languages are used to help construct 

complex systems. They identify the need for formal methods specialists to be used. Whilst formal 

methods may be used to specify system component abstractions, a simpler approach would be 

more appropriate. Kreiker et al. [52] describe how formal methods are used to describe modelling 
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analysis and verification during the design stages. They identify the difference in expected skills 

between researchers and industrial users. They report that whilst formal methods have often been 

dismissed by many – a rather abstract research with little chance for industrial adoption – decades 

of research, both basic research and tool development have started to bear fruits, attracting an 

increasing level of industrial interest. This interest is often accompanied by unrealistic expectations, 

but, however, still provides an opportunity and challenge to researchers working in this area, as 

more basic research and good engineering tools are needed to solve the challenges. 

 

The formal methods most often proposed for the specification and design of real-time systems 

include process algebras. These are mathematically rigorous languages which can represent 

concurrent communicating processes in an algebraic form. Examples include Communicating 

Sequential Processes developed by Hoare [53], Milner's Calculus of Communicating Systems [54] 

and Bergstra's et al’s Algebra of Communicating Processes with Abstraction [55]. They all include a 

number of operators which can be applied to processes, for example, '+' represents choice and '.' 

represents sequential composition. Process algebras can describe how processes relate to each 

other, but their use in the early specification of requirements for complex distributed systems is 

limited, since abstractions of system components (processing and non-processing) and inter-

component communications used in the additional model investigated do not contain concurrent 

processes. 

 

Domain experts, system designers and system architects support the early stages of system design 

operating in a combined team. They are unlikely to have the skills to use formal method based 

tools to communicate with each other. They need an easily understandable, graphics based, model 

to assess the functionality and performance of the system design. 

 

 

 

 



Thesis                                                                 Distributed real-time systems

 
 

 
Michael Giddings                         Page 59 of 277                       12/10/2016 

 

2.2.4.3  Petri nets 

 

Petri nets are a specific formal method that have been addressed separately as they offer the 

possibility of an alternative to the method proposed in Chapter 3. 

 

Peterson [56] describes the basics of Petri nets. Petri nets have been introduced to show the 

transitions between software states within software. Timings between these states can be used to 

analyse performance. Petri nets are an abstract formal model of information flow.  

 

Bicchiera et al. [57] use an industrial case study to describe the translation between MARTE and 

timed Petri nets in a MIL STD-498 [58] based project. The analysis process is used within the 

software design of a specific component. He describes how UML-MARTE is used in conjunction with 

timed Petri nets in a V diagram for a real-time system. He concludes that the approach proves 

practical feasibility in the industrial applicability of formal methods and practices. The V diagram 

described reveals that the proposed approach is not available until after component design has 

started. 

 

Petri nets can be used to describe requirements and design for both system and component level 

operation. They can be annotated with timing information. They are particularly useful for 

describing systems which undertake a complex sequencial or concurrent actions. Typical situations 

that can be modelled by Petri nets are synchronization, sequentiality, concurrency and conflict. 

Petri nets particularly suited to represent, in natural way, logical interactions among parts or 

activities in a system. 

 

A Petri net (place/transition net or P/T net) offers a graphical representation of a mathematical 

representation of a group of processes which includes choice, iteration and concurrent operation. 

They are similar to state transition diagrams and describe the behaviour of systems. Petri nets 
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consist of places (possible states), transitions (events or actions) and arcs (links places and 

transitions).  

 

Staines [59] describes formal methods, such as process algebras, stating that they are not 

commonly understood and that Petri nets are a good alternative. Petri nets are a graphical 

representation of formal methods. Staines writes that good Petri net simulation tools are available 

to describe real-time systems in fine detail and analyse them which cannot be easily achieved by 

many other techniques. A complete timed Petri net diagram is shown  in figure 5 describing an 

ATM controller and card authorisation. Even for a relatively simple ATM system the diagram is 

difficult to understand for domain experts. He describes animating this Petri net to achieve a 

number of runs which indicate likely performance. The timing aspects of the system are based on 

either constant time delays or a timing delay somewhere between a minimum and maximum delay. 

The Petri net requires a detailed knowledge of the internal working of the components contained in 

the system. This information is only available after the design of the system components have 

started. 

 

Petri nets describe systems in terms of transitions between states. They are not so good at 

describing the links between independent functional elements as they require rework every time 

the order that the places and transitions change. 

 

Another problem with Petri nets is that the translation between requirements based Petri nets and 

design based Petri nets is not possible. This is because requirements based Petri nets relate to 

changes in the user domain and design related Petri nets deal with changes in the system 

software. 

 

Performance analysis of timed Petri nets is based on adding up the maximum and minimum delays 

within the system giving minimum and maximum errors respectively in a system end event. Overall 

maximum and minimum delays are obtained by adding individual transition minimum and 
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maximum delays respectively. This approach is similar to critical path analysis which analyses tasks 

and identifies the string of tasks (the critical path) which most impact the projects timescales. 

 

Carnevali et al. [60] describe how pre-emptive time Petri nets (pTPNs) can be used within the 

software design life cycle. pTPNs support modelling and analysis of concurrent systems running 

under fixed priority pre-emptive scheduling. He covers the software design of a specific component 

and shows where the Petri nets are used within the development process using a V diagram. 

Figure 6 shows these activities (highlighted grey) and is extended to include the use of Petri nets 

in the user domain.   

 

Ameedeen et al. [61] compare the ease of use of UML compared with Petri nets and suggest that a 

Model Driven Development based automatic translation between UML and Petri nets might 

overcome some of the difficulties in their use. They suggest that any new model should consider 

automatic translation between UML and Petri nets as a feature. 

 

Bushehrian et al. [62] examine the translation between UML and finite state process model for 

early performance analysis. They describe a case study considering a web based electronic bill 

payment system breaking down the process into nodes and requests. Average response times are 

derived from multiple test runs. The method described deals with queues rather than stochastic 

and dynamic errors. The idea of determining performance from multiple simulation runs is, 

however, applicable to the use of the animator proposed in this research investigation. Athamena 

et al. [63] extends this translation to consider behavioural models and simulation. They use Petri 

nets for automatic behavioural testing and review different application requirements to consider 

periodic and aperiodic processes, static and dynamic schedulers and methods to calculate code 

execution times. The method assumes that the design of system components is available which 

makes it inappropriate for the early system design phase before the component design authorities 

have been appointed. 
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Figure 5 Example of a Petri net diagram for a simple ATM system. 



Thesis                                                                 Distributed real-time systems

 
 

 
Michael Giddings                         Page 63 of 277                       12/10/2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 V diagram showing where time Petri nets were used (highlighted grey). 

 

2.2.4.4 Statistical methods 

 

Statistical methods can be used to collect, summarize, analyse and interpret numerical data that 

cannot use determinist methods. Vignes [40] describes an arithmetic method that can be used to 

calculate computational stochastic errors. The use of statistical methods have been assessed as 

follows: 
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• As an alternative to the maximum and minimum calculation of dynamics errors in functional 

chains in linked component abstractions described in Chapter 3 between components with 

unsynchronised schedulers. 

 

• As a means of calculating stochastic errors caused by data quantisation in and between 

component abstractions.   

 

• Assessing the effects of sensor noise. 

 

• Collection of statistical data from the animator described in Chapter 3. 

 

Chapter 3 concludes that although a mathematical statistical approach is possible for simple 

functional chains it becomes too complex for multi-component multi-branch functional chains. 

 

2.2.5  Functional models 

 

Functional models are defined as a structured representation of a system in terms of activities, 

actions, processes and operations. There are many types of functional model diagrams including 

function block diagrams [64] and function flow block diagrams [65]. 

 

The description of software and hardware systems using functional models has been used for 

many years. Rumburgh et al. [66] describe the principals involved. They also show how component 

functional descriptions can be decomposed to show detailed functional elements. This approach 

forms the backbone of the proposed new model described in this thesis. Functional model block 

diagrams need to be extended to include software and hardware aspects and interfaces. The 

diagrams used need to be precisely defined and supported by process and data definitions stored 

within a database.  The function model needs to define hardware components as abstractions as 

the components design does not exist at this stage of the system development. 
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2.2.6  Functional elements 

 

A system functional element can be defined as the overall system functional requirement 

decomposed into small independent parts capable of independent operation. 

 

2.3 Approaches to performance management 

 

2.3.1 Fix-it-later 

 

It is necessary to investigate how current systems are developed to understand how any new 

approach might benefit the early development stages of system design.  

 

Smith [11] states that systems are developed on a 'fix-it-later' basis. She states that this approach 

continues [67]. Whilst one might be initially alarmed by this statement, system development by 

human beings has been undertaken on the basis that mistakes of one sort or another will be 

made, discovered and corrected. Large contingency sums have been earmarked for this process. 

Many errors are soon detected and corrected but some persist until system integration and 

deployment.  

 

A 'fix-it-later' approach develops the system with as much care as possible and if it does not work 

in the way required then it is reworked until it does. The problem with this approach is that the 

rework process becomes prohibitively expensive as the complexity of the system increases.  

 

Balsamo et al. [22] also mention traditional software development based on a 'fix-it-later' basis and 

identify a growing interest in early software performance predictive analysis. 

 

Sanchez et al, [68] state that the use of trial and error methods in embedded system development, 

however, remains at 25%. If the system under development is similar to a previously developed 
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system then the likelihood of a design failure is reduced. As software systems became more 

sophisticated, it has become necessary to manage performance issues as early as possible to avoid 

the cost impact of late detected performance failures. 

 

The research question does not say that systems cannot be developed in an error based way; it 

asks whether there is any way un-satisfied performance requirements can be detected early in the 

system development. 

 

2.4  Components 

 

2.4.1 Types of components 

 

For this research, system components are defined as physical pieces of hardware purchased from a 

single supplier. Communication links may be included within system components but are 

considered as separate components for modelling purposes. 

 

Real-time systems consist of some of the following components: 

 

Sensors 

Actuators 

Displays 

Communication links 

General purpose computers 

Special purpose processing components 

 

The components of real-time systems comprise two basic types. Commercial off the shelf (COTS) 

equipment which already exist and bespoke components which need to be developed specially for 

the system. 
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2.4.2  Hardware architectures 

 

Prior to the generation of component requirements, collaboration diagrams can be used to identify 

links between individual system components. An example of a collaboration diagram being used for 

this purpose is shown in figure 7. These diagrams can be extended to show the inter-component 

communication. An example of this representation is shown in figure 8. The diagram identifies all 

the system components together with all the inter-component interfaces. Inter-component 

interface should be accompanied with a detailed specification. All interfaces between the system 

and its external environment should be shown. Each system end event should be identified. 

Hardware components should be associated with an abstraction representing its functional and 

non-functional characteristics.  

 

 

 

 

 

 

 

Figure 7  Collaboration diagram. 

 

Anderson et al. [69] describe the use of UML/SysML at Saab Aerosystems for UAV systems. They 

show available diagrams split into structural (physical view) and behavioural diagrams (deployment 

view) that differ from the OMG SysML. Model performance assessment was not addressed in any 

way or combined functional and hardware architecture model proposed. They do however 

recommend that SysML is extended to support representation (and the actual configuration) of a 

realised system along with the capability to associate verification results. 
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Figure 8  Information required for an initial system level system diagram. 

 

 2.4.3  Interconnection between system components 

 

During the early system design phase the interconnection arrangements between components 

must be selected and specified in the system components contract specifications and Interface 

Control Documents. Without some form of capacity analysis there is a risk that communication 

links will need to be replaced. If this rework is not identified until integration and deployment then 

the costs involved will be large. Interconnection between components use four types of 

communication: data buses (for example Mil-std 1553 data bus) [70], Direct Data Links (DDLs) (eg 

RS232 and RS485) Analogue links and Discrete IO interfaces (Triggers). Shafy [71] describes the 

use of discrete IO interfaces in control systems. Many systems convert discrete interfaces into 

system flags for use within software processes. Component interconnections affect system 

performance and must be included in any performance assessment undertaken. 
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2.4.4  Software architectures 

 

There are three main types of tasks in real-time system components. Biccheirai et al. [57] describe 

these as the OMG UML MARTE extension class set model shown in figure 9 and listed below. Whilst 

these tasks can be identified after the component design has started, a simpler representation is 

required for a component abstraction before the component design exists. MARTE cannot describe 

system components which do not contain any software.  

 

Figure 9  A UML-MARTE class diagram of the task-set model.  Bicchierai et al. [57]. 

 

1. One shot tasks: Event driven software moves from one state to another as a consequence 

of an event. A vending machine is a good example of an event driven system.  

2. Periodic Tasks: Periodic systems perform iterations of previously determined lists of 

actions. These actions are executed in a repetitive way. The frequency and timing of each 

repetition or iteration can be based on a fixed schedule or managed to satisfy accuracy 

and timeliness requirements criteria. Most control systems are examples of periodic 

processing systems.  
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3. Aperiodic or sporadic tasks:  Aperiodic or sporadic tasks do not have predetermined lists of 

actions. They may, however, contain scheduled actions and managed resources.  

 

Eidson et al [72] state that special measures may be incorporated to ensure that tasks are 

undertaken at the right time and in the right order. It is too difficult to synchronise component 

clocks located in different components. However, timing signals such as data bus time tags, may 

be used but not with sufficient accuracy to synchronise component clocks. Wu [73] describes how 

time tags can be used to detect system component failures as time tags are not updated if a 

component fails. 

 

Special measures are necessary to manage shared resources such as memory. This generally 

involves using waits which introduces uncertainty in the performance that is delivered. An 

implication of this is the need to avoid waits if at all possible as this introduces temporal 

uncertainty. Zaitsev [74] describes special techniques which are included to avoid processing being 

suspended waiting for a resource to become available – known as asynchronous operation. 

 

The term Client/Server describes computing system composed of distinct logical parts: servers, 

which provides information or services, and clients that request them. The client/server 

characteristic describes the relationship of cooperating programs in an application.  

 

Many systems use the client/server architecture if the system is accessed by multiple users at the 

same time. The users will be connected to one or more servers, which provide simultaneous 

access. These architectures are typical of business or enterprise systems and are generally not 

real-time systems even though they do have timing constraints. There are however, some 

examples of real-time systems that are client server systems. Franks et al. [75] give an example of 

an Air Traffic Control (ATC) system comprising a client/server communication structure. 
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Some systems use events to trigger processing as they transit from one mode to another. The 

performance of the system as a result of a trigger is characterised by the time taken to make this 

transition. For example, there will be a requirement for a vending machine to start serving a drink 

within a specific time of completing the payment process. Many real-time systems operate in this 

way with timing requirements that focus on reaction time. 

The only architectural restriction on components in a distributed real-time system is that each 

component must communicate in some way with at least one other component in the system. 

 

2.5 Specifying real-time systems 

 

Natural language was originally used for specifications but was found to be imprecise and 

ambiguous. The information contained within these specifications was also difficult to access. 

Whilst contract specification and interface control documents remain in textual form, system 

specifications made up of abstractions for individual system components may be used to aid 

clarity, precision and data hiding. To overcome the inflexibility of textual specifications, formal and 

graphical methods are used to specify the functional behaviour of the system.  

 

The format of a requirements or design specification varies enormously from project to project. 

The specification contents are described using a language such as English or UML. A tool such as 

Statemate [76], [77] or Rational Rose [78] enables the specification to be generated using a 

language but does not specify what the specification should contain. Furia et al. [79] survey 

various models and modelling languages used in the formal modelling and analysis of the temporal 

features of computer based systems. They deal with time within different components, system 

internal time and real-world time, and modelling time within abstractions. These are key 

ingredients for using abstractions. 

 

In the past many system design authorities used non object oriented graphical methods such as 

CoRE [6] to define requirements in terms of processes and data. CoRE also operated as a design 
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specification method associating these requirements with a system architecture. Although this is a 

graphical method, much of the requirements definition is still textual. CoRE does, however, provide 

a structured database representation of the complete design. This made CoRE a method and a 

tool. Performance requirements were defined separately. Consistency between individual elements 

of CoRE specifications can be automatically checked. Messaoudi [7] describes how the processes 

were identified in CoRE specifications using viewpoints. One of the strengths of CoRE is that its 

requirements specifications could be extended to form a design specification by adding 

annotations, which specified the partitioning of system requirements to hardware architectural 

components. It does this by using an up-arrow notation for each process, indicating the 

component that supported it. The concept of extending requirements specifications to form a 

system design specification rather than replacing the requirements specification with a new system 

design specification, reduces translation errors. The introduction of object oriented representation 

of requirements based on real-world entities provided other approaches such as state machines. 

Their use suffers from the problem that they need component design information before 

performance analysis can begin. 

  

2.5.1 Requirements 

 

Components are specified in terms of functional and non-functional requirements. Functional 

requirements can be defined as a description of all the things a component will do. Non-functional 

requirements describe the operation of a system, rather than specific functional behaviour. Chung 

et al, [80] describes what non-functional requirements are. 

 

Leveson et al. [81] use an example of an industrial aircraft anti collision avoidance system (TCAS 

II) to discuss the importance of accurate requirements specifications. They describe requirements 

specification languages in terms of state charts. The requirements specifications they describe are 

hardware architecture independent and so cannot be used to verify the partitioning of functional 

and non-functional requirements to individual system components. They can, however, be used to 
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model the requirements. The requirements modelling can then be compared with the predicted 

performance obtained during the system design process.  

 

2.5.2 Component Contract Specifications 

 

Component design authorities and suppliers are chosen by issuing a component contract 

specification and asking potential organisations to bid for the contract.  Most component contract 

specifications are textual. These specifications are generated on a fix-it–later basis. Function and 

performance present the biggest problem.  This research examines ways that might be used to 

identify errors and omissions during the early design stage prior to completing of the component 

contract specifications. 

 

2.5.3  Interface Control Documents  

 

Interface control documents describe all the external component connections of a system. 

Rahmani et al. [38] discuss the importance of interface control documents. They discuss the 

ontology of interface control documents as an essential part of a component’s specification. 

Interface control documents form part of the information pack sent to prospective system 

component design authorities to enable them to bid for the role of component design authority. 

 

2.5.4  Software specification 

 

Software may be used in two ways. Firstly the component may be a general purpose computer 

which contains software designed by the system design authority and impacts the functional 

behaviour of the system beyond the component that contains it. Secondly the component may 

contain software which entirely relates to the operation of that component. This software is 

developed by the component design authority rather than the system design authority. 
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This research proposes that software is represented by an abstraction which specifies its function 

and performance.  

2.6  Universal Modelling Language (UML) and real-time systems 

 

UML is commonly used as a graphical modelling language for describing systems.  Extensions to 

UML provide extra capabilities for specific purposes.  Three common extensions, MARTE, SySML 

and SimML are described below.  The additional model proposed in Chapter 3 could be defined as 

a new UML extension. 

 

2.6.1 UML 

  

UML was introduced in the 1990s to provide an object oriented graphical design language. UML 

was developed in the 1990s by Grady Booch and Jim Rumbaugh at Rational Software [82]. In 1997 

it was adopted by the Object Management Group [8] and became accepted by the international 

Organisation for Standardisation (ISO) as an industry standard method for system specification. 

UML uses the Object Oriented approach to requirements and design specifications for the artefacts 

that specify the functional requirements and design of a system.  

 

Björkander et al. [83] describe architecting systems using UML. They do not describe a method for 

dealing with the architecture of components that affect the system performance. Selec [84] 

describes the semantic foundations of UML. As UML has been universally accepted any new system 

design methodology should ideally either use UML or be defined as an extension to UML. The 

functional model proposed in this research can be expressed as an extension to UML. 

 

Unlike CoRE, UML is a graphical design language (notation) and does not operate as a design 

method. This means that its application will vary from project to project, defined in advance in the 

project Engineering/Quality Plan. Various tools such as Statemate [76], [77] and Rational Rose 

[78] enable UML to be applied to systems development. 
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There are many techniques used to specify the characteristics of the system during its 

development. All the specification methods need to consider the following qualities:  

 

• Unambiguity 

• Precision 

• Data hiding 

• Encapsulation 

• Without duplication 

 

Berkenkotter [85] considers the benefits of UML 2.0 over previous versions. He said that in spite of 

the improvements made, UML is still overloaded with elements and diagrams whose usability is 

dubious. He considers that in the real-time domain this is a disadvantage.   

 

Anda et al. [86] report on a case study of a company updating a large safety critical system. They 

report on the extent to which UML was used, identifying benefits and difficulties. Three main 

problem areas were identified: choosing the right diagram for a specific situation, the interfaces 

between models and level of detail required. 

 

There are no definitive rules about how UML may be deployed during the development of a 

system. The Project Engineering/Quality Control Plan defines the standards and styles which are 

used within a specific project.  

 

Sanchez et al. [68] has shown that the actual adoption of the Unified Modelling Language (UML) in 

software systems development remains low at 16% with no expected upturn. This re-enforces the 

need to make any additional performance assessment method to be simple and easy to use. Petre 

[87] also reviews the use of UML in industry and confirms that its use is not universal. 
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UML diagram consistency checks are not part of UML – they may be offered by separate tools that 

use UML. There is no expectation that a requirements/design should fully populate a complete set 

of all possible diagrams. 

 

UML can be used to encapsulate elaborations to the component requirements specification 

generated by the system design authority. These are the same diagrams which are used by the 

system design authority to elaborate the customer requirements and define the system design. 

This may be undertaken even though the translation between the system requirements and the 

component requirements is initially not perfect. 

 

Extensions to UML have been defined for specific purposes. Examples of these are MARTE for real-

time systems [17], SysML [16] for system design and SimML for simulation [88]. Further 

extensions can be defined as required. These extensions may introduce extra diagrams. Berenbach 

et al. [89] describe extensions to UML that might be used for model driven requirements 

elicitation. He identifies problems associated with existing modelling languages in four customer 

based examples. He identifies Universal Requirements Modelling Language (URML) as an extension 

that addresses some of the concerns identified. There is, however, no mention of performance 

assessment made. 

 

2.6.2  Modelling and Analysis of Real-Time and Embedded systems (MARTE) 

 

Modelling and Analysis of Real-Time and Embedded systems (MARTE) is an extension to UML to 

specify the real-time aspects of system components. Although MARTE usually applies to the 

specification of the actual detailed design of real-time components, it does help in the construction 

of the additional model proposed in Chapter 3. 

 

Figure 9 shows the software tasks that MARTE is capable of addressing when modelling software 

in components as described by Biccchierai et al. [57]. This level of detail is not available prior to 
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the development of components. System model abstractions used prior to component design must 

concentrate on elements for which information is available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 A subset of MARTE tasks that might be used early in the system design development 

phase. 

 

Figure 10 shows a subset of figure 9 showing the MARTE tasks available for abstractions prior to 

the start of the hardware component design. The proposed additional model is based on this 

simplified list of tasks. 
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Figure 11 UML diagrams available within SysML. 
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2.6.3 Systems Modelling Language (SysML) 

 

The most important UML extension for system design is SysML as it provides a consistent graphical 

approach to hardware architecture specifications. Whilst SysML can fully specify the hardware 

architecture and be annotated with performance requirements, it cannot be used to evaluate the 

suitability of the hardware architecture without feedback from the component design authorities.  

 

Figure 11 shows the UML diagrams available within SysML. 

