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Abstract
Medical imaging is widely used today to facilitate both disease diagnosis and

treatment planning practice, with a key prerequisite being the systematic process

of medical image registration (MIR) to align either mono or multimodal images of

different anatomical parts of the human body. MIR utilises a similarity measure

(SM) to quantify the level of spatial alignment and is particularly demanding due

to the presence of inherent modality characteristics like intensity non-uniformities

(INU) in magnetic resonance images and large homogeneous non-vascular regions

in retinal images. While various intensity and feature-based SMs exist for MIR,

mutual information (MI) has become established because of its computational ef-

ficiency and ability to register multimodal images. It is however, very sensitive

to interpolation artefacts in the presence of INU with noise and can be comprom-

ised when overlapping areas are small. Recently MI-based hybrid variants which

combine regional features with intensity have emerged, though these incur high

dimensionality and large computational overheads.

To address these challenges and secure accurate, efficient and robust registra-

tion of images containing high INU, noise and large homogeneous regions, this

thesis presents a new hybrid SM framework for 2D multimodal rigid MIR. The

framework consistently provides superior quantitative and qualitative perform-

ance, while offering a uniquely flexible design trade-off between registration ac-

curacy and computational time. It makes three significant technical contributions

to the field: i) An expectation maximisation-based principal component analysis

with mutual information (EMPCA-MI) framework incorporating neighbourhood

feature information; ii) Two innovative enhancements to reduce information re-

dundancy and improve MI computational efficiency; and iii) an adaptive algorithm

to select the most significant principal components for feature selection.

The thesis findings conclusively confirm the hybrid SM framework offers an

accurate and robust 2D registration solution for challenging multimodal medical

imaging datasets, while its inherent flexibility means it can also be extended to

the 3D registration domain.
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Chapter 1

Introduction

1.1 Overview

Medical imaging is a technical process to create visual representations of the in-

terior of a body for medical inspection. In 1895, Röntgen firstly discovered that

X-rays could identify bone structures (Kevles, 1997) and since then they have been

widely used for the detection of pathology of the skeletal system. In the past dec-

ades, they have also been used to identify diseases such as pneumonia, lung cancer

and kidney stones, though somewhat less useful in the imaging of soft tissues like

the brain or muscle (Sherrow, 2006). Recent advancements in medical physics have

led to the development of generic medical imaging modalities/technologies such

as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) (Analoui

et al., 2012) as well as application-specific technologies such as mammography,

angiography and fluoroscopy (Paragios et al., 2015) which can be used to image

almost the whole human anatomy.
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According to the National Health Service (NHS), in England, a total of 37.9

million imaging tests were conducted during the year ending March 2014, with an

increase of more than 5% compared to the previous year (NHS England Analytical

Services, 2014). Medical imaging has thus become one of the most indispensable

components of healthcare technology by providing complementary anatomic and

functional information which helps the physician in detecting and diagnosing dis-

eases and health conditions (Bourland, 2012).

The medical images acquired using the imaging technologies need to be aligned

amongst themselves as this allows the physician to examine the advancement of

a disease over a period of time or to compare the pre/post-surgery condition of

a patient (Gunderman, 2013). Similarly retinal scans for a patient over a course

of time will inevitably have been taken using different orientations, resolutions

and/or magnification settings, and these will need to be physically aligned to help

facilitate the physician perform clinical analysis (Holz and Spaide, 2010). Most of

the advanced medical applications such as image guided therapy/surgery require

the acquired images to be in alignment (Khalifa et al., 2011).

The process of geometrically transforming a source medical image in order to

attain the best physical alignment with a reference medical image is called medical

image registration (MIR) (Modersitzki, 2004). It uses an optimisation method

to maximise a similarity measure with known transformations between the two

images. It is usually considered to be a mathematical optimisation problem with

the similarity measure playing a critical role in its successful convergence (Hajnal

and Hill, 2001). This process is termed monomodal or multimodal depending on

whether the images to be aligned are from the same or different modalities.
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Medical image registration can be broadly classified into feature and intensity

techniques (Zitová and Flusser, 2003). For example, feature-based approaches for

registering the retinal images primarily use optical disc, fovea (Xu et al., 2007)

and vascular structural details (Lowe, 2004; Sofka and Stewart, 2006), while brain

images use edge detection and surface extraction followed by the least mean square

of extracted features (Hsu and Loew, 2001). Although feature-based approaches

are fast, their performance is very dependent on the segmentation quality and

degree of overlap of the extracted features. This is especially evident in the case

of challenging retinal Fundus and Scanning Laser Ophthalmoscopy (SLO) images

which normally have inherently low contrast and large homogeneous non-vascular

region characteristics, which can undermine their registration performance.

In contrast, intensity-based registration employs pixel intensity information

by means of similarity measures such as normalised correlation coefficient (NCC)

(Rogelj and Kovačič, 2003), phase correlation (Kolar et al., 2013), Fourier-based

methods (Maintz and Viergever, 1998) and mutual information (MI) (Pluim et al.,

2003). Although all these similarity measures are commonly used for monomodal

registration, MI has been proven to be popular because of its ability to perform

multimodal image registration of various parts of human anatomy (Tagare and

Rao, 2015).

Multimodal registration is considered more demanding in comparison to the

monomodal registration since it aligns different modalities having structural and

functional imaging information effectively which is not always complementary in

nature (Analoui et al., 2012). Multimodal registration also acts as a prerequisite

for applications such as multimodal image fusion and its visualisation.
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For example, MI has been used to perform multimodal registration between

MRI, CT as well as positron emission tomography and single photon emission

computed tomography images (Studholme et al., 1996a; Yin et al., 2010; Zhu and

Cochoff, 2002) which enable the physician to provide an accurate diagnosis. Fur-

thermore, in comparison to feature and other intensity-based smilarity measures,

MI does not require any prior segmentation or pre-processing steps. It is for these

reasons that MI has been readily adopted for a variety of registration problems in

the fields of microscopy, histology, computer vision and remote sensing (Paragios

et al., 2015). In the last decade, few variants of MI-based similarity measures

have emerged and offer solutions to the multimodal MIR problem (Fernandez-de

Manuel et al., 2014).

1.2 Mutual Information-based Multimodal MIR

MI establishes a statistical relationship between the intensity values of the images

to quantify the level of alignment between a source and reference image by utilising

the underlying fundamental concepts of information theory (Hartley, 1928). How-

ever during MIR, it is sensitive to the interpolation artefacts, and its performance

can be severely compromised when the overlap region between the images is small

(Pluim et al., 2000b). While normalised MI (NMI) has been shown to successfully

register partially overlapping images (Loi et al., 2008), it along with MI is unable to

consistently and accurately register images containing intensity non-uniformities

(INU) which are an omnipresent feature in MRI images. INU is a smooth intensity

variation caused by factors such as radio frequency excitation field inhomogeneity,

non-uniform reception coil sensitivity and eddy currents (Zhuang et al., 2011).
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Furthermore, a degraded registration performance is also observed for retinal

images having innately challenging characteristics such as low contrast and large

homogeneous regions (Kubecka and Jan, 2004). This has led to the recent de-

velopment of hybrid approaches which combine different aspects of the aforesaid

feature and intensity methods (Holden et al., 2004; Legg et al., 2008; Studholme

et al., 1996b). Higher-order MI (HO-MI) (Rueckert et al., 2000) and gradient MI

(GMI) (Pluim et al., 2000a) for instance, help align images even at lower sampling

resolutions, achieving better global maxima with low interpolation induced local

minima. However, their performance degrades as noise is introduced.

On the other hand, methods such as regional MI (RMI) and its variants in-

corporate neighbourhood features within MI by segmenting the image into several

regions for feature extraction to reduce the influence of INU and noise in the case of

MRI images. Similarly for retinal images, the extracted vascular structures with

spatial information are used for RMI and feature neighbourhood MI to improve

the registration performance (Russakoff et al., 2004). In computing the associ-

ated entropies, these MI-based approaches employ a covariance matrix instead of

high-dimensional histograms to reduce data complexity, though as the size of a

neighbourhood grows, the computation overheads also increase correspondingly.

As will be discussed in Chapter 2, the current literature highlights the presence

of inherent artefacts and noise in medical images as one of the major challenges in

both rigid and non-rigid registration (Argyriou et al., 2015; Wilson and Laxmin-

arayan, 2007). The two key examples are INU and noise in MRI images (Zhuang

et al., 2011) and large homogeneous region with low contrast in retinal images

(Legg et al., 2015), which make their registration especially challenging.
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Since patterns of INU fields vary in different MRI images, the inconsistency

of intensity values of same tissue region in two images lead to large errors when

existing techniques are used (Razlighi et al., 2013). Similarly for retinal images, the

quality of images is further compromised by the presence of different pathologies

like haemorrhages and retinal scars caused by laser treatment (Holz and Spaide,

2010; Saine and Tyler, 2002).

