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Introduction: Assessment of human gait posture can be clinically e�ective in

diagnosing human gait deformities early in life. Currently, two methods—static

and dynamic—are used to diagnose adult spinal deformity (ASD) and other spinal

disorders. Full-spine lateral standing radiographs are used in the standard static

method. However, this is a static assessment of joints in the standing position

and does not include information on joint changes when the patient walks.

Careful observation of long-distance walking can provide a dynamic assessment

that reveals an uncompensated posture; however, this increases the workload of

medical practitioners. A three-dimensional (3D) motion system is proposed for

the dynamic method. Although the motion system successfully detected dynamic

posture changes, access to the facilities was limited. Therefore, a diagnostic

approach that is facility-independent, has low practice flow, and does not involve

patient contact is required.

Methods: We focused on a video-based method to classify patients with spinal

disorders either as ASD, or other forms of ASD. To achieve this goal, we present a

video-based two-stagemachine-learningmethod. In the first stage, deep learning

methods are used to locate the patient and extract the area where the patient is

located. In the second stage, a 3D CNN (convolutional neural network) device

is used to capture spatial and temporal information (dynamic motion) from the

extracted frames. Disease classification is performed by discerning posture and

gait from the extracted frames. Model performance was assessed using the mean

accuracy, F1 score, and area under the receiver operating characteristic curve

(AUROC), with five-fold cross-validation. We also compared the final results with

professional observations.

Results: Our experiments were conducted using a gait video dataset comprising

81 patients. The experimental results indicated that our method is e�ective for

classifying ASD and other spinal disorders. The proposed method achieved a

mean accuracy of 0.7553, an F1 score of 0.7063, and an AUROC score of 0.7864.

Additionally, ablation experiments indicated the importance of the first stage

(detection stage) and transfer learning of our proposed method.

Discussion: The observations from the two doctors were compared using the

proposedmethod. Themean accuracies observed by the two doctors were 0.4815

and 0.5247, with AUROC scores of 0.5185 and 0.5463, respectively. We proved

that the proposed method can achieve accurate and reliable medical testing

results compared with doctors’ observations using videos of 1 s duration. All
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our code, models, and results are available at https://github.com/ChenKaiXuSan/

Walk_Video_PyTorch. The proposed framework provides a potential video-based

method for improving the clinical diagnosis for ASD and non-ASD. This framework

might, in turn, benefit both patients and clinicians to treat the disease quickly and

directly and further reduce facility dependency and data-driven systems.

KEYWORDS

adult spinal deformity, spinal disorder, video-based method, human action recognition,

3D CNN

1 Introduction

Spinal diseases and disorders are critical because of their

potential to cause major health problems. Spinal diseases have

significant physical and functional consequences. They may cause

pain, restricted mobility, nerve damage, paralysis, and limitations

in activities of daily living. As spinal diseases progress, more

severe complications such as chronic pain and loss of neurological

function can occur.

Adult spinal deformity (ASD) is characterized by an abnormal

spinal shape or posture that results in back or neck pain,

physical discomfort, and functional impairments. Different

types of ASD require specific treatment approaches. Proper

classification helps healthcare professionals design individualized

treatment plans. Classification of ASD allows for a better

understanding and analysis of different deformity patterns, leading

to advancements in treatment and improved patient outcomes. A

clear classification facilitates communication among healthcare

providers, researchers, and patients, thereby promoting accurate

diagnosis, effective treatment, and better patient education.

In summary, spinal diseases have serious implications on an

individual’s health and wellbeing. Classification of ASD is essential

for appropriate treatment, research, and effective communication

within the medical community.

Currently, in the medical diagnosis of ASD diseases, static

and dynamic methods are commonly used. Static methods involve

the evaluation of the patient’s condition in a stationary or resting

position. These methods typically include radiographic imaging

techniques, such as X-ray imaging. These imaging modalities

provide detailed anatomical information and allow healthcare

professionals to assess the structural abnormalities or degenerative

changes in the spine and other affected areas. Dynamic methods

involve assessing the patient’s condition during movements or

activities. These methods focus on evaluating the functional aspects

of the patient’s spine and joints during motion. Examples of

dynamic methods include gait analysis, motion capture systems,

and electromyography (EMG).

However, some issues remain unresolved. For example,

radiographs do not provide information on joint changes when

a patient walks. In addition, observing patients’ walking increases

the workload of medical practitioners. Furthermore, three-

dimensional (3D) motion systems are not accessible to all facilities.

To solve these problems, an automatic diagnostic system using a

conventional RGB camera is proposed in this study. The video

can capture joint changes while walking, and the machine-learning

method can parse and evaluate the video without the involvement

of a doctor, resulting in a reduced workload. In addition, cameras

are cheaper and easier to set up than 3D motion systems.

In the machine learning field, human action recognition using

videos has several advantages: for example, it can reduce the

workload, is not limited by the facility, and can capture dynamic

motion information from the video (Sun et al., 2020; Zhu et al.,

2020). Based on these advantages, our research attempted to apply

video-based technology to distinguish between spinal gait diseases.

A video-basedmethod for classifying human gait postures that does

not interfere with a patient’s natural movements was proposed in

this study, as illustrated in Figure 1. To the best of our knowledge,

this is the first study to evaluate ASD from RGB videos using

machine learning techniques.

The contributions of this study are as follows.

• We proposed a two-stage CNN method for human spinal

disease diagnosis. We provided a non-invasive and objective

method for assessing and analyzing ASD in walking to

facilitate diagnosis.

• We identified the importance of detection stage and transfer

learning in discriminating ASD and other spinal disorders.

• We compared the predictions of the proposed method to

those of two specialized doctors. We proved that the proposed

method is effective in classifying ASD.

2 Related work

In this section, we present the medical methods used to

diagnose ASD and the deep learning methods for human

action recognition.

