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Various interferon (IFN)-stimulated genes (ISGs), expressed via Janus kinase–
signal transducer and activator of transcription (JAK-STAT) signaling pathway-
stimulated IFNs to increase antiviral effects or regulate immune response, 
perform different roles in virus-infected cells. In recent years, a novel ISG, SHFL, 
which is located in the genomic region 19p13.2 and comprises two isoforms, 
has been studied as a virus-inhibiting agent. Studies have shown that SHFL 
suppressive effects on human immunodeficiency virus-1 (HIV), Zika virus (ZIKV), 
dengue virus (DENV), hepatitis C virus (HCV), Japanese encephalitis virus (JEV), 
porcine epidemic diarrhea virus (PEDV), Human enterovirus A71 (EV-A71) and 
Kaposi’s sarcoma-associated herpes virus (KSHV). SHFL interacts with various viral 
and host molecules to inhibit viral life circle and activities, such as replication, 
translation, and ribosomal frameshifting, or regulates host pathways to degrade 
viral proteins. In this review, we summarized the functional features of SHFL to 
provide insights to underlying mechanisms of the antiviral effects of SHFL and 
explored its potential function.
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1 Introduction

In the world, human beings and other animals are affected by various viruses. Organisms 
exposed to virus could still maintain healthy condition through the self-defense system of the 
host, which monitors and provides antiviral ability against pathogens and further activates 
immune responses of host (Skariah et al., 2022). Interferons (IFNs) were first discovered in 1957 
by Isaacs and Lindenmann (1988). Then, three IFN families, including type I (α), II (β), and III 
(γ) IFNs, have been known to play an effective role in cellular self-defense, forming a robust 
first-line innate defense of host. Although IFNγ has no notable reaction to most immune cells, 
IFNα and IFNβ are pivotal for antiviral activities (Durbin et al., 2013). Regardless, intracellular 
signaling cascades can be induced by all three types of IFN via Janus kinase–signal transducer 
and activator of transcription (JAK-STAT) pathway, triggering the expression of IFN-stimulated 
genes (ISGs) that exert multiplex biological and pathological functions (Chen et al., 2017).

The shiftless antiviral inhibitor of ribosomal frameshifting (SHFL) gene was firstly predicted 
as an ISG in 2011 (Schoggins et al., 2011), which is also named as C19orf66, FLJ11286, IRAV, 
UPF0515, and RyDEN. Two isoforms were constructed by eight exons of the SHFL gene. The 
longer transcript (876 nt, NM_018381.4) encodes 291 amino acids (isoform-1), and the shorter 
one (768 nt, NM_001308277.2) encodes 255 amino acids (isoform-2) that lacks 164th–199th 
amino acid compared with isoform-1. The protein structure prediction of isoform-1 of SHFL 
revealed eight α-helices, seven β-strands, a zinc-ribbon domain (112th–135th amino acid), a 
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nuclear localization signal (NLS, 121st–137th amino acid), a nuclear 
export signal (261st–269th amino acid), and a coiled-coil motif at the 
C-terminus (261st–285th amino acid) (Figure 1; Suzuki et al., 2016). 
SHFL showed high expressing level in human liver and spleen tissues, 
whereas a lower expression is observed in the pancreas and heart.1 
Because the liver and spleen are important for human immune 
defense and metabolism, the high expression of SHFL in these tissues 
may be associated with those functions.

SHFL was then detected with higher expressing level in cells 
infected by many viruses, such as immunodeficiency virus (HIV)-1, 
Zika virus (ZIKV), dengue virus (DENV), HCV, Japanese encephalitis 
virus (JEV), porcine epidemic diarrhea virus (PEDV), and Kaposi’s 
sarcoma-associated herpesvirus (KSHV), and was reported as a 
broad-spectrum virus-inhibiting ISG (Rodriguez and Muller, 2022). 
Because a protein structure could determine its function, the zinc-
finger and coiled-coil domains of SHFL might be dominant to its 
diverse antiviral functions. In this review, we  summarized the 

1 www.ncbi.nlm.nih.gov

functional properties of SHFL and its underlying antiviral mechanisms 
against viruses with distinctively-characterized genomes to provide a 
theoretical basis for systematically understanding this gene.