Previous contributions (Butz and Thiran, 2001; Chappelow and Madabhushi,

2010; Kang et al., 2011; Luan et al., 2008; Yang et al., 2006; Yi and Soatto,

2011; Zhang et al., 2011; Zheng, 2010; Zouqi et al., 2010) have also combined spa-

tial information in different ways for these challenging cases but the computation

overhead remains high. This provided the key motivation for this research as there

exists the clear prospect to exploit these opportunities and develop a new hybrid

similarity measure which is able to provide better accuracy and robustness in the

registration performance alongside lower computational costs.

1.3 Research Motivation

The inclusion of spatial features along with MI for multimodal MIR similarity

measure has been considered as a promising solution (Fernandez-de Manuel et al.,

2014; Woo et al., 2015) because it provides better robustness and performance.

Although it can significantly improve the registration process, there are still many

underlying challenges to resolve in realising a robust and flexible hybrid similarity

measure for MIR.
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Some of the main challenges to be addressed include:

• In the presence of inherent artefacts in particular medical modalities, rigid

and non-rigid registration processes can be difficult, and convergence is not

always guaranteed. For example, in case of MRI and retinal Fundus images,

having high INU and large homogeneous non-vascular regions, respectively.

• Local features used along with information-theoretic similarity measures help

in registering the medical images with the aforementioned characteristics by

utilising higher order dimensionality, but incur high data and computational

complexity. Conversely using the fast but rough approximating dimensional-

ity reduction techniques underperform, especially in the presence of artefacts

and noise.

• While dimensionality reduction for feature selection is possible, the stopping

rule is a challenging problem in machine learning (Cangelosi and Goriely,

2007; Jackson, 1993; Villacampa, 2015) and can lead to performance degrad-

ation.

• Although the similarity measure plays a critical role in the image regis-

tration process, inappropriate choice of interpolation technique for a given

transformation and optimisation can degrade the convergence rate of the

registration process.

• For information theoretic similarity measures such as MI, there are various

choice of parameters which impact significantly on the probability distri-

bution estimation, especially when the medical images have varying image

intensity characteristics.
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These challenges and the general aim of improving the robustness and performance

of multimodal MIR without increasing the computational costs were the main mo-

tivations behind this research. These are important requirements both in terms of

being able to register challenging multimodal images and practical computational

costs.

As mentioned in Section 1.2, the performance of both rigid and non-rigid regis-

tration is known to be compromised in the presence of inherent artefacts in medical

images. Commonly, rigid registration is performed prior to non-rigid registration

being undertaken for two reasons (Holden, 2008; Rueckert et al., 2000). Firstly, it

helps in ascertaining the global correspondences between the images, and secondly,

it reduces the computation time needed for the non-rigid registration stage. Hence,

it is essential in addressing the aforementioned challenges for the rigid registra-

tion scenario to be considered in order to reduce the likelihood of the propagation

of errors within the subsequent non-rigid registration step (Argyriou et al., 2015;

Modersitzki, 2004; Zhao and Jia, 2015).

For these reasons, this thesis will only focus on rigid image registration. Fur-

thermore, while multimodal registration is the primary objective of this research,

without loss of generality both mono and multimodal rigid registration techniques

will be considered and critically investigated. This all serves to provide the context

for the overarching thesis research question and the related objectives which are

discussed in the next section.
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1.4 Research Question and Objectives

From the above discussion, the following research question was framed:

How can the multimodal medical images be efficiently and accurately registered?

After a detailed review of the existing methods and a critical evaluation of

prospective techniques, a strategy combining local regional features with MI for

a robust and flexible similarity measure was identified as a particularly promising

area for investigation as it has considerable potential to achieve superior rigid

registration performance on challenging mono and multimodal medical images.

Such a strategy would not only enable the integration of image features within an

entropy-based approach, but also offer greater flexibility in terms of both compu-

tational cost and registration performance by employing effective dimensionality

reduction.

A set of three research objectives was framed to underpin the above overarching

research question, and these are shown in Figure 1.1. The objectives are specific-

ally:

1. To develop and critically evaluate a hybrid similarity measure framework

which utilises regional spatial features for efficient registration performance

of multimodal datasets.

Justification: The objective is to develop a new similarity measure, which

utilises dimensionality reduction to not only extract spatial features but to

lower the computational overheads with minimal impact on the registration
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Figure 1.1: Layout of the framework objectives in this thesis.

performance. It will address the potential problem of degraded registra-

tion performance of medical images having inherent characteristics such as

INU and non-vascular regions. The use of spatial regions for the domin-

ant feature selection from the image dataset is followed by MI computation.

The assumption to choose only the most significant features aims to lower

the computational cost, while observing the corresponding impact upon the

quality of the registration. Furthermore, by investigating appropriate spatial

radius selection and interpolation techniques for the new similarity measure,

faster convergence will be feasible.

2. To critically analyse key neighbourhood region relationships and framework

parameter choices.
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Justification: This objective seeks to enhance the capability of the new hybrid

similarity measure framework by relaxing both the spatial region relation-

ships and fixed parameter selection assumptions made in Objective 1, while

still using only the most significant features. Since the neighbourhood re-

gion represents these features, it is essential that an accurate representation

is used. A neighbourhood region scheme needs to be developed and incorpor-

ated into the similarity measure to achieve this. Similarly, choosing the best

parameters for the MI computation will allow more accurate registration.

Figure 1.1 shows these two enhancements which offer a refined and more

flexible similarity measure while for computational efficiency, using only the

most significant features.

3. To develop and critically evaluate a mechanism to improve robustness by ad-

aptively selecting the best number of features, based on image characteristics.

Justification: Many existing hybrid similarity measures use high-dimensional

representation of the spatial features and consequently experience high com-

putational cost (Russakoff et al., 2004; Zhuang et al., 2011). Reducing the

computation by estimating the similarity measure generally leads to poorer

registration performance especially for images with artefacts (Legg et al.,

2009). Hence, there is a need to develop new mechanisms which provide

the flexibility to incorporate a varying number of features, based upon the

dataset characteristics. As shown in Figure 1.1, this objective will enable

the framework to have the flexibility to trade different levels of granular-

ity for different mono and multimodal registration scenarios, as well as a

corresponding trade-off with the computational cost incurred.
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In summary, the overall aim is to develop a flexible similarity measure frame-

work which provides consistently robust performance with lower computational

overheads by utilising the hybrid combination of spatial features with MI for mul-

timodal MIR of challenging image datasets. The new hybrid similarity measure

achieves this aim by successfully fulfilling Objectives 2 and 3, which build upon the

basis of new similarity measure framework developed as an outcome of Objective

1.

1.5 Contributions

To accomplish the aforementioned three objectives, this thesis presents a new ro-

bust hybrid Expectation Maximisation for Principal Component Analysis with MI

(EMPCA-MI) similarity measure framework, which combines the neighbourhood

feature information with MI. Initially the framework is developed with a series

of underlying assumptions, which are subsequently relaxed to provide some im-

portant framework enhancements. It explores the impact of neighbourhood region

relationships and parameter selection for MI computation and integrates an adapt-

ive mechanism to select the most appropriate number of features for the EMPCA-

MI similarity measure framework during the registration process. Each of these

enhancements increases the flexibility of the framework as well as increasing its

robustness to registering multimodal medical images.

The three original scientific contributions made in this thesis to the multimodal

MIR domain are as follows:
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1. A new EMPCA-MI similarity measure framework which utilises local re-

gional features is introduced and analysed to address the challenge of mul-

timodal image registration in the presence of modality artefacts. It involves

a three step process: firstly, local regional features are identified and pro-

cessed by employing neighbourhood region connectivity. Secondly, an iterat-

ive Expectation Maximisation for Principal Component Analysis (EMPCA)

technique is applied to extract the most dominant features. Finally, the

spatial alignment is quantified using MI. The appropriate selection of the

interpolation technique and neighbourhood radius is determined, and the

registration performance and computational efficiency of the new framework

are benchmarked against existing comparative similarity measures.

2. Two novel enhancements are subsequently integrated into the EMPCA-MI

framework designed in contribution 1. Firstly, higher-order neighbourhood

region connectivity is exploited and, secondly, parameter selection strategies

for MI are analysed. Higher-order neighbourhood region connectivity pre-

serves the intensity relationships and so better represents the features, es-

pecially, for example, in MRI images which contain artefacts. Similarly, the

new, variable parameter strategies are able to accommodate low contrast

and large homogeneous regions present in many retinal image datasets.

