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Şalci ÖH, Dolu G, Kaymakçilar EN, Akkol S and
Onat F (2023) Dexmedetomidine, an alpha 2A
receptor agonist, triggers seizures unilaterally in
GAERS during the pre-epileptic phase: does the
onset of spike-and-wave discharges occur in a
focal manner? Front. Neurol. 14:1231736.
doi: 10.3389/fneur.2023.1231736

COPYRIGHT
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Dexmedetomidine, an alpha 2A
receptor agonist, triggers seizures
unilaterally in GAERS during the
pre-epileptic phase: does the
onset of spike-and-wave
discharges occur in a focal
manner?

Melis Yavuz1, Pelin İyiköşker2, Nursima Mutlu3, Serra Kiliçparlar2,
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Introduction: The genetic absence epilepsy rat from Strasbourg (GAERS) is a rat
model for infantile absence epilepsy with spike-and-wave discharges (SWDs). This
study aimed to investigate the potential of alpha 2A agonism to induce seizures
during the pre-epileptic period in GAERS rats.

Methods: Stereotaxic surgery was performed on male pups and adult GAERS
rats to implant recording electrodes in the frontoparietal cortices (right/left)
under anesthesia (PN23–26). Following the recovery period, pup GAERS rats
were subjected to electroencephalography (EEG) recordings for 2 h. Before the
injections, pup epileptiform activity was examined using baseline EEG data.
Dexmedetomidine was acutely administered at 0.6 mg/kg to pup GAERS rats
2–3 days after the surgery and once during the post-natal (PN) days 25–29.
Epileptiform activities before injections triggered unilateral SWDs and induced
sleep durations, and power spectral density was evaluated based on EEG traces.

Results: The most prominent finding of this study is that unilateral SWD-like
activities were induced in 47% of the animals with the intraperitoneal
dexmedetomidine injection. The baseline EEGs of pup GAERS rats had no SWDs
as expected since they are in the pre-epileptic period but showed low-amplitude
non-rhythmic epileptiform activity. There was no di�erence in the duration of
epileptiform activities between the basal EEG groups and DEX-injected unilateral
SWD-like-exhibiting and non-SWD-like activities groups; however, the sleep
duration of the unilateral SWD-like-exhibiting group was shorter. Power spectrum
density (PSD) results revealed that the 1.75-Hz power in the left hemisphere peaks
significantly higher than in the right.

Discussion: As anticipated, pup GAERS rats in the pre-epileptic stage showed no
SWDs. Nevertheless, they exhibited sporadic epileptiform activities. Specifically,
dexmedetomidine induced SWD-like activities solely within the left hemisphere.
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These observations imply that absence seizures might originate unilaterally in the
left cortex due to α2AAR agonism. Additional research is necessary to explore the
precise cortical focal point of this activity.

KEYWORDS

GAERS, spike-and-wave discharges, unilateral seizures, α2AAR, pre-epileptic,

dexmedetomidine, pups, epileptiform

Introduction

Absence seizures are the most common type of primary

generalized epileptic seizures, and they are distinguished by

the presence of spike-and-wave discharges (SWDs) in the

electroencephalogram (EEG). These discharges are believed to be

caused by cortico-thalamocortical mechanisms. Genetic animal

models have played a crucial role in elucidating the underlying

causes of absence seizures (1).

Idiopathic, non-convulsive, and generalized absence seizures

are the three types of seizures (2). The EEG shows bilaterally

coordinated and symmetrical SWDs at 3Hz during absence

seizures (3). Gibbs et al. (4) found the association between

behavioral unconsciousness and the presence of 3–4Hz

spike-and-slow wave complexes on the EEG in 1935. When

depth electrodes were placed into the thalamus of a patient

with absence epilepsy, bilateral and synchronous SWDs were

seen (5).

In the domain of absence epilepsy research, two commonly

used rat models for studying absence epilepsy are the rats of

Strasbourg origin [genetic absence epilepsy rat from Strasbourg

(GAERS)] and Rijswijk origin (WAG/Rij). The GAERS rats from

Strasbourg are a useful model in which behavioral components

accompany SWDs, similar to seizures observed in childhood

absence epilepsy (6). Absence epileptic seizures do not appear

immediately after birth in GAERS rats but emerge after a latent

period. These seizures typically arise between 40 and 120 days,

with a peak at ∼60 days, when the first SWDs appear on the EEG,

making GAERS rats an established model for studying absence

epilepsy. As the rats aged, the frequency, and length of these

discharges increased. We also observed in the EEGs previously that

SWDs do not appear in GAERS rats until the 30th day after birth

(7). This reflects that the pre-epileptic period, a silent phase of

epileptogenesis, is anticipated to unfold (8), and our understanding

of this crucial developmental stage is still limited.

