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Macropinocytosis as a potential
mechanism driving neurotropism
of Cryptococcus neoformans

Dylan M. Lanser †, Amelia B. Bennett †, Kiem Vu † and Angie Gelli*

Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
Cryptococcus neoformans can invade the central nervous system by crossing

the blood-brain barrier via a transcellular mechanism that relies on multiple host

factors. In this narrative, we review the evidence that a direct interplay between

C. neoformans and brain endothelial cells forms the basis for invasion and

transmigration across the brain endothelium. Adherence and internalization of

C. neoformans is dependent on transmembrane proteins, including a hyaluronic

acid receptor and an ephrin receptor tyrosine kinase. We consider the role of

EphA2 in facilitating the invasion of the central nervous system by C. neoformans

and highlight experimental evidence supporting macropinocytosis as a potential

mechanism of internalization and transcytosis. How macropinocytosis might be

conclusively demonstrated in the context of C. neoformans is also discussed.
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The pathophysiology of Cryptococcal
neuro-infection

Diseases caused by fungal pathogens affect over a billion people and kill approximately

1.7 million annually (Bongomin et al., 2017). The severity of fungal disease varies from

asymptomatic in healthy hosts to disseminated, life-threatening infections in

immunosuppressed individuals. When compared to other infections of the central

nervous system (CNS), infections caused by fungi have the highest morbidity and

mortality. The primary reasons are that it is nearly impossible to completely eradicate

the fungus from the brain and these infections tend to occur in individuals that are highly

immunosuppressed, including HIV positive patients, organ transplant recipients and

patients undergoing cancer treatments (Williamson et al., 2017).

Among fungal pathogens that can breach the CNS, Cryptococcus neoformans (Cn) is

the most prevalent cause of adult brain fungal infection (Bongomin et al., 2017;

Rajasingham et al., 2017; Rajasingham et al., 2022). Cryptococcal meningitis (CM) is the

typical clinical presentation and cause of death during cryptococcosis (Mitchell and Perfect,

1995; Gottfredsson and Perfect, 2000). Without rapid intervention, CM is uniformly fatal

regardless of the immune status of the host. Once inhaled, spores/desiccated yeast of Cn
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initially proliferate in lung tissue and eventually disseminate to the

blood and then the CNS (Ellis and Pfeiffer, 1990; Velagapudi et al.,

2009; Walsh et al., 2019), reviewed in (Chen et al., 2022). While

dissemination can occur in any tissue, the CNS is the major site of

invasion and growth of cryptococci. After breaching the blood-

brain barrier (BBB), Cn forms self-contained cystic lesions referred

to as cryptococcomas, where fungal cells can proliferate and damage

the brain (Kwon-Chung et al., 2000; Park et al., 2009). Brain

pathology consists of early cerebral vessel damage followed by

fungal proliferation, first in the perivascular spaces and then in

the deeper layer of the brain parenchyma with secondary seeding of

the leptomeninges. Neurologic sequelae including visual loss,

cranial palsies, neurologic deficit and mental impairment occurs

in 40-50% of treated patients and 20-25% experience a relapsing

course (Traino et al., 2019). Treatment guidelines for HIV-

associated CM recommend amphotericin B with flucytosine for

greater than 2 weeks as induction therapy followed by a triazole for

a minimum of 10 weeks (Perfect et al., 2010). Fifty percent of AIDS

patients treated for CM will experience a relapse of the disease

unless they receive maintenance therapy. Unfortunately, in Africa

and Asia, where disease burden is the highest, flucytosine treatment

is prohibitively expensive (Loyse et al., 2013a; Loyse et al., 2013b).