3. Finally, an adaptive EMPCA-MI similarity measure framework is developed

which can automatically determine the most significant features, based on

the image characteristics to achieve further improvements in the registration

performance. Furthermore, it affords a flexible trade-off mechanism between

overall registration quality and the computational time involved.
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1.6 Thesis Structure

The rest of the thesis is organised as following:

• Chapter 2 presents a historical background for medical imaging, before a

thorough literature review of the different components of MIR algorithms is

presented. It also focuses on the strengths and weaknesses of existing MI-

based similarity measures and their associated variants which are used for

MIR.

• Chapter 3 discusses the research methodology deployed, including the de-

scription of MIR test-bed and its parameters settings. It also presents the

various testing scenarios employed, together with details on the clinical data-

sets, performance metrics and software validation methods used.

• Chapter 4 details the formulation of the new EMPCA-MI similarity measure

framework for MIR. It also provides an empirical evaluation for the choice of

interpolation technique and neighbourhood radius. Work from this chapter

has been published in (Reel et al., 2012b) and (Reel et al., 2012a).

• Chapter 5 rigorously assesses the performance of the EMPCA-MI similarity

measure framework presented in Chapter 4. Using various test clinical im-

ages under different scenarios, a critical evaluation is undertaken in terms of

both the registration quality and computational efficiency against existing

similarity measures. Work from this chapter has been published in (Reel

et al., 2013c) and (Reel et al., 2013b).

• Chapter 6 leverages from the key findings of Chapter 5 to boost the EMPCA-
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MI similarity measure framework with two enhancements. Enhancement 1

extends the idea of neighbourhood region connectivity to a higher order

in the pre-processing stage, while Enhancement 2 investigates the impact

of introducing different fixed and parameter selection strategies for the MI

computation. Both these enhancements enable the EMPCA-MI similarity

measure framework to provide improved registration performance in com-

parison with the original framework proposed in Chapter 4. Work from this

chapter has been published in (Reel et al., 2013a) and (Reel et al., 2014a).

• Chapter 7 formulates the adaptive EMPCA-MI similarity measure frame-

work which has the ability to choose the best number of features instead

of empirically choosing the most significant features as in Chapter 4 and

integrating the two enhancements in Chapter 6. It provides the flexibility

in terms of robust registration performance and corresponding trade-off in

computational cost. Work from this chapter has been published in (Reel

et al., 2014b).

• Chapter 8 presents potential future directions for the new EMPCA-MI sim-

ilarity measure framework in the MIR domain.

• Finally, Chapter 9 summarises the main findings and contributions emanat-

ing from this research.
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1.7 Summary

In this chapter, the overarching research question and three principal research ob-

jectives have been framed to address some of the key challenges in multimodal

MIR, particularly in the presence of artefacts in clinical images and the corres-

pondingly high computational overheads incurred by existing techniques. The

next chapter will provide a deeper context for this by presenting an overview of

medical imaging history and a critique of MIR literature.



Chapter 2

Medical Image Registration: A

Review

2.1 Introduction

Imaging is one of the fundamental tools used in the modern medical science. Today,

imaging technologies are used by physicians to detect cancerous lesions, diagnose

broken bones as well as perform image guided surgeries and track the progression

of a disease (Paragios et al., 2015). For instance, diabetic retinopathy is the first

cause of blindness in the working age population in the United Kingdom and had

led to the recently announced NHS diabetic eye screening programme which will

extensively employ retinal imaging to diagnose diabetic retinopathy and will be

offered annually to all people with any type of diabetes aged 12 or over (Keenan

et al., 2013; Martín-Merino et al., 2014).
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Different medical imaging technologies are used to create different pictures of

the human anatomy. While these modalities generally provide different informa-

tion, there are few similarities. For example the external contour of two different

modalities images can be similar, while the information they contain can be com-

plementary. The integration of this imaging information from different modalities

creates a compilation, which can be used to improve diagnosis and treatment of

the subject. Hence, image registration is used to spatially align the medical images

from the same or different modalities and is one of the key tasks in the medical

image processing domain (Goshtasby, 2012).

While MIR is a vital and commonly used process, no one technique or method

is known to work efficiently for all applications. Also as mentioned in Chapter 1,

the clinical images with INU and large homogeneous non-vascular regions present

a challenge for registration. This chapter discusses the historical background of

medical imaging in brief and the need of image registration in medical imaging

and its current challenges. The goal of this chapter is to provide a broad overview

of the MIR literature and a detailed discussion on existing MI-based similarity

measures highlighting their limitations.

2.2 Brief History of Medical Imaging

Medical imaging is a technical process which is used to create images of the human

body for clinical purposes. This ability of looking into the human body is an

essential diagnostic tool in the field of medical science and prime topic of research

in healthcare technology (Damas et al., 2011b; Liu et al., 2008).
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1886 Retinal Fundus Photography

1895 X-Rays Imaging

1952 Nobel Prize in Physics [for NMR spectroscopy]

1955 Fluoroscopic movies for dynamic X-Ray Imaging

1961 Retinal Fluorescein Angiography

1971 CT Scanning Machine

1973 MRI Machine

1979 Nobel Prize for Physiology or Medicine [for CT]

1979 Retinal SLO Scanner

1980 Confocal Laser Scanning Microscopy

1990 Optical Coherence Tomography

1990 Functional Magnetic Resonance Imaging

2003 Nobel Prize for Physiology or Medicine [for MRI]

Figure 2.1: Brief historical timeline of medical imaging.

Medical imaging technologies have improved significantly since the late nine-

teenth century, since many different imaging modalities have been developed and

are in practical use clinically. All these modalities are based on different physics

principles and are usually more or less suitable for different part of the human

anatomy (Hendee and Ritenour, 2002; Hobbie, 2001). Figure 2.1 shows the major

technologies discovered and invented for imaging of human brain and eye retina.

This timeline summarises the various modalities and is not exhaustive since new

techniques are added every few years (Brooks, 2001; Cherry, 2009). Although the

research and development of imaging the various anatomy parts (such as heart,

lungs and abdomen) has progressed considerably, this section addresses the focus

of this thesis which is related to modalities containing INU and large homogeneous

non-vascular regions.
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(a) (b) (c)

Figure 2.2: showing (a) the first published human Fundus photography apparatus (T. Jackman
and J.D. Webster, 1886), (b) the first Fundus retinal image taken from it, with top white area
as the optic disc and the lower, light area as an artefact (Saine, 1993), (c) the first ever X-ray
image of A. B. Röntgen’s hand taken in 1895 (Kevles, 1997).

The first published account of in-vivo human retinal Fundus photography is

from 1886 (T. Jackman and J.D. Webster, 1886), which used the novel apparatus

of albo-carbon burner shown in Figure 2.2(a) and with an exposure of 2½ minutes,

it was used to photograph the first very fair image of large blood vessels of the

living human retina. As observed in Figure 2.2(b) the image obtained was blurry

and needed more advancement in the instrumentation and acquisition techniques

before the high quality Fundus photography could become a routine procedure

(Saine, 1993). In 1895, the first X-ray picture was taken by the German physicist

W. C. Röntgen, showing the skeletal composition of his wife’s hand, as shown in

Figure 2.2(c) (Kevles, 1997). Initially, X-rays were a novelty but by the end of the

year they were used by physicians around the world (Linton, 1995).

Around half century later in 1946, F. Bloch and E. Purcell developed the

concept of using magnets for taking pictures of a living being, which led to the

nuclear magnetic resonance (NMR) spectroscopy (Gunderman, 2013) and they

were awarded the Nobel Prize in Physics in 1952.
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(a) (b)

Figure 2.3: showing (a) the first fluorescein angiogram (H. R. Novotny and D. L. Alvis, 1961)
and (b) the first brain CT scan in 1971 with 80 × 80 pixels resolution (Beckmann, 2006).

Furthermore in 1961, Novotny and Alvis published the first successful retinal

fluorescein angiogram (H. R. Novotny and D. L. Alvis, 1961) which showed the

vascular pattern and blood flow in a human retina as shown in Figure 2.3(a).

Ten years later, the CT scanning machine was invented by G. Hounsfield and A.

Cormack (Analoui et al., 2012). Figures 2.3(b) shows the first brain CT scan taken

by them (Beckmann, 2006).