The role of alpha 2A adrenergic receptors (α2AAR), a specific

subtype of α2AR known to be involved in the generation and

sustainability of SWDs, has been extensively investigated (9–12).

In rats, a decrease in noradrenergic and dopaminergic activity

has been shown to promote the occurrence of absence-like

seizures (13). A previous study has shown that activating α2AAR

receptors with the antagonist atipamezole efficiently decreased

SWDs in adult GAERS rats (14) but activating α2AAR with agonist

dexmedetomidine established a model of status epilepticus similar

to prolonged absence seizures (15). In this study, dexmedetomidine

also induced a state of switch from status to sleep and back from

sleep to status (15). These findings help to show them as key players

in the involvement of SWDs.

The generation of SWDs has long been debated, with two main

theories emerging. Among these, the cortical theory has garnered

a larger following. The somatosensory cortex has received much

attention in this area and has been established as a key player

in SWD generation through numerous studies (16, 17). Bancaud

et al. (18) remarkable research on human patients provided direct

evidence that initiating a focal discharge in the frontal cortex later

propagates to the cortico-cortical pathways.

Further evidence of cortical involvement, particularly in the

frontal and parietal regions, comes from EEG/fMRI data of patients

with Rolandic epilepsy, where thalamic signals were found to

follow cortical signals with higher amplitude (19). These findings

are confirmed by neuropathological discoveries that confirm the

cortical influence on SWDs. In addition, recent studies address

that dexmedetomidine may facilitate seizure expression with

peripheral somatosensory stimulation in rats, and interestingly,

these seizures are focal initially (20, 21). These studies mention

the high-frequency oscillations (ripples and fast ripples) preceded

by the induction of these seizures. In this study, we aimed to

investigate the SWDs before they were fully expressed in the

GAERS model. Specifically, our objective is to determine whether

α2AAR stimulation could induce SWD activity. We aimed to

understand better the early stages of SWD and the potential role

of α2AAR in SWD initiation.

Methods

Animals and experimental groups

The study was performed at Acibadem Mehmet Ali Aydinlar

University Medical Experimental Application and Research Center

(DEHAM) and was approved by the Acibadem University

Experimental Animals Local Ethics Committee under decision

number ACUHAYDEK2020/51.

The GAERS rats were bred and housed in a controlled

environment in the animal care and production area. The room

was set to a 12-h light/12-h dark cycle, and the temperature was

24 ± 2◦C. The rats had unrestricted access to standard rat chow

and drinking water. To preserve the GAERS strain’s specific absence

of epilepsy characteristics, inbreeding practices were used from the

GAERS strain with 7- to 11-Hz spontaneous SWDs (1). The animals

were housed in pairs in cages before the surgical procedures.

However, after the completion of the stereotaxic surgeries, each
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cage accommodated only one animal to ensure proper post-surgery

care and monitoring.

Male GAERS offspring rats (PN 23–26) obtained from

Acibadem University DEHAM, still in their epileptogenesis period

and weighed between 25 and 45 g, did not yet express SWDs.

The animals were implanted with electrodes on the PN 23-26 and

EEGs were performed on the PN 25–29. The offspring rats were

connected to the EEG and their postnatal days were between PN23

and PN26, their EEGs were recorded once after 2–3 days after the

surgery and once. The SWD expressions were confirmed as none

by the 20-min baseline EEG. The waiting period after stereotaxic

surgery was a minimum of 2 days.

Stereotaxic surgery

Stereotaxic surgery was performed under

ketamine/chlorobutanol (100 mg/kg, VetaKetam; Oruç Özel

Vet. Hiz. Hay. Ve Gida San. Tic. LLC.) and xylazine (10 mg/kg;

Rompun, 2%; Bayer HealthCare, LLC) anesthesia, both of which

were administered intraperitoneally (i.p.) to all experimental group

rats. The heads of the animals were first placed in the stereotaxy

device after the ear bars were fixed in the anterior chamber of the

stereotaxy device (Stoelting Model 51600, Stoelting Co., Illinois).

Four stainless steel screws with insulated wires were implanted

bilaterally to the right and left frontal bones over the cortex rat

brain atlas (22) according to the coordinates provided by reference

to the bregma point and adapted to the pup animals (right/left

frontal; AP: +2.2, ML: ±1.5; parietal AP: −2.9, ML: ±1.5). The

opposite ends of the cables, which had previously been attached to

pins, were soldered to the tiny connections generated by cutting the

male VGA connectors into four threads with multiwire conductor

cables using phosphoric acid and a soldering device instrument.

