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Echinococcosis is a common human and animal parasitic disease that seriously

endangers human health and animal husbandry. Although studies have been

conducted on vaccines for echinococcosis, to date, there is no human vaccine

available for use. One of the main reasons for this is the lack of in-depth research

on basic immunization with vaccines. Our previous results confirmed that

recombinant antigen P29 (rEg.P29) induced more than 90% immune

protection in both mice and sheep, but data on its induction of sheep-

associated cellular immune responses are lacking. In this study, we

investigated the changes in CD4+ T cells, CD8+ T cells, and antigen-specific

cytokines IFN-g, IL-4, and IL-17A after rEg.P29 immunization using enzyme-

linked immunospot assay (ELISPOT), enzyme-linked immunosorbent assay

(ELISA), and flow cytometry to investigate the cellular immune response

induced by rEg.P29 in sheep. It was found that rEg.P29 immunization did not

affect the percentage of CD4+ and CD8+ T cells in peripheral bloodmononuclear

cells (PBMCs), and was able to stimulate the proliferation of CD4+ and CD8+ T

cells after immunization in vitro. Importantly, the results of both ELISPOT and

ELISA showed that rEg.P29 can induce the production of the specific cytokines

IFN-g and IL-17A, and flow cytometry verified that rEg.P29 can induce the

expression of IFN-g in CD4+ and CD8+ T cells and IL-17A in CD4+ T cells;

however, no IL-4 expression was observed. These results indicate that rEg.P29

can induce Th1, Th17, and Tc1 cellular immune responses in sheep against

echinococcosis infection, providing theoretical support for the translation of

rEg.P29 vaccine applications.

KEYWORDS

Echinococcus granulosus, recombinant antigen P29, Th1, Tc1, Th17, cellular
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1 Introduction

Echinococcosis is a common zoonotic parasitic disease, caused

by the larvae of Echinococcus parasites in animals, including

humans, which seriously endangers human health and has a

substantial negative impact on the development of animal

husbandry, contributing to huge expenses and economic losses in

medicine and animal husbandry (1–4). Addressing echinococcosis

requires two main components: prevention and clinical treatment

(1). The clinical treatment phase is mainly for patients with

encapsulated worm disease, and it includes both surgical and

pharmacological forms of treatment. Patients are often in the

middle and late stages of surgical treatment and have already

suffered serious physical and psychological damage, which may

also cause secondary infections and a high recurrence rate after

surgery. Drug treatment has been effective, but there are problems

such as the tendency to develop drug resistance and side effects, and

encapsulated worm disease remains prevalent worldwide (5).

Precisely because of the problems in clinical treatment, there is a

great expectation for prevention to play a more effective role,

therefore, vaccine research has received attention (6–8).

From traditional and genetic engineering vaccine development

to nucleic acid, peptide, and multivalent vaccines, researchers have

conducted substantial work in echinococcosis vaccine development

and obtained better protective antigens such as Eg95 (9–12). The

P29 protein, a 29 kDa antigen from Echinococcus granulosus, was

first reported in 2000 by Gonza´lez et al (13). Our group conducted

the first independent vaccine study of the P29 protein in China and

successfully cloned and constructed the recombinant antigen P29

(rEg.P29). Immune protection of up to 96.6% was obtained in a

mouse model of secondary infection (14). We also performed egg

infection experiments in a sheep model, a suitable host for E.

granulosus, and rEg.P29 was able to induce 94.8% immune

protection (15). These findings demonstrate that the P29 protein

is an excellent candidate molecule for echinococcosis vaccine.

Although a series of studies have been conducted on

echinococcosis vaccines, to date, no vaccine for human encysted

worm disease has been officially used. The main reason for this is

that there is insufficient research on its basic immunity. Moreover,

numerous studies on the immunoprotective mechanisms of

echinococcosis vaccines have used mice as animal models, while

relatively few studies have been conducted using sheep as one of the

most suitable disease hosts, which limits vaccine translation. Our

previous study demonstrated that rEg.P29 induced high immune

protection in sheep (15); however, little research on its mechanism

of induced immune protection exists, especially research data on the

induced cellular immune response in sheep.