In the next four years, MRI was invented by P. Lauterbur and E. Mandfield

for which they were awarded the Nobel Prize for Physiology or Medicine in 2003

(Bushong and Clarke, 2013). The MRI in particular, is considered to be a special

modality since using different pulse sequences, the modality produces different

images. For example, consider two contrasts e.g. proton density weighted MRI

(MRI-PD) and T2 relaxation time weighted MRI (MRI-T2). A proton density

sequence used in MRI detects the proton density of the subject while the T2

relaxation time sequence in MRI detects the transverse relaxation time of a proton

in its environment.
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(a) MRI-T2 (b) MRI-PD

(c) Fundus (d) SLO

Figure 2.4: Various medical imaging modalities for (a & b) human brain, (c & d) eye retina from
(Montreal Neurological Institute and Hospital, nd) and (Kolar et al., 2013; Kolar and Tasevsky,
2010).

Figures 2.4(a) and (b) show the trans-axial brain images of MRI-T2 and MRI-

PD respectively. Here, MRI-PD image displays the dense tissues but shows very

little detail of the brain tissue, while MRI-T2 image on the other hand, displays

brain tissue details more clearly (Ackerman, 1998). However, MRI is known to

be prone to non-anatomic INU variations due to radio frequency non-uniformities

and static field inhomogeneity. INU along with the Gaussian noise causes the

corruption of tissue images leading to their poorer visual quality (Simmons et al.,

1994; Sled and Pike, 1998).
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In 1979, G. Hounsfield and A. Cormack shared the Nobel Prize for Physiology

or Medicine for their part in developing the computer assisted tomography (Beck-

mann, 2006). In the meantime, the retinal diagnosis also progressed considerably

with the development of better quality Fundus imaging and the invention of SLO

and Optical Coherence Tomography (Saine and Tyler, 2002).

Figures 2.4(c) and (d) show the Fundus and SLO image, respectively, of the

same human retina. These retinal imaging methods have specific clinical applica-

tions for identifying eye conditions and diseases like myopia, glaucoma and diabetic

retinopathy (Saine and Tyler, 2002; Sanchez-Galeana et al., 2001). They provide

complementary information with the colour Fundus image showing the boundary

of the optic nerve head, while the SLO images reveal deep layer reflectivity and

surface topology of both the optic nerve head and retina. However, retinal images

exhibit the inherent characteristics of low contrasted intensity distributions, as

well as having large homogeneous non-vascular regions (Holz and Spaide, 2010).

Some of imaging modalities in the literature can be classified as structural

or functional imaging systems. For example, the MRI and CT provide high-

resolution information about the structure and anatomy, while functional MRI

imaging gives the functional information (Cherry, 2009). Furthermore, they have

been prominently used for both clinical and industrial research. Many derivat-

ive medical imaging modalities also exist such as magnetic resonance angiography

from magnetic resonance imaging, computed tomography angiography from com-

puted tomography and digital subtraction angiography from X-rays (Schneider

et al., 2005).
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The imaging activity conducted by NHS, England from February 2014 to Feb-

ruary 2015 comprises of X-rays having the biggest share of all tests performed

followed by Ultrasound, CT, MRI and others (NHS England Analytical Services,

2015). In the past decade, research and development trends in medical imaging

have also been significant with the utilisation of methods/techniques such as bio-

markers and gene expression along with the use of big data mining and informatics

for the new cellular and molecular level imaging methods (Analoui et al., 2012;

Gunderman, 2013). Hence, they give the unprecedented ability to detect, diagnose

and monitor the various pathological as well as physiological conditions.

Most of these medical imaging modalities broadly deploy at least one of the

key image processing tasks namely segmentation, registration and visualisation

(Stytz et al., 1991). While medical image segmentation is usually performed as

a pre-processing step to define a region of interest, on the other hand, medical

image visualisation acts as a visual aid to see the medical images from different

perspective and angles in order to facilitate in the diagnosis process (Brock, 2013).

But, in order to fuse and visualise more than one image it is important that

a correspondence is drawn among them using MIR (George, 2011; Wang et al.,

2008). It can also be further used to study the time series information of mono or

multimodal images, which can help to evaluate the growth rates in the region of

interest (Alberto, 2011).

As mentioned in Chapter 1, the focus of this thesis is MIR in particular. The

next section gives a detailed literature review of the MIR process.
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2.3 Medical Image Registration

Broadly, the process of MIR utilises the feature or intensity-based information for

various parts of human anatomy (Hill et al., 2001). The feature-based registration

typically requires some features to be extracted or identified before the registration

process. For example for retinal images, these features can be edges, contours,

surfaces, statistical features, control points or high level structural descriptors

(Khalifa et al., 2011). On the other hand, intensity-based methods do not require

any feature extraction or segmentation. Hence, raw pixel values are used straight

forwardly for registration process, as in case of brain images (Maintz and Viergever,

1998). Overall, intensity-based registration has particularly gained popularity, due

to its ability to register multimodal images more effectively in comparison to the

feature-based registration (Pluim et al., 2003).

Usually, two images are used in the generic image registration process (or more

in case of group-wise registration (Paragios et al., 2015)), where one of the medical

images is considered as reference image IR while the other image as sensed image

IS. Image registration is usually considered to be an optimisation problem with

the prime goal of finding the spatial mapping which enables the alignment of IS

with respect to image IR. The generic MIR model is a multi-step, iterative process

(Zitová and Flusser, 2003) which involves:

1. Transforming the coordinates of the sensed image IS with known transform-

ation parameters τ in a given reference space (transformation step).

2. Generating a new interpolated sensed image I∗
S in the reference space (inter-

polation step).
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3. Comparing I∗
S with the reference medical image IR using a similarity measure

(compute similarity measure step).

4. Optimising the transformation parameters iteratively to achieve the best

possible alignment at τfinal, where its similarity measure value is maximum

between the images (optimisation step).

5. This value of final transformation is saved.

This process of registration can be generalised as a maximisation problem:

τfinal = arg max
τ

SM(IR, τ(IS)) (2.1)

where SM denotes the similarity measure used and τ is the class of allowed affine

and similarity transformations.

The aforementioned steps for a generic MIR model are shown in Figure 2.5 and

discussed in detail as follows:

2.3.1 Transformation

In order to determine the position of corresponding points in reference and sensed

images, a combination of translation, rotation and scaling parameters is considered.

Image registration methods employ transformations such as rigid, affine and elastic

(non-rigid) transformations (Zitová and Flusser, 2003). The rigid transformation

considers tx and ty translations along the x and y axes, and a rotational angle θ for

the registration process (Brown, 1992). It assumes that the subject in the image
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Figure 2.5: Generic MIR model.

maintain its shape and size (Yu, 2005). Affine transformations offer a high degree

of flexibility in accommodating linear distortions by allowing scaling and shearing

in addition to translation and rotation (Jenkinson and Smith, 2001).

The choice of using a particular transformation model for registration depends

on the anatomy parts and their characteristics. For example, in the case of retinal

images, the similarity transformation as in (Gharabaghi et al., 2013; Legg et al.,

2008, 2009) is popularly used because it allows the magnification changes either due

to the use of different optical instrument for image acquisition or the changes due

to the motion in the direction of the optical axis (Ryan et al., 2004), represented

as a uniform scaling S. It is a special form of global affine transform which includes

S along with tx, ty and θ parameters. Hence, the similarity transformation can be

defined as:
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 x′

y′

 =

 tx S cos θ S sin θ

ty −S sin θ S cos θ




1

x

y

 (2.2)

Here, (x, y) and (x ′, y ′) are the original and transformed pixel positions, re-

spectively, and (2.2) becomes a rigid transformation when S=1.

Elastic transformations provide more degrees of freedom as compared to rigid

and affine transformations. It is also called non-rigid transformation due to its non-

linear nature. Non-rigid transformations can be broadly classified on the basis of

physical models or basis function expansion. While linear elasticity (Moshfeghi,

1991), viscous fluid flow (Christensen et al., 1997) and optical flow (Horn and

Schunck, 1981) are examples of physical model-based transformations, radial basis

functions (Fornefett et al., 2001), multiquadrics (Zhang et al., 2002), thin-plate

splines (Bookstein, 1989), B-spline (Denton et al., 1999), wavelets (Wu et al.,

2000) and piecewise affine transforms (Crum, 2004) are some of basis function

expansion transformations.

Various surveys on transformation are conducted in the past and it is considered

very difficult to robustly conclude which transformation is the most accurate or

best suited to a particular application (Crum, 2004; Holden, 2008; Klein et al.,

2009). Although physical models are considered to have an advantage in non-rigid

registration since they offer realistic solutions, some of their properties hinder the

registration. For example, linear elasticity can only accurately model small deform-

ations, which is a limitation because often soft tissues exhibit large deformation.

Fluid flow offers a solution for this and can ensure that the topology is preserved.
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Figure 2.6: Rigid registration followed by non-rigid registration.