2.1 Medical methods

Medical diagnosis of ASD involves the identification and

assessment of abnormal spinal curvature and alignment in adult

patients. ASD refers to a range of spinal conditions that can

cause deformities such as scoliosis (sideways curvature), kyphosis

(forward rounding of the upper back), or a combination of both.

Radiographs and quantitative analyses are standard clinical

medical methods. Full-spine, lateral standing radiographs are

currently the standard for diagnosing ASD and other spinal diseases

(Glassman et al., 2005a,b; Lafage et al., 2009; Schwab et al., 2010).

However, these are static evaluations of the standing position,

which are compensated for by other joints. Careful observation
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of long-distance walking can provide a dynamic assessment that

reveals an uncompensated posture, but it increases the workload of

medical practitioners. Quantitative analysis still has limited access

in facilities, whereas 3D motion capture systems can successfully

detect dynamic changes. Some studies (Miura et al., 2018a, 2020;

Severijns et al., 2021; Asada et al., 2023) have reported that dynamic

motion systems are useful for the medical diagnosis of ASD.

Severijns et al. (2021) used motion analysis to assess the

standing and walking spinopelvic, lower limb kinematics, and

lower limb kinetics in a patient’s gait. They reassessed ten patients

after corrective spinal surgery. Continuous kinematic and kinetic

data were analyzed using statistical parametric mapping. A 3D

motion analysis was proposed using a Vicon MX system (Miura

et al., 2018a, 2020). It provides detailed information regarding the

movements of various body segments during the gait cycle. This

system typically consists of multiple high-speed cameras placed

strategically around a walkway or treadmill, along with specialized

software for data collection and analysis. The cameras captured

the movements of reflective markers placed on specific anatomical

landmarks on the subject’s body, such as the pelvis, legs, and feet.

This information can be used to assess normal gait patterns, detect

abnormalities or deviations from the normal gait, and evaluate the

effectiveness of interventions and treatments. Although 3D motion

gait systems offer valuable insights into human walking patterns,

they have several disadvantages. For example, 3D motion gait

systems can be costly to acquire and set up and require specialized

equipment such as high-speed cameras, motion capture markers,

and dedicated software.

Electromyography (EMG) has been used to investigate the

relationship between dynamic and static spinal gait postures

(Miura et al., 2018a; Banno et al., 2022). EMG sensor systems

are used to measure and record the electrical activity of skeletal

muscles. By placing electrodes on specific muscles, researchers can

analyze muscle activation patterns and assess the involvement of

different muscle groups during walking. The system comprises

of 12 EMG sensors and requires them to be placed on

the patient’s body, generally attached to the trunk and lower

limb muscles (Miura et al., 2018a) before each experiment.

Banno et al. (2022) compared the postoperative changes in

trunk and lower extremity muscle activities between patients

with ASD and age-matched controls. Surface EMG was used

to measure and analyze muscle activity in both groups. The

findings highlighted significant differences in muscle activation

patterns, emphasizing the impact of surgical correction on trunk

and lower extremity muscle function in patients with ASD.

Although the use of EMG sensors in previous studies has

provided valuable insights into gait posture recognition, there

are disadvantages, such as surface EMG sensors requiring proper

skin preparation, including cleaning and shaving, for optimal

signal quality.

2.2 Deep learning methods

Human action recognition using computer vision is a research

field that focuses on the development of algorithms and models

to automatically detect and classify human actions in video or

image sequences. Its goal is to enable computers to understand and

interpret human movements and actions in a manner similar to

how humans perceive and recognize them.

There are two commonmethods for human action recognition:

stream-based methods (Simonyan and Zisserman, 2014) and 3D

CNN-based methods (Ji et al., 2012). In this study, we focused

on 3D CNN methods. A 3D CNN is a deep learning model

specifically designed to capture spatiotemporal information from

video sequences for human action recognition. Unlike traditional

2D CNNs that operate on individual frames, 3D CNNs consider

both spatial and temporal dimensions in their convolutional

operations. 3D CNN have been successfully used in a wide

range of applications, including video surveillance, sports analysis,

and human–computer interaction (Sun et al., 2020; Zhu et al.,

2020). In summary, 3D CNN-based methods for human action

recognition leverage both spatial and temporal information from

video sequences. By considering the temporal dynamics of actions,

these methods can effectively capture motion cues and achieve

high-performance action recognition.

Research on human-action recognition has aimed to improve

the accuracy, robustness, and efficiency of these models. It

also explores challenges such as handling variations in lighting

conditions, viewpoint changes, occlusions, and complex temporal

dependencies between frames. Advancements in deep-learning

techniques, particularly the use of convolutional and recurrent

neural networks, have improved the state-of-the-art performance

of human action recognition tasks. 3D CNN faced problems in

this study owing to patient-independent backgrounds, unrelated

persons (doctors), and patient gait posture.

However, there is some research about gait classification or

recognition, used to diagnose walking disorders such as seen in

those with Parkinson’s Disease (Kaur et al., 2022), children with

cerebral palsy (Dobson et al., 2007), and in post-stroke patients

(Kaczmarczyk et al., 2009). In general, gait recognition focuses on

the changes in body part alignment during walking (e.g., legs). Kaur

et al. (2022) examined the effectiveness of a vision-based framework

for multiple sclerosis (MS) and Parkinson’s disease (PD). They used

pose estimation (OpenPose; Cao et al., 2019) to predict the joint

positions of the hip, knee, ankle, and feet to classify MS and PD.

The only motivation for our study was attributing gait recognition

because of joint changes in the trunk and limbs during walking,

as opposed to focusing on the legs alone. ASD is associated with

spinal abnormalities. During diagnosis, the doctor will focus more

on changes in the spine, but also on changes in the movement of

the whole body. The other three patients were diagnosed with ASD.

Although they have distinct pathognomonic features, changes in

all body movements are important. Because we cannot limit the

features of a disease to a single point (e.g., the leg), we used human

action recognition to learn how the features of the entire body

changed during walking without limiting it to a single body part.