Dental acrylic was used to cover and secure the electrodes and

cables to the skull. Following the surgery, a 0.9% isotonic sodium

chloride solution was injected subcutaneously to supply any

possible fluid loss in the animal.

EEG recordings and analysis

After the electrodes were placed by stereotaxic surgery, the

animals were allowed to rest for 2 days. The animals’ basal

activity was then recorded to analyze the epileptiform activities

and freezing behaviors. The signals from the electrodes were

transferred to ML 136 bioamplifier (ADInstruments) for EEG

recording using the EEG recording wire. The amplifier signals were

sent to the computer using the Powerlab system (PowerLab8S ADI

Instruments, Oxfordshire, UK). The frequency filter is used in the

1- to 40-Hz band. EEG recordings on the computer were analyzed

with the LabChart 8.0 program. Epileptiform activity analysis was

performed by manually selecting the EEG activity occurring in

both cortices of the animals between the basal EEG from groups,

DEX injected-unilateral SWD-like-exhibiting and non-SWD-like

activities groups over the duration of 1 sec to improve the accuracy

of power spectral analysis (below) by increasing sampled length

of time. Sleep time was also monitored during the EEG and

video recordings.

Dexmedetomidine injections

Following the recording of basal activity, 0.6 mg/kg

dexmedetomidine was injected i.p. acutely into the animals.

After the injection of dexmedetomidine, the EEG was recorded

for two more hours, and a power spectrum density (PSD) analysis

was performed.

PSD analysis

The SWD and SWD-like EEG data were preprocessed using

Fieldtrip (23) and custom MATLAB scripts (R2022a, MathWorks,

Natick, Massachusetts). SWD activity was obtained and is shown

as an example (24). Figure 2 shows the EEG data after bandpass

filtering (with zero-phase, third-order, Butterworth filter using

bandpass function in MATLAB, between 1 and 40Hz). Multitaper

spectral decomposition was used at 0.25Hz frequency steps with

discrete prolate spheroidal sequences and 1Hz multitapers. PSD

was the amplitude of the time-frequency decomposition calculated

for each frequency.

Statistical analysis

All statistical analyses were performed with GraphPad Prism

version 9.5.0 (GraphPad Software, San Diego, USA). Descriptive

statistics were used to examine the total, mean duration, and

number of SWD-like activities and the percentage of animals

in which this activity was triggered (the unilateral SWD-like-

exhibiting group). The unpaired Student’s t-test was used to

compare the mean duration of epileptiform activities and sleep (p

< 0.05 and p < 0.01).

Results

Proportion of animals with unilateral SWDs
and the total, mean duration, and number
of SWD-like activities

The baseline EEGs of pup GAERS rats did not show SWD

as expected but showed low-amplitude non-rhythmic epileptiform

activity. A 0.6-mg/kg dexmedetomidine injection generated

unilateral SWD-like activity in 47% of the rats (Figure 1A).

The descriptive statistics of unilateral SWD-like activities in

the left cortex of animals that were triggered were analyzed (the

unilateral SWD-like-exhibiting group). All SWD-like activities

between the animals (n = 8) were 297.0 ± 175.3 s up to 3 h.

The mean duration of each SWD-like activity among animals

exhibiting unilateral SWD-like activities was 34.9 ± 16.9 s. The

number of each SWD-like activity between the animals was 8.3 ±

2.4 (Figure 1B).
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FIGURE 1

The proportion of animals with unilateral SWDs, the total mean duration of SWD-like activities, the mean duration of epileptiform activities, and the
sleep duration following dexmedetomidine injections. (A) As expected, the baseline EEGs of pup GAERS rats did not show matured SWDs; it showed
low amplitude non-rhythmic epileptiform activity. Mature SWDs occur after post-natal 30 in adult GAERS. Following a 0.6-mg/kg dexmedetomidine
injection, unilateral SWD-like activity was observed in 47% (8/17) of the rats, as illustrated in (A). (B) Characteristics of Unilateral SWD-like Activity.
Unilateral SWD-like activities were analyzed within the group of animals exhibiting this response shown in (A) (n = 8). (C) Duration of Epileptiform
Activities. Comparison of the duration of epileptiform activity between the “unilateral SWD-like-exhibiting group” and the “non-SWD-like activities
group” revealed no significant di�erence in the (C). (D) Sleep Duration Following Dexmedetomidine Injections. In the “unilateral SWD-like-exhibiting
group,” the mean sleep duration was significantly shorter compared to the “non-SWD-like activities group.” No sleep activity was observed on the
baseline EEG data as expected. The data were given as mean ± SEM. **p < 0.01 (significant di�erence).