In this study, based on our previous work, sheep were

immunized with rEg.P29, and the rEg.P29-induced cellular

immune response was studied using samples of peripheral blood

and spleen and mesenteric lymph nodes. The aim of this study is to

investigate the cellular immune response induced by rEg.P29 in

sheep, to provide a theoretical basis for the development of vaccine

applications, and to promote the use of the rEg.P29 vaccine in

animals and humans.
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2 Materials and methods

2.1 Preparation of rEg.P29

The recombinant plasmids containing P29 used in this study

were stored in our laboratory. The expression and purification of

rEg.P29 were performed according to our previously published

method (16). Briefly, the strains were inoculated in LB liquid

medium containing 0.1 mM isopropyl b-d-thiogalactoside (IPTG,

Invitrogen, Waltham, USA) and incubated at 37°C for 10h. Then,

rEg.P29 purification was performed according to the

manufacturer’s instructions of the histidine-tagged protein

purification kit (Merck, Kenilworth, USA). Endotoxin was

removed from the antigen using an Endotoxin Removal Kit

(Genscript, Nanjing, China). The purified rEg.P29 with endotoxin

removed was identified by SDS-PAGE and the antigen

concentration was determined using a BCA kit (KeyGenBiotech,

Nanjing, China).
2.2 Animals and immunization

Thirty-six 4–6-month-old female Chinese Yan chi Tan sheep

were randomly selected, and individual information is presented in

Supplementary Table 1. Sheep were randomly divided into four

groups of nine animals each, and each group was immunized

according to three subcutaneous points (Supplementary Figure 1):

the PBS control group was injected with 1 mL sterile PBS, the Quil

A adjuvant control group was injected with 1 mg Quil A adjuvant

solution, the rEg.P29 immunization group was injected with 50 mg
rEg.P29, and the rEg.P29+Quil A immunization group was injected

50 mg rEg.P29 + 1 mg Quil A adjuvant. We conducted primary and

booster immunizations at weeks 0 and 4, respectively.
2.3 Sample collection and cell culture

Peripheral blood was collected via the jugular vein at weeks 0, 4,

6, 8, 12 and 20, respectively. Sheep were euthanized at week 20 and

spleens and mesenteric lymph nodes were collected for testing.

Serum and peripheral blood mononuclear cells (PBMCs) were

separated according to our previously published method (17).

Briefly, anticoagulated peripheral blood was obtained by

centrifugation at 1000 g for 10 min followed by aspiration of the

upper layer. PBMCs were obtained by density gradient

centrifugation, but without the buffy-coat stage. Whole blood was

diluted 1:1 with PBS, mixed, and spread over an equal volume of

lymphocyte isolate (Lymphoprep 1.087 g/L, TBD Science, Tianjin,

China), centrifuged at 1130 g for 30 min at 22°C without brakes,

and the white PBMCs layer was collected and washed twice. Sheep

were euthanized by intravenous injection of 100 mg/kg potassium

chloride under sedation with 20 mg/kg propofol intravenously. The

spleen and mesenteric lymph nodes were harvested after euthanasia

of the sheep, and the corresponding lymphocytes were isolated and

obtained separately. The tissue was ground using a syringe piston
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and filtered through a 70-micron filter. The subsequent separation