This is also true of some medical studies (Miura et al., 2018b, 2020)

that have diagnosed these diseases. They used a motion system to

dynamically capture changes in the joints throughout the patient’s

body as they walked. They focused on changes throughout the

patient’s body rather than on changes in a specified part. For these

reasons, we used human action recognition to analyze the changes

in a patient’s entire body during walking.

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1278584
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1278584

In summary, we created a comparative table of the current

medical diagnostic methods for ASD and other spinal disorders,

as well as their differences with deep learning methods for human

action recognition, as shown in Table 1.

3 Methods

3.1 Proposed two-stage method

In this section, we describe the proposed two-stage method for

distinguishing ASD from other spinal disorders. Figure 1 shows an

overview of the proposed method. Figure 1A is a flow chart of the

proposed method. There are two stages: the preprocessing method

(detection stage) and motion classification network (classification

stage). The first stage separated the patient’s area from the

background of the image. In the second stage, the extracted patient

area was used to distinguish the gait of spinal posture. Several

evaluation metrics are used in the experiments.

3.1.1 Detection stage
In our dataset, the video recording of a walking patient was

performed using a single RGB camera fixed to one side. The patient

walked in front of the fixed camera. There were two difficulties

at this stage. First, the videos contained irrelevant information

other than the patient’s body, such as tables, fans, whiteboards, or

curtains, other than the patient’s. Second, some patients required a

doctor to walk with them. This leads to scenes in which the doctor is

present within a certain frame. However, it is difficult to standardize

these conditions at different medical institutions.

In this stage, using a preprocessing method, the first problem

was solved using a body-area extractor. The second problem can

be solved by extracting the bounding box in which the patient walks

with the doctor using a key-frame extractor. In order to obtain

the patient’s center point, we ensured that the extraction screen

was always at the center of the patient. Figure 1B illustrates the

detection stage method. At this stage, the patient area has been

extracted from the background image.

Body area extractor separates the patient’s body and

background information. We used a Faster RCNN (Ren et al.,

2015) pretrained on the COCO dataset, which demonstrated

effective detection results for various tasks. We applied detection

based on the Faster RCNN for each frame and adjusted the

extracted area to 512× 512 pixels to facilitate the calculation.

Body center point uses the bounding box detected by Body

area extractor. To ensure the accuracy of the calculation using the

detected bounding box, we simultaneously predicted the keypoints

of human pose. A Faster RCNN framework can easily be extended

to human pose estimation (Ren et al., 2015). We used the COCO

pose dataset, which provides 17 keypoints for human figures. We

compared the two predicted hip joint center points (left and right

hips) with the center point calculated from the bounding box. In

Figure 1B (left), it shows the predicted joint keypoint in frame. This

step ensures that the patient is always in themiddle of the extraction

area, and the calculated center point is used in the next step (key

frame extractor).

Key frame extractor attempts to differentiate between the

patient and another person. In our dataset, we observed that the

patient always entered the frame before the doctor. Therefore,

doctors always follow their patients. Using this information, key-

frame extraction was performed in three steps. First, object

detection was applied to the first frame of the video to determine the

bounding box of the patient. Second, a bounding box was used to

determine the center point of the patient’s body. Third, we recorded

the body center point coordinates in the first frame and compared

them with those in the subsequent frame. The same person must

move the shortest distance between the two adjacent frames. The

coordinates of the patient’s locations were obtained following the

three steps. This determines whether the patient is the only person

in the extracted area. Although the detection returned a rectangular

area, the CNN predicted a square region. Figure 1C shows the

calculation of the extraction method. To ensure the aspect ratio

of the characters, we use the retained height of the patient (y2

and y1 coordinates of the bounding box) as the base length for

cropping. Both sides of the extracted areas were filled to ensure

that the images were not distorted. Therefore, an extracted area box

(red box) was obtained from a specified bounding box (blue box).

Finally, all video frames were resized to 512 pixels to achieve 30 FPS.

The results obtained after the detection stage are presented in

Figure 2. The four pathologies, ASD, DHS, LCS, and HipOA are

listed here. Each row consisted of eight frames uniformly extracted

from a 1 s video. We used the data obtained for model training (see

the next section for details). The radiographic spinal parameters

during the gait analysis are shown in Table 2. Each patient was

asked to stand comfortably. Static spinal parameters were evaluated

as follows: sagittal vertical axis (SVA); thoracic kyphosis (TK);

lumbar lordosis (LL); pelvic tilt (PT); pelvic incidence (PI); TI pelvic

angle (TPA); coronal Cobb angle of the thoracolumbar and lumbar

scoliosis (CObb). The surgeon based the diagnosis of ASD and non-

ASD on these spinal parameters and clinical information, including

the chief complaints.

3.1.2 Classification stage
Figure 1D illustrates the second stage. This stage uses the

extracted patient area to classify the spinal diseases.We constructed

a motion classification network based on a ResNet-style (He et al.,

2015) 3D CNN with a bottleneck block. The detailed structure is

given in Table 3. The motion network receives a series of frames

extracted from the detection stage, indicating that only the patient

area is used.

In Table 3, the dimensions of the filters and outputs are time,

height, and width. The T of the study was selected as eight, meaning

that eight frames were uniformly extracted from the 1 s video.

b1, . . . , b4 are the number of blocks implemented at conv2_x,

conv3_x, conv4_x, conv5_x (defined 3, 4, 6, and 3, respectively).

This means, for example, that b1 was repeated 3 times. The series

of convolutions culminates in a global spatiotemporal pooling

layer that yields a 2,048-dimensional feature vector. This vector

is fed into a fully connected layer that gives outputs of the class

probabilities through a sigmoid.

ResNet solves the CNN degradation problem. This allows the

network to learn more features, resulting in a higher performance.
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TABLE 1 Comparative table about the medical methods and deep learning methods.

