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Recent mechanisms of surface
ecological changes driven by
climate change and human
activities in Lake Biwa, Japan

Botong Gao1, Meng Chen1, Haichao Hao1,2,3*,
Yosuke Alexandre Yamashiki 1*, Kanako Ishikawa4,
Chunmeng Jiao4, Ji Cai4 and Sadaf Ismail1

1Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University,
Kyoto, Japan, 2School of Geographical Sciences, East China Normal University, Shanghai, China, 3Key
Laboratory of Geographic Information Science, Ministry of Education, East China Normal University,
Shanghai, China, 4Lake Biwa Environmental Research Institute, Otsu, Japan
Lake Biwa, Japan represents a crucial example of the complex climatic and

anthropogenic drivers influencing lake ecological transformations, vital to

informing Sustainable Development Goals globally. This study utilizes 2002–

2022 Landsat, MODIS and in situ Lake Biwa monitoring data to analyze surface

layer spatiotemporal dynamics across interrelated vegetation, water quality and

meteorological indicators—encompassing Normalized Difference Vegetation

Index (NDVI), nitrogen (N), phosphorus (P), chlorophyll-a (Chl) and water

temperature (W-TEM). Upward NDVI raster trends were found over 20 years

alongside prevalent N, P and Chl declines—although some increases did occur

spatially in P and Chl—while W-TEMmostly rose lakewide. Southwest–northeast

gradients typified distributions. Further attribution analyses revealed W-TEM as

the primary N, P and Chl driver, while agricultural expansion and urbanization

mediated crucial N and P changes. Moreover, wind speed (WS), Crop, W-TEM,

minimum temperature (TMMN), Chl and N constituted top NDVI raster influence

factors respectively. These novel integrated models quantifying Lake Biwa

ecological responses to multifaceted environmental change provide new

perspectives to inform sustainable management of Lake Biwa itself and critical

freshwater resources worldwide.

KEYWORDS

climate change, chlorophyll, human activities, Lake Biwa, NDVI, nitrogen, phosphorus
Abbreviations: AET, actual evapotranspiration; Chl, chlorophyll-a; City, area of cities; Crop, area of

cropland; MODIS, Moderate-resolution Imaging Spectroradiometer; N, nitrogen; NDVI, Normalized

Difference Vegetation Index; P, phosphorus; PLSR, partial least squares regression; RS, remote sensing;

SDGs, Global Sustainable Development Goals; SRAD, surface shortwave radiation; TMMN, minimum

temperature; TMMX, maximum temperature; VPD, vapor pressure difference; WS, wind speed at 10 meters;

W-TEM, water temperature.
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1 Introduction

Global climate change alongside rising human population

growth and associated agricultural expansion, industrialization

and urbanization have profoundly impacted lake and river

ecosystems by altering hydrological balances and threatening

critical water resources and ecological health (Ishtiaque et al.,

2022; Jeppesen et al., 2014; Salk et al., 2022). As integrally

interconnected carbon sinks and sources, shifts in lake ecology

additionally drive wider carbon cycling changes (Meyers, 1997).

Japan’s Lake Biwa represents an archetypal example of a lake

ecosystem undergoing rapid transformations due to multifaceted

human and climatic pressures (Xue et al., 2021). As an invaluable

regional water resource and ecosystem underpinning key economic,

ecological and societal services, Lake Biwa possesses immense

significance. However, while its ecological disturbances mirror

wider global lake trends, Lake Biwa further exhibits unique

geographical and ecological characteristics molding localized

responses (Kumagai, 2008; Le Moal et al., 2019). Therefore, this

study seeks to deeply analyze Lake Biwa’s complex ecological

transitions under interacting human and climatic influences

through an interconnected surface layer indicator framework, in

order to inform sustainable regional resource management

pathways supporting global climate change mitigation efforts and

Sustainable Development Goals.