2 The inhibiting function of SHFL to 
RNA viruses

Many viruses belong to RNA virus family, whose genomes are 
positive or negative RNA (Villa et al., 2020). However, SHFL seems to 
indulge in the viruses of the Flaviviridae family. SHFL plays important 
antiviral role in DENV, ZIKV, HCV, and JEV infection. Additionally, 
HIV, PEDV and EV-A71 also can be inhibited by SHFL (Rodriguez 
and Muller, 2022).

2.1 SHFL binds with complex of NS3 and 
NS4A to inhibit DENV

DENV is an enveloped, positive-sense, single-stranded RNA 
virus, covering four serotypes (DENV 1–4). DENV has promptly 

FIGURE 1

The location of SHFL on the human chromosome and structural characteristics. SHFL is situated on Human chromosome 19 the region p13.2, 
containing eight exons, and produces two isoforms caused by the alternative splicing. And the shorter one (768  bp) (NM_001308277.2), isoform-2, is 
different from isoform-1 (876  bp) (NM_018381.4) in the absence of 164–199 nucleotides on the seventh exon. Isoform-1 as the longer one, encoding 
291 amino acids, also possesses some distinctions compared with isoform-2 which only encodes 255 amino acids. The prediction of the protein 
structure of isoform-1 of SHFL exposits that the isoform-1 consists of eight-α-helices and seven β-strands, and possesses the nuclear export signal 
(261–269 amino acids), nuclear localization signal (121–137 amino acids), a zinc-ribbon domain (112–135 amino acids), and a coiled-coil motif in 
C-terminus (261–285 amino acids). And the lack region of isoform-2 constitutes part of the fifth β-strand and the entire sixth β-strand.
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disseminated across many countries and regions worldwide, arousing 
dengue fever and dengue hemorrhagic fever in humans (Guzman and 
Harris, 2015). The RNA encodes three structural proteins including 
capsid (C), envelope (E) and membrane (M) and seven non-structural 
proteins, including NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 
(Kok et al., 2023).

SHFL could be up-regulated by DENV infection, and it interacts 
with complex of NS3 and NS4A to inhibit DENV replication. 
Moreover, DENV RNA also could be band by SHFL during translation 
(Suzuki et al., 2016; Balinsky et al., 2017). Additionally, some host 
molecules can also be associated with SHFL, such as poly(A) binding 
protein cytoplasmic 1 (PABPC1), which can stimulate the DENV 
replication, along with the P body and MOV10, which are both related 
to the stress response.

These studies showed the main process and molecules that can 
be affected by SHFL and the negative effect on DENV. Interestingly, 
the mutation of NLS domain in the SHFL gene lead to a decreasing 
binding level with DENV (Suzuki et al., 2016). The arginine (R) and 
lysine (K) are most abundant amino acid in NLS domain (Boulikas, 
1994). Thus, mutation of R and K might change the SHFL anti-DENV 
activity by destroyed structure. Since the NLS domain is important for 
SHFL functioning, we speculated that the zinc-finger domain probably 
also plays a crucial role in restricting DENV due to the 15 amino acids 
shared between the two domains.

2.2 Against ZIKV through down-regulating 
NS3 of ZIKV

ZIKV, a member of the Flaviviridae family, is a positive-sense, 
single-stranded RNA virus. Similar to DENV, its genomic RNA 
encodes three structural proteins and seven nonstructural proteins 
(Sirohi and Kuhn, 2017). Notably, the proteins NS2, NS3, and NS5 
consists of RNA-dependent RNA polymerase (RdRp) and are 
necessary for ZIKV replication (White et al., 2016; Wu et al., 2020).