 

2.6.4 Simulation Modelling Language (SimML) 

 

SimML can be used to generate simulation programs from UML. SimML is a textual language and 

has been used to investigate software performance. Although it emphasises the need for early 

performance analysis it does not apply to analysis of system performance prior to component 

design activities. Jinchun et al. [90] describe how SimML simulation might be undertaken using a 

method called PSIM to predict system performance and system performance bottlenecks. Arief et 

al. [91] describe a tool for the generation of SimML simulation programs from UML specifications of 

systems that involve servers and queues. Neither approach uses abstractions that represent 

individual system processing and non-processing components. 

 

2.7  Model Driven Development and Real-time Systems 

 

It has been suggested that MDD can help in systems development.  The key properties of MDD is 

the transformation between models which represent different phases of the system development.  

There are, however, shortcomings in MDD when it is used in real-time systems. 
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2.7.1 MDD Design Route 

 

The Model Driven Development life cycle (MDD) has been introduced by the Object Management 

Group (OMG) [15] to provide models describing systems at different levels of abstraction. Kleppe 

et al. [92] describe these models in the context of a development life cycle. Meservy et al. [93] 

claim that MDD might revolutionise software development. They concentrate on the development 

of software but do not say how MDA can be extended to include hardware architecture necessary 

for the development of real-time systems. Staron [94] reports on two cases studies in the use of 

MDD in industry, showing what conditions should be fulfilled to increase the chance of success in 

its adoption. These were maturity of modelling technology, maturity of modelling related methods, 

process compatibility, core language-engineering expertise, and goal driven adoption process. 

Cortellessa et al. [95] describe three specific types of model that have been introduced: the 

Computation Independent Model (CIM), the Platform Independent Model (PIM) and the Platform 

Specific Model (PSM). Figure 12 illustrates the software development lifecycle using these three 

models. 

 

It is not clear how MDD can be used in the system design of a distributed real-time system that 

needs to combine the system hardware architecture with the architecture independent system 

requirements. One key feature of MDD is the concept of automatic translation between MDD 

models. Whilst some progress has been made on the translation between PIMs and PSM, no 

progress appears to have been made in the automatic translation between the CIM and the PIMs 

for the software in each component. Where automatic translation is not possible, manual 

traceability techniques can be used. 

 

Woodside et al. [1] have surveyed the current progress and future trends of software performance 

engineering. In particular they assess the context of Model Driven Development; saying that 

software performance is affected by every aspect of the design, code and execution environment. 

Two approaches are identified: a measurement based approach based on testing, diagnosis and 



Thesis                                                                Distributed real-time systems    
  
 

 
Michael Giddings                         Page 81 of 277                       12/10/2016 

 

tuning late in the design and a model based approach which relies on quantitative analysis of 

models. Whilst analysis after the commencement of component design is discussed, analysis of 

system level models based on abstract representation of hardware components is not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12    The model driven development design route. 

 

The MDD design route defined by the OMG [15] only outlines the concepts of CIMs, PIMs and 

PSMs. This means that every project adopts MDD in different ways using different model formats. 
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Typically these models have been applied to the software development of enterprise systems. The 

potential of using another type of model to combine system requirements and hardware 

architectures as a different use of a CIM has yet to be explored. Each project defines how it is 

going to adopt MDD in the projects Engineering/Quality plan. The specific requirements of the 

system design of real-time systems with dispersed stakeholders prior to finalisation of component 

specifications needs to be addressed. 

 

Hutchinson et al. [96] assess the experiences of Model Driven Engineering (MDE) at three 

companies, listing lessons learnt. Whilst quite a few of the lessons learnt deal with organisational 

issues and lower level MDD model transformation they also consider problems associated with the 

use of abstraction in system models. He concludes that the successful deployment of MDE appears 

to require: a progressive and iterative approach, transparent organisational commitment and 

motivation, integration with existing organisational approaches and a clear business focus. 

 

The OMG Guide [15] is quite clear that platform independence does not mean hardware 

architecture independence. The OMG MDA Guide describes models, platforms and platform 

independence as follows: 

 

A model of a system is a description or specification of that system and its environment for 

some certain purpose. A model is often presented as a combination of drawings and text. 

The text may be in a modelling language or in a natural language.  

 

A platform is a set of subsystems and technologies that provide a coherent set of 

functionality through interfaces and specified usage patterns, which any application 

supported by that platform can use without concern for the details of how the functionality 

provided by the platform is implemented. 

Platform independence is a quality, which a model may exhibit. This is the quality that the 

model is independent of the features of a platform of any particular type. Like most 
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qualities, platform independence is a matter of degree. So, one model might only assume 

availability of features of a very general type of platform, such as remote invocation, while 

another model might assume the availability a particular set of tools for the CORBA 

platform. Likewise, one model might assume the availability of one feature of a particular 

type of platform, while another model might be fully committed to that type of platform. 

 

Pires et al. [97] use a subset of UML/SysML to model software in an industrial embedded avionic 

systems project. They claim substantial benefit from using model driven engineering in conjunction 

with block diagrams, state machine diagrams and activity diagrams.  

 

During the initial system design much of the information required is not available before the 

component requirements are identified, so something much simpler must be used. 

 

DeAntoni et al. [98] describe a method of modelling real-time embedded systems. They use a MDA 

based method, separating concerns, introducing a communications layer with the outside 

environment, an application layer and a connection layer between these two layers. They consider 

the role of early simulation and validation in the development of real-time systems. 

 

2.7.2  Computation Independent model (CIM) 

 

The requirements for the system may be modelled in a computation independent model, CIM, 

describing the situation in which the system will be used. Such a model is sometimes called a 

domain model or a business model. It may hide much or all information about the use of 

automated data processing systems. Typically such a model is independent of how the system is 

implemented. A CIM is a model of a system that shows the system in the environment in which it 

will operate, and thus it helps in presenting exactly what the system is expected to do. It is useful, 

not only as an aid to understanding a problem, but also as a source of a shared vocabulary for use 
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in other models. In a MDA specification of a system CIM requirements should be traceable to the 

PIM and PSM constructs that implement them, and vice versa.  

Another possibility not currently used when generating the CIM is the ability to construct a system 

design from predefined independent functions located in a library. This approach has been used in 

simulation models by Krahl [99] but does not assess the impact of hardware architecture or 

performance. The concept of a predefined library of functional elements can be used to specify the 

functionality of real-time systems. 

If MDD is going to be used effectively within a real-time development process for large distributed 

real-time systems, the broad definition of a CIM must be tailored to suit. It must be capable of 

being associated with a system hardware architecture to form a system design specification. The 

software in the system processing components can then be modelled using platform independent 

and platform specific models. It is this early simulation that can be used to help select system 

components. 

2.7.3  System design model 

System design models cover system hardware architectures, functional and non-functional 

requirements. They specify the distribution of functionality between components and the 

communication links between components. They specify a wide range of non-functional 

requirements such as performance, safety, mission criticality, graceful degradation and the extra 

functionality to manage them. For example, graceful degradation requirements need a system 

wide failure analysis which leads to reversionary moding. 

The system design model needs to contain the following information in order to mirror the 

information needed in the component specifications and interface control documents for successful 

selection of component design authorities: 

 

• A functional model of the whole system 
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• An abstraction of each system component  

• An abstraction of each communication link 

• A list of whole system end events partitioned to individual system components 

• A specification for each system component 

• An interface control document for each component 

• An interface control document for each communications component 

 

MDD does not have a model that represents the CIM of a distributed real-time system that 

contains both software and hardware aspects. The MDD system design model should identify the 

system components and describe how they are connected together. The model should identify the 

functional and non-functional system design for each component. When the software needed for 

each component has been specified as an abstraction, the software for each component can be 

represented as a Platform Independent Model. 

 

2.7.4  Platform Independent Model (PIM) 

 

Platform independent models are generated from the system design by the system design 

authorities for each processing component. Individual platform independent models rely on the 

content of the system design specification and cannot be used to check that the system 

requirements are met. A mistake in the system requirements or the system design might not be 

detected by the component design authorities. 

Lu et al. [100] describe the specification of component based software architectures for embedded 

systems using PIMs and PSMs identifying benefits such as low cost by fostering re-usability of old 

designs (PIM) in new applications (PSM) validating the correctness of models. Hayes [101] claims 

that the platform independent approach to real-time systems development enables dependable 

and flexible systems to be developed at a lower cost by using a platform independent approach. 
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Raistrick et al. [5] have evaluated MDD PIMs within the Avionics industry to assess the possibility 

of automatic development process. They cover the introduction of hardware system components 

but their approach does not address performance during the system design process prior to 

component selection and specification. They focus on the delivery and certification of avionics 

software; concluding that the Model Driven Architecture (MDA) approach is how future avionics 

systems will be built. 

 

Pastor et al. [102] introduce CIM, PIM, PSM, and Code models and compare them to the 

conventional object oriented approach. They describe transition methods from CIM to PIM to PSM 

to code model. The CIM is described as a viewpoint focused on the environment and system 

requirements, which disregards the computerisation of the system being modelled. They do not 

identify the need for the system hardware architecture to be included in the CIM. The PIM is 

described as the next level of abstraction and as a model that takes into account which parts of the 

system will be computerised, but it still does not determine the architectural platform that will 

support the implementation. They conclude that the processes described in their case study 

represent one of the possible routes that can be followed when developing a software system with 

the Object Oriented (OO) method. 

 

Cortellesa et al. [95], [103] describe non-functional aspects of MDA introducing three parallel 

models to describe non-functional requirements: CINFM for CIM, PINFM for PIM and PSNFM for 

PSM models. The combination of CIM and CINFM still falls short of a full systems design. PIM 

PINFM and PSM PSNFM model pairs relate to components. The term ‘platform’ does not refer to 

the hardware architecture of the system. 

 

Neither the CIM nor the PIM can be used as a system design specification. The CIM does not cover 

the proposed hardware components of the system and the PIM only relates to the components of 

the system that will be computerised.  
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Many papers, for example Bohme et al. [104], consider automatic translation between PIM and 

PSM models within individual system components. None cover the automatic translation between 

the system specification and individual PIMS. The challenge is to generate the system design in a 

form where this translation is possible. The problem with generating PIMS automatically from the 

system design model is that extra detail needs to be added. The first element is the effects of the 

detail internal hardware configuration of the component and the second is the software 

architecture that the component. 

 

Cuccuru et al. [105] describe how the gap between the abstract specification level and a 

heterogeneous architecture level might be bridged for real-time implementations. They do this by 

associating a UML based application design with a hardware architecture using an UML association. 

They do address system hardware architecture and show a workflow from system design to 

software design to code generation. They do not address performance analysis or large distributed 

real-time systems, or offer the possibility of automatic transformation between system and 

component requirements. 

 

Elleuch et al. [106] introduce an architecture-centric MDE approach that stresses architecture 

based development and validation of real-time systems. They introduce architecture independent 

(AIM) and architecture specific (ASM) models where the term architecture refers to the physical 

hardware. They describe how a requirements model (CIM) is used to derive an AIM. The AIM is 

then used to generate three types of ASM: Software Architecture-Specific Models (SASM), 

Hardware Architecture-Specific Models (HASM), and Integration Architecture-Specific models 

(IASM). The example used is a simple automotive speed regulator. The methodology does not 

offer the capability of analysing performance prior to component design as the information needed 

is not available. 

 

Marcos et al. [107] discuss the mapping between CIM, PIM and PSM models but focus on software 

architectures of web based systems. The architecture it addsses is the software architecture or 



Thesis                                                                Distributed real-time systems    
  
 

 
Michael Giddings                         Page 88 of 277                       12/10/2016 

 

fundamental organisation of the system not hardware architectures. They report that the 

Architecture-Centric Model-Driven Architecture (ACMDA), has several advantages, as it allows 

architectural design to benefit from the adaptability and flexibility of an MDD process; and on the 

other hand it extends MDA philosophy by integrating true architectural concerns, effectively turning 

it into an Architecture-Centric Model-Driven Development (ACMDD) process. 

 

Gilliers et al. [108] introduce a modelling language LFP (language for prototyping) that can be 

applied to distributed systems. It emphasizes the use of a model serving as a basis for automatic 

code generation; strong connections with formal verification techniques enforce correctness of the 

system, however, it does not offer the capability of analysing system performance early in the 

system design lifecycle. 

 

Kuzniarz et al. [109] consider quality in MDD models. In particular they say that models may be 

purposely incomplete or semantically free. They identify a list of qualities for MDA models. The list 

includes correctness, consistency, completeness, conciseness, detailedness, maintainability, clarity, 

complexity, navigability, traceability, size, measurable, precision improving and stability. Any new 

models defined should take these quality features into account. 

 

Nobre et al. [110] used MDA to develop the software for a real-time embedded prototype 

consisting of three main components for an aerospace project. The team involved relied on team 

interaction to support component integration. They claimed that this exercise formed a case study 

for an embedded avionics real-time system using an MDA approach, yet did not include any 

mention of a system design specification. Performance modelling was not considered with a 

prototype approach used to manage performance outcome on a 'fix-it-later' basis. Whilst they 

concentrated on developing software for three components on an incremental basis, it is difficult to 

see how they knew they had satisfied the customer’s requirements. 
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Pareto et al. [111] describe the application of MDE in Ericsson from the engineer’s perspective. 

They clearly identify system engineers as part of the development team and the need for system 

models with multiple levels of abstraction. This hierarchical approach to system models is an 

essential feature of any new model proposed. It does not, however, identify any system 

performance analysis activities required at the system level design phase. 

 

Sanchez et al. [112] discuss performance evaluation in real-time systems using a model-based 

approach to real-time embedded systems development (MARTE). They discuss how this approach 

might be used in processing components but do not address the need to generate a system 

specification before starting component design. 

 

Siikarla et al. [113] focus on the transformation between PIMs and PSMs. MDA patterns can be 

used to make the transformations on an incremental basis. This should be beneficial in the 

situation when the transformation between the formal system design and the components PIMs 

are refined as feedback is received from the component design authorities. Another important 

issue raised, is the openness and the need to document the transformation process. This goes 

beyond the traceability of requirements, to record the mechanics of the transformation process as 

well. 

 

These papers reveal the need for a system design model structure to support the generation of 

PIMs. The automatic generation of PIMs from the system design seems unlikely due to the extra 

design detail that needs to be added. A separate component model is required which reflects the 

component hardware architecture. SysML can be used to generate this model. 

 

2.7.5  Platform Specific Model 

 

Platform Specific Models are developed from Platform Independent models, and are used to 

develop the software logic at a high level of abstraction and enable analysis; for example, model 
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checking of critical model properties. Ideally, starting with the Platform Independent Model, the 

Platform Specific Model serves only as an intermediate artefact that is derived automatically, and 

will finally result in implementations that guarantee the behaviour specified in the Platform 

Independent Model. Code can then be either manually or automatically derived from this model. 

Burmester et al. [114] describe the automatic code generation process. Alonso et al. [115] 

describe the generation of ADA code using the MDE approach and Dawson et al. [116] describe 

the process of generating embedded system code in Java. 

 

2.8 Conclusions 

 

The review of real-time systems development reveals that there is a gap in the model driven 

development methodology prior to the start of system component design and selection. This 

research augments the research literature by clarifying the 'fix-it-later' approach currently used in 

the early system development phase and by identifying a novel approach to assess performance 

using independent functional elements. Future work identified in section 6.4 is required to 

transform the concept of an additional functional model into a workable system for industrial use. 

 

Currently systems hardware is selected on an experience based process relying on the good will of 

component design authorities and manufacturers to change their designs as the system and 

component design emerges. Changes arise from system requirements errors and omissions, 

unsuitable choice of components, poorly specified component requirement specifications and 

interface control documents. Difficulties also arise when component developers find they cannot 

meet the requirements designed by the system design authority. Whilst this 'fix-it-later' approach 

can be accommodated for most changes there are some problems which are not discovered until 

system integration and deployment. These problems tend to be system level mistakes and 

omissions which spread across a number of components. 
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Large low-volume distributed real-time systems that are not suited to 'fix-it-later', prototyping or 

phased development approaches have the risk that system performance end events are difficult to 

identify prior to the generation of component requirements specifications. The difficulty occurs 

when trying to ensure that the system hardware architecture will support the system requirements. 

The problem lasts until component design details start to become available from the component 

design authorities. The consequences of the problem are that some system performance issues are 

not discovered until system integration and deployment. 

 

In this thesis I investigate the question of whether performance shortfalls due to the system 

design can be detected early in the development process in order to reduce risks and costs. I 

propose an approach based on an additional system design level model based on the system 

hardware architecture and functional requirements, and a tool that can animate the specification to 

assess the performance of system end events. 

 

The research described in this paper documents the principles of a method that offers early 

performance assessment that may be undertaken prior to the selection of component design 

authorities. It describes the current system development process and identifies how errors and 

omissions can go undetected until system integration and deployment. The research is limited to 

large distributed real-time systems that operate in a periodic manner as this is seen as the type of 

system that suffers most from this kind of problem. The methodology may apply to other types of 

system but this is not assessed. The animator developed within the research is developed for 

experimental purposes and requires further development to make it usable commercially. 
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Chapter 3                    A functional model for performance analysis 

                                                                                
3.1  Introduction 

 

A functional model is proposed which represents the functional operation of a system in terms of 

functional end events obtained from the system requirements. A functional end event is an output 

of the system as defined in the requirements. The model consists of a combination of abstractions 

representing the functionality of individual system components provisionally identified on an 

experience basis during the early system design phase. Each abstraction is defined in terms of 

independent functional elements obtained by decomposing the hardware independent system 

requirements and is associated with one or more schedulers which defines the order in which the 

independent functional elements operate.  

 

Every individual independent functional element is linked to other functional elements which supply 

it with the information required for it to operate. Component models can be combined to form a 

system functional model which represents the overall system. This model is derived from high-

level, architecture independent customer requirements specifications, extended with further detail 

from domain experts, to fully specify the system's functional and performance requirements. The 

model is associated with a schedule which describes the order in which the functional elements 

defined in the static model for each component are used.  

 

The model is used to investigate and optimise the performance of the system design. The system 

design authority establishes the component specification and communications early in the system 

life-cycle. These design decisions frequently occur prior to any detailed performance assessment. 

Having early performance information would enable the component requirements to be established 

with greater confidence. Traceability is used to record the relationship between individual system 

requirements, the system design, the contract specifications and interface control documents. 
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3.2  Context 

 

The primary context of this model lies between the system requirements definition and the 

selection of system hardware components. This is referred to in the thesis as the early system 

design phase.  

 

The systems which would most benefit from this type of model are large distributed real-time 

systems which operate in a periodic manner and are developed by diverse teams. Real-time 

systems benefit because typically their hardware architecture affects their system performance in a 

more unpredictable way than other system architectures. Distributed systems benefit more 

because their operation may have more coupling than less integrated older systems and their 

components are less cohesive as their functions may be spread between several components. If a 

system function is spread between components under the control of different component design 

authorities, intercompany communication may adversely affect the system level operation.  The 

use of the model introduces extra costs during the early system design phase, which can only be 

justified if there are likely to be performance shortfalls which may be discovered during integration 

and are very expensive to rectify. 

 

This approach may be used on other types of system but might not make the savings required to 

justify the extra work involved. This research only addresses the real-time systems described 

above. 

 

3.3  A functional model 

 

A functional model can be defined as a structured representation of its activities, actions, processes 

and operations of a system. Many different diagrammatic techniques are available; the two key 
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examples are Functional Block Diagrams [114] - which show functional blocks and functional block 

links - and Functional Flow Block Diagrams [115], which also show functional flow. 

 

Functional model diagrams used in this research are described in section 3.3.3. 

 

In this research functional model diagrams are an extension of Functional Block Diagrams and are 

made up of functions of the system pictured as blocks in a similar way. Functional model diagrams 

differ in that the functional blocks used are independent functional elements associated with a 

scheduler. Unlike Functional flow diagrams, functional model diagrams show functional elements 

connected by shared data made up of messages that occur in both directions as shown in section 

3.5.1. 

 

The proposed model can be created directly from the customer’s outline requirements specification 

(usually textual) during the requirements elicitation phase, undertaken by the systems design 

authority domain experts. Alternatively, the functional requirements model may be generated by 

domain experts from a requirements model defined using state diagrams. It may be possible to 

translate the state diagram model of the system into a functional model of the system by adding 

details of the proposed system hardware architecture. The proposed functional model identifies 

functional requirements and system end events. Each end event is associated with a set of 

performance requirements. The first version of the model is hardware architecture independent.  

 

At the start of the system design phase, a provisional system hardware architecture is identified 

and the functional requirements identified in the initial functional model are partitioned to 

hardware components. Inter-component communications are identified and included in the model 

as component abstractions, as required by the prospective component design authorities and 

manufacturers to bid for their respective contracts. 
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Traceability between the customer requirements and the new functional model is established and 

recorded in a database. Extra requirements identified from the elaboration of the customer's 

outline requirements are identified and added.  

 

Components to be designed and manufactured by a component design authority use abstractions 

to generate component requirements specifications and Interface Control Documents (ICDs) used 

in the procurement process. For commercial off-the-shelf equipment, components abstractions are 

generated from contract specifications and interface control documents provided by potential 

suppliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 The relationship between a functional model and a MDD PIM. 
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In real-time systems, the system hardware architecture contributes towards the overall system 

performance to such an extent that it must be specifically included in the model driven design 

system design. 

 

The model-driven development design route described in Chapter 2 is extended to include the 

hardware design aspects shown in Figure 13. Each rectangle represents a stage in the 

development of the system and the arrows indicate the order in which they are undertaken. The 

proposed model is used to generate component specifications and interface control documents for 

each component used for the component design authority selection process.  

 

The potential for automatic transformation between the proposed functional model and the PIM is 

also identified. Figure 14 shows the proposed component functional models, representing a 

combined functional and system hardware architecture model. Figure 14 also shows the static 

(component functional model) and dynamic (scheduler) parts of the model.  

 

The functional model is used to address the proposed system hardware architecture and allocation 

of functionality to system components which will support the required system performance. 

 

The model supports the following system elements: 

 

• Processing components that contain system software 

• Specially developed system components that contain processing software 

• Commercial of the shelf components 

• Sensors 

• Controls 

• Displays 

• Actuators 

• Communication links  
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� Data buses 

� Direct Data Links 

� Discretes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14  The relationship between the system component model, high-level requirements and a 

system architecture. 
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 Figure 15 shows how this requirement may be shown in diagrammatic form. 

 

An example of a performance requirement for this system end event might be: 

 

‘The aircraft heading display should be accurate to +/- 1 degree with the assumption that 

the maximum rate of change of aircraft azimuth is 10 degrees per second’. 

 

  

 

 

 

Figure 15 Diagram showing an example top level requirement diagram. 

 
 
3.3.2   Initial system hardware architecture 

 

Figure 16 shows an example of part of the provisional system hardware architecture that might be 

proposed at the start of the system design phase. A single end event is considered - the pilot’s 

display of aircraft heading.  This is a relatively simple example of a system that comprises the 

transit of data from a sensor across a multi component system to a display.  

 

 

 

 

 

 

 

Figure 16 An example initial system architecture. 

Gyro Compass 
Navigation 

system 

Display 

Aircraft 
Heading 

GC Sensor 

Display 
Computer 

Display 

 

Avionic 

Computer 
NAV Bus 

External 

Interface 

External 

Interface 

 DISP Bus 

 



Thesis                                       A functional model for performance analysis   
  

 

 

 
Michael Giddings                         Page 100 of 277                       12/10/2016 

 

The following system components are identified: 

 

• Gyro compass sensor 

• Avionics system computer 

• Display computer 

• Display 

• Navigation bus (NAV Bus) 

• Display bus (DispBus) 

 

SysML provides the framework for specifying system architectures but cannot be used to calculate 

or animate system performance on its own. It can, however, be annotated with customer 

requirements or information from the system design where it is known. The provisional system 

architecture diagram can be replaced with a SysML system specification when individual 

component design information becomes available from the component design authority. 