Lake Biwa’s shifting ecology depends upon climatic, hydrological

and environmental change drivers. Recent climate shifts combined

with agricultural and urban encroachment have altered nutrient

balances and water quality regimes (Reichwaldt and Ghadouani,

2012; Zhu et al., 2015; Zhou et al., 2022). Anthropogenic

disruptions of nitrogen, phosphorus and water quality relationships

cascade to impact vegetation dynamics and ecosystem functioning

(Zhu et al., 2015; Xu et al., 2020; Lemenkova, 2022). Global population

growth and intensifying urbanization since 1900 has amplified

nutrient loads across watersheds worldwide (Bennett et al., 2001; Le

Moal et al., 2019), evidenced in heavily populated regions including

China’s eutrophic Lake Taihu (Zhang et al., 2016). Satellite sensors

now provide unparalleled spatiotemporal visibility into global lake

processes including water quality, algal blooms and carbon cycling to

inform conservation priorities (Jarvie et al., 2018; Huo et al., 2021;

Saravanan et al., 2021; Wu et al., 2023a). While Lake Biwa historically

experienced 1990s–2000s eutrophication pressures, subsequent water

quality and ecological improvements have occurred regionally

(Nakamura, 2002; Nishino, 2012). Further research should now

disentangle complex anthropogenic impact mechanisms affecting

contemporary Lake Biwa amid continued environmental change.

Hydrological monitoring lends critical ecological insights

through water levels, aquatic vegetation mapped via Normalized

Difference Vegetation Indices (NDVIs), and phytoplankton

abundances—key ecological health indicators (Kiage and Walker,

2009; Qing et al., 2020). Regional nitrogen, phosphorus,

chlorophyll-a and water temperature profiles similarly inform

surface layer health assessments (Dodds et al., 1998; Takamura

et al., 2003; Filstrup and Downing, 2017; Liang et al., 2020).

Prior Lake Biwa research has quantified hydrological cycle

interdependencies with regional seismicity and climatic factors
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using integrated in situ gauge and satellite data (Xue et al., 2021).

Relative nitrogen versus phosphorus controls over eutrophication

also relate directly to depth and water quality regimes (Qin et al.,

2020). Climate change driven regional warming trends further

impact ecological functioning through lake temperature influences

(Yamashiki et al., 2010; Nazari-Sharabian et al., 2018). Cascading

temperature effects on stratification, nutrient cycling and

phytoplankton productivity provide important mechanistic links

to eutrophication (Elliott and Defew, 2012; Bhagowati and Ahamad,

2019; Salk et al., 2022). Thus, coordinated hydrological monitoring

offers comprehensive eutrophication insights.

Meteorological shifts driven by climate change have also been

observed across actual evapotranspiration, radiation, vapor

pressure, air temperatures and wind patterns over Lake Biwa with

ecological implications (Shao et al., 2015; Du et al., 2018; Zhou et al.,

2022). Process-based models successfully reproduce Lake Biwa

ecosystem responses to observed climate factor changes from

1955 to 2005 (Lemenkova, 2022; Zhou et al., 2022). These

analyses clearly demonstrate meteorology linkages to ecological

transformations, informing sustainable management needs under

non-stationary climate change.

While previous research has generated critical insights about

drivers of lake environmental change, recent studies underscore key

knowledge gaps regarding multifaceted anthropogenic impacts on

Lake Biwa across space and time in the context of climate change.

This research encompasses an expansive set of interconnected

parameters—spanning NVDI, water quality indicators (nitrogen,

phosphorus, chlorophyll-a, temperature), meteorological variables

(evapotranspiration, radiation, vapor pressure deficit, air

temperature)—to unveil novel perspectives into relationships

between regional meteorology and ecological transformations.

This integrated assessment approach enables an improved

theoretical framework for formulating adaptive management

strategies responsive to intensifying environmental change

pressures. Study outcomes are further intended to provide

valuable references for promoting ecological sustainability and

resilience of Lake Biwa and other comparable freshwater

ecosystems moving forward.

This comprehensive 2002–2022 Lake Biwa assessment

incorporating Landsat, MODIS and hydrological data offers

unprecedented visibility into multidimensional ecological changes.