of lymphocytes was performed in the same way as for PBMCs. Cells

were counted and then adjusted to 1×106/mL using RPMI-1640

medium (GIBCO, Grand Island, USA) containing 10% fetal bovine

serum (FBS), 2mM l-glutamine, 50 µM beta-mercaptoethanol 100

IU/mL penicillin, and 50 mg/mL streptomycin (Sigma-Aldrich,

Saint Louis, USA) (18).
2.4 Flow cytometry analysis

To determine the cellular phenotypes of PBMCs, cells were

directly stained with mouse anti-sheep CD4 (Clone: 44.38) and

mouse anti-sheep CD8 (Clone: 38.65) antibodies (Bio-Rad AbD

Serotec, Munich, USA), and incubated at 4°C for 30 min in the dark,

followed by two washes with washing buffer. For intracellular

cytokine assays, cells were incubated with or without rEg.P29 (10

mg/mL), and both had anti-CD28 (1 mg/mL) added at 37°C and 5%

CO2 for 24 h. BFA (10 mg/mL) was added 6 h before the end of

incubation. The cells were collected and washed twice with PBS

containing 0.1% bovine serum albumin (BSA), blocked with 20%

normal mouse serum, and stained with mouse anti-sheep CD4

(Clone: 44.38) and mouse anti-sheep CD8 (Clone: 38.65), and

incubated at 4°C for 30 min in the dark, followed by two washes.

Cells were fixed with 4% paraformaldehyde, washed twice, and

permeabilized with PBS containing 0.1% BSA and 0.1% saponin

overnight at 4°C. Cells were stained with mouse anti-bovine IFN-g
(Clone : CC302; Bio-Rad AbD Serotec, Munich, USA), mouse anti-

bovine IL-4 (Clone : CC303; Bio-Rad AbD Serotec, Munich, USA),

and mouse anti-human IL-17A(Clone : MT504; Mabtech, Nacka,

Sweden) (three antibodies cross-reacted with sheep) at 4°C for

30 min in the dark. After cell washing, data were acquired using a

BD FACSCelesta flow cytometer (Becton Dickinson, USA), and

data analysis was performed using FlowJo software (Becton

Dickinson, USA). Data were analyzed using fluorescence minus

one (FMO) control for the gating strategy.
2.5 Enzyme-linked immunospot (ELISPOT)

Cells were adjusted to 1×106/mL using RPMI-1640 medium.

We used a bovine IFN-g/IL-4/IL-17A ELISPOTPLUS kit

(Mabtech, Nacka, Sweden) for detecting intracellular factor

production according to the manufacturer’s instructions.

ELISPOT plates were closed with RPMI-1640 medium

containing 10% FBS, and 200 µL of cell suspension was added

to each well with or without rEg.P29 (10 mg/mL) in the presence

of anti-CD28 (1 mg/mL), then plates were incubated at 37°C with

5% CO2 for 24 h. After discarding the cell suspension, the plates

were washed with PBS and the biotinylated detection antibody

was added followed by Streptavidin-HRP. Finally, the plates were

developed using TMB substrate and stopped using deionized

water. The number of spots was read on an AID ELISPOT

Reader Classic (Autoimmun Diagnostika Gmbh, Straßberg,

Germany). Each group was set up in triplicate wells and the

results are shown as their mean values.
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2.6 Enzyme-linked immunosorbent
assay (ELISA)

Cells were adjusted to 2×106/mL using RPMI-1640 medium,

and 200 µL of cell suspension was added to each well of a 96-well

round bottom plate with or without rEg.P29 (10 mg/mL) in the

presence of anti-CD28 (1 mg/mL) (19, 20). Plates were incubated at

37°C with 5% CO2 for 96 h, and the cytokine in the cell culture

supernatant was quantified using the Bovine IFN-g/IL-4 ELISA kit

and Sheep IL-17A ELISA kit (Mabtech, Nacka, Sweden) according

to the manufacturer’s instructions. The optical density of the plates

was read at 450 nm using a Multiskan SkyHigh Microporous plate

spectrophotometer (Thermo Fisher, Waltham, USA), and standard

curves were generated to calculate cytokine concentrations.
2.7 Cell proliferation assay

The carboxyfluorescein diacetate succinimidyl ester (CFSE;

Thermo Fisher, Waltham, USA) method was used to evaluate cell

proliferation. CFSE was prepared using room temperature PBS to a

concentration of 5mM, and PBMCs (1×107/mL) were labeled with

CFSE and incubated at 37°C with 5% CO2 for 15 min. The reaction

was terminated by adding pre-cooled medium containing 10% FBS

at 4°C for 5 min. Cells were washed with cold PBS and incubated

with or without rEg.P29 (10 mg/mL) at 37°C with 5% CO2 for 96 h.