 

3.3.3 Individual system component functional models 

 

Each individual system component and communications link will be represented by an abstraction 

which describes the hardware and software aspects of that component. Not all system components 

contain software but they are still represented by an abstraction. There are two types of 

components that contain software: the first contains software that controls the operation of that 

component and the second contains software the controls the operation of the system.  

 

MARTE provides a specification language for managing real-time system development. It can be 

used to specify abstractions but is typically used to specify the actual implementation of processing 

component software. The proposed functional model uses a subset of the MARTE tasks as shown 

in figure 17. 
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System functional models are developed by taking the top level functional requirements and 

repeatedly decomposing them until individual independent functional elements are obtained. 

Messaoudi [7] describes a suitable method using viewpoints which was used to define processes in 

CoRE. A similar approach can be used to decompose system component requirements into 

independent functional elements. Each component is then represented by a collection of functional 

elements to form a component abstraction. The interface between each system component is 

represented by an abstraction and automatic system consistency checks can be performed.  

 

Each individual component functional model abstraction is associated with a scheduler, which 

schedules the operation of each functional element according to a predetermined schedule. Figure 

23 shows a high level requirements model based on the system architecture shown in figure 16. 

Only the parts of the system that relate to the end event ‘display aircraft heading’ are shown.  

 

The Avionic System Computer component functional model is shown in figure 22. The rectangles 

represent independent functional elements and the lines between functional elements shared data. 

The functional element transferGcNb represents the transfer of Gyro Compass data from the 

NavBus to the DispBus. 

 

 

 

 

 

 

 

 

 

Figure 17 The features of MARTE which are used within the proposed functional model.  
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Each component model represents an abstraction of the component hardware, functionality and 

external interfaces that the component will eventually contain. As the functional model is 

associated with a scheduler, components can be modelled with representations that reflect their 

functionality and performance. Functional models can be used to describe processing and non-

processing components, communication systems and buses for which the internal details are not 

yet known.  

 

One of the benefits of this functional model, is that it is constructed by domain experts whose skills 

lie with the problem domain rather than complex system design notations.  

 

The functional model can also be used to promote abstraction and re-use of model elements.  

 

A functional model diagram consists of the following parts - see figure 18: 

 

� Functional chains – which show part or the whole of a functional model associated with a 

functional end event. 

� Functional elements – shown as rectangles annotated with their unique names. 

� Shared data – shown as lines between the functional elements, which show how data 

migrates from one functional element to another. Each shared data message is annotated 

with a unique name. 

� Up arrow – indicates which scheduler manages the operation of a functional element. 

� Source references – a source reference identifies a diagram that contains a functional 

element from which information is needed. They are shown on the left of the diagram. 

� Destination references – a destination reference identifies a diagram that contains a 

functional element from which information is needed for the functional element to operate. 
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Figure 18  Diagram to show part of a functional model. 

 

Figure 18 shows six functional elements that form part of a functional model. These functional 

elements may be represented as shown in figure 19. This is an alternative notation with the solid 

line in figure 18 shown as a dashed line representing independent functional elements linked by 

shared data. Neither line represents the order that the functional elements are run and not all the 

functional elements are necessarily under the control of the same scheduler. 

 

Figure 22 shows an example of a functional model diagram for part of a component called the 

Avionic System Computer (AVS). The rectangles represent independent functional elements and 

the lines represent shared data between functional elements. 

 

The proposed functional model can also be described using formal methods. Petri-nets for example 

show transitions which could represent functional elements with arcs which link the transitions 

representing the information contained in the component scheduler. Whilst these two model 

diagrams contain similar information, petri-nets do not fully describe the independence of the 

functional elements in the functional model. This can be best described using a simple example. 
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Figure 19 An example of a diagram consisting of a number of independent function elements 

contributing towards an end event. 

 

 

 

 

 

Figure 20 A diagram representing the actual order of the functional elements. 

 

Figure 20 shows a possible ordering for the functional elements which can only be derived by 

considering both the functional model and its scheduler tables. Sequential functional elements may 

be completely unrelated. In periodic systems with independent functional elements the functional 

elements themselves need not be updated in the order as shown in figures 19 and 21; for example 

functional element f4 may be updated twice as often as functional element f5. Changing the order 

or frequency of the transitions may either have no effect, only change the performance, or change 

the functionality and performance of the system. If the functional elements are located within 

different components, then the functional element order will not be regular as each component will 

have its own independent unsynchronised scheduler. The effects of a sequence of functional 

elements cannot be determined by the order they are run. 
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Figure 20 can be represented in process algebra as: 

 

……f1;f7;f4;f1;f2;f12;f1;f3;f6;f1;f5;f11…. 

 

where fn represents the execution of a functional element and ; is a sequential composition 

operator. 

 

As this is a sequence of unrelated independent processes it is difficult to analyse. In itself the 

sequence is not concurrent within the animator but the effects of running a sequence of unrelated 

functional elements may be considered as concurrent. If the functional elements are under the 

control of different schedulers then the sequence is again not concurrent within the animator but 

the effects of the sequence may also be considered concurrent. The effect of running a functional 

element is totally dependent on the state of the functional elements it requests information from 

(i.e. when they were last updated).   

 

Each functional element contains information that does not change until it is run (it is triggered by 

the scheduler). Running each functional element extracts data from other functional elements 

based on their current state. 

 

Performance may be managed by altering the order or frequency in which functional elements 

execute. For example, changing the frequency of a functional element f1 to modify the 

performance of an end event, may alter the sequence of events as follows: 

 

……f1;f7;f4;f2;f12;f1;f3;f6;f5;f11…. 

 

Whilst this looks a fairly straightforward change, in practice the analysis of performance is complex 

using formal methods, and a small change in the order of the execution of the functional elements, 
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requires a complete rework. Figure 21 shows another version of figure 20 but is even more difficult 

to interpret. 

 

A Petri net based on the sequence of functional elements can be developed but this is even less 

informative. Every time the scheduler table changes, the Petri net changes. The delays shown in 

figure 19 combine together to give a dynamic error in the end event. These delays can be 

extracted from the scheduler iteration tables either as a fixed number from within a single 

component, or within a minimum and a maximum if more than one component is involved. Delays 

can also be shown in figures 19 and 20 but require extra information from the functional model to 

calculate dynamic errors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21   Another diagram based on the sequence shown in figure 20. 

 

Using functional elements helps to identify re-use opportunities as functional elements can easily 

be compared to identify similarities. As functional elements are independent, once tested they can 

be used again within the functional model without further testing.  
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Figure 22   An example of part of a functional model diagram for a single system component (Avionics computer) 
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3.3.4  Multi Component functional models 

 

Multi Component Functional Models are generated by combining individual component functional 

models. The overall system functional model (which includes communication links as components) 

is then checked to confirm that the individual system component external interfaces match. When 

this has been achieved, then the overall system functional model can be assembled. The up arrow 

notation is used to identify the scheduler that controls the functional element. Where a system 

component contains a single scheduler the up arrow notation can simply refer to the name of the 

component. Where the component is represented by more than one scheduler the up arrow 

notation should show the name of the component followed by the name of the scheduler. 

Functional elements are represented as rectangles in functional model diagrams as shown in figure 

22. Figure 23 shows an example of part of a system functional chain combining functional models 

for individual components and communication links including the AvComp functional element 

transferGcNb as shown in figure 22. This diagram uses the inter component data and component 

names from the individual component functional models. 

 

3.4  Independent functional elements 

 

Functional elements are obtained by decomposing high level requirements that have been 

partitioned to individual system components. They are obtained when they are decomposed into 

simple, cohesive, independent, idempotent (assuming the information retrieved from other 

functional elements does not change) functions. They rely on the provision of information from 

other functional elements obtained by request. They only provide information to other functional 

elements on request. The results of the execution of the functional element are stored internally 

within the functional element. 
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Functional elements are independent and can be processed at any rate or order under the control 

of a scheduler. The challenge is to schedule functional elements in a way that minimises the 

processor loading (processing components) whilst just meeting the end event performance 

requirements. 

 

Each functional element object contains information recording the results of its operation, which 

are required to be available to other functional elements on request. It may also contain other 

information to support its operation as a functional element. It also contains information necessary 

to represent the functional element in a graphical model such as the layout of a functional element 

diagram. 

 

Functional elements have three types of behaviour: 

 

• The first triggers the operation of the functional element when instructed by its associated 

scheduler. This behaviour may be supported by internal behaviour not available outside 

the functional element such as the second and third types of behaviour below. 

 

• The second requests information from other functional elements.  

 

 

• The third responds to requests of information from other functional elements. 
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Figure 23 An example of part of a system functional model including TransferGcNb shown in figure 21 
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Each functional element can be defined using a textual Functional Element Definition Note. These 

notes include a definition of information recorded and a definition of the functional element 

behaviour. The behaviour may be expressed in textual form or in Object Constraint Language 

(OCL) [117] that can be automatically transformed into code as required. Parameters are also 

included to cover performance, safety, mission criticality and traceability references generated 

from further analysis of the functional model. Other parameters could also be included such as 

'fulfilled as software' and 'fulfilled as hardware' etc, which are populated when each component 

design is generated. An example of a functional element design note is included in appendix A. 

 

3.5  Transfer of data between functional elements 

 

3.5.1 Migration of data across a functional model 

 

The lines between functional elements in a functional model diagram represent the notional flow of 

data across individual system components. It is called shared data, as the message is really the 

response from an information request from a functional element. Shared data covers both 

messages that are transiting the functional model and flags. Figure 24 shows a simple functional 

model showing four functional elements. The schedulers are shown with different names but in 

practice they may be the same scheduler. Note in this example that there is no significance 

between the last letter in the name of the shared data, the last letter in the name of the functional 

element and the last letter in the name of the scheduler. 

 

The shared data shown in figure 24 contains data that is recorded in the source functional 

element.  
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Figure 24  A simple functional model consisting of four functional elements. 

 

Figure 25 shows a sequence diagram of how a single functional element would be implemented as 

part of an animation of the software. The coordinating method start() is used by a scheduler to 

update a functional element’s attributes based on attributes in functionalElements 

functionalElementB and functionalElementC. The updated attributes in functionalElementA are then 

available to functionalElementD when it is initiated by the scheduler. 

 

functionalElementA, functionalElementB, functionalElementC, and functionalElementD are 

independent functional element objects and can be triggered in any order by a scheduler. The 

values obtained by the accessor methods from the source functional elements are the last updated 

values. 

 

 

 

 

 

functionalElementB 

functionalElementC 

functionalElementA functionalElementD 

schedulerA 

schedulerB 

virtDataA 

virtDataB 

virtDataC 

schedulerD 

schedulerC 



Thesis                                     A functional model for performance analysis    
 

 

 
Michael Giddings                           Page 113 of 277                     12/10/2016 
 

 

 

 

 

 

 

 

 

Figure 25 A sequence diagram for the operation of start(). 

 

3.5.2  Flags 

 

Flags are also passed from functional element to functional element in the same manner as shared 

data. They are shown as dashed arrows to emphasize they perform a special function. They are 

used to inform a specific functional element to vary its operation and are usually associated with a 

specific shared data. Figure 26 shows a version of figure 24, with a flag to indicate that when set 

functionalElementA should do something different when it is scheduled to operate. 

 

 

 

 

 

 

 

 

 

 

Figure 26  figure 24 showing an additional flag. 
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There are three types of flags used in the functional model. 

 

• Critical flags 

• Important flags 

• Routine flags 

A critical trigger is a flag set by a functional element to notify another element of a critical 

condition. The flag is only reset when the receiving element notifies the sender of receipt. 

 

For important flags the source functional element sets a Boolean attribute to true for a number of 

iteration cycles. This is long enough to guarantee that the destination functional element detects it. 

On completion of these cycles the source functional element sets it Boolean attribute to false. 

 

For routine flags, the source functional element sets a Boolean attribute to true for a number of 

iteration cycles less than that guaranteed for the recipient functional element to detect it. This 

should be long enough for the destination functional element to detect it. On completion of these 

cycles, the source functional element sets its Boolean attribute to false. The consequences of the 

destination functional element of missing this flag is not critical. 

 

3.6  Schedulers 

 

3.6.1  Scheduler operation 

 

A scheduler is a mechanism which determines the order in which individual functional elements 

operate within a component.  The time order can be shown in a table in terms of scheduler 

iterations. 
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Each system component is associated with one or more schedulers that schedules groups 

functional elements. Each schedulers iteration rate will be different. Even if they are nominally the 

same, they will be slightly different as they are not synchronised in any way. 

 

There are many ways that a scheduler table can be constructed. For real-time systems it is 

important that the scheduler triggers functional elements in a regular and predicable way. The 

scheduler must also allow individual functional elements to be triggered at different rates. An 

important benefit is that the behaviour of individual functional elements is not dependent in 

changes in the iteration and scheduling patterns. 

 

If a component scheduler transaction table is changed during the system design performance 

optimisation, the following effects can occur: 

 

• Nothing 

 

This means that many scheduler transaction table configurations are equivalent. 

 

• Change in performance 

 

 This is the most useful change. It means that a system architect can optimise system 

component performance without changing its functional elements in any way. 

 

•  Change in system behaviour. This is useful for managing system moding 

 

Flags can also command a scheduler table change by sending messages to the scheduler to use a 

different scheduler iteration table.  This causes different functional elements to be used.  
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Examples of circumstances where scheduler changes might be used are:  

 

• Functional mode changes 

• Graceful degradation reversionary mode changes 

• Different system operating phases 

 

If the system employs multiple general purpose computers, then it is easy to transfer functionality 

from one computer to another, as only the state of the functional elements need to be transferred 

if one computer fails. This is most helpful when planning a failure mode strategy. Computing load 

and component schedulers would be affected but would probably be operating system 

independent. Failure mode changes would inevitable affect other components as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27  Activity Diagram showing how process elements are run within a scheduler. 
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In an iterating periodic type architecture, implemented functional elements within each system 

component are activated in accordance with the activity diagram shown in figure 27. The iteration 

controller is used to run the functional elements within each iteration. The scheduler controls each 

iteration in turn as defined in the iterator scheduler table. All functional elements are assumed to 

exist during operation of the model. In an animated version of the functional model functional 

elements would need to be instantiated when first required, run when commanded by the 

scheduler and only destroyed when the state of the functional element attributes are no longer 

required by other functional elements. The contents of each scheduler transaction table are 

determined prior to each scheduler starting. Each scheduler iteration is timed to start on a regular 

basis.  

 

When the scheduler starts, each scheduled implemented functional element is extracted and 

executed in turn. It is important that all the scheduled functional elements are executed within the 

time allocated or an iteration overrun will occur. At the end of the iteration interval the whole 

process starts again. 

 

The proposed model is based on a pre-prepared schedule based on the frequency each functional 

element needs to run. It is possible to change the pre-prepared iteration table as a response to a 

mode change. It is also possible to generate iteration tables on the fly during spare time at the end 

part of an iteration. 

 

Typically the contents of each scheduler iteration are determined separately from the operation of 

each functional element for a predetermined number of iterations called a major cycle. Major 

cycles are repeated on a regular basis. The table is constructed by allocating functional elements to 

iterations in accordance with their performance needs and the processor capacity available to each 

iteration. The table may then be changed many times before an optimised configuration is 

obtained. The structure of the iteration table can be managed independently by a system architect 

without detailed knowledge of the implementation of each functional element.  
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3.6.2  Scheduler specification 

 

A scheduler is used to run functional elements in a specific order. The functional elements are 

organised into pre-planned scheduler iterations. Iterations invoke a varying number of functional 

elements but the total duration of an iteration is fixed. In order to prevent scheduler overruns, the 

total time to execute all the functional elements in an iteration must be less that the iteration 

interval. If an iteration overflow occurs then some functional elements will not be invoked with 

unpredictable results. If the total time to execute the functional elements in an iteration is much 

smaller than the iteration interval, then the processor efficiency will be low as there will be no 

processing activity during the remainder of the iteration. 

 

A simple iteration together with the expected duration of each functional element is shown below 

in table 1. Table 2 shows a number of iterations forming a scheduler major cycle. Each major cycle 

is repeated. 

 

 

 

 

 

 

Table 1 Example of a single iteration. 

 

 

 

 

Table 2 Tabular representation of the structure of a scheduler’s major cycle consisting of m 

iterations. 

Functional 
elements 

Estimated 
duration 

Fa Tfa 

Fb Tfb 

Fc Tfc 

.. .. 

Fi Tfi 

.. .. 

Fx Tfx 

Total duration TTOT 

iteration 1 2 3 4 . . .. m 

Duration TTOT1 TTOT2 TTOT3 TTOT4    TTOTm 
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If the iteration table forms a regular pattern during its major cycle, such as that shown in table 9, 

the table can be represented by a simple notation based on the rate that the functional elements 

are triggered using three parameters for each Functional Element.  

 

The first parameter, R, deals with the frequency of an iteration schedule occurring containing a 

particular functional element. The frequency of appearance is defined as the count of iterations 

between each appearance. This means that R is 0 for a functional element that appears in every 

iteration, or R is 1 if it appears in every other iteration and so on. The term rate number, A, could 

also be used as a shorthand representation where 

 

R = 2A-1 - 1 

 

For example, a functional element that appears in every iteration would be a rate 1 functional 

element, functional elements that appear in every other iteration would be rate 2 functional 

element, functional elements that appear in every fourth iteration would be a rate 3 functional 

element and so on.  

 

The second parameter, O, is the number of the iteration in which a functional element first 

appears.  

 

The third parameter, S, represents the time between the start of an iteration and the start of the 

functional element in that iteration. 

 

If the scheduler does not operate in a regular way then it must be described in full, identifying the 

content of each iteration separately. 
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3.6.3  Multiple scheduler tables – dealing with mode changes 

 

Most periodic systems also contain a number of modes where the software behaves in a different 

way. For example, if a system could only display one output at a time, then separate scheduler 

tables could be used and selected when each display was selected avoiding scheduling functional 

elements that do not contribute towards an unused end event. 

 

Scheduler tables can be pre-prepared or constructed during spare scheduler table slots. Scheduler 

tables can be swapped in and out, during or at the end of an iteration schedule as appropriate. 

 

3.7  Functional chains 

 

High level requirements are normally expressed in terms of system end events. Each of these end 

events is expressly identified within the functional model. Working back from these end events, 

using the linked to and linked from information contained in the model specification, all the 

independent functional elements associated with that end event can be identified. These functional 

elements can be expressed using the same functional model diagram and functional element 

specifications. Figure 23 shows an example of a system functional chain. The diagram shows a part 

of the functional model for the avionics computer, AVCTS, which can be decomposed into 

individual functional elements as shown in figure 22. Analysis of the flags shown in figure 22 can 

be used to identify four separate modes. The four modes deal with forward calculation of course to 

steer, reverse calculation of course to steer, updating way points and loading way points. The 

functional chain for one of these modes, calculation of course to steer in the forward direction 

(AVCTSFwd), is shown in figure 28. 
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The functional elements from independent functional chains, can be identified within the scheduler 

transaction tables for each system component. This means that the operation of a functional chain 

can be examined separately from the rest of the functional model.  

 

Figure 29, a generic function chain linked to an end event vDataK, shows how the functional 

elements relate to each other. The accuracy of vDataK may be specified as an end event 

requirement. The functional elements and shared data contribute to the accuracy of vDataK. 

 

The up-arrow notation indicates in which system component the functional element resides. 

Functional elements that reside in the same system component are usually associated within the 

same scheduler. The operation of schedulers in different system components will not be 

synchronised. 

 

functionalElementA, functionalElementB, functionalElementC, functionalElementD and 

functionalElementE are independent functional elements and can be triggered in any order by a 

scheduler. 

 

functionalElementA uses getter methods to obtain vDataA and vDataB from other functional 

elements not shown in the diagram, performs some process, and stores the result as attributes. 

(functionalElementB, functionalElementC, functionalElementD and functionalElementE operate in a 

similar way) 

 

The effects of stochastic and dynamic errors in vDataK are dependent on the order of the 

invocation of functional elements functionalElementA, functionalElementB, functionalElementC, 

functionalElementD and functionalElementE. Modifications to the scheduler table for component 

systemElement can be used to minimise the errors in vDataK. 

 

 



Thesis                                     A functional model for performance analysis    
 

 

 
Michael Giddings                           Page 122 of 277                     12/10/2016 
 

 

3.8   Calculation of performance 

 

The maximum and minimum errors associated with functional chains can be calculated for 

relatively simple functional chains.  Calculation of errors for complex functional chains is too 

difficult. There is no way that the calculated maximum and minimum errors obtained from complex 

functional chains can be verified until much later in the development when it is much more 

expensive to rectify any mistakes in the calculation.   

 

This section concentrates on simple functional chains and illustrates the complexity that is 

involved. 

 

3.8.1  Analysis of functional elements 

 

The system performance is calculated by analysing the functional elements in a functional chain in 

conjunction with the scheduler transaction tables. The error in the end event is a combination of 

sensor errors, arithmetic errors and representation errors (which can be determined from each 

functional element) and the delay between the executions of each functional element obtained 

from the scheduler transaction table.  
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Figure 28  The detail of AVCTSFwd 

DispBus 

position 

gcTxr 

calcCMG 

selectWPs 

calcWind 

SmoothHdg 

nextWP 

navBus 

navBus 

updateWPs 

lastWP 

nextWP 

avCTS 

smoothHeading 

nextWP 

nextWP 

position 

courseMG 

calcCTSFwd 

AvComp 
AvComp 

AvComp 

AvComp 
AvComp 

AvComp 

gpsTxr 

wind 

calcMode 



Thesis                                                                                                          A functional model for performance analysis 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 29 An example of a functional chain. 
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The calculation of performance is very complex as the following specific examples illustrate.  

 

Dynamic errors are calculated in three different ways depending on their location within the system 

as follows: 

 

• Inputs (Sensors and controls) (Section 3.8.2) 

• Internal processing (Sections 3.8.3 and 3.8.4) 

• Outputs (Actuators and displays) (Section 3.8.5) 

There are three ways that calculated errors can be described: 

• Instantaneous output error 

This is obtained by manual calculation for single functional and small groups of functional 

elements and is described in section 3.8. Manual calculation becomes too difficult for 

complex functional chains. The animator described in section 3.9 outputs a sequence of 

instantaneous values for the dynamic error. The animator is not limited by the complexity 

of the functional chain. 

 

• Statistical description of output errors 

 The animator also collects statistical data about the sequence of errors generated. 

Currently the animator records the minimum, the maximum and the rms dynamic error. 

 

• Maximum and minimum output errors 

Minimum and maximum possible dynamic error can be obtained by adding together the 

dynamic errors for individual functional elements. 

 

The following analysis focuses on the calculation of instantaneous output errors. It demonstrates 

that instantaneous and statistical representation of dynamic errors cannot be easily obtained for 
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complex functional chains. Maximum and minimum dynamic errors are easier to calculate and are 

used in Chapter 4 for relatively simple functional chains. Animation of functional chains extracted 

from combinations of component abstractions may offer a simpler approach. 