Method Diagnostic process Contact with the
patient’s body

Physician review
required

Facility
dependency

Medical diagnosis methods

Quantitative analyses
Patient fills out the paperwork and

the doctor makes a diagnosis based on the paperwork
Yes Yes Questionnaires

Radiographs
Patient are diagnosed with radiographs beforehand

after judged by a doctor.
No Yes X-ray machine

Dynamic methods
Sensors need to be placed on the patient’s body

and doctor makes a diagnosis based on the capture results

Yes Yes Dynamic capture

system

Deep learning methods (Video based)

Two-stream method
Recorded video beforehand,

and need to predict Optical Flow in advance
No No Camera

3D CNNmethod (Ours)
Using one camera to recorded the patient.

More concerned with characteristics of the whole body.
No No Camera

Kaur et al. (2022)
Using two cameras to recorded the patient,

then pre-processed (pose estimate, etc.), and classification.

More attention to partial features (lower extremities).

No No Camera

FIGURE 1

Flow chart of the proposed method. (A) shows the flow chart of the proposed method. (B) shows the detection stage of the proposed method. Here,

we locate the patient and extract their position. (C) The calculation method used in the detection stage shows the extraction method for the key

frame extractor. (D) shows the classification stage of the proposed method. Here, we classify the patient’s disease by extracted frames.

Some state-of-the-art 3D CNN structures also borrow the ResNet

structure to improve video recognition ability (Kay et al., 2017; Sun

et al., 2020; Zhu et al., 2020). In this study, we trained a ResNet-style

3D CNN using videos to recognize a patient’s gait posture. Similar

to Ji et al. (2012), we extracted eight frames uniformly from the 30

image frames for training.

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1278584
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1278584

FIGURE 2

Extracted results from detection stage. Uniformly extracted eight frames from 1 s for train or validation. We mosaiced the patients’ faces to protect

theri privacy. There was no mosaic during training or validation. (A) ASD. (B) DHS. (C) LCS. (D) HipOA.

TABLE 2 Radiography parameters for ASD and other spinal disorders, e.g.,

SVA, sagittal vertical axis; TK, thoracic kyphosis; LL, lumbar lordosis; PT,

pelvic tilt; PI, pelvic incidence; TPA, T1 pelvic angle.

ASD non-ASD

Parameter Mean Range Mean Range

Age (years) 70 40 to 84 70 22 to 81

Height (cm) 150 131 to 172 152 134 to 175

SVA (mm) 128.0 −11 to 238 10.95 −97 to 155

TK (◦) 21.52 −23 to 67 14.03 −61 to 55

LL (◦) 8.956 −33 to 49 36.03 −7.3 to 63

PT (◦) 33.66 0.2 to 63 28.43 6 to 61

PI (◦) 48.97 18 to 76 49.73 25.6 to 74

TPA (◦) 39.00 0.8 to 71 27.04 −7.4 to 46.7

3.1.3 Evaluation metrics
We compared the predictions of our model with those of

doctors using three different evaluation metrics. The metrics

used were mean accuracy, F1 score, and area under the receiver

operating characteristic curve (AUROC). All evaluation metrics

were averaged across five-fold cross-validation.

TABLE 3 ResNet3D architectures considered in our experiments.

Layer
name

Output size ResNet3D-bottleneck

conv1 T× 112× 112 3×7×7, 64, stride 1×2×2

pool1 T× 56× 56 max, 1×3×3, stride 1×2×2

conv2_x T× 56× 56





1× 1× 1, 256

3× 3× 3, 64

1× 1× 1, 256



× b1

conv3_x T× 28× 28





1× 1× 1, 512

3× 3× 3, 128

1× 1× 1, 512



× b2

conv4_x T× 14× 14





1× 1× 1, 1024

3× 3× 3, 256

1× 1× 1, 1024



× b3

conv5_x T× 7× 7





1× 1× 1, 2048

3× 3× 3, 512

1× 1× 1, 2048



× b4

pool5 1× 1× 1 spatiotemporal avg pool, fc layer with sigmoid

Convolutional residual blocks are shown in brackets, next to the number of times each block

is repeated in the stack.

Equation (1). y is the true label and ŷ is the predicted class label.

A higher score indicated that the model had a greater ability to

classify positive (ASD) and negative (non-ASD) labels.

Accuracy =
1

N

N
∑

i

1(yi = ŷi) (1)
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For the F-1 score, refer to Equation (2). The F1 score is

calculated based on the precision and recall of the validation data.

where the precision is the number of true-positive (ASD) results

divided by the total number of positive results. The recall is the

number of true-positive results divided by the total number of

samples that should have been identified as positive. The model

exhibited perfect precision and recall with a high F-score.

F1 = 2
precision ∗ recall

precision+ recall
(2)

The AUROC score summarizes the ROC curve as a single

number that simultaneously describes the performance of the

model for multiple thresholds. This ensured the model’s ability to

classify a given task. An AUROC score of 1 is an ideal score, and an

AUROC score of 0.5 corresponds to random guessing.

To conduct a doctor observation experiment, we developed

a graphical user interface (GUI) for doctors. On the screen in

Figure 3, the doctor selects the spinal disease and focuses on the

part of the analysis when the patient walks. We displayed 81 clips

of patients’ movements at the beginning and end, each containing

a video 1 s long. Two specialist doctors were asked to select what

they considered the classification of the disease and the body parts

to be noted by watching the videos. A period of 1 s was chosen as

it is comparable to the time required for a patient to enter a small

examination room in a clinic and walk toward the doctor.

We counted the results of doctors’ choices and compared them

with those of the proposed model. In Section 4, we compare the

relationship between the predictions of the proposed model and

those of the doctors.

4 Experimental results

In this section, we first describe the gait video dataset used

in this study and then introduce the experimental settings.

Subsequently, we compare our method with those used in

traditional studies on two-stream networks (Simonyan and

Zisserman, 2014) and the results obtained by the two doctors.