The integrated framework assessing connections across NDVI,

water quality indicators, meteorology and human pressures

provides new perspectives for elucidating climate change and

anthropogenic impacts on Lake Biwa. Study findings further offer

scientifically grounded guidance to promote sustainable regional

environmental management aligned with global priorities.
2 Materials and methods

2.1 Study area

Japan’s largest freshwater ecosystem, the over 4-million-year-

old Lake Biwa spans 670 square kilometers in Shiga Prefecture.
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Containing 27.5 billion cubic meters of water, Lake Biwa has

sufficient capacity to meet the entire Yodo River basin

population’s 11-year water demands. As a vital supply for 14.5

million downstream residents in Kyoto, Osaka and Hyogo via the

Seta and Yodo tributaries, the lake underpins regional water

security, economies, and sustainable development (Kumagai et al.,

2003; Kawanabe et al., 2020). A biodiversity refuge with over 60

endemic species, ongoing environmental change threatens Lake

Biwa’s ecological character and services.

Spatiotemporal 2002–2022 hydrological data from 17 Lake

Biwa water monitoring stations (Figure 1) enables quantitative

analysis of ecological transitions across this critical supply amidst

intensifying climatic and human pressures on the lake and

dependent communities. High-frequency water quality indicators

were obtained from long-term Shiga Prefecture Lake Biwa

Environmental Research Institute programs for 11 northern sites,

5 southern sites and 1 Seta River site, enabling pollution and

eutrophication trend assessments via nitrogen, phosphorus,

chlorophyll-a, and water temperature.
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2.2 Data

2.2.1 Measured data
Lake Biwa Environmental Research Institute long-term

monitoring (https://www.lberi.jp/investigate/long_term) provided

2002–2022 water quality and ecosystem health indicator data for

11 northern sites, 5 southern sites and 1 Seta River site at 0.5 m

water depth (Figure 1). Incorporating nitrogen, phosphorus,

chlorophyll-a and water temperature measurements, this

extensive spatiotemporal sampling enables quantification of

pollution, eutrophication and ecological variation trends across

Lake Biwa.

2.2.2 Vegetation data
Landsat 5, 8 and 9 satellite 30 m resolution top-of-atmosphere

reflectance data was extracted via Google Earth Engine (developers.

google.com/earth-engine) to derive annual maximum value

composites and per-pixel monthly NDVI time series from 2002–

2022 across the study area (Table 1). This enables vegetation change
FIGURE 1

Study area.
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detection across Lake Biwa through the decades-long

Landsat record.

2.2.3 Climate data
Gridded monthly TerraClimate climate data (Abatzoglou et al.,

2018) was utilized in this study for the Lake Biwa region from 2002

to 2022. TerraClimate integrates high-resolution climatological

normals from WorldClim with time-varying data from CRU

Ts4.0 and Japanese 55-year Reanalysis (JRA55) (Table 1). This

enabled correlation analysis between regional meteorology and

Lake Biwa ecology.

2.2.4 Supporting data
The 30-meter resolution digital elevation information from the

NASA Shuttle Radar TopographyMission (Farr et al., 2007) provided

terrain perspectives (Table 1) enabling analysis of topographic

influences on spatial ecological gradients. Crop and City is the land

area selected from the study area overview map (Figure 1), utilizing

the area of Cropland and Cities from the IGBP classification of

MODIS MCD12Q1 for 2002–2022 (Justice et al., 2002).
2.3 Methods

2.3.1 Calculation of normalized difference
vegetation index

NDVI can be extracted by subtracting the ratio of a red band

and near-infrared band plus a red band from the near-infrared band

of the image.
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NDVI =
NIR − R
NIR + R

(1)