Despite the recent increase in antiretroviral therapy (ART) reducing

the immunocompromised population in resource-deprived regions,

the incidence of CM remains high (Pyrgos et al., 2013; Muzazu

et al., 2022).
Neuroinvasion of Cn and the role of
the blood-brain barrier

Recent studies have focused on the underlying molecular

mechanisms facilitating the translocation of fungi from blood-to-

brain along with the structural and molecular changes in the

neurovascular unit (NVU) and how that informs neurological

changes in the brain. Diffusion of bloodborne molecules across

the BBB is highly restricted due to specialized endothelial cells that

line the lumen of the brain microvasculature and the tight junction

proteins in between endothelial cells that restrict paracellular flow

(Keaney and Campbell, 2015). The BBB is part of the larger NVU,

including pericytes and perivascular astrocytes that further support

BBB function (Zheng, 2001; Weiss et al., 2009). Real-time imaging

of mice after inoculation with Cn revealed that translocation of Cn

from blood-to-brain begins with capillary sequestration, followed

by a direct association between fungal cells and the endothelial

surface of the capillary (Shi et al., 2010). This internalization and

migration of Cn across the BBB was further confirmed in vivowith a

flow cytometry approach that quantified Cn migration into the

brain (Chen et al., 2021). This entire process can occur without

involvement of macrophages or the breakdown of junctional

proteins, suggesting that Cn can interact directly with proteins on

the surface of brain endothelial cells (Kozel and Gotschlich, 1982;

Ibrahim et al., 1995; Chang et al., 2004; Vu et al., 2009; Huang et al.,

2011). However, other studies have clearly demonstrated the

presence of the Trojan horse pathway, where Cn resides within
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host phagocytes on their way to the CNS during the course of

infections (Charlier et al., 2009; Sorrell et al., 2016; Santiago-Tirado

et al., 2017; Gaylord et al., 2020). The relative contribution to CNS

invasion between transcellular crossing, where Cn is first

internalized and then eventually exocytosed on the abluminal

surface, and the Trojan horse pathway still remains to be

resolved (Figure 1).
Mechanisms facilitating Cn across the
blood-brain barrier

Although observations of fungal cells in the CNS have been

reported in real-time and at autopsy, the molecular interactions at

the brain endothelium or the pathways that mediate the movement

of fungal cells into the CNS do not yet form a coherent picture. Early

studies using an in vitro BBB model system have shown that when

Cn contacts the brain endothelium, the endothelial cells form

membrane ruffles and cup-like F-actin structures (Chen et al.,

2003; Chang et al., 2004). The surface changes are indicative of

membrane and cytoskeleton re-modeling – alterations required for

Cn to breach the BBB (Chen et al., 2003). Cytoskeletal

rearrangements may eventually lead to altered permeability of the

BBB via tight junction disruption, and Cn internalization itself may

cause an upregulation in endocytic vesicle formation. Several

studies have confirmed that the translocation of Cn from blood to

the brain begins with brain microcapillary sequestration and

involves a coordination of several virulence factors including

phospholipase B1 (PLB1) (Maruvada et al . , 2012), a

metalloprotease (Mpr1) (Vu et al., 2014), urease (Olszewski et al.,

2004), laccase (Qiu et al., 2012), a serine protease (Xu et al., 2014)

and the host receptor, CD44 (Jong et al., 2008b; Jong et al., 2012),
CD44

CD44 is critical for Cn adherence and invasion through an

actin-dependent process of brain endothelial cells (Chang et al.,

2006; Jong et al., 2007b; Jong et al., 2008a; Jong et al., 2008b; Jong

et al., 2012) (Figure 1). CD44 functions as a receptor and anchor for

hyaluronic acid (HA), a macromolecule that serves many roles,

including as a component of the extracellular matrix of blood

vessels and the capsule of Cn (Chen et al., 2021). Cn adheres to

CD44 via hyaluronic acid on lipid rafts immediately prior to

internalization (Huang et al., 2011). Perhaps analogously, lipid

rafts form on brain endothelial cells prior to endocytosis of

neuroinvasive Escherichia coli (Loh et al., 2017). The variant of

CD44 expressed on brain endothelial cells appears to be the

standard variant (Jong et al., 2008b), and therefore, Cn

neurotropism cannot be a consequence of selective binding to a

particular CD44 isoform expressed in brain microvasculature.