Mean duration of epileptiform activities and
the sleep duration following
dexmedetomidine injections

There was no significant difference in the length of

epileptiform activity between “the unilateral SWD-like-

exhibiting group” and “the non-SWD-like activities group”

(Figure 1C). However, in the unilateral SWD-like-exhibiting

group, mean sleep duration was considerably shorter than the

non-SWD-like activities group (t(df) = 3.812, p = 0.003, p < 0.01,

Figure 1D).

PSD analysis of SWD-like activity

As shown in Figure 2, SWD-like activity is qualitatively

similar to mature SWD activity, which classically indicates

6-Hz activity. However, SWD-like activity appears slower

and peaks at 1.5–1.75Hz. This activity developed only

in the left hemispheres of 47% of the animals injected

with the 0.6 mg/kg dexmedetomidine. Furthermore, the

PSD results revealed that the 1.75Hz power in the left

hemisphere peaks significantly higher than that of the

right hemisphere.
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FIGURE 2

Raw recordings and PSD results of SWD and SWD-like activity. The left side of the figure shows the EEG recordings (filtered in 1–40Hz) of two
examples of SWD-like activity developed in the left hemisphere and one example of mature SWD activity recorded previously. Each subsequent two
rows belong to the same animal. The right side of the figure shows the PSD results. As shown for the first two animals, SWD-like activity peaks at
approximately 1.5–1.75Hz, but for the third animal, the SWD activity peaks at 6Hz and is similar on both hemispheres. L, left hemisphere; R, right
hemisphere.

Discussion

Generalized SWDs are known to be the basic building blocks

of the EEG of absence epilepsy when manifested bilaterally and

synchronously (25). Several genetic and pharmacological animal

models have been constructed to understand the fundamental

etiological factors behind epilepsies better and identify potential

therapeutic targets for anti-epileptic medicines (26). GAERS, as

an absence epilepsy model, provides a valuable model to examine

the underlying epileptogenesis process in the pre-epileptic stage

of the first 30 days of life in this animal model. This process

is important for investigating potential anti-epileptogenic and

anti-seizure treatment approaches and their use in creating new

animal models.

Spike-and-wave discharges are high amplitude, synchronous,

and, most significantly, bilateral. Previous studies were performed

with unilateral cortical resection, but no change was reported. In

contrast, SWDs were no longer noticeable after bilateral resection.

These results suggest that SWDs are completely abolished after

bilateral removal of the focal region, most likely by interfering

with an intracortical columnar circuit (27), which also supports the

cortical focus, whereas only inhibition of the local cortical network

removed all seizures. Another unilateral onset is that SWDs have

induced fluid percussion injury in rats, and it serves as a model

for complex partial seizures in human post-traumatic epilepsy

(28). In this model, anti-absence ethosuximide has been shown to

suppress both unilateral or bilateral SWDs, whereas carbamazepine

had no effect (28). Some drugs, such as potassium chloride, block

SWDs somewhat in the ipsilateral cortex and thalamus (29).

Furthermore, bilateral or unilateral SWDs have been observed

to alternate between hemispheres after corpus callosum excision,

implying that the corpus callosum is related to SWD generalization

(30). Landau–Kleffner syndrome, commonly known as electrical

status epilepticus of sleep, has focal SWDs (31). However, no

report has shown unilateral induction of SWD-like activities with

pharmacological or chemical agents.

In addition to the induction of unilateral seizures with

dexmedetomidine, this study questions the focal origin hypothesis

of absence seizures, specifically SWDs. Despite the absence of SWD

activity observed in the baseline EEG of the pup GAERS, which is

expected to be in their epileptogenesis period (before PN30), a dose

of 0.6mg/kg dexmedetomidine selectively induced unilateral SWD-

like events in the left cortex of half of the animals. Animals that

exhibited unilateral SWD-like activities accounted for 47% of the

total sample. Unilateral expression of normally generalized seizures

suggests a focal start. Some studies with dexmedetomidine also

induced focal seizures suggest the activation of α2AAR may start

the SWDs. In addition to these results, dexmedetomidine-inducing

focal seizures in a periphery reflex model (20, 21) draw attention to

α2AAR-mediated seizure initiation mechanisms.
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Dexmedetomidine closely resembles and facilitates natural

non-REM sleep (32) and therefore improves sleep in patients

receiving dexmedetomidine anesthesia in comparison to other

anesthetics after surgery by altering sleep structure (33, 34).