Ablation experiments were conducted to demonstrate the

effectiveness of the detection-stage method and transfer learning.

We also present the model visualization results to explore where

the model’s concerns lie.

4.1 Gait video dataset

In this section, we describe the gait video dataset. To advance

the research on gait spinal posture in ASD and other spinal

diseases for medical analysis, we collected videos used in Miura

et al. (2018a), Miura et al. (2018b, 2020), and Asada et al. (2022)

and organized them into datasets. This study was approved by

the Ethics Committee of the University of Tsukuba Hospital

(H30-087). This study was performed in accordance with the

contemporary amendments to the Declaration of Helsinki and

within an appropriate ethical framework. This dataset consists of

video recordings of individuals with ASD and a control group

capturing their walking patterns and spinal postures. This dataset

aims to provide valuable insights into the relationship between

gait abnormalities and spinal postures. The collection of this

gait posture video dataset involved recruiting participants from

ASD clinics or research centers and obtaining informed consent.

Participants were instructed to walk naturally while being recorded

using high-quality video cameras at a fixed angle.

Figure 4 shows an oval-shaped course used for walking in an

indoor space at a distance of 10 m. patient’s walked from left to

right (or from right to left), and the patient’s walking posture was

recorded from a side view with the camera set at a fixed location.

Each video was captured at a frame rate of 30 FPS (frames per

second) and a resolution of 1920× 1080 HD, and the video quality

was set to high. The video format used was MP4 and the codec was

H.264. The patients were asked to record a video from the start to

the end-which is when they were unable to walking.

The original videos lasted 60–300 s. Consecutive frames from

each original video were clipped to avoid scenes without individuals

within the frame. The sliced video contained 1,957 individual video

clips ranging from 2s to 10s. The gait posture’s label attached

to each video was based on the spine surgeon’s diagnosis from

diagnostic radiographical assessment using standing whole-spine

X-ray images and the clinical symptoms of the patients. Table 4

presents the detailed information regarding our dataset. The dataset

comprised videos of 81 patients (61 males and 20 females). Their

ages ranged from 22 to 84 years (mean: 70 years). Details of the

dataset are shown in Table 4.

Our facility performs gait analysis for various musculoskeletal

pathologies, including ASD (adult spinal deformity (ASD), LCS

(lumbar canal stenosis), DHS (dropped head syndrome), and

HipOA (hip osteoarthritis). This study aimed to distinguish

between patients with ASD from those with other spinal disorders.

Owing to the difficulty in diagnosing ASD, we focused on

classifying ASD using gait analysis due to the difficulty of diagnosis

of ASD. The diagnosis of ASD requires comprehensive clinical

judgment based on the clinical symptoms of gait problems as well

as radiographic assessment. Thismakes it difficult to easily diagnose

ASD, which can take time and cause delays in diagnosis. Therefore,

the present study is of significant interest. Another reason for

this is data imbalance. The ASD sample size of 54 patients was

considerably larger than that of patients with other diseases (DHS

16, LCS 9, and HipOA 2). In such cases, training a model to classify

all four diseases separately can lead to biased predictions and poor

performance for minority classes. Therefore, we classified ASD as

ASD label and the other three diseases (DHS, LCS, and HipOA)

as non-ASD.

4.1.1 Five-fold stratified group cross-validation
In general, machine learning divides a dataset into three parts:

train/val/test dataset. However, because of our relatively small

dataset (Table 4), we did not divide the entire dataset into separate

sets. Instead, we use five-fold cross-validation to obtain stable and

generalizable results (Refaeilzadeh et al., 2009).

During the experiment, we ensured that the same patient did

not appear simultaneously in the training and validation datasets at

the same time. In addition, the balance of patients among the folds

was a significant problem. In this study, we used a method called
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FIGURE 3

Graphical user interface (GUI) used for the doctor’s experiment. Two specialized doctors were asked to select what they considered the classification

of the disease, and the body part to be noted. This was performed by watching the videos.

stratified group cross-validation. This ensured that the number of

patients was balanced and that the video of the same patient did

not repeat in the training and validation datasets. Figure 5 shows

the data distribution after five-fold stratified group cross-validation.

We used the API from the scikit-learn toolkit (Pedregosa et al.,

2011) and ensured a balanced dataset for our experiment.

In Figure 5, tags 0 to 4 represent five different dataset

classifications. They divided the datasets into training and

validation sets. Blue represents the training set, and orange

indicates the validation set. Class tags represent the overall data:

light blue for ASD patients and brown for non-ASD patients.

Different colors in the group tag represent different independent

patients. There were 81 different colors (patients).

4.2 Experiments

4.2.1 Training
Training in the classification stage was performed using

ResNet-50 style (He et al., 2015) 3D CNNs along with the

bottleneck block. A pretrained model was trained on the Kinetics-

400 (Kay et al., 2017) dataset. We split the video clips into 1

second shots, including 30 frames. Subsequently, we uniformly

extracted eight frames from the 30 frames for training, as described

in Kay et al. (2017). We trained our models using a single A5000

GPU with 24 GB of memory and the PyTorch framework 1.13.1

version. The batch size for training was set to 8. We used an early

stop technique to speed up the training. When the validation data

prediction loss did not increase within five epochs, the training

ended and the training checkpoint was saved. The entire motion-

classification network was trained on our walking dataset using the

Adam (Kingma and Ba, 2014) optimizer, with a learning rate of

10−5. The learning rate is reduced by half if the validation accuracy

does not increase during the three epochs.

4.2.2 Testing
We report the mean accuracy, mean F1 score, and AUROC

across a five-fold cross-validation of the validation dataset. To

ensure fairness during testing, our test frame was set to eight, which

is the same as that of the training frame. We also compared the

predictions of the model with those of two specialized physicians.

To date, video-based studies of disease diagnostic associations

between ASD and non-ASD do not exist to the best of our

knowledge. Therefore, a more detailed comparison was required.