Where: NIR represents the reflectance in the near-infrared

band. R represents the reflectance in the visible red band. The

NDVI values range from −1 to 1. Negative values typically

correspond to water, values close to zero may indicate bare soil or

very low vegetation cover, and positive values indicate vegetation,

with higher values signifying denser vegetation.
2.3.2 Partial least squares regression
Partial least squares regression (PLSR) enables analysis of

multivariate relationships in contexts with more predictor

variables than observations and potential inter-variable

multicollinearities (Geladi and Kowalski, 1986). This study

leverages PLSR to construct empirical models quantifying

connections between climatic factors and Lake Biwa vegetation

area changes, selecting from nine candidates (evapotranspiration,

radiation, vapor pressure deficit, wind speed, maximum

temperature, minimum temperature, water temperature, crop

area, city area). Careful tuning of the PLSR principal component

parameter is critical to balance model accuracy with overfitting

avoidance for valid analytics. By iteratively evaluating out-of-

sample PLSR cross-validation root mean square errors across

different principal component choices for each vegetation–climate

pair, optimal selections with minimized validation errors can be

identified, enhancing model reliability (Ma et al., 2023). The

systematic procedure provides robust vegetation–climate models

from the multivariate, collinear Lake Biwa dataset.
TABLE 1 Remote sensing and reanalysis data products.

Product Type Temporal
resolution

Spatial
resolution

URL source

Landsat 5 Top-of-atmosphere
(TOA) reflectance

2002.01~
2011.11

30 m https://landsat.gsfc.nasa.gov/data/landsat-5/
[Accessed on 2 August 2023]

Landsat 8 Top-of-atmosphere
(TOA) reflectance

2013.11~
2021.12

30 m https://landsat.gsfc.nasa.gov/data/landsat-8/
[Accessed on 2 August 2023]

Landsat 9 Top-of-atmosphere
(TOA) reflectance

2022.01~
2023.01

30 m https://landsat.gsfc.nasa.gov/data/landsat-9/
[Accessed on 2 August 2023]

SRTM Digital Elevation Model (DEM) — 30 m https://www.usgs.gov/ [Accessed on 5 June 2023]

MCD12Q1 Landcover (IGBP) Yearly 500 m https://modis.gsfc.nasa.gov/ [Accessed on 2
July 2023]

TerraClimate Actual evapotranspiration (AET) Monthly 1/24°~4 km https://www.ecmwf.int [Accessed on 8 May 2023]

TerraClimate Surface shortwave radiation (SRAD) Monthly 1/24°~4 km https://www.ecmwf.int [Accessed on 8 May 2023]

TerraClimate Vapor pressure difference (VPD) Monthly 1/24°~4 km https://www.ecmwf.int [Accessed on 8 May 2023]

TerraClimate Maximum temperature (TMMX) Monthly 1/24°~4 km https://www.ecmwf.int [Accessed on 8 May 2023]

TerraClimate Minimum temperature (TMMN) Monthly 1/24°~4 km https://www.ecmwf.int [Accessed on 8 May 2023]

TerraClimate Wind speed at 10m (VS) Monthly 1/24°~4 km https://www.ecmwf.int [Accessed on 8 May 2023]
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3 Results

3.1 Vegetation changes of Lake Biwa

Analysis of annual 2002–2022 NDVI pixels across Lake Biwa

(excluding 2012) indicates uptrending vegetation over the past two

decades. Categorizing pixels by NDVI thresholds (0.2–0.3, 0.3–0.4,

0.4–1) revealed higher 0.2–0.3 fractions, indirectly reflecting

heightened satellite-detected greenness and eutrophication levels.

Years 2008, 2013–2015 and 2021–2022 marked peak periods, while

2003 and 2018–2019 represented lower NDVI years (Figure 2).
3.2 Spatiotemporal variation of nitrogen,
phosphorus, chlorophyll-a, and
water temperature

Distributions and ranges were also quantified across depth-

profiled 2002–2022 nitrogen (0.229–0.445 mg/L), phosphorus

(0.007–0.030 mg/L), chlorophyll-a (2.268–8.745 mg/L) and water

temperatures (16.73–17.56°C) averaged across 17 Lake Biwa

stations. Kriging interpolation (Figure 3) depicted southwest-

northeast declines in all parameters, highlighting significant

regional water temperature influence.