However, it cannot model the elastic component of the tissue deformation.

In reality, tissue exhibits a complex behaviour, which in certain conditions

considered as elastic or visco-elastic. Demons (Crum, 2004; Thirion, 1998) is one

of the most popular optical flow models, but it also has no constraints on the

displacement and does not necessarily preserve the tissue structure.

In practice, most of the time, non-rigid registrations are not performed directly

(Zhao and Jia, 2015). Rigid registration is used as a pre-processing step to non-

rigid registration, in order to compute the global transformation parameters and

then later non-rigid registration is performed to analyse the local deformation of

the subject (Holden, 2008; Rueckert et al., 2000, 1999) as shown in Figure 2.6.

The primary focus of this thesis is on the rigid registration stage.

2.3.2 Interpolation

Interpolation is one of the important techniques used in medical image processing

in a variety of different applications (Lehmann et al., 1999; Thevenaz et al., 2000).

During registration the mapping of corresponding points as per transformation

model requires them to be mapped to a non-grid position. Interpolation interpol-
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ates the position of the points with respect to the grid. Intensity values can be

estimated in the mapped position using a particular interpolation method (Ibanez

et al., 2003). There are various types of interpolation methods used for med-

ical image processing. They can be broadly classified as either filter or function-

based. Mean, Gaussian, B-spline and median (Maeland, 1988) based interpolation

methods are filter-based interpolation, while nearest neighbour, bilinear, bicubic,

Lagrange and splines (quadratic, cubic, B-spline) (Grevera et al., 1999; Lehmann

et al., 1999; Shi and Reichenbach, 2006) interpolations are based on functions.

Figure 2.7 shows the most commonly used interpolation methods namely,

nearest neighbour, bilinear and bicubic. It shows the new pixel value assigned

at position I∗(x, y) using pixel values from image I. Both nearest neighbour and

bilinear interpolations are less computationally intensive but offer poorer sub-pixel

accuracy. Bicubic interpolation is more popular due to its higher accuracy in com-

parison to nearest neighbour and bilinear as well as being less computationally

complex than spline interpolation (Wang et al., 2008). Spline interpolation (Pan

et al., 2012), which represents the image intensity using a spline function, but in-

cur higher computational cost. While higher-order spline functions are smoother,

providing considerable accuracy in some cases, if however they are generalised,

they can lead to overfitting. Meanwhile Fourier analysis-based windowed sinc

interpolation (Meijering et al., 1999), is formed by multiplying a sampled sinc

function (Olver et al., 2010) by a windowing function. This produces very high

accuracy, but is not chosen for an iterative registration process since it involves

a high computational overhead. It is used later, once the optimal transformation

values are achieved, to re-sample the final registered image (Ibanez et al., 2003).
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Figure 2.7: (a) Nearest neighbour, (b) Bilinear and (c) Bicubic Interpolation Methods.

While all the above mentioned interpolation methods, especially higher order

methods, introduce new intensity values for the interpolated image, partial volume

interpolation (PVI) (Maes et al., 1997) ensures that no new intensity values are
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generated. In fact in traditional sense, it does not qualify as an interpolation

method, since it directly updates the joint histogram, without creating any new

pixel values at non grid positions. While PVI also results in abrupt changes in

the joint histogram dispersion and, hence, has a serious influence on registration

process. Later generalised partial volume joint histogram estimation (GPVE) was

proposed (mei Chen and Varshney, 2003), which reduced the abrupt changes using

B-spline instead of linear interpolation in processing GPVE, reducing the local

optima effectively (Jacquet et al., 2010). Recently, Gaussian, cubic spline and

notch general partial volume interpolation are proposed and their perform is better

than others in its class (Pan et al., 2012). Although most of the medical registration

applications are software-based, many have been implemented in hardware due to

their high computational cost (Lehmann et al., 1999; Moses et al., 2011).

2.3.3 Similarity Measure

A similarity measure gives the ability to determine the level of global correspond-

ence between two images. During the registration process the parameters of a given

transformation model are changed, based on the optimisation technique until the

similarity measure reaches a maximum value (Wilson and Laxminarayan, 2007).

Hence the choice of similarity measure along with optimisation method plays a

crucial role for a successful outcome of a registration process. In all, similarity

measure quantifies the spatial alignment between two images. Various intensity-

based similarity measures such as sum of squared difference (SSD) (Friston et al.,

1995), sum of absolute difference (SAD) (Lemieux et al., 1994), correlation coef-

ficient (CC) (Cideciyan, 1995), NCC (Rogelj and Kovačič, 2003) and ratio image
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uniformity (RIU) (Holden et al., 2000) have been proposed for monomodal regis-

tration processes. These measures do not perform well in all cases. While SSD is

highly sensitive to Gaussian noise, SAD is less sensitive to outliers on the subject

boundaries. CC, NCC and RIU perform well in these conditions, but are highly

sensitive to non uniform illumination in the images. Other similarity measures are

entropy of difference image (DE), pattern intensity (PI), gradient correlation (GC)

(Wu et al., 2009) and gradient difference (GD) (Penney et al., 1998). While DE

and PI are robust against large difference of intensity values between monomodal

images, GC and GD are highly sensitive to thin line structures.

Most of the these similarity measures have been prominently used for monomodal

images and are known for their inability to perform multimodal registration (Gao

et al., 2008). This is due to the fact that all of them assume a linear relation-

ship between the intensity values of the two images. This is mostly the case

when both the images belong to the same modality and a monomodal registration

is undertaken. On the other hand, multimodal images do not share any global

linear relationship between each other in terms of intensity values. However, pre-

dominant relationships can be established between the intensity values of smaller

neighbourhoods of the images. This makes local correlation (LC) (Netsch et al.,

2001) and correlation ratio (CR) (Roche et al., 1998) suitable for multimodal regis-

tration, but they suffer from expensive computations. Meanwhile, feature-based

approaches instead of using the pixel intensity information, extract key structures

like optic disc (Li and Chutatape, 2004) and vascular structural features (Lowe,

2004; Sofka and Stewart, 2006) from the retinal images. Bifurcation point match-

ing approaches such as dual-bootstrap iterative closest point (DB-ICP) (Stewart
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et al., 2003) and its variant (Pereira et al., 2012) accomplish registration by using

vascular features to grow a bootstrap region. While these methods are computa-

tionally fast, their performance is very dependent on the segmentation quality and

degree of overlap of the extracted features.

The geometrical features method (GFM) (Gharabaghi et al., 2013) is a recent

feature-based method for monomodal retinal image registration. It extracts closed-

boundary regions from the green channel of retinal fundus image and computes the

affine moment invariant descriptors for each of the binary regions in both reference

and sensed images. The affine moment invariant descriptors are moment based

descriptors of planar shape, which are derived by means of the algebraic invariants

theory and are invariant under general affine transformations (Flusser and Suk,

1993). GFM utilises the first four simplest affine moment invariant descriptors

denoted as I1, I2, I3 and I4 (Flusser and Suk, 1993), which are defined as:
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(2.3)

Here, the central moment µMN of order (M+N) of binary 2D region is defined

as:

µMN =
∫∫ ∞

−∞
(x− x)(y − y)dxdy M, N = 0, 1, 2, ... (2.4)
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Here, (x, y) are the coordinates of the center of gravity of the binary region.

For example, the central moment using M = 1 and N = 2, is denoted as µ21.

The complete proof and detailed discussion on the the properties of invariants

is discussed in (Maitra, 1979) and (Amanatiadis et al., 2009). Once the affine

moment invariant descriptors are computed, region matching is performed us-

ing the feature distance(Gharabaghi et al., 2013) between them. The three most

likely corresponding regions are then selected and used to estimate the registration

parameters between the reference and sensed images. While GFM has inherent

computational simplicity, it exhibits poor resilience to noise in images, especially

when higher-order invariant descriptors are selected (Rodrigues, 2000).

Similarly, for multimodal retinal image registration - vascular bifurcation struc-

tures (RIR-BS) has performed satisfactorily for linear and affine transformation

models (Chen et al., 2015, 2011). Unlike other conventional feature point-matching

methods, whom largely depend on the branching angles of single bifurcation point,

RIR-BS employs a feature structure-matching approach. RIR-BS utilises the bi-

furcation structure which comprises a master bifurcation point and its three con-

nected neighbours, as shown in Figure 2.8. The characteristic vector of each bi-

furcation structure consists of the normalized branching angle and length, which

is invariant against translation, rotation, scaling, and even modest distortion. The

characteristic vector for each bifurcation structure in the reference and sensed

image is formulated as:

Λ = {lengths, angles} (2.5)

= {l1, l2, l3, Υ1, Υ2, Υ3, Υ4, Υ5, Υ6, Υ7, Υ8, Υ9, Υ10, Υ11, Υ12}



2.3 Medical Image Registration 36

Figure 2.8: Bifurcation structure comprising of a master bifurcation point and its three con-
nected neighbours. Figure reproduced from (Chen et al., 2015).