 

3.8.2 Inputs 

 

An example of the abstraction for a sensor or a control is shown in figure 30. Digital 

representations of the sensor samples are stored and updated immediately after the next sensor 

sample. In its simplest form it converts analogue information into a digital representation at regular 

intervals. The scheduler, for this example, manages a single functional element with one iteration 

in a major cycle. More complex sensors/controls can be modelled by adding functional elements 

under the management of a more complex scheduler. 

 

 

 

 

 

 

Figure 30 Functional diagram for the functional element GenerateData, a simple sensor or 

control. 

 

Two categories of inputs are of interest associated with end event requirements and are: 

 

• Those associated with specific end event requirements (tend to be simpler). These are 

used to assess whether a specific end event requirement S is met. 

 

Real-world 
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control data 
(Digital) GenerateData 
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• Those required to characterise the end event outputs of a functional chain. These are used 

to examine the effects of a much wider range of inputs on the end event and are used to 

understand the operation of the functional chain in detail. 

 

Samples represent values from the environment at a specific instant. For example, a sensor taking 

samples of an environment � every � seconds might be represented as �(�) where � is the 

environment’s digital representation and t the time the sample was taken. At time	� + ��	where 

�� < �  �(�) remains the same. The digital representation of �(�)	is stored and accessed as 

required. All information about S between samples is lost. 

 

This is shown diagrammatically in figure 31. 

 

where: 

�(�) is a function of time representing the changing value of some quantity in the system's 

environment. 

� is the time interval between sensor samples 

�(�) is the value of � sampled at time � 

�
�   is the difference between the nth and the (n+1) sample i.e. 
�� − 
� and is the maximum 

error. The minimum error 0 occurs when	�� = 0. 
 

� + �� is the time when the value of �(�) is used 

�
  is the difference between  
(� + ��) and 
(�) and is the dynamic error at time � + �� 

 

Within the system, only the values stored are known. The function �(�) is only known within the 

system for the sampled values. The requirements for end events that rely of this sensor, however, 

are usually defined in terms of specific functions of �(�) which, in general, can be analysed using 

standard approaches involving simplifications. �(�) can also be expressed as a Taylor series. A 

function that is commonly used to express a requirement that relates to dynamic errors may take 

the form ��(�)/��  = constant where the value of the constant is known. 
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Figure 31 Dynamic sensor errors 

 

A diagram which uses the standard approximation to Taylor series is shown below as a straight line 

in figure 32.  An extra error e is obtained if the complete Taylor series was used. 

 

                                     �
 ≊ ��(�)
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. �� 

 

This approximation uses the first two terms of the Taylor series that represents � 

 

The dynamic error δ
 is defined as the difference between the value of the sensor sample stored 

and the actual value of �. Using the approximation defined above when a delay of �� occurs as 

shown in the diagram, an error of �
 is generated. (�
� = 	δ
  when �� = �). 
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Figure 32 Dynamic sensor error using an approximation 

 

The error can be represented as: 

  

   �
 = 
(��+��) − 
(��) 

 

Which can also be expressed as: 

 

                               �
 = ��(��)

��
. �� + �                                               

 

where:  

 

error due to further terms in the Taylor series beyond the simplification are  
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�!
∞
�=2 #(�)(�)(��)� 

�
 is the dynamic error and �
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As the time that the sensor is accessed is any time between �0 and  �0 + � the dynamic error is 

usually described as a bounded value.  

 

When �(�) is a linear function � = 0 and 
 

 

                                       �
 = ��(��)

��
. δt	

 

                                                

 
3.8.3 Single functional element delays 
 
 
Figure 33 shows the operation of a single functional element with a digital input which has been 

executed after an interval of �. It also shows another functional element accessing its stored data 

�� after it has been executed at time �0 and obtaining the stored value %. 

 

where: 

 

� is the time interval between executing functional elements 

�0 + ��  is the time when an attribute is accessed  

�%�  is the change in attribute %� when it is updated at time	�0 + � 

For functional elements within the same component under the control of the same scheduler, �0 is 

fixed and can be derived from the scheduler iteration table, but �0 varies between 0	and � for 

different components under the control of the different schedulers. This is because the schedulers 

of different components are not synchronized.  

 

The dashed line shows the assumption that the value of % varies linearly between the samples at 

�0 and �0 + �.  This is shown to improve the readability of the diagram but is unlikely to be true.  
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If the assumption is made that the real value of the output changes linearly from % to % + �%  with 

time, the delay � introduces a dynamic error of 
	�%

�
. ��, where a dynamic error is the difference 

between the state of an attribute at time �0 + �� and the state of the attribute of the functional 

element had just been executed.  

 

 

 

 

 

 

 

 

 

 

Figure 33 Error associated with a single functional element 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 A single functional element with m inputs and n outputs. 
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This assumption that the value of % is likely to change linearly between �0 and �0 + � is unlikely to 

be true.  The functional element in isolation cannot resolve this issue either as it does not have 

access to how % varies with time.   

 

Figure 34 shows a functional element with & inputs and � outputs. The effects of the outputs of 

this functional element due to a delay of �� can be examined. 

 

The effects on the outputs of a single functional element of data latency on its inputs can be 

calculated. The dotted line in figure 33 illustrates the effect of data latency. 

 

As the time that a functional element runs is determined by the scheduler transaction table the 

time between when they run is fixed. Hence the errors for & inputs are: 

 

�' = (' . ��'  for  ' = 1,2, … & 

 

where:  

 

�'   is the error in attribute %' 

��  is the delay between the source functional element executing and this functional element 

accessing its attributes 

( is the rate of change of the data source attribute  

 

Effects on the outputs �+ are (for outputs �+ for + = 1,2, . . &) 

 

�+= #+((%1 + 	�%1), (%2 + 	�%2), (%3 + 	�%3) … (%+ + 	�%+)) − 	#+(%1, %2, %3 … , %+) 

 

 where: 
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�+ is the effects on output + 

#+  is the function that links the inputs to output +from input a 

%+  is the value of the attribute as accessed 

%+ + �%+ is the value of the attribute if the functional element had just been updated �%-  �%-  

being the dynamic error of that attribute. 

 

A specific example with three inputs and one output is included to show the calculation of the 

dynamic error based on a function of more than one variable.   

Functional element calculates  
(., /, 0) = ./ + 

1
0/1  (for example) 

Dynamic errors in	., /	 and 0 are �., �/ and �0 are  

 

�. = (2 . ��2 

�/ = (3 . ��3 

�0 = (4 . ��4 

 

where: 

(. , (/ and (/ are the rate of change of ., /, and 0 with respect to time respectively. 

 

So the effects on s is as follows: 

�
 = #(. + �., / + �/, 0 + �0) − #(., /, 0) 

In our example case where 
 = ./ + 1/2. 0/1 

 

so 

�
 = (. + �.). (/ + �/) +
1
2

. (0 + �0)(/ + �/)(/ + �/) − (./ +
1
2

. 0/1) 

�
 = ./ + �.. �/ + .. �/ + /. �. +
1
2

(0 + �0). (/1 + 2/. �/ + (�/)1) − (./ +
1
2

0/1) 
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�
 = ./ + �.. �/ + .. �/ + /. �. 

																			+
1
2

(0/1 + 20/�/ + 0(�/)1 + /1�0 + 2/�/�0 + �0(�/)1) − (./ +
1
2

0/1) 

�
 = �.(/ + �/) + .. �/ +
	0(�/)1

2
	+ /0�/ +	

�0(/ + �/)1	
2

 

 

 

 

 

 

 

Figure 35  A specific single element calculation example 

 

and by substitution 

 

�
 = (2 . ��25/ + (3 . ��36 + .. (3 . ��3 +
1
2

05(3 . ��36
1
 

																																+/0. (3 . ��7 +
1
2

(4 . ��45/ + (3 . ��36
1
			 

 

This shows as the calculation of dynamic errors increases with multiple inputs. 

 

3.8.4   A sequence of functional elements located in different components 

 

Diagram 43 shows a linear sequence of three functional elements 
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Figure 36 A linear sequence of functional elements. 

 

A sequence of three functional elements at some point within a functional chain under the control of 

different schedulers can be analysed. 

 

where: 

 

8�		represents the nth scheduler 

%� represents data input to functional element #� 

#� represents the �th functional element’s effect on its input 

Errors can be calculated as follows for (� + 1)th sequential functional elements shown in figure 36. 

%�+1 = #�
(%� + �%�) 

 
�%�� = #�(%� + �%�) − #�(%�) 
 
 

The output can therefore be related to the input as follows: 

 
 

%�+3 = #�+2(#�+15#�
(%� + �%�) + �%�+16 + �%�+2) 

 
 

 

 

For the more complex functional chains shown in figure 37  

 

91 = #1(%1 + �%1, %2 + �%2, %3 + �%3,,….,	%� + �%�) 

92 = #2(:1 + �:1, :2 + �:2, :3 + �:3,,….,	:� + �:�) 
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Figure 37 A compound connection of functional elements 

 


 = #;(9 + �9, 91 + �91) 

 

�91 = #1(%1 + �%1, %2 + �%2, %3 + �%3,,….,	%� + �%�) - #1(%1, %2, %3 … %�) 

�92 = #2(:1 + �:1, :2 + �:2, :3 + �:3,,….,	:� + �:�) - #1(:1, :2, :3 … :�) 

�
 = #3
(91 + �91, 92 + �92) − #1(91, 92) 

Typically functional chains contain many functional elements making calculation prohibitively 

complex. If, for example, the functional chain represents a close loop process control system then 

the calculation becomes even more complex. In order to make this analysis possible a computer 

model that is automatically generated from the functional model database is required. Even if it 

was possible to calculate the errors involved, it would not be practical to repeat a calculation every 

time a change is introduced. 
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3.8.5 Actuators and displays 

 

The effects of data latency on actuators and displays can be represented by a single function end 

event abstraction associated with its own scheduler. Unlike other functional elements its output is 

an analogue real-world effect. Figure 38 shows part of the end event functional chain.  

 

 

 

 

 

 

 

Figure 38 A functional end event element converting end of event data into a real-world effect. 

 

3.9  Animation of the model 

 

An animation of the model is a computer program which executes functional elements in a 

functional chain in accordance with the appropriate schedulers associated with a real-world model 

which provides the inputs and some means of recording the output or intermediate data 

generated. The data recorded represents actual errors rather than the maximum and minimum 

error values obtained from calculation. The output of the animation represents instantaneous 

output data and errors for complex functional chains not available using the methods described in 

Section 3.8.1. 

 

The behaviour of the system can be animated using a computer program automatically generated 

from information contained in the functional model. The animation can be connected to an input 
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generator which generates suitable inputs for the relevant functional chain and the output of the 

animator is written to a file for further analysis. 

 
The animator consists of functional elements objects representing each functional element. Each 

functional element object is generated using a common template populated with information 

extracted from the functional model. The templates are included in appendix A. 

 
Figure 39 shows a functional chain fragment. Figure 40 shows a sequence diagram of how the 

corresponding functional element objects interact within the animator. 

 

 

 

 

 

 

 

Figure 39  Part of a functional chain used to illustrate how functional elements interact. 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

Figure 40 Sequence diagram for the operation of start() within functionalElementA. 
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The model schedulers also contains information to generate scheduler class definitions for each 

scheduler. Scheduler objects are then instantiated from specialised scheduler classes of an abstract 

class Scheduler. 

 

A program that animates a functional chain has been developed and described in the second and 

third investigations in Sections 4.4 and 4.5, which provides a simulation of the function and 

performance of a functional end event. The functional chain can also be split into parts and 

animated for each system component. This animation can then be used in addition to the 

contractual specification and interface control document as a set of requirements to the component 

developer organisation. If the component developer implements the component software using 

similar process elements and scheduler transaction table then the animator will accurately predict 

the final component performance. 

 

The animator is an implementation of the system functional model, in the same way that individual 

component implementations represent the part functional models for each component. Component 

software may be implemented using the same software architecture as the animator. In order to 

differentiate between a functional element in the functional model and an implemented functional 

element in the animation or component implementations, the implemented function elements have 

been called process elements. The term ‘process element’ is not related to processing and non- 

processing components which are used to describe components. 

 

Table 3 compares the information recorded in the process elements objects within the animator 

program with the information contained within the proposed functional model. 

 

Furthermore, the animator defines an input model that generates real-world model inputs and an 

output data model to collect end event data that are not present in the functional model. The 

results can be stored in an output data file and can be used to simulate the effects of the animator 

on a user interface model. 
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Information Functional Element Process element 

Shared data attributes Included Included 

Start method OCL or pseudocode Implemented 

Constructor Not included Implemented 

Other methods OCL or Pseudocode Implemented 

Accessor methods Not included Implemented 

 

Table 3 A comparison between functional elements and process element objects. 

 

An animator code generator which automatically populates functional element and scheduler code 

templates by extracting information from the functional model has also been developed and is 

described in the third investigation in Section 4.5. 

 

3.10  Design 

 

The transition between high level requirements and component requirements imposes design 

limitations as the functional and non-functional requirements are partitioned into individual system 

components. For many systems this transition is undertaken by extending existing systems but 

there are some systems where similar systems do not exist. These systems are developed using a 

number of phases starting with a restricted system and moving to a fully functional system in 

increments. System shortcomings identified in one phase are fixed in the next. These fixes can be 

expensive where system component hardware and interfaces are affected. 

 

When the system functional model has been established it is split into models for each system 

component and allocated to the design responsible teams or organisation for development. 

Normally system components are defined in contract specifications and interface control 

documents. A functional model can accompany these as a supplement. The proposed functional 

model is a graphical representation of these documents and traceability between them is essential. 
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The functional model can be used to support the generation of these documents as they both 

contain an abstraction of the components functionality and a description of its external interface.  

 

Figure 41 shows the relationship between the functional model, the animator, and the PIM. The 

arrows reflect direction of flow of information. The functional model and the animator contain 

software and hardware architecture information relating to the system design and the PIM focuses 

on individual component software. 

 

There are a number of options that the component design authority can choose when designing 

and implementing the components they are responsible for. They can use the contract 

specification, interface control document and the component functional model as a set of 

requirements and design the component in any way that meets these requirements. They could, 

however, implement the software using the same process elements as those used in the animator 

with a scheduler using the same scheduler iteration table. The component design authority 

determines the component hardware architecture and generates a component PIM for the 

software. 

 

The proposed functional model can continue to be used in parallel with or abandoned and be 

replaced with a model that includes the detail of each component fed back from the component 

design authority. This new model would be based on the component design rather than the 

abstraction contained in the new functional model. 

 

If bespoke processing system components are implemented using functional elements and an 

identical scheduler configuration then the performance obtained should match the early functional 

model. If processing components are not implemented in this way then the functional model may 

be used to specify its minimum performance requirements. For COTS equipment the actual 

implementation details may not be available, so only the abstraction available from the contact 

specifications and interface control documents may exist for analysis purposes. 
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 3.11  Implementation 

 

A PSM can be obtained from the component software PIM generated as part of the component 

design by the component design authority and its suppliers. The component software code can be 

generated from the PSM. Lu et al. [100] describe how this might work.   

 

Any software platform can be used to implement process elements and schedulers in the same 

way as the functional model animator. Provided that the implementation uses a similar scheduler 

transaction table and the process elements have the equivalent functionality, then the performance 

will be similar to that predicted by the proposed functional model. 

 

3.12  Test 

 

Individual implemented functional elements can be tested in isolation or collectively within a 

system component functional model. It might even be possible to replace a model functional 

element with an implementation process element within the animator to test individual 

implemented process elements. 

Changes to the design can be tested using the functional model animator prior to changes to the 

implementation to validate functional and performance changes. Scheduler table changes used to 

optimise system performance can be reliably evaluated using an animator and then directly applied 

to a system component with confidence that its functionality is unaffected. 

 

It may be possible for the functional model for a system component to be used to replace that 

component in a system integration rig. Further investigation is required to assess its feasibility. 

This would enable the system to be tested without all the system components being present. This 

would require the functional model and scheduler to run in real-time. 
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Figure 41  The relationship between the functional model, the animator and the PIM 
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3.13  Management of Performance using a functional model  

 

There are several issues that affect system performance that need to be considered during the 

early system design phase when using the functional model: 

 

• Quality of the source data from the sensors 

• Resolution of the display or precision of the actuator/control 

• Data quantisation 

• Computation accuracy 

• How often the scheduler schedules a functional element (assuming that the maximum rate 

is once per iteration) 

• Making sure all the functional elements that are required to run in a single iteration fit into 

the iteration interval (taking into account the scheduler overhead). 

 

The performance can be managed by two separate teams: the system architect and the functional 

element definer. 

 

The role of the Systems Architect is: 

 

• Establish a model of the overall systems in terms of schedulers. 

• Determine which functional elements will be used in each iteration. 

• Established a budget for the execution duration for each implemented functional element 

to make sure iteration overruns are avoided. 

• Determine the accuracy of any calculations used. 

• Determine the errors introduced by quantisation. 

• Determine the errors introduced by delays within the system either by calculation or by 

using the animator. 

• Optimise the model to ensure the overall performance requirements are met. 

• Modify the system to cope with changing requirements. 
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• Reallocate performance requirements in the event that a component design authority 

cannot meet existing contract specification and interface control document requirements. 

 

The role of the functional element definer is to: 

 

• Identify and define each independent functional element. 

• Ensure that each process element executes with its time budget. 

• Ensure that the implemented scheduler operates within a specific overhead requirement. 

 

The two advantages of this approach, is that firstly, functional element definers do not have to 

understand how the whole system is implemented to define a functional element, and secondly, 

the systems architects do not have to understand the internal workings of each functional element 

to define and refine the scheduler transaction table. The main disadvantage is the extra work 

involved. 

 

3.14 Summary 

 

The proposed model provides a simple graphical representation for system components that can 

be combined to form a system wide functional representation of the information required by the 

system design authority to select component design authorities and suppliers. It can be used early 

in the design process before component design is started. It separates each processing and non-

processing component into a number of independent functional elements and a separate schedule 

which orders the operation of the functional elements. Adjustments to the schedule can be made 

independently from the specification of functional elements. The model includes a functional 

representation of the behaviour included in component contract specifications and a definition of 

the external interfaces and communications between components. 

 

The model offers the potential for animator code to be automatically generated . 
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Chapter 4        Investigation of the proposed functional model 

 
4.1  Introduction 

 

Three investigations examine the usefulness and validity of the model described in Chapter 3, to 

see whether the proposed functional model could be used to manage the transition between an 

outline architecture independent set of requirements and a functional and performance 

specification for each system component.  An overview of the three investigations is shown in 

figure 4. 

 

All three investigations use the proposed functional model and consider static, stochastic and 

dynamic errors but concentrate on dynamic errors. 

 

A main theme of the investigations is the comparison between performance assessments both with 

and without the functional model proposed in Chapter 3. 

 

Chapter 5 contains a summary of the outcomes of these investigations. 

 

4.2  Purpose of investigations 

 

The purpose of the investigations is to examine in practice whether a functional model as proposed 

in Chapter 3 could be used to specify functional and performance requirements, prior to the 

detailed design of the design for system components. Each investigation compares the transition 

between a top-level set of requirements and an architectural specific system component design 

with and without a functional model. 

 

The investigations address a functional representation of real-time systems and various available 

ways to assess performance. 
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Specifically the investigations are chosen to establish: 

• whether the functional model could be used to specify functional requirements prior to the 

detailed design of individual system components in a real-time distributed system. 

• whether the functional model could be used to calculate system performance prior to the 

detailed design of its system components. 

• whether there was any way the performance can be modelled using a computer program. 

• whether there are any other potential advantages and disadvantages that require further 

investigation. 

The following issues are related to the research question but were not considered by the 

investigations: 

 

• whether there was any financial advantage of a functional model. This was not considered 

and is identified as future work in Section 6.4. 

• a fully functioning performance animator was not developed. 

• whether non functional requirements other than performance can be added to the 

functional model data base and allocated to functional elements within specific functional 

chains.  

 

4.2.1   Overview of investigations 

 

The first investigation deals with a single processing component and is used to establish how an 

abstraction can be represented by a functional model and an associated scheduler. The concept of 

a functional element and how functional elements communicate is investigated. The principle of 

functional chains and their extraction from functional diagrams is established. The assessment of 

suitability of an initial system architectures for a simple weather station is undertaken with and 

without the proposed approach to see its potential advantages and disadvantages. 
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Table 4 Overview of investigations. 

Purpose Investigation/system Feature 

Examination of functional 

model diagram 

1 

Weather station 

Functional model 

Allocation of 

requirements to system 

components 

1 

Weather station 

Hardware Architecture 

Dynamic aspects of 

functional model 

1 

Weather station 

Component scheduler 

Functional elements that 

contribute to an end 

event. 

1 

Weather station 

Functional chains 

Simplification of 

functional chains 

1 

Weather station 

Functional chain analysis 

Shared Data 1 

Weather station 

communication between 

functional elements 

comparison 1 

Weather station 

With/without functional 

model 

Combined component 

functional models 

2 

Flight control system – 

display of gyro compass 

data 

Multiple component functional 

chains 

Prototyping 2 

Flight control system– 

display of gyro compass 

data 

Animator 

comparison 2 

Flight control system– 

display of gyro compass 

data 

With/without functional 

model 

Prototyping 3 

Flight control system 

Automatic generation of 

animator code 

comparison 3 

Flight control system – 

course to steer data 

With/without functional 

model 
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The second investigation extends the principles shown in the first investigation to a system 

comprising multiple, distributed processing and non-processing elements. It is also used to 

demonstrate the propagation and analysis of errors. A basic model animator is developed to 

analyse stochastic and dynamic errors. 

 

The third investigation extends the second investigation to include more complex functional models 

at the component level. It examines open and closed loop processing and how animation code can 

be automatically generated from the model. The basic animator is extended to use functional 

element and scheduler objects, collect statistical data about the output and to display the 

maximum calculated error. The functional chain from the second investigation is used to enable 

comparison of the animators for the third investigation. 

 

4.2.2   Research methodology 

 

The research reported in this thesis was undertaken on an exploratory basis. The literature survey 

identified problems associated with performance analysis of real-time systems prior to hardware 

component procurement for real-time systems. The problems were caused by the early system 

design being designed using previous experience on a ‘fix-it-later’ basis. Analysis of modelling 

opportunities suggested the potential usefulness of a model based on the combination of 

abstractions which represent individual processing and non-processing system components. 

 

The research consists of three investigations. Each investigation consists of a well specified 

research question which identifies a number of aspects of the proposed additional functional model 

to be examined. After each investigation, the results were analysed to determine how best the 

model should operate.  A real-time system was chosen for the context of each investigation on the 

basis of previous experience.  Each chosen real-time system consisted of an existing simplified 

real-time system. 
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Only relatively simple systems were used as examples. In practice the systems most likely to 

benefit are much larger. Although the model appears to be extensible further work, is required 

alongside a real large system development. 

 

The choice of hardware architectures was not unrealistic with the exception of the dual wind 

direction hardware architecture change which was introduced so a change to the hardware design 

was necessary. 

 

This approach has certain limitations.  The systems investigated are typical real-time systems 

which operate in a periodic manner and the conclusions that were drawn are limited to this type of 

system. The additional model may apply to other types of system but they were not assessed. 

 

The choice of end event requirements was not unrealistic but chosen to fit the analysis. For 

example, the initial design of the wind direction functional chain for the weather station in the first 

investigation would not support the wind direction requirement and would require a hardware 

change. All other end event requirements were chosen so that no rework was required. 

 

Some of the conclusions drawn were predicted from the outset, some were discovered during the 

investigative process. No aspects of modelling process were assumed. 