SHFL can restrain the expression of ZIKV RNA and the viral 
particles, and further prevent ZIKV replication. When interacting 
with NS2B and NS3 proteins of ZIKV, SHFL downregulates NS3 
through the lysosome-dependent pathway. Although SHFL can also 
suppress the ZIKV envelope protein, the mechanism is still unknown 
(Wu et  al., 2020). Interestingly, knocking out of SHFL in mice 
increased the ZIKV RNA expressing level, demonstrating that the 
mouse ortholog of SHFL (Shfl) restricts ZIKV in vivo (Hanners 
et al., 2021).

SHFL still inhibited viral growth via its interaction ability, but it 
also affected NS3 protein via the lysosome-dependent pathway. This 
indicates that SHFL exert anti- ZIKV activity together with the 
lysosome-dependent signal pathway. In the Hanners’ study (Hanners 
et al., 2021), the results of Shfl against ZIKV in mouse model suggest 
a possibility of the similarity in the pivotal structure of SHFL and its 
ortholog. Thus, SHFL might also play antiviral roles in other species 
due to its conservative structure.

2.3 Damage of HCV membrane web by 
SHFL

HCV is a positive-sense, single-stranded RNA flavivirus, and its 
genomic compositions are similar to ZIKV and DENV. The NS proteins 

of HCV regulate viral replication and other activities (Darius and 
François, 2013). Remarkably, HCV NS5A can induce phosphatidylinositol-
4-phosphate (PI[4]P) production, which can promote the formation of 
the membranous webs and provide a platform for HCV replication (Bishé 
et al., 2012; Blanchard and Roingeard, 2018).

SHFL co-locates in the cellular compartment with HCV replicase 
complex, and it could inhibit HCV replication by decreasing the NS5A 
level, which is a key factor in HCV replication. Additionally, SHFL 
inhibits HCV by reconstructing membranous web. Mutations in zinc-
finger domain of SHFL reduce the anti-HCV activity, and it means 
that the zinc-finger domain is a pivotal structure for SHFL in 
anti-HCV role in the infected cells (Kinast et al., 2020). This indicated 
that zinc-finger domain might play important role in SHFL location. 
Recently, Shfl was also reported to own the anti-HCV ability in mouse 
model (Zhang et  al., 2023). These studies suggest SHFL could 
effectively inhibit viruses in flavivirus family.

2.4 Restricting the Gag/Gag-Pol ratio of 
HIV

HIV is a member of the Lentivirus genus of the Retroviridae 
family, and possesses two uniform copies of single-stranded 
RNA. HIV (including HIV-1 and HIV-2) contains three representative 
structural genes: gag, pol, and env. The formation of the Gag and Pol 
proteins requires the cleavage of a large 160 kDa precursor molecule 
by a protease (Fanales-Belasio et al., 2010). HIV-1 Gag carries a−1PRF 
signal near its open reading frame (ORF) terminal and impels the 
occurrence of −1PRF, resulting in the formation of Gag–Pol complex. 
Precise regulation of the ratio of Gag to Gag–Pol is necessary for HIV 
assembly, genome packaging, and maturation (Wang et al., 2019).

Except for directly restricting the ratio of Gag to Gag–Pol, SHFL can 
interact with the ribosomal proteins, such as uL5, eS31, and eRF3, and the 
−1PRF signal-carrying RNA. This shows that SHFL, which also has a 
limiting effect on HIV-1 replication, can inhibit the −1PRF of HIV-1. The 
region for antiviral activity including the 164th–199th amino acid of 
SHFL, is required for HIV-1 inhibition and the binding activity of SHFL 
(Wang et al., 2019; Napthine et al., 2021). These results suggest that the 
zinc-finger domain of SHFL might produce a key effect in HIV infection 
by binding −1PRF and regulating the ratio of Gag/ Gag–Pol.