Here, li and Υi represent the normalised length and angle respectively:

li = ith branch length/sum {length1, length2, length3} (2.6)

Υi = ith branch angle in degree/360°

The corresponding bifurcation structure pairs from reference and sensed image

are matched in order to align them. Although, these normalised bifurcation struc-

tures can greatly reduce the ill-posed nature of the matching process, this method

can only be deployed as long as the vasculature pattern can be segmented reliably.

Various graph measures-based on minimal spanning trees (Hero et al., 2002;

Ma et al., 2000; Neemuchwala et al., 2004), have been also proposed, as an altern-

ative to histogram-based measures since they all eliminate the need of estimating

the intensity densities of images. They can be extended to registration of more

than two images, but require large memory and computing resources compared to

histogram-based measures. Since MI and its variants have been extensively used

as similarity measures for image registration, especially in the field of medical ima-
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ging (Pluim et al., 2003), Section 2.4 is dedicated to critically discuss them. The

next section discusses the role of optimisation in the registration process.

2.3.4 Optimisation

In order to find the maximum value of similarity measure for a given registration

process, an optimisation problem is formulated on the basis of number of paramet-

ers used for transformation (Hajnal and Hill, 2001). The choice of the transform-

ation is essentially dependent on the application and its geometrical complexity

(i.e. degrees of freedom). Although a optimal solution is guaranteed by exhaustive

search, its computational expense is proportional to size of the search space as well

as the number of parameters used for transformation and, hence, becomes infeas-

ible as they increase (Khalifa et al., 2011). Therefore, this forms the motivation to

explore refined search strategies or optimisation methods which can help to find

the maximum value for a given similarity measure.

A good optimisation method should be reliable and be capable of finding the

best possible transformation quickly (Goshtasby, 2012). The choice of optimisation

method hence requires a good understanding of the registration problem along

with the constraints that can be applied and a knowledge of numerical analysis.

Many optimisation methods have been introduced and adopted for the registration

process, on the basis of the transformation parameters, similarity measure, time

constrains and required accuracy of registration.

Optimisation methods can be formally classified in terms of function-based,

such as Powell (Collignon et al., 1995; Maes et al., 1997), Downhill Simplex
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(Meyer et al., 1997) methods or gradient-based, such as simple (Rueckert et al.,

1999; Wells III et al., 1996) and conjugate gradient descent (Hayton et al., 1999),

stochastic gradient approximation (De Craene et al., 2004; Spall, 1992).

Downhill Simplex performs well in the absence of local distortions and can be

used by combining all the transformation parameters in one function (Press et al.,

2007). Relaxation Matching (Price, 1985) and Dynamic Programming (Milios,

1988) gives the advantage of handling local distortion along with overall global

transformation, in case of non-rigid registration. Various other prominently used

methods in the literature, including Netwon-Raphson (Miga, 2003), Levenberg-

Marquardt (Kabus et al., 2004; Maes et al., 1999; Thevenaz et al., 1995), simu-

lated annealing (Mazur et al., 1993), Monte Carlo (Wong, 2010) and evolutionary

computing methods such as particle swarm (Rezaei et al., 2009) and genetic al-

gorithms (Damas et al., 2011a). Hierarchical methods (Bajcsy and Kovačič, 1989;

Klein et al., 2007; Lester and Arridge, 1999; Maes et al., 1999; Thevenaz and

Unser, 2000) for registration of multi-resolution medical images are also used for

registering low resolution versions of the image and then progressed to higher

resolution, which helps enhancing the optimisation speed and robustness of regis-

tration. Using different filters, e.g. Gaussian (Bajcsy and Kovačič, 1989; Burt and

Adelson, 1983; Suárez et al., 2002), Spline (Thevenaz et al., 1995, 1998; Thevenaz

and Unser, 1997; Unser et al., 1993) and Wavelet-based pyramids (Allen et al.,

1993; Amit, 1994; Deubler and Olivo, 1997; Gefen et al., 2003; Wu et al., 2000) are

created for multi-resolution medical images (Jenkinson and Smith, 2001; Rohlfing

et al., 2003; Rueckert et al., 1999; Thevenaz et al., 1995; Wirth et al., 2002; Yeung

et al., 1998).
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As discussed before, since the overall performance of a registration algorithm

depends on the effectiveness of the optimisation method. This in turn, depends

on the number of iterations needed for the algorithm to converge. Hardware-

based implementations of MIR consider the choice of optimisation method on

the basis that they are fully or partially parallelise (Cooper et al., 2011; Shams

et al., 2010; Tsoi et al., 2009). Various comparative evaluations for the above

mentioned optimisation techniques have been conducted in the past (Khalifa et al.,

2011) which investigated them on the basis of different factors which impact the

performance of the registration such as accuracy, computational cost and number

of iterations needed. Amongst them Powell and its variants, which are zero-order

methods, have shown a balanced performance and hence been popularly adopted

for a variety of registration applications in the medical imaging domain (Rios and

Sahinidis, 2012; van der Bom et al., 2011).

Algorithm 2.1 shows the pseudo-code of the Powell optimisation method, con-

sidering the maximisation of a sample function f(x) involving W variables. Fur-

thermore, Powell method can be utilise with Brent line search, which combines

a parabolic interpolation with the golden section algorithm (Press et al., 2007).

Hence together Powell Brent is known to provide an overall fast and accurate local

search performance (Pluim et al., 2003; Zitová and Flusser, 2003). In case of MIR,

it can iteratively search in a given parameter space such as (tx, ty, θ, S) in case

of similarity transformation model, to locate the highest value of the similarity

measure by individually maximising one parameter at a time. Subsequent iter-

ations then start from the maximum of these four parameters until a predefined

tolerance threshold ϵ is met.
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Algorithm 2.1 Pseudo Code for Powell optimisation method
Input: Function f(x)

Variables: W design variables; x0 initial starting point; lk starting vector; k
index varying from 1 to W ; ϵ tolerance threshold.

Output: Maximum value of f(x)

1: Choose a point x0 in the design space.

2: Choose the starting vectors lk, k = 1, 2, . . . , W . (the recommended choice is

lk = γk, where γk is the unit vector in the xk-coordinate direction).

3: START

FOR each k

Maximise f(x) along the line through xk−1in the direction of lk.

Let the maximum point be xk.

END LOOP

lW +1 ← x0 − xW

Maximise f(x) along the line through x0 in the direction of lW +1.

Let the maximum point be xW +1.

IF | xW +1 − x0 |< ϵ THEN

GOTO STEP 4.

END IF

FOR each k

lk ← lk+1 (l1 is discarded and the other vectors are reused).

END LOOP.

4: END

Hence, the iterative registration process shown in Figure 2.5 is then concluded

by saving the final transformation value τfinal using (2.1), at which the reference

and sensed image are best registered.

The next section focuses on MI and its variants used as similarity measures in

MIR.
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2.4 MI and its variants for multimodal MIR

While MI originated in the field of information and communication theory some

decades ago, it was first introduced into the field of image registration during the

mid 1990s, by two independent research groups (Collignon et al., 1995; Maes et al.,

1997) and (Wells III et al., 1996). While both the versions were the same, they

were formulated independently and differently. As mentioned earlier, the prime

success of MI as a similarity measure is because it makes very few assumptions

about the images to be registered. It only assumes statistical dependence between

the images, which helps it in enhancing its performance, especially for multimodal

registration, where the relationship between the intensity values of two images is

non-linear.

Research related to MI began in 1980s with the start of intensity-based regis-

tration methods. These methods had an advantage over traditional registration

methods, since no prior segmentation or feature extraction was needed. While ini-

tial intensity-based methods involved image registration by matching the moments

(Flusser and Suk, 1994) and principal axis (Alpert et al., 1990), later correlation-

based approaches (Manduchi and Mian, 1993) emerged. However, these techniques

were not effective for multimodal image registration because they only used intens-

ity information (van den Elsen et al., 1993).