Long-term assessments further demonstrated declines at most

sampling points for nitrogen and phosphorus over 20 years.

However localized phosphorus and chlorophyll-a increases

emerged, often concurrently with predominant water temperature

rises. Chlorophyll-a exhibited substantial interannual variability

without directional trends (Figure 4), yet some synchronization

was visible with 2003–2006 and 2015–2017 co-elevated, versus

2006–2007 and 2013–2016 co-suppressed phases. Intra-annual

analysis revealed winter/spring nitrogen and chlorophyll peaks,

contrasting with heights in summer water temperatures

(Figure 5). These intricate spatiotemporal patterns underscore

complex interdependent processes regulating Lake Biwa

water quality.
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3.3 Attribution of nitrogen, phosphorus,
chlorophyll-a, and NDVI raster changes

Attribution assessments quantified relative contributions of

regional meteorology, temperature, land use changes and human

activities toward 2002–2022 fluctuations in Lake Biwa water quality

and vegetation indices. Considering nitrogen dynamics, dominant

factors included water temperature (43.3%), urban expansion (36.5%),

vapor pressure deficit (10.6%), wind speed (7.0%) and maximum air

temperatures (4.7%). Phosphorus variations were largely attributable

to water temperature (40.1%), urban (37.6%) and agricultural land use

changes (24.9%), alongside evapotranspiration (26.7%), radiation

(19.1%) and maximum temperatures (21.2%). Water temperature

(79.3%) also overwhelmingly explained chlorophyll-a shifts, followed

by evapotranspiration (67.3%), radiation (44.4%) and vapor pressure

deficit (42.4%). Finally, wind speed (55.5%), crops (34.3%), water

temperature (33.3%), minimum air temperature (67.3%), chlorophyll-

a (28.6%) and nitrogen (23.5%) constituted primary drivers of

detected uptrends in Lake Biwa vegetative index raster

counts (Figure 6).
4 Discussion

4.1 Changes in the vegetation index of
Lake Biwa

Uptrending 2002–2022 Lake Biwa NDVI rasters suggest

intensification of regional human activities and global climate

change vegetation impacts. Hsieh et al. (2010) found 1960s–1990s

oligotrophic conditions from management intervention shifted post

1990s warming enabling vegetation expansion, though overall

ecological health persists (Flaim et al., 2016).

Global analyses reveal combined climatic and anthropogenic

NDVI drivers, including intensified agriculture expanding Iran’s

Lake Urmia vegetation (Tootoonchi et al., 2020) while Yangtze

River basin shifts were 79.29% attributable to human activities

versus 20.71% climate change (Yi et al., 2022). Analogously, Lake
FIGURE 2

Monthly scale raster counts based on Landsat band NDVI and based on numerical values.
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Biwa has undergone complex eutrophication–oligotrophication

transitions from intersecting nutrient, climatic and management

feedbacks. Despite ubiquitous climate NDVI linkages, local human

pressures remain equally influential.
4.2 Changes in nitrogen and phosphorus
indicators in Lake Biwa

As nitrogen–phosphorus ratios strongly dictate algal

development and lake ecosystem responses to nutrient

perturbation, observed southwest–northeast gradients in Lake

Biwa nitrogen, phosphorus, chlorophyll-a and temperature

highlight southern zones facing enhanced eutrophication threats

due to positional nutrient loading disparities.

Long-term nitrogen and phosphorus declines at most sampling

sites imply agricultural and sewage treatment improvements

(Nakanishi et al., 2022), however continued uncontrolled

phosphorus inputs may sustain eutrophication risks (Nakakuni et al.,

2022). Concurrent warming from global climate change appears to

drive thermal structure shifts enabling summer algal proliferation (Yan

et al., 2022). Dynamic chlorophyll-a lacking trends indicates seasonal

and inlet–outlet biomass regulation (Liu et al., 2023; Wu et al., 2023b).