CD44 is also not upregulated upon Cn exposure (Jong et al.,

2008b). Nevertheless, acquisition of inositol, an abundant sugar in

the brain, by Cn increases the expression of hyaluronic acid

synthase (CPS1) and leads to greater production of HA which
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would promote adherence and stimulate internalization (Liu et al.,

2013). Moreover, without hyaluronic acid synthase (CPS1), Cn

neither produces a capsule nor invades the CNS (Chang et al.,

2006; Jong et al., 2007).
The Ephrin receptor tyrosine
kinase, EphA2

Although hyaluronic-acid-CD44 interaction plays an early role

in Cn invasion, there are other factors and/or processes necessary

for Cn endocytosis (Maruvada et al., 2012; Vu et al., 2014; Na

Pombejra et al., 2017). Transcriptomic analysis of brain endothelial

cells exposed to Cn revealed increased expression of ephrinA1

(EFNA1), the ligand for the receptor tyrosine kinase EphA2

(Aaron et al., 2018). EphA2 belongs to the Eph A class of the

Ephrin family of receptor tyrosine kinases (RTK) and along with

their ligands (Ephrins) they make up the largest RTK subfamily

(Himanen and Nikolov, 2003). Upregulation of ephrinA1

expression in endothelial cells has also been reported in response

to inflammation (Funk et al., 2012), serum depletion (Wiedemann

et al., 2017) ischemia (Chen et al., 2018a) and increased cell density

(Wiedemann et al., 2017). The EphrinA1 ligand is membrane-
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tethered by a GPI linkage that subsequently binds to and activates

the Eph A class of receptors (i.e., EphA2). Once activated, EphA2

receptors oligomerize and become autophosphorylated at

juxtamembrane tyrosine residues.

In the case of Cn, silencing the EphA2 transcript in brain

endothelial cells or inhibiting EphA2 activity with an antibody or an

inhibitor (dasatinib) prevents Cn from crossing the brain

endothelium in an in vitro model of the BBB, whereas treatment

with recombinant ephrin A1 or an agonist enhances Cn crossing

(Aaron et al., 2018). The inability of the CPS1 deletion strain to

induce the phosphorylation of EphA2 or to cross the BBB upon

stimulating EphA2 with ephrinA1 supports the involvement of

CD44 in the internalization Cn and suggests a connection between

these host-expressed transmembrane proteins in the context of Cn

invasion (Aaron et al., 2018). Interestingly, Kaposi’s sarcoma-

associated herpesvirus (Hahn et al., 2012), Chlamydia trachomatis

(Subbarayal et al., 2015), Plasmodium falciparum (Kaushansky

et al., 2015; Darling et al., 2020), Helicobacter pylori (Leite et al.,

2020), Epstein-Barr virus (Chen et al., 2018b) and uropathogens

(Prakash et al., 2022) also enter host cells via EphA2.

Why or how Cn engages EphA2 is still under investigation,

however the role of EphA2 in cytoskeleton remodeling (Pitulescu

and Adams, 2010), in triggering signaling cascades of
FIGURE 1

Adherence and internalization of C. neoformans depends on the (1) hyaluronic acid receptor (CD44) and an ephrin receptor tyrosine kinase (EphA2)
- triggering membrane and cytoskeleton remodeling (2). EphA2-mediated signaling promotes macropinocytic transcytosis and opens a paracellular
path via the re-modeling of tight junctions (3), thus facilitating invasion of the central nervous system by C. neoformans (4). Created
with Biorender.com.
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macropinocytosis (Hahn et al., 2012; Bandyopadhyay et al., 2014),

and its influence on the integrity of the brain endothelium (Tanaka

et al., 2005; Fang et al., 2008; Zhou et al., 2011) would suggest that

Cn may be exploiting EphA2 for invasion of the CNS (Figure 1).