2.5 Inhibiting −1PRF transcription of JEV

JEV, a positive-sense, single-stranded RNA virus, is a zoonotic 
mosquito-borne flavivirus that can cause a series of infectious diseases of 
the central nervous system (Yun and Lee, 2013). The whole genome of 
JEV is 11 kb, including three structural proteins C, M, and E and 
nonstructural proteins (from NS1 to NS5). The JEV polyprotein can 
be cleaved by viral and host proteases (Sharma et al., 2021). The NS3 
protein has a peculiar structure and multiple enzyme activities, which is 
also regarded as the constituent of the JEV RNA replicase and participates 
in the replication of JEV (Yu et al., 2021). Similar to Gag protein of HIV, 
production of NS1 protein depends on −1PRF (Chen et al., 1997).

SHFL can inhibit NS3 protein via the lysosome-dependent pathway 
and−1PRF by downregulating the expression of the NS1 protein and 
further decrease the JEV titer. However, the mRNA expressing level of 
NS3 or NS1 is not affected. Moreover, the zinc-finger domain of SHFL is 
still important in JEV inhibition (Yu et al., 2021). Together with Wang’s 
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study (Wang et al., 2019), it seems that inhibit −1PRF progress is one of 
the main anti-viral mechanisms of SHFL.

2.6 Inducing degradation of PEDV N 
protein

PEDV is a single-stranded, positive-sense RNA virus, belonging 
to the genus Alphacoronavirus, family Coronaviridae, and the cause 
of porcine epidemic diarrhea (Sun et  al., 2012). PEDV genome 
encodes four structural proteins (spike protein [S], envelope protein 
[E], membrane protein [M], and nucleocapsid protein [N]), 16 
nonstructural proteins (nsp1–nsp16), and one accessory protein 
(ORF3) (Kocherhans et al., 2001). The N proteins play crucial roles in 
PEDV replication and transcription (Lin et al., 2022).

PEDV infection induces the early growth response gene 1 (EGR1) 
expression in the host cells, which can up-regulate SHFL expression at 
both protein and mRNA levels by directly binding to the SHFL promoter. 
The highly expressed SHFL can directly interact with the N protein and 
stimulate its degradation depending on the ubiquitin-proteasome and 
autolysosome pathways, and further inhibit PEDV replication. The anti- 
PEDV activity of SHFL are possibly related to the E3 ubiquitin ligase 
membrane-associated RING-CH8 (Wang et al., 2021).

2.7 Downregulating 3D protein of EV-A71 
by SHFL

Human enterovirus A71 (EV-A71) belongs to Picornavirus family, 
which is a non-enveloped and single-strand RNA virus. The RNA 
encodes a polyprotein with three regions (P1, P2 and P3), which 
contains four structural proteins (VP1–VP4) and seven nonstructural 
proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D). The 3D protein of EV-A71 
is an RNA-dependent polymerase determined the viral genome 
synthesis (Yuan et al., 2018). EV-A71 infection could lead to the hand–
foot and mouth disease (HFMD), encephalitis, and aseptic meningitis 
worldwide (Huang and Shih, 2014; Kinobe et al., 2022).

Recently, EV-A71 is reported to facilitate the expression of SHFL (Tan 
et al., 2023). SHFL interacts with and downregulates viral 3D protein by 
the K48 ubiquitin–protease pathway. Then, EV-A71 propagation was 
inhibited. Tan et al. (2023) also found that the zinc-finger domain and 36 
amino acids (164–199) were crucial for SHFL to bind with 3D protein.

Above all, SHFL showed wide-spectrum against RNA virus. It seems 
that some common anti-viral mechanisms are identified when SHFL 
inhibit RNA viruses, such as binding to RdRp protein of virus, suppressing 
−1PRF. In addition, SHFL might be induced not only by IFN but also by 
other factors, i.e., EGR1 (Woodson and Kehn-Hall, 2022).