Interactive shifts in nutrient availability and temperature differentially

benefit specific phytoplankton groups (Shatwell and Köhler, 2019;

Wurtsbaugh et al., 2019; Qin et al., 2020), highlighting nitrogen-

phosphorus ratios as key indicators of lake transformations.
4.3 Attribution of ecological changes in
Lake Biwa

This study revealed wind speed, agricultural extent, lake water

temperature, air minimum temperature, chlorophyll-a and nitrogen

as dominant factors driving detected uptrends in Lake Biwa NDVI

raster area from 2002–2022. Furthermore, rising water temperatures

most profoundly impacted observed nitrogen, phosphorus and

chlorophyll-a shifts, while urban expansion was found to strongly

influence detected nitrogen and phosphorus dynamics.
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A variety of factors, including WS, Crop, W-TEM, TMMN,

Chl and nitrogen levels, collectively influence the changes in

NDVI raster area. Increased wind speed, especially during

precipitation events, can cause changes in Chl concentration in

coastal areas, thereby affecting NDVI values (Valentin et al.,

2021). Climate change also impacts vegetation NDVI by altering

air and water temperatures, with vegetation greenness variability

primarily driven by climate, and vegetation of different land use

types being sensitive to climate change (Revadekar et al., 2012; Bao

et al., 2021). NDVI also responds differently to seasonal changes in

temperature and precipitation patterns (Yan et al., 2022).

Furthermore, studies indicate that nitrogen levels in lakes and

oceans affect NDVI by influencing the growth of plants and algae,

with the impact dependent on the supply, form, ratio, and

environmental conditions of nitrogen (Nizzoli et al., 2018;

Palacin-Lizarbe et al., 2020). The balance of nitrogen and

phosphorus is crucial in managing eutrophication in aquatic

ecosystems and maintaining clear water bodies. Therefore,

changes in lake NDVI are the result of the interaction between

climate and human activities.

W-TEM affects the levels of nitrogen, phosphorus, and Chl in

aquatic ecosystems through various mechanisms. Research

indicates that water temperature not only directly influences the

growth rates of algae and aquatic plants but also indirectly alters

nutrient cycling and ecosystem dynamics (Beisner et al., 2003;

Zhang et al., 2020). Liang et al. suggest that under the backdrop of

climate warming, elevated water temperatures can increase the

prevalence of certain algae, especially when ample phosphorus

nutrients are available, and may also change the patterns of

nitrogen cycling in aquatic ecosystems (Liang et al., 2020). The

impact of temperature on these ecosystem elements is complex

and is influenced by a combination of ecosystem type, other

environmental stresses, and local environmental characteristics

(Zhang et al., 2020). Therefore, research assessing the impact of

changes in W-TEM on lake nitrogen, phosphorus, and Chl is

crucial to understand and predict ecosystem responses to

climate change.

Changes in city area play a key role in the changes in nitrogen

and phosphorus. Studies have shown that agricultural and
A B DC

FIGURE 3

Spatial distribution of yearly mean (calculated by kriging difference from 17 sample points) indicators of (A) nitrogen, (B) phosphorus, (C) chlorophyll-
a, and (D) water temperature from 2002 to 2022 in Lake Biwa.
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impervious city lands produce higher levels of nitrogen and

phosphorus than other land surfaces, severely affecting water

quality in water bodies (Tong and Chen, 2002). Research has also

found that climate and land use changes have a significant

inhibitory effect on water retention, nitrogen emissions, and

phosphorus emissions (Bai et al., 2019). These factors act together

on lake ecosystems and may have profound effects on biological

networks, chemical cycles, and their overall health. Therefore,

protecting water quality requires integrated management

strategies that consider climate and land use changes.
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4.4 Uncertainty analysis and prospects

This paper investigates the ecological changes of the surface

layer of Lake Biwa and its driving factors through Landsat 5/8/9 and

MODIS remote sensing data, measured data, and reanalyzed data.