Cells were collected and labeled with antibodies, and data were

collected using a BD FACSCelesta flow cytometer and analyzed

using FlowJo software.
2.8 Statistical analysis

All results were analyzed using SPSS 22.0 (GraphPad Software

Inc., San Diego, USA) and GraphPad Prism 8.0 (IBM Corp.,

Armonk, NY, USA). For comparing two groups, Mann-Whitney

test was used, and one-way ANOVA was used for comparing three

or more groups. Data are shown as mean or mean ± standard

deviation (SD). Differences were considered statistically significant

when P < 0.05.
3 Results

3.1 rEg.P29 does not affect CD4+ and
CD8+ T cells in PBMCs by flow cytometry

Peripheral blood samples were collected from each

immunization group at different immunization times, and CD4+

and CD8+ T cells in PBMCs were analyzed using flow cytometry.

Consistent with other animals, CD4+ and CD8+ T cells were

relatively stable, and the percentage of CD4+ T cells was

significantly higher than that of CD8+ T cells (Figure 1A). After

immunization with rEg.P29 supplemented with adjuvant, there was

a tendency for CD4+ T cells and CD4+/CD8+ T cells to increase

compared with other immunization groups, especially CD4+ T cells,
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but none of these results were statistically significant (Figures 1B, D,

E). rEg.P29 had no effect on CD4+ and CD8+ T cells in PBMCs, but

the trend indicates that it has the potential to enhance immunity.
3.2 rEg.P29 stimulates the production of
antigen-specific cytokines IFN-g and IL-17A
by ELISPOT and ELISA

ELISPOT assays can sensitively detect cells expressing specific

cytokines, and to observe vaccine-induced specific cytokines, we

first measured cells secreting specific cytokines IFN-g, IL-4, and IL-

17A under stimulation with rEg.P29, and the results were shown as

spot-forming cells (SFC). The number of cells secreting IFN-g was
significantly higher in the rEg.P29+Quil A group compared to the

other immunization groups, and we found that the rEg.P29

immunization group also produced a number of IFN-g-secreting
cells, but without statistical differences (Figures 2A, B). In the IL-

17A ELISPOT assay, the number of IL-17A-secreting cells in the

rEg.P29+Quil A group was also significantly higher than in the

other groups (Figures 2C, D). The IL-4 ELISPOT assay showed that

IL-4-secreting cells were not found in any group (Data

not presented).

We also measured the levels of these three antigen-specific

cytokines in the cell culture supernatants of each group at different

immunization times using an ELISA. No IFN-g was produced in the

PBS, Quil A, or rEg.P29 groups, while a high level of IFN-g was

produced in the cell supernatant of the rEg.P29+Quil A group,

which was significantly higher than the other three immunization

groups (Figure 3A). The time-varying results of specific IFN-g
Frontiers in Immunology 04
showed that IFN-g gradually increased in the rEg.P29+QuilA

group, peaking at week 8, and then gradually decreased, but

remained significantly higher than other groups, where specific

IFN-g production was consistently not detected (Figure 3B). The

ELISA results and temporal patterns of the specific cytokine IL-17A

in culture supernatants were similar to those of IFN-g. Relatively
high levels of IL-17A were produced only in the rEg.P29+QuilA

group, but not in the other groups (Figures 3C, D). The specific

cytokine IL-4 was consistently not detected in the cell culture

supernatant of all groups (Data not presented).

Sheep were euthanized and the results of the three cytokine

levels in the culture supernatants of lymphocytes isolated from the

spleen and mesenteric lymph nodes were consistent with the ELISA

results of PBMCs, with both indicating that rEg.P29 induced the

production of IFN-g and IL-17A (Figure 4), but not IL-4 (Data not

presented). The results of ELISPOT and ELISA showed that rEg.P29

induced the production of the antigen-specific cytokines IFN-g and
IL-17A in sheep to protect against E.granulosus infection.
3.3 rEg.P29 induces Th1, Tc1, and Th17
cellular immune responses by
Flow cytometry