 

No attempt was made to investigate the effects of multiple stakeholders other than to note that 

multiple stakeholders were a contributory cause of performance issues. 

 

4.3  First Investigation 

 

4.3.1 Introduction 

 

The first investigation uses a functional model for a simple weather station comprising a single 

processing element, some sensors and a display. It compares the transition between a set of top 
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level requirements and an architecture specific system component design, with and without a 

functional model.  

 

4.3.2  Investigation aims 

 

The aims of the first investigation are as follows: 

 

• To determine how the transition between a set of outline requirements and system 

component specification would be undertaken without a functional model 

• To investigate how the transition between a set of outline requirements and a system 

component specification would be undertaken with a functional model 

• To assess whether the weather station could be represented by independent functional 

elements 

• To determine how a functional model could be represented 

• To assess how a scheduler might operate and be represented 

• To investigate how combinations of functional elements might be analysed 

• To decide how the independent functional elements could be individually implemented 

• To decide how the individual functional elements could be combined into a working 

functional system 

 

The system investigated has been chosen to illustrate the use of the proposed functional model 

within a single processing component. Not all aspects of the research question were investigated - 

later investigations examine multi-component systems and functional chain animation. The 

requirements for this system are also illustrative. The system was chosen because it contained 

several end events and could be designed using as periodic system with a single mode. The 

requirements were chosen so that a change to the initial design is required so that performance 

requirements could be met. The design decisions that have been adopted are also not meant to be 

realistic. Care has been taken not to draw conclusions beyond the scope of the system chosen. 
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4.3.3   System design without a functional model 

 

This section considers the performance calculations that might be undertaken prior to the selection 

of components. 

 

4.3.3.1 Selection of a system hardware architecture 

 

The system hardware architecture chosen is typical of a simple weather station system and links a 

number of sensors to a common display. The main processing component is represented by a 

single abstraction. The abstraction consists of a number of functional chains. The revised hardware 

architecture introduced in Section 4.3.3.3.2 to overcome the performance shortfall in the display 

wind direction functional chain would not be used in practice but was chosen so that a change to 

the functional chain was introduced.  Other solutions to the problem such as increasing the 

resolution of the A to D converter are much more typical.  The use of a dual direction sensor is, 

however, commonly used in the azimuth direction sensors of naval guns. 

 

The selection of a system hardware architecture without a functional model is undertaken on a 

‘previous experience basis’ from the system requirements definition. In this example the system 

consists of a single processing component linked to a number of analogue sensors and a display. 

This means that the only real issue is the selection of the sensors before the processing 

component starts.  

 

The investigation starts with an outline customer requirement for a basic weather station. This 

consists of a textual overview of the functional operation and performance requirements associated 

with functional end events. These performance requirements would be determined by modelling 

the system real-world interfaces independently of how it was going to be implemented. Table 5 

shows the list of functional end events that define the performance requirements that will be used 

in this investigation. Table 6 shows the performance requirements for each functional end event 

defined in table 5. The system can be drawn diagrammatically as shown in figure 42. 
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Whilst the end event performance requirements included in table 6 are entirely arbitrary, they have 

been chosen so that the system hardware would support all but the DisplayWindDirection end 

event requirement. 

 

The following analysis of the development of a design without a functional model is an ad-hoc 

calculation for comparison purposes. It does not use any part of the proposed model described in 

Chapter 3. 

 

4.3.3.2 Allocation of functional requirements. 

 

The first stage of the development of the system design consists of the allocation of functional 

requirements into a number of system components. Figure 43 shows the system architecture that 

was proposed specified using SysML.  

 

From inspection of the proposed system architecture, the functionality allocated to each system 

component has a special and unique purpose.  

 

 

 

 

 

 

 

 

 

 

Table 5 List of functional end events for the weather station. 

 

 

Functional end events  

Name 

Functional requirement 

 

SenseWindDirection Sense wind direction in the horizontal plane 

SenseWindSpeed Sense wind speed in the horizontal plane 

SenseTemperature Sense air temperature 

SensePressure Sense air pressure 

CalculateParameters Calculate parameters for display 

DisplayParameters Display wind direction, air temperature and speed 
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Table 6 The requirements for each functional end event. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 Outline system architecture for the weather station. 

 

 

Functional end event name Performance requirement 

DisplayWindDirection Display wind direction accuracy +/- 1 degree 

 Maximum rate of change of wind direction 10 degrees/sec 

DisplayWindSpeed  Display wind speed accuracy +/- 1 MPH 

 Maximum rate of change of wind speed 10mph/sec 

 Maximum wind speed  50mph 

DisplayTemperature Display air temperature +/- 1 degree Celsius 

DisplayPressure Display air pressure accuracy +/- 1 mB 
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4.3.3.3. Performance Calculation 

 

As the system architecture is simple, the following initial calculations can be made. The initial 

system components performance allocation has been chosen so that all dynamic errors are 

generated by the weather station computer component.  

 

4.3.3.3.1  Initial system design 

 

Wind direction sensor 

 

End event – DisplayWindDirection 

• Wind direction sensor errors assumed to be +/- 0.3 degrees 

• Wind direction sensors sometimes gives occasional erroneous outputs so filtering is required 

• A to D converters work at 20 Hz and are 8 bit 

• Processor executes a simple periodic type software process that iterates every 20ms 

• Display updates every 20ms  

• Maximum rate of change of wind direction is 10 degrees per second 

• Wind direction range 0 degrees – 360 degrees 

 

This means the quantisation error  =  360/28  =   1.4 degrees 

 

So an analysis of the three different types of error produces the following results: 

 

• Static error  

Assumed to be mechanically or software adjusted to 0. 

 

• Stochastic error 

Assumed to be made up of quantisation errors and sensor errors: 
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Error range is combination of +/- 0.7 and +/- 0.3 degrees respectively. This makes a total 

of +/- 1.0 degrees plus occasional invalid outputs. 

 

• Dynamic errors 

Maximum delay = 60ms plus the effects of the filter (unknown at this stage) 

Rate of change of input 10 degrees per second. 

Maximum instantaneous error = 60* 10/1000 = 0.6 degrees. 

 

This gives a maximum instantaneous error of 1.2 + 0.6 = 1.8 degrees and fails the accuracy 

requirement DisplayWindDirection. 

 

Wind speed sensor 

 

End event – DisplayWindSpeed 

 

• Wind speed sensor errors assumed to be +/- 0.1 mph. 

• A to D converters work at 20 Hz and are 8 bit. 

• Processor executes a simple periodic type software process that iterates every 20ms. 

• Display updates every 20ms.  

• Maximum rate of change of wind speed is 10 degrees per second. 

• Wind speed range 0 mph – 50 mph. 

 

This means the quantisation error =  50/28  =   0.2 mph. 
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Figure 43 The proposed system architecture for assessment using SysML notation. 
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So an analysis of the three different types of error produce the following results: 

  

• Static error  

Assumed to be mechanically or software adjusted to 0. 

 

• Stochastic error 

Assumed to be made up of quantisation errors and sensor errors: 

Error range is combination of +/- 0.1 mph and +/- 0.1 mph. This makes a total of +/- 0.2 

mph. 

 

• Dynamic errors 

Maximum delay = 60ms. 

Rate of change of input = 10 mph per second. 

Maximum instantaneous error = 60* 10/1000 = 0.6 mph. 

This gives a maximum instantaneous error of  0.2 mph + 0.6 mph = 0.8 mph and passes the 

accuracy requirement DisplayWindSpeed. 

 

Temperature sensor 

 

End event – DisplayTemperature. 

 

• Temperature sensor errors assumed to be +/- 0.1 degrees. 

• A to D converters work at 20 Hz and are 8 bit. 

• Processor executes a simple periodic type software process that iterates every 20ms. 

• Display updates every 20ms. 

• Maximum rate of change of temperature is 1 degree per second. 

• Temperature range -10 degrees – 40 degrees. 

This means the quantisation error  =  50/28  =   0.2 degrees. 
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So analysis of the three different types of error produce the following results: 

 

• Static error  

Assumed to be mechanically or software adjusted to 0. 

 

• Stochastic error 

Assumed to be made up of quantisation errors and sensor errors. 

Error range is combination of +/- 0.1 degrees and +/- 0.1 degrees. This makes a total of 

+/- 0.2 degrees 

 

• Dynamic errors 

Maximum delay = 60ms 

Rate of change of input 1 degree per second. 

Maximum error = 60* 1/1000 = 0.06 degrees. 

 

This gives a maximum instantaneous error of  0.2 degrees + 0.06 degrees = 0.26 degrees and 

passes the accuracy requirement DisplayTemperature. 

 

Pressure sensor 

 

End event – DisplayPressure. 

 

• Pressure sensor errors assumed to be +/- 0.5mb. 

• A to D converters work at 20 Hz and are 8 bit. 

• Processor executes a simple periodic type software process that iterates every 20ms. 

• Display updates every 20ms.  

• Maximum rate of change of pressure is 0.1 mb per second. 

• Wind pressure range 950 mb – 1050 mb. 
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This means the quantisation error  =  100/28  =   0.4 mb. 

So analysis of the three different types of error produces: 

 

• Static error  

Assumed to be mechanically or software adjusted to 0. 

 

• Stochastic error 

Assumed to be made up of quantisation errors and sensor errors. 

Error range is combination of +/- 0.5 mb and +/- 0.4 mb. This makes a total of +/- 0.9mb. 

 

• Dynamic errors 

Maximum delay = 60ms. 

Rate of change of input = 0.1 mb. 

Maximum instantaneous error = 60* 0.1/1000 = 0.006 mb. 

 

This gives a maximum instantaneous error of  0.9 mb + 0.006 mb = 0.906 mb and passes the 

accuracy requirement DisplayPressure. 

 

 
Summary of the initial pass of the system design is: 

 

Sensor Max Static 

error 

Max 

Stochastic 

error 

Max 

Dynamic 

error 

Max Total 

error 

Max Error 

requirement 

DispWindDirection 0 degrees +/-1.0 deg +/-0.6deg +/-1.6deg +/- 1 deg 

DisplayWindSpeed 0 mph +/-0.2mph +/- 0.6mph +/-0.8mph +/- 1 mph 

DisplayTemperature 0 degrees +/- 0.2 deg +/- 0.06 deg  +/-0.26 deg +/- 1 deg 

Display Pressure 0 mb +/- 0.5 mb +/- 0.006 mb +/-0.506 mb +/- 1.0 mb 

 

Table 7 Summary of the initial system design. 
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4.3.3.3.2  Design changes to overcome performance shortfalls 

 

The performance shortfall can be rectified by the introduction of a coarse/fine wind direction 

sensor. (There may be other more sensible modifications but this was chosen as it changes the 

system design. Course/fine direction systems already exist on naval gun mountings. Changes to 

the system design like this are very expensive if not detected early). The iteration rate of the 

processor needs to be examined as the processor now includes some arithmetic calculations. The 

effects of the sensor filter are estimated to be equivalent to a delay of 0.1ms. Other solutions such 

as improving the resolution of the A to D converters have been ignored. 

 

Two wind direction sensors are now used. 

 

Fine sensor performance requirement  +/-1 degree over 30 degrees plus ambiguity 

Coarse sensor requirement +/- 10 degrees – used to resolve ambiguity 

 

• Fine wind direction sensor errors assumed to be +/- 0.1 degrees 

• Fine wind sensor update rate = 50hz 

• Fine wind sensor range 0 degrees to 30 degrees 

• Coarse wind direction sensor errors assumed to be +/- 0.5 degrees 

• Coarse wind sensor update rate = 50hz 

• A to D converters work at 20 Hz and are 8 bit 

• Processor executes a simple periodic type software process that iterates every 20ms 

• Display updates every 20ms  

• Maximum rate of change of wind direction is 10 degrees per second 

• Fine Wind direction range 0 degrees – 30 degrees 

• Coarse Wind direction range 0 degrees – 360 degrees 

 

This means the fine quantisation error =  30/28  =   0.12 degrees 
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This means the coarse quantisation error =  360/28  =   1.4 degrees 

So analysis of the three different types of error produce the following results: 

 

• Static error  

Assumed to be mechanically or software adjusted to 0. 

 

• Stochastic error fine sensor 

Assumed to be made up of quantisation errors and sensor errors: 

Error range is combination of +/- 0.12 and +/- 0.1 degrees. This makes a total of +/- 0.22 

degrees 

 

• Stochastic error coarse sensor 

Assumed to be made up of quantisation errors and sensor errors: 

Error range is combination of +/- 1.4 and +/- 0.5 degrees. This makes a total of +/- 1.9 

degrees 

 

• Dynamic errors 

Maximum delay = 70ms 

Rate of change of input 10 degrees per second. 

Maximum error = 70* 10/1000 = 0.7 degrees. 

 

This gives a maximum instantaneous error of 0.22 + 0.7 = 0.92 degrees (and passes the accuracy 

requirement DispWindDirection). Accuracy of the coarse sensor of 1.4 degrees easily meets the 

requirement to resolve fine sensor ambiguity of 30 degrees. 
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4.3.3.3.3   Summary of the second system design 

 

Summary of the second pass at the system design is: 

Sensor Max Static 

error 

Max 

Stochastic 

error 

Max 

Dynamic 

error 

Max Total 

error 

Max Error 

requirement 

DispWindDirection 0 degrees +/-0.22 deg +/-0.7deg +/-0.92 deg +/- 1 deg 

DisplayWindSpeed 0 mph +/-0.2mph +/- 0.6mph +/-0.8mph +/- 1 mph 

DisplayTemperature 0 degrees +/- 0.2 deg +/- 0.06 deg  +/-0.26 deg +/- 1 deg 

Display Pressure 0 mb +/- 0.5 mb +/- 0.006 mb +/-0.506 mb +/- 1.0 mb 

 

Table 8 Summary of the second pass at the system design. 

 

The performance of the processor can be re-calculated when the detail design of the processor 

software becomes available. 

 

For small embedded systems developed by a single design team, the process of allocation 

performance requirements to individual components is typically undertaken by prototyping. If the 

prototype does not meet the performance requirements, the prototype is modified until it does 

operate as required. Detailed performance analysis is uneconomic in this case. 

 

4.3.3.4 Allocation of other non-functional requirements 

 

There are a number of other standard functional requirements that can be allocated to individual 

components and subcomponents of the system. These include: 

 

• Mission criticality  

• Safety criticality 

• Failure modes 
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These requirements are associated with system end events. Without a functional model they can 

only be partitioned to system components not to individual functional requirements.  

 

4.3.3.5 Traceability 

 

Traceability between functional requirements identified in the outline functional requirements and 

system components in this investigation is straight forward as the contribution of each system 

component is separate and unique. Traceability to individual elements of software within the 

weather station processor is not possible until the detailed weather station processor software 

design is complete. 

 

4.3.4   System design development process with the functional model 

 

This section deals with the establishment and analysis of a functional model for a simple weather 

station. It uses the same customer requirements defined in 4.3.3.4. It starts with the generation of 

a functional model as described in Chapter 3 then goes on to describe and examine a functional 

chain. 

 

4.3.4.1  Generation of the functional model 

 

Using the same functional requirements and system end events defined in 4.3.3.4, the system 

hardware architecture shown in figure 42 has been simplified to show the model components that 

are associated with different schedulers. This simplified hardware architecture is shown in figure 

44.  This model cannot be automatically generated from the system requirements as extra detail is 

being added. 
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Figure 44 The simplified hardware architecture used to identify system component schedulers. 

 

Each system component was decomposed into individual functional elements suitable for 

implementation as an independent service. The execution time of each functional element is small 

compared with the duration of an iteration and, for the purpose of the model, is an estimate. The 

representation of each functional element must describe its function, inputs and outputs. An 

example of part of this functional model is shown in figure 44. Only a part of the whole aircraft 

model is shown as the whole model is large. The inputs and outputs shown are internal to the 

model and do not represent sensor inputs or functional end events. 

 

Each sensor and end event was associated with a single functional element. Communication links 

are represented by a simple functional element, which copies input data into output data at a 

particular rate. 

 

Three functional elements are shown in figure 45 (assessWindSensors, calculateWindSpeed and 

calculateWindDirection) as rectangles. Each functional element is independent and the diagram 

contains no information about the order the functional elements are executed. The solid arrows 

show how information migrates from object to object – in reality a message answer from a getter 

message request sent in the opposite direction. Dotted arrows are used to indicate flags.  

It was assumed that the sensor and the sensor AD converter can be considered as a single system 

component and that each sensor can be adjusted to remove static errors. 

 

sensorSignals displayData 

Sensors Display 

 

Processing 
component 

 

Data 
link 

Data 

link 
External 
interface 

External 
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In the weather station each system component is associated with an independent scheduler as 

shown in table 9 and figure 44. Figure 45 is an example of a sample functional model diagram 

controlled by a single scheduler. 

 

Each scheduler is associated with a scheduler transaction table and operates each with its own 

scheduler iteration interval and transaction table.  

 

Table 10 shows an example of a scheduler iteration table. The table shows a regular structure and 

can be represented in a condensed form as shown in Table 11 as described in Section 3.6.2. If the 

scheduler does not have a regular structure then it is not possible to represent it in a condensed 

form. Scheduler iteration tables are typically much more complex with each iteration containing 

hundreds of functional elements. 

 

 

 

 

 

 

 

 

 

Table 9 Scheduler names for each system component. 

Scheduler Name System Component 

WindDirSensorIt Wind Direction Sensor 

WindSpeedSensorIt Wind Speed Sensor 

TemperatureSensorIt Temperature Sensor 

PressureSensorIt Pressure sensor 

ProcessorIt Processor 

DisplayIt Display 
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Figure 45 Example of how functional elements can be represented. 
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Table 10 The scheduler iterator table for the processing system component. 

Functional Element 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

iterCounter x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

readDirCoarse x x  x x x x x x

readDirFine x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

readWSpeed x x x x x x x x x x x x x x x x

readTemp x x

readPressure x x

filterDirCoarse x x  x x x x x x

filterDirFine x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

filterTemp x x

filterPressure x x

generateWindDir x x x x x x x x

generateWSpeed x x x x

generateTemp x

generatePressure X

processWind x x x x x x x x

processTemp x

processPressure x

3 3 3 2 3 2 4 4 3 4 4 3 3 2 4 4 3 3 3 2 2 2 3 4 3 3 3 3 2 2 3 4 3 3 3 2 3 2 4 4 3 4 4 3 3 2 4 4 3 3 3 2 2 2 3 4 3 3 3 3 2 2 3 4
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Table 11  The iteration table in a compressed format. 

 

4.3.4.1.1  Adding detail to functional element specifications 

 

After the functional elements have been identified in graphical form the model is populated for 

each functional element and associated text note. An example of the template used is shown in 

appendix A. Extra information about the layout of the diagram and its position within the structure 

of the functional element diagram is also recorded. Additional fields are included so that system 

related non-functional requirements identified by functional chain analysis can be recorded. 

 

The behaviour of each functional element is defined in the model. There are a number of possible 

formats that can be used such as OCL, a pseudo algorithm or even code. It is important that the 

information stored in the database is sufficient for the animator generator program described in 

the third investigation to populate the animator code templates.  

 

Using functional elements as a component part of a system representation helps identify re-use 

opportunities by identifying functional elements that are equivalent. 
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Input and output data is fully defined in separate associated textual data notes. The data note 

contains fields as shown in the template in Appendix B. Data text note fully defines the digital 

structure of the data and whether the data is a decomposition of another data or whether the data 

further decomposes. The animator code generator needs this information to define the attributes 

of functional element objects. 

 

4.3.4.1.2  The weather station sensors 

 

Each sensor is modelled as a single functional element that generates a digital representation of 

the sensor data associated with a scheduler. The iteration rate for a sensor is assumed to be much 

faster than the iteration rate of the processing component so the effects of delays can be ignored. 

This single functional element is shown in figure 46. The sensors in later investigations are more 

complex and are assumed to have much slower iteration rates. 

 

 

 

 

 

 

 

 

 

Figure 46 A functional model for a sensor component. 

 

sensor Rate Every Offset 

sensor 1 1 0 

 

Table 12  A sensor iteration schedule. 

Sensor and A to D converter 

environment sensor 
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4.3.4.1.3  The weather station display 

 

Each display is modelled as a single functional element that generates a representation of the 

sensor data. This single functional element is shown in figure 47. 

 

 

 

 

 

 

 

 

Figure 47  A functional model for the display component. 

 

display Rate Every Offset 

display 1 1 0 

 

 

Table 13   A display iteration schedule. 

 

4.3.4.2  Analysis of performance end events 

 

Functional chains can be identified from end events and tracing all the functional elements that 

contribute to its value. The functional chain is then constructed showing each functional element 

linked by the data that connects them. When a functional chain has been identified, the diagram 

notes associated with each functional element that is involved can be annotated with references to 

the traceability, safety and mission criticality requirements of the end event. 

display 

dataForDisplay environment 
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The lines linking the functional elements in a functional chain represent real data flow; they 

represent how information migrates across the system as functional element recorded information 

are changed. 

 

In the functional chain shown in figure 48, the end event is the indication of wind direction on the 

‘DispWindDirection’ and is shown on the right of the diagram. The actual wind direction the 

Weather Station wind sensor experiences are shown as ‘env’ (environment). As the wind sensor 

has two parts, the coarse and fine wind direction sensors, it appears twice labelled 1. The use of 

‘env’ for the real-world environment is required to remind the modeller that these inputs are 

interrelated. In this case they both refer to the same wind direction. When these inputs are 

generated by a real-world model they must be generated in synchronised way. 

 

4.3.4.3  Functional chain simplification 

 

One of the benefits of depicting functional chains as shown in figure 48 is that they can be split up 

into a number of sub chains. These sub chains can be compared to see which of them are critical 

to the performance of the final end event. Only those functional sub-chains that contribute towards 

the performance of the end event need to be included in the performance calculation or animation. 

 

The sub chains identified by function element reference numbers shown in figure 48 are shown in 

table 14.  

 

An analysis can be undertaken to see which sub chains are critical to the functional end event. 

Functional chain 2 is the critical sub functional chain, as it links the fine wind sensor to the wind 

direction display. Functional chain 1 has to meet the requirements of functional element 8, where 

the fine sensor direction ambiguity is resolved. Functional chains 3, 4 and 5 have to supply 

iteration counter to meet the requirements of functional element 8. 
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Table 14 The individual functional sub chains in the wind direction display functional chain shown 

in figure 48. 

 

 

 

Sub Chain 

Number 

Name Functional Elements 

1 Coarse wind - Provision of filtered coarse 

wind sensor data to generateWDir to 

resolve direction ambiguity 

8, 4, 3, 2 ,1 

2 Fine Wind – provision of wind direction 

data to display 

13, 12, 10, 9 , 8, 7, 6, 5, 1 

3 Counter (Chain 1)  8, 4 , 3, 11 

4 Counter (Chain 2) 8, 7, 6, 11 

5 Counter (Chain 3) 8, 11 
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Figure 48  The functional chain relating to the display of wind direction. 
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4.3.4.4  Calculation of performance from functional chains 

 

Software performance can be calculated by analysing the functional elements in a functional chain 

in conjunction with the scheduler iterator structure. The error in the end event is a combination of 

sensor errors, arithmetic errors and representation errors that can be determined from each 

functional element and the delay between the executions of each functional element obtained from 

the scheduler iterator. The errors may be calculated as follows: 

 

• Static errors 

Static errors cannot be calculated as they are due to the mechanical installation of the sensor. 