Nevertheless, we compared two more common approaches to

human action recognition. In the first video-based study of ASD

and non-ASD, we focused more on the predictive results of the
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FIGURE 4

Oval-shaped course used when recording the walking. (A–D) Di�erent stages of patient walking.

TABLE 4 Dataset details.

Label Abbreviations Diseases detail name Patient Clipped video Total

ASD ASD Adult Spinal Deformity 54 1,046 1,046

DHS Dropped Head Syndrome 16 587

non-ASD LCS Lumbar Canal Stenosis 9 260 911

HipOA Hip Osteoarthritis 2 64

proposed model compared to the results derived from physician

observation videos. The two-stream method was compared with

the proposedmethod. In the two-streammethod, videos are clipped

into independent frames. To capture complementary information

on the appearance of still frames and the motion between frames,

the two-stream method uses the optical flow (OF) technique to

estimate themotion change in three frames.We refer to the original

paper structure, where a ResNet50 structure pretrained on the

ImageNet dataset (Deng et al., 2009) was used to extract the features

from a single frame, predict the OF, and then fuse their predicted

scores to obtain the final prediction results. We also compared the

results of the two physicians’ observational experiments. For the

results predicted by the doctors, we present the results for each

doctor after counting. Both doctors watched the same videos during

the experiment.

4.3 Results

Table 5 lists the results for the different models. The metrics

included the mean accuracy, F1 score, and AUROC of the different

methods. For doctors 1, the metrics were 0.4815, 0.4474, and

0.5185, respectively. For Doctor 2, the metrics were 0.5247,

0.4615, and 0.5463, respectively. The metrics for the two-stream

method were 0.7063, 0.6085, and 0.7797. The metrics for the

proposed method were 0.7553, 0.7063, and 0.7864. The proposed

method exhibits better metrics than the two-stream and two-doctor

observation methods.

Figure 6 presents the confusion matrix for the proposed

method. Counting the five-fold cross-validation results, ASD has

1,046 video clips and non-ASD has 911 video clips. Our dataset

contained 1,957 video clips, as described above. Lighter colors

indicate a higher ratio of video clips among the target clips, while

darker colors indicate a lower ratio of video clips among the target

clips. The first and second rows represent videos labeled by the

doctor (ground truth), and the first and second columns represent

the results predicted by the model. We define the first row of the

first column as a true positive (TP), the first row of the second

column as a false positive (FP), the second row of the first column

as a false negative (FN), and the second row of the second column

as a true negative (TN). For presentation purposes, the numbers in

the graph represent the ratios normalized to the targets.
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FIGURE 5

Five-fold stratified group cross validation for our gait video dataset.

Doctors 1 and 2 both had a poor ability to distinguish ASD,

with 0.4074 TP and 0.5926 FP for doctor#1 and 0.4815 TP and

0.5185 FP for doctor#2. However, they could distinguish non-ASD,

with 0.3704 FN and 0.6296 TN for Doctor #1, and 0.3889 FN and

0.6111 TN for Doctor #2. It is difficult to make a correct diagnosis

from very short videos (1 s with eight frames), even for experienced

doctors. For the two-stream method, TP is 0.8860 and FP is 0.1140,

respectively. TN and FN were equal at 0.5000. For the proposed

method, TP and TN were 0.8512 and 0.6420, respectively. The FP

is 0.1488, and the FN is 0.3580, respectively.

4.4 Ablation study

Ablation experiments were conducted to demonstrate the

effectiveness of the proposed method. Specifically, we investigated

the usefulness of the preprocessing method (detection stage) and

compared its effectiveness with and without transfer learning.

Table 6 lists the mean accuracies of different experiments.

For the video without preprocessing, because a square frame

was necessary, we used a short-sided scale (Tran et al., 2014; Kay

et al., 2017) to crop the 1920 × 1080 size frame to a 512 × 512 size

tomatch our proposedmethod. The short-side scale determines the

shortest spatial size of the video (i.e., width or height) and scales it

to a given size. The longer side was scaled to maintain the aspect

ratio. Our transfer learning method is based on amodel pre-trained

on the Kinetics-400 dataset (Kay et al., 2017) and finetuned on

our dataset.

For training the Kinetics-400 dataset, we selected the method

reported by Kay et al. (2017). We used the same sampling method

(Section 4.2) to uniformly extract eight frames from a 1 s video

slice. The final pre-trained metrics were 74.58 (Top-1 ACC) and

91.63 (Top-5 ACC). As the Kinetics-400 dataset has 400 different

categories, we used only two categories in our dataset. Therefore,

to fine-tune the pre-trained model, we modified the last layer from

400 to 2 to match our dataset categories. The entire model was then

retrained. We ensured that the learning rate, optimizer, and early

TABLE 5 Mean accuracy values, F1 score, and AUROC (area under the

ROC curve) for our experiments.

Models Mean
accuracy

F1 score AUROC

Doctor 1 results 0.4815 0.4474 0.5185

Doctor 2 results 0.5247 0.4615 0.5463

Two-stream method 0.7063 0.6085 0.7797

Two stage method (ours) 0.7553 0.7063 0.7864

Values in bold indicate the highest value compared to other methods.

stop were consistent in both the pre-train and fine-tune phases.

Detailed information is provided in Section 4.2.

Moreover, to determine the effect of a patient’s postural changes

throughout the walking process on the final outcome, we divided

the entire video dataset of the patient walking into three parts:

start, middle, and end. They walked through the start, middle,

and end points. Training was performed using the entire dataset,

and testing was performed using a split dataset. For testing, the

number of videos in the split dataset was one-third that of the

entire dataset, but the distribution of the five-fold cross-validation

remained consistent with that of the overall dataset.