ELISPOTs and ELISAs are capable of highly sensitive,

quantitative detection of cytokines; however, they cannot

determine which population of cells produced the cytokines. To

further identify which group of cells produced IFN-g and IL-17A,

cells were stimulated in vitro by antigen, and the cytokine

expression in CD4+ and CD8+ T cells was detected using flow
A B

D E

C

FIGURE 1

CD4+ and CD8+ T cells in PBMCs. Peripheral blood samples were collected at different immunization times, and CD4+ and CD8+ T cells in PBMCs were
analyzed using flow cytometry. (A) Proportion of CD4+ and CD8+ T cells in PBMCs of each group at week 8. (B, C) show the trend of the proportion of
CD4+ and CD8+ T cells at different times, respectively. (D) The ratio of CD4+ to CD8+ T cells in each group of PBMCs at week 8. (E) The trend of the
ratio of CD4+ to CD8+ T cells at different times. Data were obtained from 9 sheep, and results are presented as mean ± SD (ns, P > 0.05).
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A B

DC

FIGURE 3

Cytokines produced in PBMCs by ELISA. After rEg.P29 stimulation of PBMCs, the level of three antigen-specific cytokines in the culture supernatant
was quantified using ELISA. (A) Antigen-specific IFN-g levels in the culture supernatant of PBMCs samples at week 8. (B) Trends of antigen-specific
IFN-g levels in PBMCs culture supernatants of samples at different times. (C) Antigen-specific IL-17A levels in the culture supernatant of PBMCs
samples at week 8. (D) Trends of antigen-specific IL-17A levels in PBMCs culture supernatants of samples at different times. Data were obtained
from 9 sheep, and results are presented as mean ± SD (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
A B

DC

FIGURE 2

Cytokines produced in PBMCs by ELISPOT. After stimulation of PBMCs by rEg.P29 in vitro, cells producing the specific cytokines IFN-g and IL-17A
were analyzed using ELISPOT, and the results are shown as spot-forming cells (SFC) (samples at week 8). (A, B) show antigen-specific IFN-g SFC.
(C, D) show antigen-specific IL-17A SFC. Representative images of each cytokine spot-forming cell are shown in the figure. Data were obtained from
9 sheep, and results are presented as mean ± SD (****P < 0.0001; ns, P > 0.05).
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cytometry. The expression of IFN-g in both CD4+ and CD8+ T cells

was significantly higher in PBMCs of the rEg.P29+QuilA group

after antigen stimulation than in the other groups, and the level of

IFN-g in CD4+ T cells was higher than that in CD8+ T cells

(Figures 5A, B, D). Moreover, the cytokine IFN-g in CD4+ and

CD8+ T cells gradually increased over time and peaked at week 8,

after which it gradually decreased but remained at a high level,

always significantly higher than the other groups (Figures 5C, E).

High levels of antigen-specific IL-17A expression were also detected

in CD4+ T cells, but IL-17A was not produced in CD8+ T cells

(Figures 5F, G, I, J). In addition, the level of IL-17A in CD4+ T cells

changed over time in a manner consistent with that of IFN-g in

CD4+ T cells (Figure 5H).

We also examined cytokine expression in CD4+ and CD8+ T

cells after in vitro culturing of lymphocytes from the spleen and

mesenteric lymph nodes stimulated with rEg.P29. The findings

were consistent with those of PBMCs which expressed the specific

cytokines IFN-g and IL-17A in CD4+T cells, and IFN-g in CD8+T

cells (Figures 6A–C, 7A–C, 6D–F, 7D–F). For the IL-4-expressing

cell population, none were detected in lymphocytes from PBMCs,

the spleen, or the mesenteric lymph nodes, which is consistent

with the ELISPOT and ELISA results (Data not presented). These

results strongly suggest that rEg.P29 supplemented with adjuvant-

induced sustained Th1, Tc1, and Th17 cellular immune responses

in sheep.
Frontiers in Immunology 06
3.4 rEg.P29 stimulates proliferation of
CD4+ and CD8+ T cells by flow cytometry

PBMCs from each group were labeled with CFSE, stimulated in

vitro with or without rEg.P29, and CD4+ and CD8+ T cell

proliferation was assessed by detecting the decrease in CFSE

fluorescence intensity of labeled cells using flow cytometry. The

CFSE intensity of lymphocytes, CD4+ and CD8+ T cells in the

rEg.P29+QuilA group decreased in the presence of rEg.P29,

indicating that significant cell proliferation occurred; however, no

cell proliferation occurred in the absence of rEg.P29 (Figure 8).