In 1993, the first similarity measure for multimodal data was proposed and

known as the Woods Criterion (WC) (Woods et al., 1992, 1993), which quantified

the relationship between the intensity values for corresponding points for a known

region. It needed however, the regions of both images to be segmented manually
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before registration. This was overcome by an adaptation from (Hill et al., 1993),

which used a feature space in the form of a 2D joint histogram. At the correct align-

ment, the histogram is found to be more focused and dispersed during misaligned

positions. Later, Hartley introduced Entropy as a similarity measure (Collignon

et al., 1995), which was originally developed in communication theory (Hartley,

1928). Hartley’s entropy was extended by Shannon, which did not assume that

each symbol was equally likely to occur but could be expressed as a probability

distribution (Shannon, 1948). The final phase of this research movement was the

independent introduction of MI by (Viola and Wells, 1995) and (Collignon et al.,

1995). While Viola and Wells technique used Parzen window density estimation

(Wells III et al., 1996), Collignon’s formulation used a frequency histogram tech-

nique for Kullback-Leiber or Shannon’s information (Maes et al., 1997).

Given the reference image IR and its probability pIR
(IR), the entropy H(IR) is

defined as:

H(IR) = −
∑
IR

pIR
(IR) log2 pIR

(IR) (2.7)

Correspondingly, for sensed image IS, H(IS), is defined as:

H(IS) = −
∑
IS

pIS
(IS) log2 pIS

(IS) (2.8)

Then, the joint histogram is constructed with the entries UIRIS
using b number

of bins. U is the total count of possibilities, while UIR
and UIS

are count of

possibility for IR and IS only, respectively. The marginal probability pIR
(IR) and
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pIS
(IS), and the joint probability pIRIS

(IR, IS) are determined by:

pIR
(IR) = UIR

U
(2.9)

pIS
(IS) = UIS

U
(2.10)

pIRIS
(IR, IS) = UIRIS

U
(2.11)

Correspondingly, the joint entropy H(IR, IS) are defined as:

H(IR, IS) = −
∑

IR, IS

pIRIS
(IR, IS) log2 pIRIS

(IR, IS) (2.12)

The conditional entropies H(IR| IS) and H(IS| IR)are defined as:

H(IR| IS) = −
∑

IR, IS

pIRIS
(IR, IS) log2 pIRIS

(IR| IS) (2.13)

= −
∑

IR, IS

pIRIS
(IR, IS) log2

{
pIRIS

(IR, IS)
pIS

(IS)

}

H(IS| IR) = −
∑

IR, IS

pIRIS
(IR, IS) log2 pIRIS

(IS| IR) (2.14)

= −
∑

IR, IS

pIRIS
(IR, IS) log2

{
pIRIS

(IR, IS)
pIR

(IR)

}

The strength of dependence between IR and IS is measured by their MI value

as:



2.4 MI and its variants for multimodal MIR 44

MI(IR, IS) = H(IR) +H(IS)−H(IR, IS) = H(IR)−H(IR| IS) (2.15)

= H(IS)−H(IS| IR)

= −
∑

IR, IS

pIRIS
(IR, IS) log2

{
pIRIS

(IR, IS)
pIR

(IR) pIS
(IS)

}

To illustrate how to calculate the MI, consider the following scenario of two

matrices (representing an image dataset of spatial dimensions 3× 3 pixels) IR and

IS is as follows:

Let, IR =


1 2 3

3 2 3

1 1 1

 and IS =


3 3 1

2 2 1

1 3 1

.

Then, the joint probability distribution can be tabulated for one to one corres-

pondence, using b = 3 as:

IR

1 2 3 pIS
(IS)

1 2/9 0 2/9 4/9

IS 2 0 1/9 1/9 2/9

3 2/9 1/9 0 3/9

pIR
(IR) 4/9 2/9 3/9

Here, the rightmost column and bottom row consists of the marginal probabil-

ities pIS
(IS) and pIR

(IR), respectively. Similarly, the first three columns and rows
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show the joint probability pIRIS
(IR, IS). For example, the joint probability value

in first column and row denotes the one to one correspondence where elements

of IR and IS are both equal to 1. Moreover, this 2D histogram table shows all

the combinations of one to one correspondence possible, with elements equal to 0

highlighting that the particular combination does not exist.

Finally, the calculation of MI using (2.15) is:

MI(IR, IS) = 2
9 log2
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2/9

16/81
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+ 2
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12/81
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9 log2

(9
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+ 2
9 log2
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)
+ 1

9 log2
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≈ 0.6227.

Here, the MI value quantifies the spatial alignment between IR and IS. Now

considering the scenario where IS is rotated +90°, while IR remains unchanged as

follows:

IR =


1 2 3

3 2 3

1 1 1

 and IS =


1 2 3

3 2 3

1 1 1

.

Then, the joint probability distribution can be tabulated as:
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IR

1 2 3 pIS
(IS)

1 4/9 0 0 4/9

IS 2 0 2/9 0 2/9

3 0 0 3/9 3/9

pIR
(IR) 4/9 2/9 3/9

and

MI(IR, IS) = 4
9 log2

(
4/9

16/81

)
+ 2

9 log2

(
2/9
4/81

)
+ 3

9 log2

(
3/9
9/81

)

= 4
9 log2

(9
4

)
+ 2

9 log2

(9
2

)
+ 3

9 log2

(9
3

)

≈ 1.5305.

Evidently, the MI value has increased since IR and IS are both now spatially

registered. Although, the marginal probabilities pIR
(IR) and pIS

(IS) are same in

both scenarios, the joint probability has decreased in the latter case. This is high-

lighted in the second scenario by the tabulated distribution being noticeably more

concentrated compared with the earlier misaligned registration. Moreover, it is

clear MI uses the one-to-one correspondence without assuming any neighbourhood

relationships.

Since the original proposals of MI, various researchers have contributed to the

performance, robustness, and other relevant issues of MI. Many research groups

then demonstrated its properties using different medical imaging data (Gao et al.,
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2008; Holden et al., 2000; Studholme et al., 1996b, 1997; West et al., 1997) and

clinical applications (HAWKES, 1998; Meyer et al., 1997). While MI has been

successfully applied to a range of modalities, there are few cases, when the measure

does not provide correct spatial alignment, due to the presence of local or spurious

global maxima (Rodriguez-Carranza and Loew, 1998), this is particularly observed

when the regions of overlaps are small (Studholme et al., 1998).

Two independent groups (Rodriguez-Carranza and Loew, 1998; Studholme

et al., 1998) proposed NMI, which improved the behaviour of MI, by significantly

enhancing the overlap invariance of the measure. NMI can be denoted as:

NMI(IR, IS) = H(IR) +H(IS)
H(IR, IS) (2.16)

Later, multivariate and high dimensional versions of MI and NMI (Gan and

Chung, 2005; Meyer et al., 1999; Wang and Shen, 2006; Zhang and Rangarajan,

2005) were proposed, which extended the registration to three or more images

and provided a faster convergence and better final accuracy. Although these MI

variants have been popular, their performance degrades for some modalities. For

example, in case of retinal image registration their performance is degraded due

to the presence of innately challenging characteristics (Kubecka and Jan, 2004).

These similarity measures had a disadvantage that they ignore the spatial inform-

ation i.e. if the 2D histograms of registering images are the same, the images were

assumed to be matched, which was not true if the intensity values are rearranged

in a particular way (Rueckert et al., 2000).
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This gave researchers an opportunity to improve the MI by incorporating spa-

tial information in various ways. It was proposed to combine MI with connected

region labelling in the past (Studholme et al., 1996a) and then HO-MI, (Rueckert

et al., 2000) using co-occurrence information matrices of neighbouring intensities

for better registration results.

GMI combined the gradient information with MI (Pluim et al., 2000a) which

helps to align images even at lower sampling resolutions, achieving better global

maximum and have very low interpolation induced local maxima. For a given 2D

reference and sensed image pair IR and IS, it computes two partial derivatives

for each sample point x and x′ in IR and IS, forming together the gradient vec-

tor, calculated by convolving the image with the appropriate first derivatives of

a Gaussian kernel having scale ψ. Thus the angle φx, x′(ψ) between the gradient

vectors is defined by:

φx, x′(ψ) = arccos
∇x(ψ) .∇x′(ψ)
| ∇x(ψ) || ∇x′(ψ) | (2.17)

Here, ∇x(ψ) denotes the gradient vector at point x of scale ψ and | . |denotes

the magnitude. Furthermore, since multimodal images can have different gradient

value at best aligned position, a weighting function κ is incorporated as follows:

κ(φ) = cos(2φ) + 1
2 (2.18)

Thus, GMI between IR and IS can be defined as:

GMI (IR, IS) = G(IR, IS)MI(IR, IS) (2.19)
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with the gradient term G(IR, IS) as:

G(IR, IS) =
∑

(x, x′)∈(IR∩IS)
κ(φx, x′(ψ))min(| ∇x(ψ) |, | ∇x′(ψ) |) (2.20)

The gradient term not only seeks to align locations of high gradient magnitude,

but also aims for a similar orientation of the gradients at these locations. Although

GMI perform better for low-resolution images and decrease interpolation-induced

local minima, it underperforms in the presence of noise. In a similar approach,

Holden et al. (Holden et al., 2004) used Gaussian scale space derivatives as local

image structure to integrate another channel with MI to propose Multi-channel

MI (MC-MI).