Table 7 lists the mean accuracy, F1 score, and AUROC for the

split dataset test results. Parts B and C had a higher mean accuracy

(0.7600 and 0.7582, respectively) than the mean accuracy (0.7559),

whereas Part A had a lower accuracy (0.7495). The F1 scores for

parts A and C were almost equal (0.7000 and 0.7032, respectively)

but lower than those for part B (0.7206). The three parts of

AUROC agree roughly. This was almost identical to the entire

dataset’s results when comparing the mean accuracy (0.7559), F1

score (0.7079), and AUROC (0.7867). Figure 7 shows the confusion

matrix for the split dataset. The TP values for the different parts are

almost equal, but the FN values for parts B and C are higher than

that for part A. This means that when the walking time increased,

the accuracy of non-ASD discrimination increased slightly.

4.5 Model visualization

This study presents a model visualization of the results of the

proposed method. Model visualization can help us understand

which part of the model is focused on during training. In addition,

determining the part of the patient’s body that is involved in

walking provides more positive information. Grad CAM and Grad

CAM++ (Chattopadhyay et al., 2017; Selvaraju et al., 2017) are

techniques used to explain decisions visually using CNN-based

models. Grad CAM++ is superior in terms of object localization,

and explains multiple object instances in a single image. In this

study, we used the code from Gildenblat et al. (2021) to visualize

the model results.

Model visualization cannot represent temporal information.

However, We calculated attention maps at different frames and

fused them into a single image for visualization. In each frame, we

attempted to reflect the relevant information. Figure 8 shows the

model visualization results obtained using the proposed method.

The correctly classified samples (Figures 8A, C, E) are shown on

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1278584
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1278584

FIGURE 6

Confusion matrix of di�erent experiments. Counting the five-fold cross-validation results. (A) Doctor 1 result. (B) Doctor 2 result. (C) Two-stream

method. (D) Proposed method.

the left and the incorrectly classified samples (Figures 8B, D, F) are

shown on the right.

5 Discussions

This study presents a two-stage method for diagnosing ASD

and other spinal gait diseases in a video format. The proposed

method was compared to the traditional two-stream method, and

two doctors observed the video results. The proposed method

is a convenient, low-facility-dependent, fast, and accurate remote

diagnostic tool for ASD and other diseases. Our framework is open-

source and available at https://github.com/ChenKaiXuSan/Walk_

Video_PyTorch.We have provided an organized experimental code

to simplify the repetition of our experiments.

Based on the results presented in Table 5, we found that our

proposed two-stage method had a higher mean accuracy than the

results obtained by two different specialized doctors. The mean

accuracies of the two doctors were 0.4815 and 0.5217, respectively.

For the binary classification task, an accuracy of 0.5 indicates that

the disease could not be correctly discriminated from the short

video. This proves that it is difficult, even for experienced doctors,

to discriminate between ASD and other spinal gait diseases through

the observation of 1 s videos. A traditional two-stream method

that outperformed the results obtained by the two doctors was also

tested in this study. The OF used in the two-stream method can

extract information between different frames more accurately than

humans (e.g., the movement of pixel positions by a patient’s gait).

TABLE 6 Mean accuracy values for the ablation study.

Models w Preprocessing
method
(detection stage)

w/o
Preprocessing
method
(detection stage)

Train from scratch 0.6167 0.5134

Transfer learning 0.7553 0.4597

We test the mean accuracy with the detection stage method and transfer learning. Values in

bold indicate the highest value compared to other methods.

TABLE 7 Mean accuracy values, F1 score, and AUROC for the split dataset.

Models Mean accuracy F1 score AUROC

A part 0.7495 0.7000 0.7774

B part 0.7600 0.7206 0.7941

C part 0.7582 0.7032 0.7886

Mean 0.7559 0.7079 0.7867

Our dataset is divided into three parts: A represents the walking start, B represents the walking

middle, and C represents the walking end.

The mean accuracy score predicted by the proposed method was

the highest at 0.7553.

The accuracy metric is reliable only if the dataset is class

balanced, whereas our dataset is class imbalanced. The F1 score

considers both precision and recall, making it an appropriatemetric

for evaluating the overall performance of amodel. Thus, we selected

the F1 score in conjunction with the accuracy as the standard for
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FIGURE 7

Confusion matrix for split dataset. (A) indicates the walking start part, (B) indicates the walking middle part, and (C) indicates the walking end part.

FIGURE 8

Class attention map (CAM) is used for the proposed method. Here, we use Grad CAM++ to visualize our model prediction. Red represent areas that

provide more positive information about the final result, and blue represent areas that provide less positive information about the final result. (a–c)

The results with ASD patients and (d–f) the results with non-ASD patients. (a, c, e) Denote the successful cases, while (b, d, f) denote the failure cases.
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evaluating the proposed method. A higher F1 score indicates that

the model effectively identified both positive (ASD) and negative

(non-ASD) cases with high accuracy. An F1 score of 0.7063 for

the proposed method indicates that it performed well in correctly

identifying both ASD and non-ASD cases, making it a more reliable

evaluationmetric for class-imbalanced datasets. This shows that the

proposedmethod is capable of distinguishing between patients with

ASD and non-ASD more accurately than the other methods and

exhibits a better overall classification ability.

AUROC is a valuable metric for evaluating the performance of

binary classification models, particularly for imbalanced datasets.

This indicates how well the model can distinguish between

positive (ASD) and negative (non-ASD) classes. A high AUROC

is essential in medical diagnostic tasks because it ensures that the

model can reliably differentiate between patients with and without

the disease. The proposed method exhibits the highest AUROC

(0.7864). This indicates that the proposed method can distinguish

between patients with ASD and those without ASD. Regarding

the traditional two-stream method, despite the high AUROC score

(0.7797), we can conclude from the confusion matrix (Figure 6)

that the model does not discriminate against non-ASD well. This

is discussed in detail in subsequent sections.

The confusion matrix (Figure 6) shows that doctors 1

(Figure 6A) and 2 (Figure 6B) are poor at discriminating ASD

but relatively well at discriminating non-ASD. We considered

the movement characteristics of non-ASD individuals to be

relatively obvious (dropped head and hip osteoarthritis); however,

the walking process of ASD individuals has not been clearly

characterized. This makes discrimination based on doctors’

observations more difficult. The traditional two-stream method

shows good accuracy for ASD but poor accuracy for non-ASD.