Moreover, the proliferation of CD8+ T cells stimulated by rEg.P29

was higher than that of CD4+ T cells (Figures 8C, D).
4 Discussion

rEg.P29 is a vaccine antigen with good potential for protection

against echinococcosis. Our previous results demonstrated that

rEg.P29 induced strong and sustained humoral and cellular

immune responses in mice, and obtained up to 96.6% immune

protection in a mouse model of secondary infection with E.

prowazekii (14, 21, 22). Moreover, rEg.P29 also induced a

sustained humoral immune response in sheep, inducing 94.8%

immune protection (15). However, the lack of research data on
A B

DC

FIGURE 4

Cytokines produced in lymphocytes of spleen and mesenteric lymph nodes by ELISA analysis. Sheep were euthanized and spleen lymphocytes were
obtained. The cells were stimulated with rEg.P29 and the levels of three antigen-specific cytokines in the culture supernatant were quantified using
ELISA. (A, B) show the antigen-specific IFN-g and IL-17A levels in the supernatants of spleen, respectively. (C, D) show the antigen-specific IFN-g and
IL-17A levels in the supernatants of mesenteric lymph nodes, respectively. Data were obtained from 7 sheep, and results are presented as mean ±
SD (****P < 0.0001).
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the induction of cellular immunity by rEg.P29 has somewhat

limited the promotion of its application. In the present study, we

selected 36 female Chinese Yan chi Tan sheep of 4-6 months of age,

similar body weight, and negative for antibodies against

echinococcosis, to study the cellular immune response induced

by rEg.P29.

T cells play a vital role in controlling pathogenic infections and

clearing pathogens, with CD4+ T cells (Th cells) and CD8+ T cells

(Tc cells) playing important roles (23, 24). CD4+ T cells recognize

MHC-II antigen molecules, mainly by promoting antigen

presentation and upregulating co-stimulatory molecules on

dendritic cells to induce a strong CD8+ T cell response (25, 26).

CD8+ T cells recognize MHC-I molecules and can differentiate into

cytotoxic cells capable of resisting pathogenic invasion (27, 28).

Treatment of chronic Toxoplasma gondii infection with antigen-

specific undepleted CD4+ T cells restores CD8+ T cell function in

the host and prevents potential reinfection, suggesting that CD8+ T
Frontiers in Immunology 07
cells require the help of CD4+ T cells (29). The level of immunity or