They can be easily removed by mechanical realignment or a digital offset after the sensor is 

aligned to the display.  

 

• Stochastic errors 

In this investigation the processing element only passes the wind direction data from the analogue 

to digital converters to the display without any arithmetic calculation. This means that in this case 

the stochastic errors only relate to the digital resolution of wind direction data and sensor noise. 

The contribution of this error can be calculated without a functional model. 

 

• Dynamic errors 

The delay across the system can be calculated; providing the processer system component is 

implemented using process elements derived from the models functional elements and iterated 

using the same iteration structure from the functional model, it should provide an accurate value. 

The calculation can be simplified by only considering the functional elements in the critical sub 

chain. 
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If the functional elements are called in the order 1, 5, 6, 7, 8, 9, 10, 12, 13 within a single 

iteration, the delay between input and output is the time between the start of functional element 1 

and the end of functional element 13, plus the iteration interval times the rate value for the 

elements. 

 

The delay will be different for different iterator schedules but can be calculated in a similar way. 

 

The calculation must also be repeated every time the functional chain or the iteration schedule 

changes. Repetitive recalculation of the performance is time consuming and not cost effective. 

 

Each functional chain can be animated in a way that reflects real performance, by executing the 

functional elements contained in the functional chain using a scheduler with the same iteration 

schedule structure as the full system. The animation uses the algorithm for each functional 

element that is embedded in the functional element text note. The format options for the algorithm 

could include real code, pseudo-code, to an OCL definition. The possibility of automatically 

generating the code for the animator based on this algorithm is examined in later investigations. If 

the animator code can be automatically generated from information contained in the functional 

model, all the functional elements in the functional chain could be included. 

 

The advantage of animation is that it can be easily repeated and can be used to specify the 

performance requirements of individual components. If the final component design uses the same 

implementation structure and iteration table, the animation will mirror the performance of the final 

system. Performance predicted by calculation can be used to confirm the results obtained from the 

animator. 

 

The animator could be extended to include stochastic errors by adding representative sensor errors 

in each sensor functional element and by using the data type and range defined in the functional 

model data note. 
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The animator also identifies functional errors in the functional model and can also be used to 

provide an early opportunity for the customer to review the systems proposed functionality. 

 

Further aspects of the use of functional chains are explored in the second and third investigations. 

 

4.3.4.5  Traceability 

 

Functional chains identify those functional elements that are related to a specific end requirement. 

Traceability between high level requirements and the model can be achieved by annotating the 

functional element’s data notes associated with the relevant functional end event. For example, all 

the functional elements shown in figure 48 can be traced to a high level requirement to display 

wind direction. Other parameters for mission criticality, safety criticality and failure can also be 

added in a similar manner. Traceability references can be added to extra fields in the functional 

element data note. 

 
4.3.5   Summary of investigation and lessons learnt 

 

The weather station investigation addressed: 

 

• How the transition between an architecture independent top level set of requirements and 

a system component specification might be undertaken without a functional model based 

on a simple weather station. 

• How the transition between an architecture independent top level set of requirements and 

a system component specification might be undertaken with a functional model. 

• How individual functional elements might be specified. 

• How a scheduler might operate and be defined. 

• How functional elements can be combined to represent a complete component abstraction. 

• How a functional chain may be generated and analysed. 
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The lesson learnt were: 

• The weather station, represented by an abstraction, was described using a functional 

model diagram and a separate scheduler table. A method of obtaining functional elements 

by the repeated decomposition of system requirements was established and a functional 

chain for the display of wind direction was extracted from the functional diagram.  The 

functional chain was assessed and a method similar to critical path analysis was 

established to identify those functional elements that had the most effect on the 

performance of the wind direction display. As the performance of the display of wind 

direction did not meet the system requirements it was possible to examine an alternative 

system design. Although the alternative design was a little unrealistic it demonstrated how 

this could be done. 

 

• A method for the transfer and storage of system data was established. The dynamic 

operation of a single functional element was described using a UML sequence diagram. 

When individual functional elements operated in accordance with the scheduler table the 

dynamic operation of the model can be specified. This approach offers the potential for the 

model to be animated. 

 

• As the functional chains only transferred data between the sensors and the display, 

dynamic errors were calculated by adding the delays identified from the scheduler table. It 

became clear that the calculation of dynamic errors from functional chains with multiple 

branches, and where each functional element consists of multiple inputs, becomes 

increasing difficult with increasing system complexity. Some other way of determining 

system errors that avoided this type of analysis would be needed to improve the usability 

of this modelling approach. 

 

• In practice, for systems with a single processing component the selection of components 

can be done without a functional model. The functional model would help to specify the 
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functionality within the processing component but would soon be replaced by a more 

conventional model representing the processor hardware architecture and the processor 

software architecture. As the development would almost certainly be undertaken by a 

single team the number of formal team communications interfaces would be few. This 

means that the system design authority and the component design authority would be the 

same. 

 

• As the system considered only consisted of a single processing component further work is 

required to consider systems with multiple processing components. 

 

4.4 Second investigation 

 

4.4.1  Introduction 

 

Investigation 2 examines a simple distributed system to see how a simple functional model can be 

used to examine system performance. It considers a simple idealised aircraft navigational system 

which, amongst other things, passes directional information obtained from a gyro compass across 

the system to a simple aircraft heading display.  

 

The investigation describes a simple functional model that specifies the functional requirements for 

the transfer of directional information. It describes how non-functional requirements can be 

recorded and investigates how the functional chain can be used to calculate the errors due to 

system delays. 

 

The investigation describes how animators can be used to investigate system errors. Two types of 

animators are compared: a real-time and a non real-time animator. 
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4.4.2   Investigation aims 

 

The aims of the investigation are as follows: 

 

• To compare the assessment of a proposed system hardware architecture with and without 

a functional model. 

• To assess whether a simplified functional model could represent the transfer of gyro 

compass data by independent functional elements. 

• To determine how this functional model could be represented. 

• To decide how the individual component abstraction functional models could be combined 

into a working system design. 

• To investigate how the functional model could be used to model system performance. 

• To assess whether a simple animator could represent the operation and performance of a 

multi-component functional chain. 

 

The system in the investigation has been chosen to illustrate the use of the proposed 

functional model within a multi component system. The requirements for this system are 

illustrative and was chosen because it contained several component abstract functional models 

that could be combined to provide a simple linear functional chain. The design decisions that 

have been adopted are not meant to be realistic and care has been taken not to draw 

conclusions beyond the scope of the system chosen. 
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4.4.3   Development of system design without the functional model. 

 

4.4.3.1  Outline requirements 

 

The system end event considered is ‘display aircraft heading’. The end event performance 

requirement is to display aircraft heading to an accuracy of +/- 1 degree for a maximum heading 

change rate of 10 degrees per second. 

 

Whilst the end event performance requirement above is entirely arbitrary, it has been chosen so 

that the system hardware would support this requirement. In practice the selection of this 

requirement would only be decided after the users were involved in an assessment using some 

form of simulator; the actual value chosen is not unrealistic. It is interesting to note that the 

requirement involves specifying the maximum heading change rate as well – a fact that might go 

undiscovered without considering the effects of the system dynamic errors. 

 

4.4.3.2 Selection of a system hardware architecture 

 

The system hardware architecture chosen is typical of a complex navigation system and linked a 

gyro compass to an aircraft display. As this investigation deals with a linear functional chain 

between the sensor and the display much of rest of the navigation system can be ignored. 

 

The selection of a system hardware architecture without a functional model is undertaken on a 

‘previous experience basis’ from the system requirements definition. This is a prime example of a 

'fix-it-later' approach. It relies on the good will of component suppliers to renegotiate their contract 

specifications as the detailed system design emerges after contracts have been placed and the 

component designs emerge. For COTS equipment where modifications might not be possible the 

burden of consequential design changes may lie with the bespoke component design authorities. 



Thesis                                  Investigation of the proposed functional model     
                                                                                              

 

 
Michael Giddings                           Page 183 of 277                     12/10/2016 
 

Functionality covered by a number of component design authorities are particularly difficult to 

manage as they rely on the system design authority to take the responsibility for problems that 

emerge. 

 

The proposed overall initial system architecture is shown in figure 49. The system architecture that 

applies to the display aircraft heading end event is shown as a simple block diagram in figure 50. 

This diagram takes into account how the inter component data uses the avionics and display data 

buses. 

 

4.4.3.3 Allocation of functional requirements to system components 

 

The first stage of the development of the system design consists of the allocation of functional 

requirements to individual system components. 

 

In this investigation a system architecture consisting of two processing system components, a 

number of sensors and a display has been chosen interconnected by two data buses. 

 

This investigation concentrates on the system functional event ‘Display Aircraft Heading’. The 

performance requirement for this functional end event is summarised in table 15. This requirement 

would be determined by asking the customer and using user domain modelling. 

 

Two computers are proposed, the avionics computer and the display computer. The calculation of 

navigation data is located in the avionics computer. The display computer generates the GUI and 

assembles data for display. 
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Performance end event   Performance requirement 

DisplayAircraftHeading +/- 1 degree for heading rates less 

than 10 degrees per second 

 

Table 15 The performance requirement for DisplayAircraftHeading. 

 

Without a functional model the allocation of functionality to individual system components is 

undertaken manually on an experience basis. On this basis the allocation of functionality to system 

components is shown in table 16. Figure 50 shows the flow of gyro compass data from the sensor 

to the display. Communication links are shown as they are represented as separate components in 

the functional model. 

 

The allocation of other requirements that use gyro compass data for other purposes is not 

included. The means that assessing the suitability of a sensor from a single end event functional 

chain is not possible. The functional chains associated with a sensor can be automatically identified 

from the functional model by checking which end events are connected via shared data messages. 

 

The allocation of component iteration rates is summarised in table 17. 
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Figure 49 Initial system hardware architecture. 
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Figure 50  Gyro compass data moving from the sensor to the display. 

 

 

 

 

 

 

 

 

 

 

Table 16 Functionality allocated to system components. 

 

Without a detailed design of the avionics and display computers it is difficult to estimate the 

stochastic and dynamic errors within the system. This problem is further exacerbated if the 

avionics and display computers are developed by two separate organisations as they will see this 

as the responsibility of the system design authority. 

 

As the system merely transfers gyro compass data from one system component to another it is 

possible to manually allocate performance to individual system components. This is achieved by 

considering the resolution of gyro compass data, the maximum delay caused by each processing 

system component and the bus iteration rates. 

 

 

 

System Component Functional element Alias Iteration 

rate 

Gyro compass 

sensor 

genGcData A1 i1 

Avionics bus transferGcSens A2 i2 

Avionics computer transferGcNb A3 i3 

Display bus transferGcAc A4 i4 

Display computer transferCourse A5 i5 

Display bus transferGyroComp A6 i4 

Display DispGcData A7 i6 

Gyro 

Compass 
Nav Bus Avionics 

Computer 
Display 

Bus 
GUI 

Computer 

Display 
Bus 

Display  
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System component name description 

Gyro compass sensor GenGcData Gyro compass sensor 

Navigation bus transferGcSens Transfer of gyro compass data over 

navigation bus 

Avionics computer transferGcNb Transfer of gyro compass data 

from navigation bus to the avionics 

computer bus. Part of other 

navigation functionality 

Display bus transferGcAc Transfer of gyro compass data over 

display bus 

Display computer transferCourse Display functions 

Display bus transferGyroComp Transfer of gyro compass data over 

Display bus 

Display dispGcData Display aircraft heading 

 

Table 17 Functional elements within the DisplayAircraftHeading functional chain. 

 

4.4.3.4  Calculation of performance 

 

4.4.3.4.1 Static errors 

 

These are ignored because they would be removed by alignment and the application of either a 

mechanical or digital offset. 
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4.4.3.4.2 Stochastic errors 

 

In this sample system the gyro compass data is not modified as it transits the system. The only 

source of stochastic error then is the resolution of the gyro compass data and gyro data sensor 

noise.  

 

4.4.3.4.3 Dynamic errors 

 

As the gyro compass data is passed unmodified from one system component to another the 

maximum permitted dynamic error can be calculated as follows: 

 

Dynamic error =  &. ∑ 8��
  

 

where: 

m is the maximum rate of change of aircraft heading permitted (in this case 10 degrees per 

second) 

n is the number of system components 

i is the delay caused by each system component 

In this instance the minimum delay caused by each system component is 0 if each system 

component passes the information on as soon as it receives it. The maximum delay in the end 

event is the sum of each component delay assuming that the receiving component just misses the 

update of the source component. 

 

4.4.3.5  Traceability 

 

Traceability of requirements to individual parts of each component cannot be undertaken until after 

a detailed design has been undertaken by the individual component design authority. 
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4.4.4  Development of the system design with a functional model 

 

A common approach is to generate a functional description for each component based on its 

operation and external interfaces that can be used either to negotiate the procurement of bespoke 

components or to assess information available from COTS suppliers. The component external 

interfaces are defined based on the proposed system architecture. This analysis is undertaken 

based on previous experience using a 'fix-it-later' approach.  

 

4.4.4.1   Generation of the functional model 

 

Techniques using formal methods and tools that use MARTE are normally undertaken when the 

detail design of the components emerge. The proposed functional model is based on a subset of 

MARTE tasks that apply to abstractions. It combines the system hardware architecture with 

abstractions for processing and non-processing components. The abstractions for processing 

components combine the hardware architecture, software architecture and the functional content 

of the software used. COTS components which are usually only specified in terms of a functional 

description and interface definition can be analysed.  The communication links can be represented 

by abstractions and included in the analysis. 

 

For the purposes of this investigation only the functionality that contributes towards the generation 

of aircraft heading will be considered. 

 

A system functional model is generated by combining the system component functional models for 

each system component based on the kind of information that would be included in their 

procurement specifications and interface control documents. Figure 51 shows the individual system 

components based on figure 50. In this investigation all the system components with the exception 

of the avionics computer are represented by a single functional element which transfers gyro 

compass data from one system component to another. The avionics computer system component 
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can be decomposed into a function model as shown in figure 52. Close inspection of this functional 

model diagram which shows the operation of some navigation functions within the avionics 

computer reveals that this system component, transferGcNb, like the other processing components 

just transfers gyro compass data from one bus to another bus. It also shows that the gyro 

compass data is used for calculating aircraft course to steer data. The diagram shows that the 

generation of course to steer information is not part of the display aircraft heading functional 

chain. 

 

4.4.4.2  Analysis of performance end events 

 

The functional chain shows gyro compass sensor data being transferred from the gyro compass 

sensor to the avionics computer via the avionics bus. The data is then transferred from the 

avionics bus to the display bus by the avionics computer. The display computer then sends the 

data back on the display bus to the display. Each of these processes is independent. The bus rates 

are controlled by the bus transaction table and the bus clock. The gyro compass and avionics and 

GUI computers are controlled by schedulers and an associated scheduler iterator transaction 

tables.  

 

4.4.4.3  Calculation of performance from functional chains 

 

This investigation was chosen so that the calculation of the dynamic errors for display aircraft 

heading can be simplified so that a comparison between calculation and animation would be easily 

undertaken. The functional chain involves six independent components and seven functional 

elements. 
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Figure 51 The DisplayAircraftHeading functional chain.  
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Figure 52 Functional model of the navigation functionality within the avionics computer. 
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Data Alias From To 

GCSens d1 GenGcData transferGcSens 

GcNb d2 transferGcSens transferGcNb 

GcAc d3 transferGcNb transferGcAc 

GcDb d4 transferGcAc TransferCourse 

GuiGc d5 TransferCourse TransferGyroComp 

DispGc d6 TransferGyroComp DisplayGcData 

 

Table 18  Data within the DisplayAircraftHeading functional chain. 

 

The calculation of minimum and maximum errors can be undertaken as follows. Each functional 

element is located in a separate component under the control of a separate scheduler. The 

maximum error occurs where a functional error getter message just misses an update. The 

minimum error occurs when the getter message just catches an update. 

 

Using the calculation methodology described in Chapter 3. 

 

For a simple chain of n functional elements: 

where i is the maximum delay between each stage. 

Error can be calculated as follows: 

 

�%2=#1	((%1 + 	 81.�%1/��) − 	#1(%1)) 

�%3=#2	((%1 + 	 82.�%2/��) − 	#2(%2)) 

�%4=#3	((%1 + 	 83.�%3/��) − 	#3(%3)) 

. 

. 

�%�=#�−1	((%�−1 +	 8�−1.�%�−1/��) − 	#�−1(%�−1)) 
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�%(�+1)=#�	((%1� + 	 8�.�%�/��) − 	#�(%�)) 

 

and  

 

�%2/��  = �%1/��. �%2	/�%1 

�%3/��  = �%2/��. �%3	/�%2 

            = �%1/��. �%2	/�%1. �%3/�%2 

or 

�%�/�� = �%1/��. �%2	/�%1.�%3/�%2……..�%�−1/�%�−2. �%�/�%�=	

 

This can be simplified as each component does not change the data: 

�%2	/�%1 = �%3/�%2=�%4/�%3 …�%�/�%�−1 		 =	  1 

 

So the maximum dynamic error is: (for seven schedulers) 

 

�%1/��. ∑ 8�
�=7
�=1  

 

and the minimum delay is 0 ms 

 

where: 

 

n is the number of schedulers. There are six components and six schedulers in this example but 

one scheduler is used for two functional elements in the chain 

 

δa1/δt is the rate of change of the input data between one sample and the next. 

 

Thus, if each scheduler has an iteration rate of as shown in figure 53 the total delay is 158ms and 

heading rate is 5 degrees per second. 
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The maximum error is  158 * 5/ 1000 =  0.79 degrees. 

The minimum error is 0 degrees. 

 

4.4.4.4  Other non-functional requirements 

 

Having identified the functional chain that contributes to the display of aircraft heading other non-

functional requirements, such as mission and failure criticality that specifically relate to this system 

end event can be added to the model functional elements that make up this chain. Failure analysis 

can be undertaken as the parts of the component that are associated with a particular end event 

can be identified and extra functionality to ensure graceful degradation can be added. This means 

that if additional requirements are necessary they can be limited to the parts that are affected. 

 

4.4.4.5   Using an animator to simulate errors 

 

This functional chain was animated using a software program. The program was based on the 

functional chain in figures 51 and 52.  

 

A simple real-world scenario data model was used which permitted real aircraft heading rates with 

a constant rate of change. More complex real-world models would be required in practice. 

 

Two approaches are assessed. The first approach, animation in real-time, used independent 

threads for each scheduler linked to the system clock. The performance of this method proved to 

be unpredictable, suffering from unpredictable delays between threads, so was abandoned. The 

unpredictability of this approach would limit the size of functional chain that could be animated. 

The second method below overcomes these issues. 

 

The second method used a counter which represents time and did not run in real-time. The 

counter represented 50 microsecond steps and ran each functional element in accordance with its 
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scheduler. The counter is incremented when all the functional elements due to be run within that 

50 microsecond interval are complete As each functional element represents a single step in a 

multi-step process then when the functional element completes the system is somewhere between 

the start and finish of its operation so the operation of the animator is concurrent (but not real-

time). All the results are tagged with the value of the counter so the changes with respect to time 

can be recovered. 

 

NetBeans 7.1 was used with Java to implement the animator and the GUI. 

 

The program also allowed stochastic sensor errors to be added by adding sensor errors to the 

sensor functional element. The program could have easily been extended to cover quantisation 

errors by defining data with the same type and range defined in the model data notes. For 

example, the gyro data has a range of 0 – 360 degrees defined as a real number represented in 12 

bits resolution 0.088 degrees which is automatically updated when it exceeds its range. 

 

In figure 53 the units for rates and offsets are in ms. The rates and offsets are used in conjunction 

with the animator counter which currently counts in 50 microsecond steps. In figure 54 the units 

are degrees. 

 

4.4.4.6   Comparison between the results from calculation and animator 

performance assessments 

 

Calculation results (See Section 4.4.4.3) 

Heading rate is 5 degrees per second. 

The maximum error is  158 * 5/ 1000 =  0.79 degrees. 

The minimum error is 0 degrees. 

 

Animator results (without stochastic errors added) are shown in table 19. 
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The user interface was: 

 

 

 

 

 

 

 

 

 

 

 

Figure 53 Scheduler set up screen 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54 Animator run screen 

 

 

Units degrees 
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Table 19 Animator results. 

 

The results are also shown as a graph in figure 55 below. 

 

 

 

Figure 55   Graphical representation of the animator output. 

 

Figure 55 displays the output of each system component. The sensor scheduler iteration rate was 

set to 50hz (see animator scheduler set up screen – iteration interval of 20ms or 50hz) so the 

aircraft heading data that passes from component to component is in 0.1 degree steps (20 

*5/1000). None of the remaining components changes this value. The effect of the remaining 
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components is just to introduce varying delays. The error is measured in a vertical direction. Each 

time an output moves up 20 ms it has been updated. 

 

Figure 56 shows the display output compared with the real-world aircraft heading. 

 

Figure 56  Animator output compared with real-world input. 

 

4.4.5  Summary of investigation and lessons learnt 

 

the following lessons were learnt from the second investigation: 

 

• How the transition between an architecture independent top level set of requirements and 

a system component specification would be undertaken with and without a functional 

model based on a simple aircraft navigation system. 

• That multiple component abstractions each with its own scheduler can be combined. 

• That a program can be used to predict system performance from a distributed system 

made up of multiple independent system component abstractions. The output of the 

animator was compared with a separate independent calculation and found to be similar. 

In particular: 

 

• A functional chain for the end event display aircraft heading was developed based on a 

provisional system architecture. 



 Thesis                                    Investigation of the proposed functional model     
                                                                            

  

 
Michael Giddings                           Page 200 of 277                     12/10/2016 
 

• Seven individual functional elements were used located in six components. Each 

component was represented by an abstraction each with its own scheduler table. 

• A system functional end event functional chain based on the display of gyro compass 

sensor data was analysed.  

• The dynamic error for display aircraft heading was calculated for the display aircraft 

heading system end event. It became clear that the calculation of dynamic errors from 

functional chains with multiple branches and where each functional element consists of 

multiple inputs becomes increasing difficult with increasing system complexity.  

• The dynamic error for display aircraft heading was animated by software for the display 

aircraft heading system end event. It became clear that this approach could be used for 

complex systems made up of multiple processing and non-processing components. A 

limitation of the animator developed during the second investigation was that the animator 

code would need to be developed for each system and modified each time the system was 

modified. 

• A comparison was made between the calculated and animated values for dynamic errors in 

the end event display aircraft heading. This comparison was limited to a functional chain 

where the dynamic errors can be easily calculated. The comparison of the animator output 

and measured performance from the finally implemented system was not undertaken and 

is identified in Section 6.4 – future work. 

 

4.5 Third investigation 

 

4.5.1 Introduction 

 

This investigation examines a more complicated functional chain from the flight control system 

introduced in the second investigation. A functional model was developed that includes the course 

to steer functional requirement. A functional chain covering the ‘display course to steer’ 

requirement was then extracted and assessed for performance. This is a closed loop functional 
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chain as the functional chain end event would be used to manually or automatically steer the 

aeroplane via a multicomputer flight control system. 

 

A database was generated to record part of the functional model. This database was then used to 

automatically generate the code for the animator. 

 

4.5.2   Investigation aims 

 

The aims of the investigation were as follows: 

 

• To assess whether a simplified functional model could represent the calculation of course 

to steer using independent functional elements. 

• To determine how this functional model could be represented. 

• To investigate how the functional model could be used to model system performance. 