3 The inhibition function of SHFL to 
DNA virus

3.1 Inhibiting expression of crucial genes in 
KSHV

KSHV, also known as human herpesvirus-8, is a Rhadinovirus of 
the gamma herpesvirus subfamily. During infection, the genome of 
this linearized double-stranded DNA virus circularizes to form an 
episome and remains present in the nucleus (Veettil et al., 2014). The 

life cycle of KSHV is divided into the two phases: the latency and the 
lytic phase. These two phases ensure KSHV could continuously 
survive in the host and infect to new individual (Broussard and 
Damania, 2020). The shutoff and exonuclease (SOX) protein of KSHV 
can degrade mRNAs in the host cells through targeting the special 
motif off most host mRNAs (Rodriguez et al., 2019).

SHFL contains a long stem-loop structure in the 3’UTR semblable 
with SOX resistance element, which could protect host mRNAs from 
destruction. In addition, SHFL can inhibit the KSHV replication and 
mobilize immune factors’ activities of host (Rodriguez et al., 2019, 
2022). However, the anti-KSHV mechanisms of SHFL is not clear. 
We prefer to that SHFL inhibit KSHV through other pathways differed 
from that of anti-RNA virus. Although SHFL shows the activity to 
inhibit the viral titer of herpes simplex virus and adenovirus, but the 
anti-viral mechanisms are not studied (Suzuki et al., 2016).

3.2 Genetic association between the SHFL 
gene and hepatitis B virus (HBV)

HBV is an enveloped DNA virus belonging to the Hepadnaviridae 
family and causes advanced liver disease and hepatocellular 
carcinoma (Li et al., 2022). In our previous studies, the association 
between HBV infection in the Yunnan population and the genetic 
polymorphisms in the interleukin 28B, IFN lambda 4, myxovirus 
resistance (Mx)A, and MxB genes has been determined (Zhang 
et al., 2014; Zheng et al., 2022). Although there is no direct evidence 
that SHFL inhibits HBV proliferation, the genetic polymorphisms of 
the SHFL gene have been related to the biochemical indices of HBV 
patients in Yunnan. Inversely, the single nucleotide polymorphisms 
with different genotypes of SHFL might affect its expression by 
changing the association of transcriptional factors (Liu et al., 2023). 
This result displayed the relationship between HBV infection/ 
disease progression of HBV patients and the genetic characteristics 
of SHFL. However, whether SHFL could inhibit HBV replication 
need further study.

4 Future perspectives of SHFL

SHFL has garnered the attention of researchers owing to its 
particular structure and diverse virus-inhibiting function. In this 
review, we aimed to provide a comprehensive understanding of the 
antiviral functions of SHFL and the virus-associated specific molecules 
involved in inhibition processes. However, the following questions 
remain unanswered and need further study:

 (i) Because most anti-viral studies of SHFL focus on the zinc-
finger domain and 164th–199th amino acid, the function of 
other domains of SHFL are needed further investigate. The 
coiled-coil domain showed important roles in anti-viral activity 
of some ISGs, such as TRIM5α (Song, 2009). Thus, we speculate 
that the coiled-coil domain of SHFL might play important roles.

 (ii) Both human SHFL and mouse Shfl gene showed wide-
spectrum antiviral activities. Thus, this gene might be against 
zoonosis viruses.

 (iii) Until now, although SHFL could inhibit both DNA viruses and 
RNA viruses, the species of DNA virus are rare. In addition, the 
anti-viral mechanisms are distinct among different viruses 
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(Table 1), but it is still unclear in some virus infection. Thus, 
more studies should be further performed in various viruses.

In conclusion, we summarized the functional characteristics of 
SHFL. SHFL showed widely anti-viral spectrum in both DNA and 
RNA viruses. The studies suggest that the functional structure of 
SHFL is the zinc-finger domain, especial the 164th–199th amino 
acids. The anti-viral mechanisms of SHFL focus on inhibiting -1PRF, 
degrading RdRp of viruses, decreasing viral RNA expressing level. It 
is worth much to study the SHFL in future.
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