immune status of the body can be reflected to some extent by the

ratio of CD4+ to CD8+ T cells (30). The skin and local lymph of

sheep and goats show strong immune and inflammatory responses

to pustular dermatitis virus infection, exhibiting cellular immune

responses including CD4+ and CD8+ T cell changes (31). Increased

CD4+ and CD8+ T cells in the primary immune response to

bluetongue virus infection in sheep trigger a T-cell response to

resist viral infection (32–34). Baron et al. showed that specific CD4+

T cells are the main mediators protecting the host against viral

infection in a study on peste des petits ruminant’s virus infection in

goats (35). Our examination of the ratios of CD4+ and CD8+ T cells

in PBMCs from samples at different immunization times showed

that the ratio of CD4+ T cells was significantly higher than that of

CD8+ T cells in all groups. After immunization with rEg.P29 co-

adjuvant, the CD4+ T cell ratio and CD4+/CD8+ T cells tended to

increase, gradually stabilizing with the extension of immunization
A B

D E

F G

I

H

J

C

FIGURE 5

Cytokines produced in PBMCs by flow cytometry. PBMCs were stimulated with rEg.P29, and the cells were collected and labeled with antibodies to
detect IFN-g and IL-17A production by CD4+ and CD8+ T cells using flow cytometry. (A) Representative flow scatter plots for detecting IFN-g
production by CD4+ and CD8+ T cells. (B, D) show the IFN-g production by CD4+ and CD8+ T cells in each group at week 8, respectively. (C, E)
show the tendency of IFN-g production by CD4+ and CD8+ T cells at different times, respectively. (F) Representative flow scatter plots for detecting
IL-17A production by CD4+ and CD8+ T cells. (G, I) show the IL-17A production by CD4+ and CD8+ T cells in each group of samples at week 8,
respectively. (H, J) show the tendency of IL-17A production by CD4+ and CD8+ T cells at different times, respectively. Data were obtained from 9
sheep, and results are presented as mean ± SD (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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time; however, they did not differ, which may be related to the

limited number of samples and the large individual differences

between sheep. This also reflects the possibility that rEg.P29

immunization can enhance the sheep’s immunity level and

facilitate protection against pathogenic infections.

Upon encountering specific antigens on antigen-presenting

cells, CD4+ T cells clonally expand and differentiate into different

cell subpopulations with different functions. These cell subsets

include T helper 1 (Th1), Th2, Th17, and T follicular helper

(Tfh) cells that coordinate immune responses to different

microbial pathogens (36, 37). This study focused on the in vitro

stimulation of PBMCs, splenic lymphocytes, and mesenteric lymph

node lymphocytes from post-P29-immunization samples and

detected antigen-specific IFN-g, IL-4, and IL-17A production

using ELISPOT, ELISA, and flow cytometry immunological
Frontiers in Immunology 08
methods. We observed the dynamic changes of antigen-specific

cytokines to evaluate the induced Th1, Th2, and Th17 cellular

immune responses. The proliferation of each lymphocyte

population after antigen stimulation was examined using flow

cytometry, and the results showed that rEg.P29 could stimulate

the proliferation of antigen-specific lymphocytes. rEg.P29 co-

adjuvant immunization was effective in inducing sustained Th1,

Th17, and Tc1 cellular immune responses in sheep, and no Th2

response was detected. Clinical studies have shown that effective

anti-echinococcal tapeworm infection treatment is associated with a

Th1 response, while ineffective anti-infection treatment is strongly

associated with elevated Th2-type cytokine expression (38). In the

chronic phase of E. granulosus infection, Th1 and Th2 immune

responses coexist and their balance plays a key role in parasite

immune tolerance and evasion. Mouse models of cystic
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FIGURE 6

Cytokines produced in spleen lymphocytes by flow cytometry. Spleen lymphocytes were obtained after euthanasia of sheep, cells were labeled with
antibodies after rEg.P29 stimulation, and IFN-g and IL-17A production by CD4+ and CD8+ T cells was detected using flow cytometry. (A)
Representative flow scatter plots for detecting IFN-g production by CD4+ and CD8+ T cells. (B, C) show the IFN-g production by CD4+ and CD8+ T
cells in each group, respectively. (D) Representative flow scatter plots for detecting IL-17A production by CD4+ and CD8+ T cells. (E, F) show the IL-
17A production by CD4+ and CD8+ T cells in each group, respectively. Data were obtained from 7 sheep, and results are presented as mean ± SD
(****P < 0.0001).
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echinococcosis infection showed that the early stage of infection was

mainly characterized by increased expression levels of Th1

cytokines, including IFN-g and TNF-a, which could inhibit or kill

the parasite in vivo. In the late stage of infection, the Th1-type

response gradually shifts to a Th2-type response and contributes to

the expression of anti-inflammatory cytokines, which facilitates the

survival of the parasite (39, 40). Ma et al. found that rBCG-

EgG1Y162 protected mice from infection with E. granulosus, with

an important role played by the elevated IFN-g and IL-2 cellular

immune response (41). Recombination of E. granulosus Eg95 with

recombinant rabies virus LBNSE produced an Eg95-specific IFN-g
Th1 cell response and induced more than 90% protection in mice

after immunization (42). The Th1-type cellular immune response

induced by rEg.P29 in sheep in this study is consistent with the

results of the above-mentioned related studies.
Frontiers in Immunology 09
Th17 cells, a newly discovered cell type in recent years, play an

immunoprotective role against E. granulosus infection by producing

inflammatory cytokines (43–45). IL-17A belongs to one of the most

important members of the IL-17 family and is mainly expressed in

Th17 cells. Th17 cells that secrete IL-17A are closely associated with,

among others, parasitic infections, and cancer treatment (46, 47).