Consistent with this notion, host factors (PI3K, MAPK, Src kinases,

Rac1 and Rho- GTPases) activated by Cn to induce transcytosis

across the BBB are known to be triggered by EphA2 for endocytosis

(Jong et al., 2008a; Kim et al., 2012; Maruvada et al., 2012).
Macropinocytosis

Macropinocytosis is a form of endocytosis defined by large

endocytic vesicles and non-specificity (Salloum et al., 2023).

Macropinosomes form from membrane protrusions supported by

polymerizing actin; these protrusions extend then collapse inward,

entrapping an extracellular volume within macropinosomes of 0.5-

10 µm in diameter (Lin et al., 2020). Macropinocytosis is “macro” in

the sense that the macropinosomes can be easily observed with

traditional light microscopy, and exploited for cellular uptake by

bacteria, larger pathogens, and protein aggregates, in contrast to

other forms of pinocytosis (Mercer and Helenius, 2009; Bloomfield

and Kay, 2016; Yerbury, 2016). Although the triggers leading to

macropinocytosis are extremely diverse, there is some commonality

in their dependence on Rac1 (Grimmer et al., 2002; Salloum et al.,

2023). Macropinocytosis is common throughout Eukarya (Lin et al.,

2020), including many human cell types. This form of endocytosis is

particularly pronounced and well-studied in immune cells, with an

extreme example being macrophages, which constantly sample the

extracellular environment via this process (Lin et al., 2020). In

endothelial cells, macropinocytosis occurs at a low background level

but can be elevated in the presence of external stimuli, such as

growth factors (Lin et al., 2020). By this process, endothelial cells

take up materials from blood, including extracellular vesicles

(Ajikumar et al., 2019) and platelets (Faille et al., 2012).
Evidence for macropinocytosis of Cn
by brain endothelial cells

Huang et al., (Huang et al., 2011) concluded that “C.

neoformans may utilize the endocytic signaling pathway in [brain

endothelial cells] to traverse the blood-brain barrier,” proposing

that macropinocytosis was one of the potential types of endocytosis

utilized by Cn but did not come to a final conclusion. Brain

endothelia has been shown to engage macropinocytosis when

exposed to viruses, bacteria, platelets and microvesicles (Liu et al.,

2002; Faille et al., 2012; Loh et al., 2017; Ajikumar et al., 2019;

Espinal et al., 2022). Evidence for Cn transcellular invasion of

human brain endothelial cells beginning with internalization by

macropinocytosis includes the dramatic plasma membrane

rearrangement observed upon contact with Cn, including the

formation of membrane projections that engulf fungal cells (Vu

et al., 2013; Aaron et al., 2018). These rearrangements result from

Cn inducing actin polymerization (profilin upregulation, cofilin
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downregulation) upon contact (Chen et al., 2003; Maruvada et al.,

2012). Although this observation alone could also point to

phagocytosis, the lack of identification of a specific receptor after

decades of research is consistent with a nonspecific process. In other

words, macropinocytosis represents a null hypothesis for Cn entry –

if increasingly exhaustive screens fail to identify a ligand indicative

of phagocytosis, the conclusion ought to default to Cn entry into

brain endothelial cells relying on macropinocytosis.

There are other positive indications of macropinocytosis for Cn

entry. Rac 1, commonly implicated in macropinocytosis of

extremely diverse extracellular entities, is targeted by Cryptococcus

(Maruvada et al., 2012). Other pathogens such as E. coli K1 (Loh

et al., 2017) have also been shown to invade human brain

endothelial cells in a Rac1-dependent macropinocytic pathway.