There are inconsistencies in the spatiotemporal accuracy of remote

sensing data and its products, as well as inaccuracies in the

representation of ground objects. For example, the saturation

defect of NDVI may lead to a loss of resolution in areas with

high vegetation coverage, while errors in measured data, such as
A B

DC

FIGURE 4

Time series of yearly mean indicators of (A) nitrogen, (B) phosphorus, (C) chlorophyll-a, and (D) water temperature from 2002 to 2022 in Lake Biwa.
(N: Northern Lake, S: Southern Lake, K: Karahashi Current Center, +: Positive trend, −: Negative trend).
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improper sensor calibration, inaccurate atmospheric correction, or

inappropriate selection of ground sampling points, can affect the

accuracy of the data. Although the reanalyzed data has a long time

series, it has the defect of low spatial accuracy, which may affect the

accuracy of data in medium and small-scale regions. At the same

time, errors in measured data are also a factor affecting the accuracy

of the research, including but not limited to issues such as sensor

calibration, inaccurate atmospheric correction, representativeness

of ground sampling points, and irregularities in human operation.

However, these shortcomings do not affect the scientific nature and

accuracy of the article. The study compares remote sensing data

with empirical data and conducts detailed assessments to ensure the

scientific nature and reliability of the results.

To overcome these limitations and improve the accuracy of future

research, future studies need to improve data calibration accuracy,

increase measured samples, use advanced algorithms to reduce

analysis uncertainty, and monitor ecological changes over a longer

time span to establish a comprehensive ecological model to enhance

the understanding and protection of the Lake Biwa ecosystem. These

measures will help to improve the overall quality of the research and

ensure the scientific nature and accuracy of the results, even in the

face of uncertainties and challenges.
5 Conclusion

This study, based on the infrared and near-infrared bands of

Landsat and MODIS land use remote sensing data products, as well
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as reanalyzed and measured data, analyzes the ecological changes of

the surface layer of Lake Biwa in Japan. It calculates and analyzes

the high-precision NDVI vegetation index and explores the

changes in the number of rasters and the spatiotemporal

variations of surface nitrogen, phosphorus, chlorophyll-a, and

water temperature in the lake area. The study attributes the

changes in nitrogen, phosphorus, and chlorophyll-a in the lake

area to climatic factors such as AET, SRAD, VPD, WS, TMMX,

TMMN,W-TEM, and human activities such as changes in crop and

city area, and ultimately integrates these factors to attribute the

changes in NDVI comprehensively. We found that:
1. From 2002 to 2022, the number of NDVI rasters in Lake

Biwa showed an upward trend, with the trend weakening as

the NDVI value range increased.

2. The spatial distribution pattern of nitrogen, phosphorus,

chlorophyll-a, and water temperature decreased from the

southwest to the northeast of Lake Biwa at 17 sample points

from 2002 to 2022, with nitrogen, phosphorus and

chlorophyll-a showing a downward trend at most sample

points over the past 20 years, but increasing trends in

phosphorus and chlorophyll at some sites and water

temperature at most sites.

3. In terms of factor contribution rates, WS (55.5%), Crop

(34.3%), W-TEM (33.3%), TMMN (67.3%), Chl (28.6%),

and N (23.5%) had the greatest impact on the change in the

number of NDVI rasters. Among them, water temperature

(N: 43.4%, P: 40.1%, Chl: 79.3%) had the greatest impact on
A B
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FIGURE 5

Seasonal changes of (A) nitrogen, (B) phosphorus, (C) chlorophyll-a, and (D) water temperature in Lake Biwa during 2002–2022.
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the changes in nitrogen, phosphorus, and chlorophyll-a,

followed by changes in city area (N: 36.5%, P: 37.6%) which

played a key role in the changes in nitrogen and phosphorus.
This study provides new insights for themonitoring and application

of ecological indicators in lakes or oceans, offers a scientific theoretical

basis for the ecological protection management and decision-making of

lakes or oceans, and contributes to the ecological and environmental

protection and development of similar water bodies.
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