• To establish that the animator program code could be automatically generated. 

 

4.5.3  Top level requirements 

 

For most of the time, aircraft are navigated from GPS waypoint to GPS waypoint. 

This is not so simple, as aircraft are affected by prevailing winds and the pilot’s inability to steer 

the aircraft along the line that joins two waypoints. 

 

Aircraft attempt to fly on the shortest route between two points. Unfortunately this means the 

course that the aircraft steers changes as it moves between these points. The shortest route is 

known as the great circle route. Nastro et al. [118] describe the mathematics of great circle 

navigation. 
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The following diagrams introduce the terms that are going to be used. All directions relate to true 

north – issues relating to magnetic compasses have been ignored. 

 

 

 

 

 

 

 

 

Key 

 

N True North 

Heading Vector representing the direction that the aircraft is pointing and its 

  air speed. 

Track Vector representing the movement of the aircraft relative to the 

  ground so that the aircraft moves towards the next waypoint. 

Wind Vector representing wind speed and direction. 

Required track  Aircraft track with respect to the ground so that the aircraft moves towards the 

next way point. This changes continually when the aircraft navigates a great 

circle route. 

 

This means that three types of correction are required as follows: 

 

• Changes of the required course when the aircraft follows a great circle route. 

• The effects of wind. 

• The aircraft position is not on the line between the last and the next way point. 

Figure 57 Velocity vector diagram Figure 58 Required track 
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Two sensors are required to resolve these errors as follows: GPS and Gyro Compass. 

 

The top level system end event is ‘display course to steer’ and the performance requirement is 

display course to steer with an accuracy of +/- 1 degree. 

 

 
4.5.4  Development of the system design without the functional model 

 

4.5.4.1  Selection of a system hardware architecture 

 

The system hardware architecture chosen is typical of a complex navigation system capable of 

supporting the generation of a pilots course to steer display. In practice the functionality of the 

generation of course to steer display would be much more complex. The selection of the system 

hardware architecture would be undertaken during the generation of the component abstractions. 

As this investigation deals with a single functional chain between the gyro compass and GPS 

sensors and the display, much of the rest of the navigation system can be ignored during the 

performance analysis. 

 

The system design starts by allocating the major functions of the system to a system hardware 

architecture. The initial selection of the physical hardware architecture is undertaken based on 

previous experience. The overall system architecture is shown in figure 49. The system 

architecture specifically for the heading display is shown as a simple block diagram in figure 59. 

 

4.5.4.2  Allocation of functional requirements to system components 

 

Having selected an initial hardware architecture a functional model is generated for each system 

component. 



 Thesis                                    Investigation of the proposed functional model     
                                                                            

  

 
Michael Giddings                           Page 204 of 277                     12/10/2016 
 

In this investigation a system architecture consisting of two processing system components, a 

number of sensors and a display interconnected by two data buses have been chosen. 

 

This investigation concentrates on the system functional event ‘Display Course to Steer’. The 

performance requirement for this functional end event is summarised in table 20. This requirement 

would be determined at the system requirements stage. 

 

The end event performance requirements in table 20 is entirely arbitrary. In practice the selection 

of this requirement would only be decided after the users were involved in an assessment using 

some form of simulator. The actual value chosen is not unrealistic. It is interesting to note that the 

requirement involves specifying the maximum heading change rate to be specified as well – a fact 

that might go undiscovered without considering the effects of the system dynamic errors. 

 

 

 

Table 20 End event requirements. 

 

Without a functional model the allocation of functionality to individual system components is 

undertaken on an experience basis. The allocation of functionality selected for this investigation is 

shown in table 21.  

 

 

 

 

 

 

 

Figure 59 System hardware architecture selected for the display of course to steer. 
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Table 21  Functionality allocated to system components, 

 

4.5.4.3   Allocation of performance requirements to system components 

 

In this investigation the assumption is made that the avionics computer will undertake all the 

processing required to calculate the course to steer. All the other components involved just pass 

GPS and gyro data and the course to steer data from one component to the next. 

 

 

System Component Functionality purpose 

Gyro compass sensor GenGcData Gyro compass sensor 

Navigation bus transferGcSens Transfer of gyro compass data over 

navigation bus 

GPS GenGPSData GPS sensor 

Navigation bus transferGPSSens Transfer of GPS data over 

Navigation Bus 

Avionics computer transferGcNb Transfer of gyro compass data 

from navigation bus to the avionics 

computer bus. Part of other 

navigation functionality 

Display bus transferGcAc Transfer of gyro compass data over 

display bus 

GUI computer transferCourse Display functions 

Display bus transferGyroComp Transfer of gyro compass data over 

display bus 

Display dispGcData Display aircraft heading 
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4.5.4.4   Calculation of performance 

 

The allocation of functional requirements is straight forward as all the course to steer calculation 

will be undertaken in the avionics computer. The other components transfer data across the 

system. The following questions remain: 

 

• How can performance end event requirements be partitioned into individual system 

components? 

• The calculation of a great circle route involves a continually changing course between two 

way points. How does this affect performance? 

• Can the generation of the course to steer be used as an autopilot? 

• What is the fastest aircraft heading change rate that can be undertaken and still satisfy the 

course to steer performance requirements? (Dynamic error) 

• What is the minimum performance requirements of the two sensors? (static, stochastic and 

dynamic errors) 

• What are the performance requirements of the two bus systems? (Dynamic errors). Is 

there a need for direct data links? 

• How fast will the system change from one pair of way points to the next? 

• Is sensor filtering required and if so what is the effect on performance? 

Further system performance analysis cannot be undertaken until performance information is 

available after the start of the individual system components design. Estimates based on previous 

experience could be used but lack the fidelity of analysis. 

 

4.5.4.5   Performance management 

 

The management of performance is more difficult here without a functional model. The interaction 

between individual system components becomes more difficult to calculate without a detailed 
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design being available for each system component. Many systems are much more complex than 

the system considered in this investigation and the calculation of system performance and 

allocation of performance requirements to individual components becomes much less reliable. 

 

4.5.5   Development of the system design with the functional model 

 

4.5.5.1  Generation of the functional model 

 

For the purposes of this investigation only the functionality that processes GPS and gyro compass 

data will be considered.  

 

The first stage of establishing a system functional model is to generate functional models for each 

system component identified in the initial system hardware architecture. These functional models 

are generated by the system design authority domain experts based on the outline requirements 

generated by the customer. Figure 60 shows part of the overall functional model. In this 

investigation all the system components with the exception of the avionics computer can be 

represented by a single functional element which transfers GPS, gyro compass and courseToSteer 

data from one system component to another.  

 

The avionics computer system component needs to be decomposed into a function model as 

shown in figure 61. 

 

There are four modes shown in the functional model – these need to be analysed separately. 

 

These are: DispCourseToSteer (forward), DispCourseToSteer (reverse), ChangeWayPoints and 

LoadChangeWayPoints. (Figures 63-66) 



Thesis                                                                                         Investigation of the proposed functional model 
  

 
 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

Figure 60  The DisplayCourseToSteer functional chain. 
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Figure 61  Avionics computer navigation functional model. 
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4.5.5.2 Analysis of performance end events 

 

Initial domain performance modelling suggests that two calculation methods are required: forward 

and reverse calculation. The problem is that as the aircraft nears the next way point, the course to 

steer becomes unstable and errors in heading and calculated wind causes instability. 

 

To overcome this problem two modes of calculation are required: forward course to steer based on 

the aircrafts current position and the next way point and reverse course to steer based on the 

aircrafts current position and the last way point. 

 

A further mode is also required. In this mode, data is loaded into or retrieved from the in system 

waypoint library and the second is to update the waypoint pair data from the way point library 

when it reaches a waypoint. 

 

The investigation focuses on forward calculation. The modes can be represented by four different 

iteration tables and described in a state diagram as shown in figure 62. The functional models for 

each separate mode is shown in figures 65, 66, 67 and 68. 
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Figure 62  State chart showing transition between the four main course to steer sub chains.
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Figure 63 System Functional Chain DispCourseToSteer (Forward) 
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Figure 64  System part functional chain DispCourseToSteer (Reverse). 
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4.5.5.3   Calculation of performance from functional chains 

 

As the number and complexity of component functional models increase it becomes more and 

more difficult to calculate and animate the expected performance of system end events. The 

development of the system design to a point where component requirement specifications can be 

generated requires the performance to be re-analysed many times as the requirements 

specification emerges. This means the generation of animator code needs to be automated. This 

investigation examines how this can be achieved. 

 

Functional chains, once extracted, can be analysed to identify which legs directly contribute 

towards the end event performance. Other functional chain legs can be ignored.  

 

An example of this is the decision not to use Gyro compass smoothing provided in the functional 

element SmoothHd in figure 61. Introduction of gyro compass smoothing may improve the fidelity 

of the gyro compass data but increase the dynamic error delays in that part of the functional chain. 

 

The key elements of the functional model can be recorded in a database as shown in appendix 3. 

 

4.5.5.4  Automatic generation of animator code 

 

The revised animator program structure was written in accordance with the animator class diagram 

shown in figure 67. This meant that generic templates for the source code for the functional 

elements and schedulers could be used and populated from information stored in the functional 

model database. 

 

A Java program was generated which linked information relevant to the functional chain shown in 

figure 68 stored in a database in accordance with the ER diagram shown in appendix C which 

populated these templates with appropriate data. 



Thesis                                   Investigation of the proposed functional model     
                                                                   

 

 
Michael Giddings                           Page 217 of 277                     12/10/2016 
 

The key fields are for the database are defined in tables 22 – 27. 

 

Scheduler 

record type Description 

IteratorName Text Unique name for the scheduler 

IteratorId Int Unique reference 

IMajorSize Int Number of iterations in a major cycle 

ItSteps Int Number of iteration steps in the scheduler 

ItRate Int The scheduler iteration rate 

Table 22  Scheduler definition table. 

 

FunctionalElement 

record type Description 

FEName Text Unique name for the functional 

element 

FEiId int Unique reference number 

FEFunction MEDIUMTEXT Behaviour of the functional 

element 

OTFunction MEDIUMTEXT Supporting behaviour 

ItOffset Int Iteration offset of first occurrence 

in the scheduler iterator table 

ItDelay Int Delay of functional element in 

relevant iteration 

ItFrequency Int Scheduler rate value 

Table 23  Functional element definition table. 
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DataDictionary 

record type Description 

DataName Text Unique name for the Data 

DataType Text Type of the data 

DataID int Unique reference number 

Table 24  Data dictionary definition table. 

The following tables are used to manage the many to many relationships: 

InputData 

record type Description 

FunctionalElement-FEId int Unique name for the Data 

Datadictionary-DataID int Type of the data 

Table 25 InputData definition table. 

Outputdata 

record type Description 

FunctionalElement-FEId int Unique name for the Data 

Datadictionary-DataID int Type of the data 

Table 26  OutputData definition table. 

Localdata 

record type Description 

FunctionalElement-FEId int Unique name for the Data 

Datadictionary-DataID int Type of the data 

Table 27  LocalData definition table. 
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The templates for functional element class specifications and scheduler class specifications are 

attached as appendices D and F. The items shown in italics are derived from the database 

representation of the functional model as shown in Appendix C. The animator code generator was 

used to generate the functional element and scheduler class code is included in appendices E and 

G. 

 

Table 28 lists the appendices which give details of the programs used to automatically generate 

the animator code. 

  

 

Appendix Description 

D Functional element generator 

E Functional element class definition template 

F Scheduler generator 

G Scheduler class definition template 

 

 

Table 28 Table of Appendices describing the programs used to generate animator program code. 
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Figure 67 Class diagram for the revised animator. 
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Figure 68 Functional chain showing two independent functional elements within DispBus component. 
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The revised animator used a similar real-world model to the previous animator program. It also 

uses the same method of post animator data analysis. 

 

Figures 69 and 70 show the revised scheduler and animator run screens. 

 

 

 

 

 

 

 

 

 

Figure 69 revised animator scheduler setup screen. 

 

 

 

 

 

 

 

 

 

 

Figure 70 revised animator run screen. 

 



Thesis                                 Investigation of the proposed functional model     
                                                                                           

 

 
Michael Giddings                           Page 223 of 277                     12/10/2016 
 

For this version of the animator DispBus only appears once as its scheduler runs two independent 

functional elements (transferGcAc and transferGyroComp) that are not connected. Figure 70 shows 

-whis. The revised animator output screen shows the calculated value for the maximum error. 

Figure 71 shows a graphical representation of the revised animator output data. 

 

 

Figure 71 Revised animator output data. 

 

The upper line of the output data represents the real-world environment. The lower line represents 

the maximum error calculated by the animator software and the middle line represents the 

animator output. 

 

4.5.5.5  Traceability 

 

Functional chains can be automatically identified whatever the size of the system functional model 

is by including all the functional elements directly and indirectly connected to the functional 

element representing the end event. Traceability between requirements and the system design can 

be managed by annotating the functional elements within this functional chain. 
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4.5.6   Summary of investigation and lessons learnt 

 

• Functional chains relating to the generation of course to steer were established showing 

four separate modes. The complexity of the required design emerges from the functional 

model. CourseToSteer is part of a closed loop system made more complex because the 

required track uses a great circle route. It is either an external closed loop when the pilot 

follows the course to steer display or an internal closed loop with an autopilot. The design 

risk is that actual aircraft course may be unstable with respect to the required track and 

the change from one way point pair to the next pair irregular. The system design under 

development needs to be assessed prior to component selection or inherent dynamic 

delays might go undetected until the individual components are assembled during system 

integration. The animator provides a tool for assessing the operation of this and similar 

functional chains. 

 

• A revised version of the animator was produced which used standard class definitions for 

functional elements and schedulers. The functional chain from the second investigation 

was used for comparison purposes. 

 

• An animator code generator was developed using a database representation of the 

functional model to provide information to populate functional element classes and 

schedulers templates. 

 

• The generation of the real-world input model and the system displays remain specific to 

the system under development. Having developed these models changes to the system 

design can be undertaken using the animator code generator. 
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Chapter 5                                       Review of investigations 
                                                                                
5.1  Introduction 

 

The research consisted of the following investigations: 

 

• First investigation: The basic layout of the proposed functional model was investigated 

based on a simple one processor weather station. Possible notations for the operation of a 

scheduler were investigated. A functional chain was identified and potential simplifications 

investigated. 

 

• Second investigation: A system functional chain was defined based on the display of 

aircraft heading generated by a gyro compass. A functional chain animator was developed. 

The animator was used to assess the performance of the transfer of gyro compass data 

using the functional chain identified above. 

 

 

• Third investigation: A functional chain was defined based on the display course to steer 

end event. Four separate modes were identified. A revised animator was generated using 

standard templates for functional elements and schedulers. A system functional chain was 

simulated using the revised animator. An animator code generator was developed which 

populated the functional element and schedulers code templates from a database 

representation of the functional model. 

 

None of the investigations considered real systems. They were chosen because they included 

examples of the issues experienced in much more complicated systems. 
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5.2   Summary of outcomes 

 

5.2.1    Investigation of the new functional model 

 

The first investigation used a simple weather station system to examine the basics of functional 

element diagrams and the analysis of functional chains. Their structure has similarities to CoRE [6] 

so is fully extensible. Functional elements were easy to generate using decomposition of major 

requirements. The diagrams seemed intuitive and easy to use enabling domain experts to 

undertake creative design activities. The model would have benefited from a computer based 

graphical tool which automatically undertook consistency checks and search. Functional chains 

were easy to extract and evaluate. 

 

A specification was established for a scheduler which managed the operation of the functional 

elements. The scheduler enabled functional elements to be used at different rates. A number of 

component end events were identified and the display wind direction functional chain was 

extracted and analysed. A method similar to critical path analysis was used to identify the parts of 

the functional chain which are critical to the performance of the component end event. Again a 

computer based tool would have made this easier to do. 

 

The second investigation generated a functional model for a multi-component flight control system. 

Functional models for a number of components were combined to represent a distributed system. 

Each component was associated with a different scheduler which was controlled by its own clock. 

An animator program was developed which ran each functional element in accordance with its own 

scheduler. Each clock was capable of operating at different rates asynchronously. A real-world 

model was included to simulate sensor inputs and a file was generated to collect the effects of the 

sensor data on the system end event display gyro compass data. Real-world models were not 

examined in detail but are likely to already exist from requirements models. 



Thesis                                                                                   Review of investigations

       

 
Michael Giddings                           Page 227 of 277                     12/10/2016 
 

The third investigation used the functional model developed during the second investigation, 

demonstrating that it is possible to record the functional model in a database. The animator 

developed in the second investigation was rewritten so that the code could be automatically 

generated from class templates populated with information from the functional model database. 

The animator was extended to generate typical and worst case outputs which could be compared 

with the real-world generated input. The worst case errors were calculated manually.   

 

5.2.2   Calculation of dynamic errors 

 

During the first investigation dynamic errors were calculated from first principles without using the 

proposed functional model. It was possible to determine whether the hardware architecture would 

support the system performance requirements prior to its detailed design. A functional model 

based on an abstraction of the processor software enabled further detail to be considered. The 

need for a coarse and fine wind direction sensor and sensor data filtering was also identified. It 

was also possible to examine the dynamic errors due to the effects of the coarse and fine wind 

direction sensor data.  

 

It was established that the calculation of performance within a system component could be 

simplified by extracting functional chains consisting of all the linked functional elements which 

directly and indirectly connect to the functional element which represents a system end event. 

Further simplification using a method, not unlike critical path analysis, enables the functional 

elements that do not directly affect the performance of the end event to be ignored. Only simple 

functional chains can be easily calculated. 

 

The second investigation used a system functional chain derived from a part functional model of an 

aircraft avionics system. The functional chain represented the transfer of gyro compass data from 

a gyro compass to an aircraft heading display across a distributed multicomputer system. This 

simple system functional chain was used as the manual calculation of the dynamic errors was 
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possible. The dynamic error associated with the system delays between the sensor and the display 

was calculated for comparison with the results obtained from the animator described below. 

 

The third investigation established that for more complex systems the calculation of dynamic errors 

was not possible without some form of functional model capable of animation.  

 

5.2.3   Animation/simulation of static, stochastic and dynamic errors 

 

In the second investigation the aircraft heading display error was animated using a Java 

animation/simulation program. The animation/simulation program demonstrated that it was 

possible to combine component functional models to assess system functional chains. The program 

generated a file which recorded the display output over time for various aircraft heading rates and 

component iteration characteristics. The results of calculation and simulation were compared and 

found to be similar. Stochastic errors due to sensor noise were also added to the sensor functional 

element. Stochastic errors due to the digital resolution of data would also be possible by using the 

appropriate digital representation of shared data messages in the animator software. 

 

The functional chain used was chosen so that the maximum and minimum dynamic errors could be 

calculated using the approach described in Section 3.8. The minimum and maximum calculated 

errors were compared to the animator output for validation purposes. This chain used input from a 

real-world model representing a linearly changing aircraft heading. A single real-world input was 

used to simplify the real-world model. Inter-component output data was output to the NetBeans 

output window and copied to a spreadsheet for analysis.   

 

A revised animator program was generated in the third investigation to enable automatically 

generated functional element and scheduler class specifications to be used. The program allowed 

functional element and scheduler class specifications to be changed by swapping program classes 



Thesis                                                                                   Review of investigations

       

 
Michael Giddings                           Page 229 of 277                     12/10/2016 
 

independently from the rest of the program. The output from the second and third investigation 

animators were compared and found to be similar. 

 

Figure 72 summarises the output obtained from the animator used in the second investigation and 

figure 73 summarises the output from the animator used in the third investigation. The upper line 

shows the real-world input to the animator, the centre line shows the animator output and the 

lower line shows the calculated maximum error. If the aircraft heading was decreasing the graph 

would be the other way up.  

 

The behaviour of each functional element was stored in the functional model database in a text 

field as code. In practice an OCL specification or algorithm would be used instead and converted to 

code. Although only simple functional element behaviours were used, the animator could have 

used more complex behaviour without changing the structure of the animator. 

 

 

Figure 72 A comparison between the real-world, the maximum error and the animator output 

from the second investigation. 
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Figure 73 A comparison between the real-world, the maximum error and the animator output 

from the third investigation. 

 

5.2.4  Automatic generation of animator/simulator code 

 

The third investigation used a more complex functional model to investigate whether the animator 

program code could be automatically generated. The investigation used a functional model 
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relationship between functional elements and was also used to record the scheduler characteristics 

of each independent system component. Java class specifications were successfully generated for 

a number of functional elements and schedulers.  

 

Although the real-world model is integral to the operation of the animator it cannot be 
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As each independent functional element is specified in a single class specification and stored in a 

functional element library there are no limits to the number which can be used. 

 

The scheduler is specified in a single class and only requires the name of the instantiated 

functional element object to operate.  Each functional element uses the same method name to run 

it.  There are no limits to the number of schedulers which can be used.  The only limitation is that 

all the functional elements within an iteration can be executed in a time less than the iteration 

interval. In the animation of the display aircraft heading schedulers are simple – in practice each 

iteration may contain hundreds of functional elements. As the functional elements deployed within 

an iteration are independent it is only necessary to use a multi-scheduler system with a scheduler 

containing two independent functional elements to demonstrate its operation. 

 

5.2.5  Comparison of functional models with the final system implementation 

 

No comparison was undertaken of the accuracy of the functional model with any final system 

implementation outcomes. If the functional model and its performance analysis are used to 

generate the component performance requirements, the comparison will be dominated by how 

well the component design authority meets the component design requirements. The system 

functional design will need to be updated when component design details become available. For 

COTS equipment the detail of the component design may never be available. 

 

If the component software is implemented with process elements based on the functional elements 

included in its functional model using a scheduler based on the same functional models schedule, 

the performance of the implemented code will be similar to the results obtained from the animator. 

As no component software was developed as part of this research, further investigation would be 

needed to confirm this. If component software is not developed using the same structure and the 

functional model and its animator, they can use the animator predicted performance as a 

requirement to be met. 
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5.3  How does the result of the investigation answer the research question? 

 

The research question is how can performance issues be detected in real-time periodic systems 

prior to specifying system components when they are more expensive to fix. The research aims to 

understand what problems exist in this phase and what can be done to overcome them. 

 

The literature review also revealed that the performance analysis prior to component procurement 

relied on previous experience with an attitude of 'fix-it-later' [11] when performance analysis starts 

in earnest when the details of individual component design become available. Performance issues 

due to errors and changes in requirements occur throughout the system development. The 

approach identified in this research aims to identify performance problems that arise from 

decisions made during the system development prior to the specification of system components. 

 

Euusi-Mensah [12] claims that management and organisation are at the core of failed projects. 

This problem is exacerbated by projects which have multiple teams in multiple companies located 

in different countries. 

 

Model driven development uses three models [15]: computation independent models, platform 

independent models and platform specific models. For real-time systems a fourth is required which 

should encompass the system design and cover system hardware components which contain and 

do not contain software. Abstraction offers a means of specifying systems [18] which does not rely 

on the actual implementation. 

 

The research has revealed an alternative way of specifying the system design prior to the 

specification of system components which provides the necessary information needed for 

components contract and interface control documents. The specification of the system consists 

of a series of abstractions which represent each system processing and non-processing 
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component together with abstractions representing system inter-component communications. 

Each abstraction is combined to form a functional model of the system.  

 

The research has identified a method for assessing and optimising system performance using 

the functional model described above. This process offers the potential for identifying system 

performance issues prior to component procurement. 

 

The research has not shown that this method saves money. 