Engulfment of Cn by brain endothelial cells is not a dead end for

the pathogen as Cn can survive intracellularly in vivo (Davis et al.,

2016; Chen et al., 2021). Heat killed Cn can adhere to the brain

endothelium, but must be viable in order to be internalized and

cross, implying that the process leading to adherence and

internalization are separate, unlike what would be expected from

an entirely receptor-mediated process (Shi et al., 2010; Chen et al.,

2021). Disruption of actin filaments by cytochalasin D prevents Cn

invasion of brain endothelial cells, demonstrating that entry is

facilitated in an actin-dependent manner (Jong et al., 2008b).
How macropinocytosis might be
conclusively demonstrated for Cn in
brain endothelial cells

Because macropinocytosis combines several features associated

with both phagocytosis and pinocytosis, macropinocytosis can be

difficult to establish experimentally. Endocytic vesicle size and

membrane ruffling distinguish macropinocytosis from other forms

of pinocytosis (Mercer and Helenius, 2009; Lin et al., 2020). High-

resolution microscopy, preferably with actin staining to visualize the

support structures beneath potential macropinosomes, is necessary to

make this determination. However, protruding actin-supported

membrane ruffles can superficially resemble phagocytosis of

particles, but macropinocytosis and phagocytosis differ in that

macropinocytosis also entraps a large extracellular fluid volume

(Mercer and Helenius, 2009; Bloomfield and Kay, 2016). This can

also be identified by microscopy, with staining for extracellular

solutes or the introduction of large molecular weight tracer

molecules (Espinal et al., 2022), or via flowcytometry (Loh et al.,

2017). Fluorescently labelled dextran uptake can even be used

quantitatively to determine the rate of endocytosis (Wang et al.,

2014). Because both macropinocytosis, with its characteristic non-

specific internalization of extracellular solutes, and BBB disruption

would be expected to lead to increased blood solutes in the brain

parenchyma, the presence or absence of these solutes cannot alone be

used to differentiate between the pathways. Therefore, the presence

and subcellular localization of tight-junction proteins must also be

determined. If tight junctions are intact in vivo as is suggested in vitro
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(Chen et al., 2003), then macropinocytosis is indicated over

paracellular leakage.

Macropinocytosis is also dependent on a number of processes

that can be chemically inhibited; inhibition of actin polymerization,

Rac1/Cdc42; and Na/H+ exchange should all also lead to a decrease

of internalization (Mercer and Helenius, 2009). The most critical set

of experiments for determining involvement of macropinocytosis in

Cn CNS invasion is chemical inhibition of BBB crossing by

amiloride (or one of its derivatives), accompanied by a lack of

inhibition when alternate pathways are specifically blocked.

Amiloride and its derivatives block macropinocytosis by

preventing the dissipation of low submembranous pH, which

inhibits the activity of GTPase activity crucial for actin

polymerization (Koivusalo et al., 2010). Cholesterol is also critical

for Rac1 membrane localization leading to macropinocytosis in at

least some cells (Grimmer et al., 2002). By contrast, specific

inhibitors of other forms of endocytosis, such as clathrin- and

caveolin-dependent processes, should have little effect on Cn

internalization (Medrano-Gonzalez et al., 2021). However, the

outcome of each of these tests may not be completely binary, as

macropinocytosis is by definition non-specific, and many pathogens

are known to invade host cells through other endocytic pathways in

parallel with macropinocytosis (Bauherr et al., 2020).
Conclusions and future directions

As a pathogen, Cn is unusual in that its neurotropism drives its

translocation from blood to brain despite the restricted passage

imposed by the BBB; however, the reasons underlying the

neurotropism are speculative in the absence of a BBB specific

receptor/molecules. While EphA2 (and CD44) is not specific to brain

endothelial cells, by engaging EphA2 Cn may be hedging its bets to

avoid destruction in the bloodstream and instead exploit an EphA2-

mediated binary pathway across the BBB into the CNS, where Cn can

continue to thrive. This binary path involves both an EphA2-mediated

macropinocytic transcellular pathway and a paracellular path via the re-

modeling of the tight junctions by EphA2 (Figure 1). Additional work

to investigate the molecular and cellular interplay between Cn, EphA2,

its downstream signaling components and the NVU in mediating the

translocation of Cn from blood-to-brain will be necessary to test this

idea. The commonality among diverse pathogens to co-opt EphA2 in

order to access the host is an emerging area of study that may yield a

therapeutic intervention with broad spectrum activity.
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