During helminth infection, the Th17 immune response regulates the

host immune system and influences the severity of disease (48), with

elevated Th17 expression observed in the early stages of E. granulosus

infection (49, 50). As protective immunity against helminth infection,

Th17 cells also play a complementary role to that of Th1 cells (51).

Labsi et al. found that intravenous injection of recombinant IL-17A

antibody was able to reduce the growth of protozoa by more than 90%

and reduce the infection rate by two-thirds in mice (49). It has been

shown that Th1 and Th17 type cytokines predominate in patients with
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FIGURE 7

Cytokines produced in lymphocytes of mesenteric lymph nodes by flow cytometry. Lymphocytes of mesenteric lymph nodes were obtained after
euthanasia of sheep, cells were labeled with antibodies after rEg.P29 stimulation, and IFN-g, IL-4, and IL-17A production by CD4+ and CD8+ T cells
was detected using flow cytometry. (A) Representative flow scatter plots for detecting IFN-g production by CD4+ and CD8+ T cells. (B, C) show the
IFN-g production by CD4+ and CD8+ T cells in each group, respectively. (D) Representative flow scatter plots for detecting IL-17A production by
CD4+ and CD8+ T cells. (E, F) show the IL-17A production by CD4+ and CD8+ T cells in each group, respectively. Data were obtained from 7 sheep,
and results are presented as mean ± SD (****P < 0.0001).
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hepatic cystic echinococcosis with inactive cysts, while Th2 type

cytokines are more pronounced in patients with hepatic cystic

echinococcosis with active cysts (52). Our study demonstrates that

rEg.P29 can consistently induce a Th17-type cellular immune response

in sheep, providing evidence for the immunoprotective effect of P29

against E. granulosus. Sad et al. define CD8+ T cells secreting the Th1-

type cytokine IFN-g as Tc1 cells, which are killer T cells with the ability

to kill cells and play an important role not only in certain inflammatory

responses, but also in autoimmune diseases (53–55). In this study,

rEg.P29 also induced an immune effect in Tc1 cells in sheep, which was

not found in our previous experimental studies in mice. This certainly

adds to the evidence for rEg.P29-induced immune effects.

Sheep are one of the most suitable intermediate hosts for E.

granulosus (4), and the study of the immune protection mechanism

using sheep has important practical significance for the

development and application of E. granulosus vaccines (56). In

this study, we confirmed that rEg.P29 can effectively induce

persistent and strong Th1, Th17, and Tc1 cellular immune

responses in sheep. These findings provide theoretical support to

promote the application of the rEg.P29 vaccine, accelerate its use in

livestock producers, and may contribute to the development of

human vaccines. There are some potential limitations of this study

(small sample size, variability in individual sheep, etc.), which

suggest that we should consider these factors in advance when

using sheep as experimental animals.
5 Conclusion

rEg.P29 can induce Th1, Th17, and Tc1 cellular immune

responses in sheep against echinococcosis infection and has good

vaccine potential, providing theoretical support for the

vaccine applications.
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FIGURE 8

Proliferation of CD4+ and CD8+ T cells. PBMCs were labeled with CFSE, stimulated in vitro with rEg.P29, and the decrease in CFSE fluorescence
intensity of labeled cells was detected using flow cytometry to assess the proliferation of CD4+ and CD8+ T cells. (A) Histogram plots of CFSE
fluorescence of lymphocytes, CD4+, and CD8+ T cells. (B–D) represent the proliferation frequencies of lymphocytes, CD4+, and CD8+ T cells,
respectively. Data were obtained from 5 sheep, and results are presented as mean ± SD (****P < 0.0001).
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