This indicates that the prediction of ASD was successful, but it

was almost impossible to distinguish non-ASD. We assume that

the OF is better at extracting motion information from the frames

of the ASD but fails to capture spatial features (e.g., dropped head

action). The proposed method has discriminatory capabilities for

all the diseases. The scores of 0.8512 for TP and 0.6420 for TN

indicate that the proposedmethod can simultaneously capture both

spatial and temporal features during patient walking. This allows

the network to effectively learn patterns and dependencies over

time, making it suitable for tasks that involve analyzing sequential

data such as videos.

An ablation study (Section 4.4) demonstrates that our

preprocessing method (detection stage) is important for video

diagnosis. The classification stage (3D CNN) is sensitive to unclear

backgrounds, including tables and fans. In the classification stage,

transfer learning is important for obtaining the final results.

According to some studies (Karpathy et al., 2014; Kay et al.,

2017), a large-scale dataset is required for training small-scale

models. The highest prediction accuracy (0.7553) was obtained

using a preprocessing method (detection stage) and transfer

learning. Without the preprocessing method (detection stage), the

final accuracy was approximately 0.5, indicating that the model

accurately estimated the input data. Interestingly, the performance

without the preprocessing method, even with transfer learning, was

lower than that with training from scratch (0.4597 to 0.5134). We

believe that transfer learning affects a complex background more

than it does a clean background. The key advantage of the proposed

method is its ability to effectively capture and analyze gait posture

changes from video data. By utilizing a two-stage approach that

integrates detection and classification analyses, we extracted gait

posture features from video frames. The detection stage processes

the detected body regions and extracts static features related to

spinal deformities, whereas the classification stage analyzes frame

information to capture the dynamic aspects of spinalmotion during

walking. The fusion of the two stages enhances the diagnostic

accuracy of our method, making it more capable of capturing

subtle movement changes in gait posture. Consequently, the

proposed method provides a more comprehensive and accurate

representation of gait patterns associated with ASD and other

spinal disorders.

Model visualization (Section 4.5) with Figure 8 shows that, in

the case of success, the model focuses more on the body parts

of the patient, whereas in the case of failure, it focuses more on

irrelevant parts (parts other than the patient). In terms of success,

themodel emphasized the positions of the head and feet.We believe

that, during walking, the head and foot swings have the largest

amount ofmovement; therefore, the classification stage learnsmore

movement information from these parts. In the event of failure, the

final prediction is incorrect, because the model does not focus well

on the patient’s body. One reason for this is that the classification

stage focuses more on the background (the poster in Figure 8B

and the curtain and wall in Figure 8D) and ignores the patient’s

features (body parts) when extracting the frames. By splitting the

entire dataset into three parts, we analyzed the patient’s results from

the start to the end of walking. The metrics used are presented in

Table 7. The accuracy for the entire dataset was 0.7553, compared

with 0.7559 for the split dataset (mean of three different parts). The

F1 score for the entire dataset was 0.7063, compared to 0.7079 for

the split dataset. The AUROC for the entire dataset was 0.7864,

compared with 0.7867, which was the mean AUROC for the split

dataset. After a long period of walking, the metrics of Part B were

higher than those of Parts A and C Therefore, we suspect that

the patient’s posture had changed since the beginning. The split

dataset confusion matrix (Figure 7) indicates that the model can

distinguish ASD equally (the difference in TP is approximately

0.01). However, the ability to distinguish non-ASD individuals

varies. B (0.6603 PN) and C (0.6477 PN) parts are higher than Part

A (0.6271 PN).

The proposed method for predicting the non-ASD category

has a low performance (Figure 6D) because the non-ASD category

involves other pathologies (DHS, LCS, HipOA). We believe that

the classifier did not achieve representative characteristics of these

pathologies. As this is the first study designed for ASD diagnosis,

we paid more attention to the ASD category, and the treatment of

non-ASD patients still has some shortcomings. In the future, we

believe that the following ways can be used to solve the problem of

insufficient categorization of non-ASD individuals:

• Based on the characteristics of different diseases, try

to use techniques that emphasize the key part of the

corresponding disease.

• Use additional algorithms to provide more information to

enhance the key part importance.
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Another shortcoming of this study is that the clinical

assessment is not usually performed within 1 s of the

patient walking. It could be solved by statistically comparing

the doctor’s observations and the performance of the

proposed methods at different lengths of time to achieve

fair diagnostic results of the doctor. However, we believe

that 1 s, comparable to the time it takes a patient to walk

to the doctor in a clinic examination room, would be

more practical.

6 Conclusion

In summary, we propose a two-stage classification method

for diagnosing ASD in patients using video format. We propose

a framework that combines the preprocessing method (detection

stage) and motion classification network (classification stage).

In the detection stage, we introduce a preprocessing method

to remove irrelevant information from videos and capture

keyframes. During the classification stage, we introduced a

ResNet style 3D CNN with video frame images to capture

the spatiotemporal features (gait posture) of the patients

while walking.

According to the experimental results, the proposed method

outperformed the existing classification methods and the diagnosis

of experienced doctors in terms of accuracy. Based on the ablation

study, the preprocessing method (detection stage) appeared to

be effective. Our transfer learning experiments suggest that the

learned features are generic and can be generalized to other video

classification tasks. Based on model visualization, our models

focused on diagnosing illnesses, and classification failed because

they did not focus on the patient.

In future studies, we plan to use a segmentation technique

to capture clean body edges from frames. Model visualization

shows that an irrelevant background is an influencing factor.

Moreover, our viewpoint only calculates information from the

character sides (left and right) and does not include information

from the front or back. In future, we wish to use all four

viewpoints (front, back, left, and right) for the character in

disease analysis.
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