Dexmedetomidine also modulates the release of inhibitory

compounds such as γ-aminobutyric acid and galanin due to

reduced control over the ventrolateral preoptic nucleus, further

inhibiting the locus ceruleus and tuberomamillary nucleus by

the inhibition and disinhibition of the locus ceruleus and

ventral lateral preoptic nucleus (35). The α2AAR agonist effect

of dexmedetomidine on NREM sleep might be influenced by

postsynaptic α2AAR (36). Meanwhile, changes in high-frequency

oscillations in the thalamus and neocortex have also been observed

during dexmedetomidine anesthesia (37). In a genetic model

of absence epilepsy, alterations in sleep characteristics were

identified in WAG/Rij rats encompassing extended transitions

from wakefulness to sleep, prolonged intermediate sleep stages,

more frequent subsequent arousals, and a reduced proportion of

REM sleep (38–40). That also points out the positive relationship

between absence seizures and the increase of NREM activity as

it is already known both rhythms of SWDs and NREM activities

are synchronized in the thalamocortical circuitry (41, 42). The

focal point pertains to the plausible role of dexmedetomidine

in potentially inducing the transition of slow wave and delta

oscillations, thereby precipitating SWDs.

A recent study on the mesoscale modeling of SWDs highlights

and sheds light on the initiation, maintenance, and termination of

SWDs by integrating pyramidal cells (43) and interneurons in the

cortex (44, 45) as well as the ventroposterior medial nucleus of the

thalamus, reticular thalamic nucleus (RTN), and nervus trigeminus

(46). In this model, SWD might be initiated by one of the

three mechanisms: an increase in intracortical excitability, external

driving from the nervus trigeminus to the thalamic ventroposterior

medial nucleus, or low-frequency harmonic stimulation of the

cortex. While the maintenance was caused by increased coupling

fromRTNnodes to both pyramidal nodes and cortical interneurons

(46), the termination was driven by increased coupling from rostral

RTN to the brain or high-frequency electrical stimulation. We first

demonstrated that SWD-like activity might be induced unilaterally

using the α2AAR agonist dexmedetomidine. Though it appears to

be the start of SWD-like activity in the left cortex, our previous

study with a status epilepticus model found that dexmedetomidine

generated sustained SWDs in adult rats, which is more consistent

with the maintenance of SWD activity.

Our previous study (15) introduced this absence status

epilepticus model with the induction of dexmedetomidine in

adult GAERS. Recent reports on dexmedetomidine increasing

the duration of SWD activity (15) provide evidence that

dexmedetomidine influences SWD duration. For instance,

Sitnikova et al. (47, 48) provided preliminary results of

dexmedetomidine increasing mean duration of SWDs in another

model of genetic absence epilepsy Wistar Albino Glaxo/Rijswijk

(WAG/Rij), and dexmedetomidine does not shorten the SWDs

unlike other anesthetics (49).

The mean sleep duration differed significantly between animals

that exhibited unilateral SWD-like activities or not in this study as

well. This difference can potentially be attributed to two distinct

factors. First, anesthesia-induced sleep may interfere with the

initiation of unilateral activities. Because our EEG recordings were

obtained 2 h after injection, some animals may not fully emerge

from the anesthesia during this timeframe. Second, given the

metabolic differences among the animals, mainly as they are still in

the pup stage, it is conceivable that the dosage of dexmedetomidine

administered may have exceeded the specific activation threshold

of α2AAR. These factors may have contributed to the observed

difference in sleep duration between the animals.

Another issue on dexmedetomidine as addressed by many

studies is the possible induction of respiratory or cardiovascular

system-related adverse effects. Recent studies point out a either

positive influence or no influence on the respiratory parameters

(50–53). Conversely, a significant reduction in heart rate and

instances of bradycardia have been reported as some of the

cardiovascular effects (51). Yet, the relationship between them

is yet to be investigated in terms of the sleep and SWD-

related mechanisms.

As a result, it remains unclear whether the induction of

unilateral SWD-like events reflects the initiation or maintenance

phase of SWDs. In any case, α2AAR appears to be a strong candidate

for further investigation as the primary mechanism behind the

initiation or maintenance of SWDs as well as the modulation of

switch mechanisms between sleep and SWDs. Further research into

the exact cortical process and the role of α2AAR would be valuable.
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