 

5.4  The advantages and disadvantages of the model 

 

The advantages of the proposed model are that it: 

 

• Provides a graphical method of specifying the system design using abstractions for system 

components that does not rely on component implementation details. Even though a full 

commercial standard model was not developed the graphical nature of the model makes it 

accessible to users and domain experts. 

 

• The proposed additional model can be defined as an extension to UML. This enables it to 

be integrated into the UML standards and to use existing UML diagrams. 

 

• The proposed approach can be integrated into Model Driven Design approach by adding a 

fourth model which covers functional requirements and hardware architectures for use 

with CIMs, PIMs and PSMs.  

 

• Provides a method of assessing performance using an animator which can be automatically 

generated from a database representation of the functional model. 
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• Can be used in conjunction with model of output devices to get the feel of performance 

rather than maximum and minimum error limits which would be obtained by calculation. 

 

• Provides a much simpler way of assessing the performance of complex distributed system 

rather than formal methods which require specialist skills. 

 

Disadvantages: 

 

• The development of functional model tool and associated animator is likely to be 

expensive. 

 

• The use of the model as requires extra work (and extra cost) to the system development. 

 

5.5  Untested assumptions 

 

The following assumptions were untested as The animator covered in the research was for 

investigative purposes only. The development of a fully functioning model and animator has 

been identified in the future work section of chapter 6. 

 

• The model is fully extensible for large scale system development.  

• A fully operational tool was economically or commercially feasible.  

• The effectiveness of the proposed additional model in a real-system development project 

was untested.  

 

5.6 From theory to practice – how may the model be used? 

 

For the proposed additional model to be used in practice a commercial tool would need to be 

developed. The tool should contain a database and associated graphical interface for functional 
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models to be developed. The tool should include model consistency checking.  The tool should 

enable scheduler iteration tables to be stored and modified. The tool should also enable functional 

chains to be extracted, analysed and optimised. Supporting real-world models and end-event 

simulators should be developed as part of the model. 

 

The tool should be used in a number of real system development projects to assess its usability 

and effectiveness. 

 

The model would be deployed by the system design authority in the following stages: 

 

• Elaboration of the system requirements. 

• Selection of a provisional hardware architecture selected on the basis of previous 

experience. 

• Selection of inter component communication links. 

• Decompose requirements into functional elements and allocate to system components. 

• Generation of a database representation of the functional model. 

• Model consistency checks. 

• Generate a scheduler for each component and communication link. 

• Development of a real-world model to provide inputs to the functional model (this may 

have already been done to assess the real-world requirements). 

• Extract functional chains to check whether performance requirements are met, if not, 

modify the functional model and scheduler and retest. 

• Use the functional model to generate system component specification and interface control 

document. 

• Use the functional model to solve system level performance issues arising from 

requirements changes, errors and component development shortfalls. 
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Chapter 6          Conclusions, Summary and Future Work 

                                                                                
6.1  Introduction 

 

The main aim of this research was to investigate the initial system design phase in the 

development of distributed real-time systems to discover how the information content of 

component contract specifications and interface control documents were generated from 

elaborated system requirements to seek improvements to the process. The proposed functional 

model is equivalent to the content of the component contact specifications and the interface 

control documents and represents the information required by potential component design 

authorities for costing purposes. The research revealed that for some systems, where different 

teams were involved, the initial system design, and consequently the component requirements 

specifications were not fully assessed for performance. A functional model was proposed to 

overcome this problem. Three investigations were undertaken to assess the use of the functional 

model.  

 

6.2   Summary 

 

6.2.1 Overview 

 

The literature review in Chapter 2 reveals a gap in the development process which can, in certain 

circumstances, lead to performance shortfalls in the system design which might not be discovered 

until later in the system development. Section 2.5.3 identifies that system level requirements are 

transferred to component requirements on a 'fix-it-later' basis. Unless this feedback of information 

from the component design authority was effective, there was a risk that performance failures 

might not be detected until system integration when it is most expensive to rectify. 
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The new functional model described in Chapter 3 was proposed to generate a lightweight system 

design model using abstractions based on information which might be used for components 

specifications and interface control documents. The model was analysed quantitatively using 

specific examples and qualitatively as a proof of concept only.  

 

An animator was developed during the second and third investigations as described in Chapter 4. 

The model animator can be used to illustrate performance requirements for individual component 

end events and can be used in addition to the component contract specifications and interface 

control documents when appointing component design authorities. The component design 

authority can compare these performance requirements with the results from component design 

models. If the component software design uses process elements and a scheduler with the same 

schedule table, the implemented software should have similar performance to that obtained using 

the animator irrespective of the code language used. 

 

6.2.2  The functional model 

 

Section 1.1 suggests that abstractions of system components may be used to model components. 

With this in mind, a graphical functional model is proposed as described in Chapter 3; it is based 

on abstractions representing system components and communications. The functional model 

describes processing, non-processing components and communication links (described in Section 

2.2.1) which were either bespoke components or COTS equipments. Each component is described 

individually so they could be combined with other component models to form a system level 

functional model. Component functional models consisted of a collection of independent functional 

elements linked by data paths and an associated scheduler. 

 

The functional model is intended to be developed between the system requirements 

model/definition stage and the selection of components design authorities and suppliers. The 
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model is then available to assess the effects of changes to the requirements, and the management 

of the impact of component design issues on the system design. 

 

The model is intended to be simple enough for both domain experts and system designers to 

understand. The analysis of performance is undertaken by domain experts without needing to 

know how each functional element and scheduler operate. Functional elements can be defined 

independently from the scheduler by both domain experts and system designers. System architects 

can optimise performance of the system by altering the scheduler tables without needing to know 

in detail the behaviour of each functional element. 

 

The first investigation described in Chapter 4 examines the identification and use of functional 

chains. The model is capable of analysis using functional chains to extract only those functional 

elements which affect specific system and component end events. These functional chains can be 

split further into sub-chains which affect the end event to varying degrees. Those which do not 

directly affect the performance of the end event can be identified with a process not unlike critical 

paths in programme plans. 

 

The performance of system and component functional chains can be calculated and animated to 

assess end event performance. As functional chains become more complicated, performance 

calculation becomes increasingly complex. Performance calculation typically identifies maximum 

and minimum effects of dynamic errors. Animator software can be automatically generated from 

database representations of the functional model. The animator and the automatic generation of 

the animator code are not limited by the functional chain size. The output of the animator gives a 

time based representation of the end event errors together with various statistical measurements 

taken over a window of the simulated output. The animator does not, typically, calculate the 

absolute maximum and minimum dynamic errors. 
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6.2.3  The proposed functional model as a part of Model-driven Development 

 

Three types of model are identified as part of the model driven development process; CIMs, PIMS 

and PSMs. The PIMs and PSMs are predominately component based software models. The CIMs 

are system wide descriptions of behaviour. The new functional model contains a functional 

description of both the hardware and software of the system. Either the OMG definition of a CIM 

needs to be extended or a new model defined. 

 

A key feature of model driven development models is the transformation between models which 

are used within the system development process. Two types of transformation exist; the first is a 

translation which does not contain extra information and the second is where extra detail is added. 

The translation between a system requirements model and the proposed model requires extra 

information, so an automatic translation is not possible. The translation between the proposed 

extra model and the component contract specification and interface control documents is 

potentially possible as no extra information is added. In practice, this translation is not automatic 

as contact specification and interface control documents are textual. Comparison between the 

system requirements, the functional model and the component contract specifications and 

interface control documents is possible using a traceability tool such as DOORS and if necessary 

extra requirements/design details can be added as they are identified.  

 

The proposed model is intended to be initially generated from some point during the system 

requirements definition phase and the generation of component contract specifications and 

interface control documents. The model should be maintained as component design information is 

available from the component design authorities. The model can be used to assess the impact of 

new requirements or component shortcomings as they emerge. 
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6.2.4  Calculating performance from the functional model 

 

Three types of functional chain can be assessed using functional chains. The first are linear 

functional chains which transfer and calculate system information in only one direction. The display 

of aircraft heading from the second investigation is an example of a linear functional chain. The 

second type is a closed-loop functional chain, the feedback occurring in the real-world domain. An 

example of this is where the pilot uses the course to steer display to control the direction the 

aircraft flies in. The generation of course to steer information in the third investigation is an 

example of this type. The third type e.g. an aircraft autopilot where the feedback is applied within 

the system, was not assessed due to its complexity. 

 

Three types of errors were assessed: static, stochastic and dynamic errors. 

 

The performance of relatively simple functional chains can be calculated, but as the functional 

chains become more complex this becomes increasingly difficult. Sensors, simple functional 

element combinations and simple actuators were examined to confirm this complexity. The 

dynamic errors are calculated in terms of maximum and minimum errors and generally do not 

describe their statistical distribution.  

 

6.2.5  A tool for early animation and simulation of performance 

 

A tool was generated to animate functional chains. A simple one-input real-world model was used 

as an input and the predicted animator output was collected at the end of each run and processed 

using a spreadsheet. Two versions were developed to animate the system functional chain 

identified in the second investigation (in Section 4.4) for the display of aircraft heading. Both 

versions of the animator used a counter which represented time steps much shorter than the 

iteration intervals of any of the component schedulers and instigates all the functional elements 

which should be run within that interval before the counter incremented. It therefore did not run in 
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real-time but all functional elements were scheduled in the right order. The second version, 

generated in the third investigation (see Section 4.5), enabled functional element and scheduler 

classes to be generated for a database representation of the display aircraft heading functional 

chain. 

 

Both versions of the program instantiated functional element and scheduler objects which existed 

for the entire animation in an object pool. The (large) limit to the number of objects which can be 

instantiated at the same time could be overcome by saving the contents of each functional element 

after it has been executed and destroying the functional element objects. All information requested 

by functional elements would then need to be retrieved from the functional element records which 

would slow down the animation. 

 

The model includes the capability of selectively adding stochastic errors in the sensor functional 

elements. The model did not assess stochastic errors generated by data quantisation due to the 

increased complexity, but could have been included by defining the type, range and resolution of 

all the functional element data. Stochastic errors from calculations would automatically be included 

as the calculations are inherent in the functional element behaviour. It was assumed that static 

errors could be removed by hardware or software adjustment. 

 

A software tool was developed to automatically generate animator or simulation software from a 

database representation of the functional model in the third investigation (described in Section 

4.5.5.4), which can reliably be used to directly assess system performance system components 

from within the system design without completely rewriting the animator program. The two 

programs only provided proof of concept evidence of suitability. 

 

The results from this program were compared with those obtained by calculation (in Section 

4.4.4.6) and found to be similar.  
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6.2.6 Comparison between model-based performance assessment and system 

implementation outcome 

 

The final performance of the system may differ from that predicted by the proposed model for a 

number of reasons. The final system performance relates to the design of each component. Each 

component is designed to meet the requirements of each component. Differences between the 

design and requirements for each component will make the model less representative. If the 

functional model is updated with component design information as the development progresses, 

the model remains consistent. If the functional model is replaced by other models based on the 

design of each component and not updated, it is no longer relevant but has still fulfilled its purpose 

in establishing component contract specifications and interface control documents. If the 

component design uses the same software architecture as the model (functional elements and 

schedulers), it also becomes more accurate. 

 

6.3  Research Contribution 

 

The research contribution of this thesis is the identification of a gap in the development of large 

real-time distributed systems and the identification of a novel approach to modelling and animating 

the system design early in the development process, to evaluate problems which arise during the 

whole-system development, which impact the system design. 

 

This thesis documents an investigation into how distributed real-time system requirements are 

currently allocated to an initial system hardware architecture prior to generating requirements 

specifications for system components. It identifies a difficulty in properly assessing whether an 

initial hardware architecture will support the system requirements. It reveals that preliminary 

system hardware architectures are proposed on an experienced-based 'fix-it-later' approach. Whilst 

the 'fix-it-later' is inevitable, system level issues may be missed if they spread across component 
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boundaries. The structure and use of the functional model approach is suited to the skills available 

to the system design team, so that it can be central to a team-based approach. 

 

A graphical functional model associated with an animator can help resolve this problem. A 

functional model which can mirror the detailed system requirements, and record how those 

requirements are allocated to system components, will help formalise the process of defining 

components. A method for system level analysis is demonstrated on two relatively simple systems. 

The use of the model requires further investigation on a large distributed system to fully explore its 

benefits. The functional model also needs a proper database graphical toolset and a fully functional 

animator needs to be developed so that functional models can be reliably generated and 

optimised. 

 

Performance calculation is very complex and impracticable to repeat with every system design 

change. A method for performance analysis has been investigated which can be automatically 

generated from the database which records the functional model. Programs were written to 

demonstrate proof of concept. The animation tool requires a scenario generator for its input and 

method of recording the animator output.  

 

The accuracy of the animator tool depends on how the system development proceeds from the 

generation of component requirement specifications. Its benefits may only last until the 

components requirements are established where it is replaced by other models when the 

component design information becomes available. As it is possible to automatically generate 

animator program code (an implementation of the functional model), it may be possible to 

automatically generate implementation code for a software structure which uses process elements 

and schedulers. If this structure is used with the same iteration schedules, the animator would be 

representative of the final system implementation. This approach has not been investigated as part 

of this research. 
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The following describes the functional model which was produced as part of the research. 

• The proposed model collects together all the necessary information to investigate the 

function and performance of system components in order to generate bespoke component 

contract specifications or review COTS contract specifications and interface control 

documents. 

•  It enables the system design to be completely contained in a single system design 

repository. 

• It is unambiguous, providing functional elements were correctly identified. 

• It is comprehensive, covering bespoke and COTS components together with all 

communication links. 

• It enables data-hiding as specific behaviour and performance can be examined in isolation 

using functional chains. It also allows individual functional elements representing a single 

aspect of the design to be examined in isolation. 

• It is accessible to domain experts as individual functional elements or a functional chain 

can be traced to system requirements. 

• It is accessible to system designers as the functional model can be traced to component 

specifications and interface control documents. 

• Performance analysis is possible. A functional chain animator was developed to examine 

performance. An animator automatic source code generator was developed so that system 

design changes could be examined without major animator program rewrites. 

• It enables functional chains to be automatically selected by working back from a functional 

end event including all functional elements linked by data. 

• It allows simulation of part or whole of a functional chain. An animator was developed to 

examine whole or part functional chains. 

• Traceability is possible between system requirements, proposed functional model and 

component requirements. 
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6.4  Future Work 

 

The functional model needs to be monitored in an actual real-time system project to confirm that it 

is simple and effective to use. 

 

Only part-functional models have been developed for specific systems. The proposed model should 

examine a greater range of processing and non-processing system components. 

 

The functional model developed as part of this research is a simple prototype. A full-scale model 

needs to be developed before it becomes viable for a real project. Such a model should have the 

following features: 

 

• A graphical database-based functional model needs to be developed comprising functional 

model diagrams, functional chain extraction and scheduler tables. It needs to be graphical 

to make it usable for users and domain experts to access. 

 
• Inclusion of a better representation of the functionality associated with individual 

functional elements.  The current functional element algorithm field was populated with a 

java statement as text.  The automatic generation of an animator code should address 

other representations such as OCL or text based algorithms. This would make the tool 

more flexible. 

 

• Development of full-scale animator with automatic code generated from within the 

functional model database making the proposed model more usable. 

 

• Functional model consistency checking. The generation of the functional model is 

susceptible to human errors so some form of automatic consistency checks are required. 
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• Development of a flexible multi-output real-world model to provide inputs to and accept 

outputs from the functional model. The real world model used to investigate the animator 

only generated a single linear input. A full scale animator needs to generated multiple 

inter-related inputs to represent complex real world scenarios. 

 

• Development of a data recording system to record internal and external data. The 

animator that was investigated only had basic output data capabilities. 

 

• Development of a real-time recorded data playback system with graphical representation 

to display intermediate data or displays and actuators. This was not assed within this 

research. 

 

• The impact of the functional model to the 'fix-it-later' nature of the design process needs 

to be examined to see what types of system would benefit from a functional model. Only 

periodic systems that operate in a periodic way were investigated. 

 

• The accuracy of the model performance predictions need to be compared with the final 

implemented system performance. This can only be done by using the proposed additional 

model alongside existing methods for a number of development projects and is outside the 

scope of this research. 

 

The three investigations assessed the use of the proposed functional model using selected 

examples of real-time systems. This established the operation of the model, functional chains and 

the animator as a proof of concept only. The proposed approach needs to be investigated in 

conjunction with a real large real-time distributed development project. The development of a full-

scale animator is beyond the scope of this research. 
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A functional model is an extra cost at the start of the development. Investigation is required to 

establish whether the potential cost benefits of using a functional model to identify system 

performance shortcomings early outweigh this extra cost. Analysis of the use of contingency 

budgets is difficult because these are rarely published. 

 

6.5  Conclusions 

 

The use of a functional model may save development costs for large distributed real-time systems 

in certain circumstances. The most likely type of system to benefit is large low-volume complex 

systems developed by multiple teams and organisations involving multiple customers where 

specific functionality is implemented on multiple components. Systems where the hardware 

architecture affects its performance, and where its functionality is distributed between its hardware 

components, increases its sensitivity to performance shortfalls which may be detected late in the 

development process. Large bespoke system components with long development lifecycles magnify 

the costs of design changes. The least likely systems to benefit from this approach are smaller, 

high-volume systems developed entirely by a single organisation. 
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Appendix A 

Functional Element Definition Template 
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Used in Use Cases 

Description 

Functional Element Definition Template 

Process Name 

Highest Hazard Highest Mission 

Classes used 

Failure Category 

Algorithm 

Performance 

Pre-conditions 

Post-conditions 
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Appendix B    

Data Design Note 

 

 

 

 

 

 

 

 

 

 

 

 

  

Name 

Used in Use Cases 

Class 

Description 

Data Definition Template 

Attribute Name 

Units 

Lowest Value 

Pooled 

Resolution 

Highest Value 

Iteration Rate Critical 

Highest Hazard Highest Mission 

Used in Diagrams 

Failure Category 

Part Of 

 
Decomposes 
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ER diagram of the database used to store functional model data
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Appendix D  

Structure of program which generates a functional element class definition 

 

//  Generator of Functional Element class definitions 

 

//  Write a text file containing the following code lines. 

 

//  Functional element name FEname 

 

public class FEname 

{ 

 

//  Output data contained as attributes in this functional element 

//  accessed using accessor methods below 

 

   private DataType DataName; 

   private DataType DataName; 

 . 

 . 

   private DataType DataName; 

 

//  Local data contained as attributes in this functional element 

//  accessed using accessor methods below 

 

   private DataType DataName; 

   private DataType DataName; 

 . 

 . 

   private DataType DataName; 

 

// constructor 

 

   public FEname(); 

   {
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   } 

 

// getter methods – one for each of the attributes defined above 

 

   public DataType getDataName() 

   { 

 

      return DataName; 

   } 

. 

. 

   public DataType getDataName() 

   { 

 

      return DataName; 

   } 

 

//  Functional Element methods 

 

   public void startFE() 

   { 

// FEfunction 

   } 

 

// Other methods 

 

    //  OTfunction 

} 
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Appendix E 

Sample functional element class definition 

public class  TransferGcNb 

{ 

 

   private Double gcNb; 

   private Double gcAc; 

   private Double gyroData; 

 

 

// constructor 

 

 

   public TransferGcNb(Double default); 

   { 

      setgcNb(default); 

   } 

 

 

// accessor methods 

 

   public Double getgcNb() 

   { 

 

      return gcNb; 

   } 

 

   public void  setgcNb(Double argument) 

   { 

 

      gcNb = argument; 

   } 
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   public Double getgcAc() 

   { 

 

      return gcAc; 

   } 

 

   public void  setgcAc(Double argument) 

   { 

 

      gcAc = argument; 

   } 

 

//  Functional Element methods 

 

   public void startFE() 

   { 

        setgyoData(gcNb);    

        gyroData = gyroData +33.0; 

        transferCourse(gyroData); 

   } 

 

// Other methods 

 

   public void transferCourse (Double gData) 

   {       

        setDispGc(gData); 

   } 

} 
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Appendix F 

 

Structure of program which generates a scheduler class definition 

 

//  Construct iteration table as a string array of FEnames 

//  Write a text file containing the following code lines. 

   

public class IteratorName 

{ 

 

//  Output data contained as attributes in this functional element 

//  accessed using accessor methods below 

 

   private INT ItMajorSize; 

   private INT ItSteps; 

 private INT ItRate; 

  

// constructor 

 

   public IteratorName(); 

   { 

   } 

 

// getter methods – one for each of the attributes defined above 

 

   public INT getItMajorSize() 

   { 

      return ItMajorSize; 

   } 

 public INT getItSteps() 

   { 

      return ItSteps; 

   } 

 public INT getItRate()
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   { 

      return ItMajorRate; 

   } 

 

// setter methods – one for each of the attributes defined above 

 

   public setItMajorSize(INT size) 

   { 

      ItMajorSize = size; 

   } 

 

 public setItMajorSize(INT steps) 

   { 

      ItSteps = steps; 

   } 

 

 public getItMajorSize(INT rate) 

   { 

      ItRate = rate; 

   } 

 

//   

 

If count = itRate 

 itRate=0 

 iteration = iteration +1 

 if iteration = majorsize 

  iteration = 0 

     

// for each iteration 1 - majorSize 

 

Case iteration = 0 

 

   FEName.startFE() 

   FEName.startFE()



Thesis                                                                                                         Appendix  F

                                                      

 
Michael Giddings                 Page 273 of 277                 12/10/2016 
 

  . 

  . 

Endcase 

 

 

Case iteration = 1 

 

 

   FEName.startFE() 

   FEName.startFE() 

 

  . 

  . 

Endcase 

. 

. 

Case iteration = majorSize-1 

 

 

   FEName.startFE() 

   FEName.startFE() 

 

  . 

  . 

Endcase 
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Appendix G 

Sample scheduler class definition 

 

public class Sensor 

{ 

 

//  Output data contained as attributes in this functional element 

//  accessed using accessor methods below 

 

   private INT ItMajorSize; 

   private INT ItSteps; 

 private INT ItRate; 

  

// constructor 

 

   public IteratorName(); 

   { 

   } 

 

// getter methods – one for each of the attributes defined above 

 

   public INT getItMajorSize() 

   { 

      return ItMajorSize; 

   } 

 public INT getItSteps() 

   { 

      return ItSteps; 

   } 

 public INT getItRate() 

   { 

      return ItMajorRate; 

   } 
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// setter methods – one for each of the attributes defined above 

 

   public setItMajorSize(INT size) 

   { 

      ItMajorSize = size; 

   } 

 public setItMajorSize(INT steps) 

   { 

      ItSteps = steps; 

   } 

 public getItMajorSize(INT rate) 

   { 

      ItRate = rate; 

   } 

 For 

 { 

  If count = itRate 

  { 

   itRate=0 

   iteration = iteration +1 

   if iteration = majorsize 

   { 

    iteration = 0 

     } 

  } 

 

// for each iteration 1 – majorSize 

 

  Switch (iteration) { 

 

   

  Case 0: 

   transferCourse.startFE(); 

   break; 
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  Case 1: 

   transferCourse.startFE(); 

   break;  

 

  Case 2: 

   transferCourse.startFE(); 

   break;  

 

  Case 3: 

   transferCourse.startFE(); 

   break;  

 

  Case 4: 

   transferCourse.startFE(); 

   break;  

 

  Case 5: 

   transferCourse.startFE(); 

   break;  

 

         } 

  

 