Russakoff et al. (Russakoff et al., 2004) proposed a novel extension to MI called

RMI, which use local regions to compute MI and considers high dimensional distri-

butions to be normally distributed. RMI takes neighbouring pixels into account to

incorporate spatial information. Essentially, for each pixel, a vector of all the local

intensities is created for IR and IS. It provides much greater relational inform-

ation for each pixel, it also means that many intensities need to be considered.

Therefore, using a joint histogram to represent this information would lead to

high computational cost. To overcome this complexity problem, the samples are

replaced by a covariance matrix which substantially reduces the amount of data.

The covariance matrix represents the relation between the original vector elements

by approximating the joint intensities by a normal distribution.

Considering a normally distributed d-dimensional distribution, the entropy Hg

can computed in terms of covariance matrix Σd as:
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Hg(Σd) = log((2πe) d
2 det(Σd) 1

2 ) (2.21)

This is mathematically equivalent to transforming the points into a new basis,

where each dimension is uncorrelated, projecting the data onto each of the d new

axes, and summing the entropies of those d independent 1-dimensional distribu-

tions (Shannon, 1948). It allows RMI to offer a clear improvement over standard

MI, although computing the original matrix can still be computationally demand-

ing. This becomes even more apparent in difficult registration problems where a

larger neighbourhood radius is required. Similarly, Tomazevie et al. (Tomazevic

et al., 2004) contributed a Multi-feature MI (MF-MI). While they had a common

advantage of approximating the distribution as normal, still the calculation burden

was computationally expensive.

Various other hybrid approaches also combine different aspects of the afore-

said feature and intensity methods, as for example, by using extracted vascular

structures (Chanwimaluang et al., 2006) together with spatial information in fea-

ture neighbourhood MI (FNMI) (Legg et al., 2008, 2009, 2015). These techniques

use covariance matrices to reduce the data complexity instead of high-dimensional

histograms, though as the spatial information increases, so commensurately does

the corresponding computational cost. Other contributors have combined the spa-

tial information in different ways but still the computation overhead is significant

(Butz and Thiran, 2001; Chappelow and Madabhushi, 2010; Kang et al., 2011;

Luan et al., 2005, 2008; Woo et al., 2015; Yang et al., 2006; Yi and Soatto, 2011;

Zhang et al., 2011; Zheng, 2010; Zouqi et al., 2010).
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Although MI variants have found numerous clinical applications, there are still

many issues which pose challenges (Pluim et al., 2003). As discussed in Section

2.2, the presence of intensity variations due to variety of reasons poses a problem in

multimodal imaging, which includes INU and the radio frequency inhomogeneity

in MRI imaging. While MI can also be computed locally, i.e within the image

by dividing it into sub images and then performing registration, but then the

significant problem is that with the decreased image size, the statistical power

of MI is reduced drastically. To improve registration in such cases images are

registered rigidly using global MI and then locally in sub images using local MI

(Maintz et al., 1998) and interpolated finally using Thin-Plate Splines, at the

cost of computational complexity. Similar results are also reported using HO-MI

(Denton et al., 1999; Rueckert et al., 2000, 1999), and other approaches which

improve the MI performance by using varying number of bins, based on image

characteristics instead of choosing fixed number of bins (Legg et al., 2007).

MI and its spatial information-based variants have also been used for non-rigid

registration, giving the flexibility of local estimation of the joint histogram, by

dividing the image into small regions (Garcia-Arteaga and Kybic, 2008; Russakoff

et al., 2004; Zhang et al., 2011). However, as the subdivided image parts become

too small, the small samples can limit the estimation performance of the local

histogram. Several adaptations have been proposed to overcome this. Likar and

Pernuš (2001) combined the local and global intensity distribution and Andronache

et al. presented a local intensity remapping to allow the use of cross correlation

as similarity measure in the smaller sub-images (Andronache et al., 2006, 2008).

Weese et al. (1999) argued that, when the image parts are sufficiently small, they
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will likely contain not more than two different structures that are rather homo-

geneous and hence used CC straight away, without any intensity remapping but

Studholme et al. (2006) uses total correlation between the intensity joint histo-

gram and a third channel representing a spatial label. Loeckx et al. considered

the spatial coordinates of sample points in the reference image as a priori known

conditions and proposed conditional MI (cMI) as similarity measure (Loeckx et al.,

2007, 2010), however, it is found to be ten times slower than the traditional MI

measures.

The generalised weighting scheme for spatial information encoding, was exten-

ded by Zhuang et al. which proposed a new registration method called as spatially

encoded MI (SE-MI) (Zhuang et al., 2011, 2009, 2010). The weighting scheme is

used to vary the contribution of pixels to a set of joint histogram tables, which

associate with a spatial variable. Similarly, multidimensional self-similarity-based

descriptor (Heinrich et al., 2012) and an organ focused MI (OF-MI) are reported,

which need pre-processed segmentation of organ to be registered (Fernandez-de

Manuel et al., 2014). Recently, two of the popular MI variants, namely GMI and

RMI have been extensively employed for different medical registration applications

as reported in (Jin et al., 2013; Yang and Fu, 2012; Yang et al., 2015) and (Chen

and Lin, 2011; Ng et al., 2015; Pradhan and Patra, 2013, 2015), respectively.

In the past, many dimensionality reduction techniques have been utilised in the

registration process. For example, RMI uses a covariance matrix for the fast com-

putation of entropies instead of a high dimensional histogram to provide a rough

estimate but as neighbourhood region size increases it becomes computationally

intensive. Conventional Principal Component Analysis (PCA) being a versatile
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multivariate analysis tool has also been popularly deployed for faster registration

(Leng et al., 2015; Lu and Chen, 2007) due to its ability to linearly compress and

preserve the randomness of the higher dimensional space with fewer components.

But as the dimensionality increases, its covariance-based computation is also high.

This led to the development of other methods which do not involve computation

of covariance matrix and can be classed as either power iteration or competitive

learning methods (Roweis, 1998). The power iteration method such as Arnoldi

(Saad, 2011) iteratively update their eigenvector estimates, through repeated mul-

tiplication with the matrix to be diagonalised, while competitive learning methods

like Sanger (Hancock et al., 1992) find the principal subspace by setting a learning

rate parameter.

EMPCA is another effective approach (Roweis, 1998), which iteratively es-

timates the dominant principal components using an expectation (e-step) and

subsequent maximisation step (m-step). It avoids the computation of entire cov-

ariance matrix and effectively finds PCA components with fewer iterations than

power iteration and competitive learning methods (Roweis, 1998).

Another popular approach used with PCA computation involves selecting the

best subset of significant principal components instead of using all PCA com-

ponents. Methods like Scree Graph, Broken–stick and their variants (Cangelosi

and Goriely, 2007; Jolliffe, 2002) choose a subset by computing the cumulative

variance of all components. In contrast, the Kaiser Rule (Jackson, 1993; Jolliffe,

2002) retains only those principal components whose eigenvalues are greater than

one. Some surveys on the similarity measures also exist, which discuss and com-

pare them in terms of their strengths and applications (Klein et al., 2009; Penney
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et al., 1998; Rogelj, 2001; Rogelj and Kovačič, 2003; Skerl et al., 2006, 2008; Wu

et al., 2009). Next section provides a discussion on the existing similarity measures

and highlight their limitations.

2.5 Discussion

As discussed in the previous section, the registration performance was shown to

clearly be dependent on the appropriate choices made in each step, with a complex

interdependency existing between different steps of registration, in addition to

other challenging factors such as multimodality, interpolation artefacts and the

presence of INU and homogeneous content in clinical images (Woo et al., 2015;

Zhuang et al., 2011). It is evident the similarity measure used to quantify the

level of alignment is one of the prime factors influencing the overall quality of the

registration.

In addition to the popular use of MI and its variants as a similarity measure

in multimodal MIR, they have also found applications in many other domains in-

cluding remote sensing and pattern recognition (Argyriou et al., 2015). Since MI

computes the statistical relationship between different modalities, it is an appro-

priate choice for remote sensing image registration and assessment (Chen et al.,

2003).

Recent work also shows the prominence of MI in the remote sensing domain,

with (Yao et al., 2010) proposing MI for feature selection in high dimensional

hyper-spectral imagery and claiming it performs better than conventional classific-
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ation methods. Wang and Jin (2012) has also recently implemented a range of MI

variants for analysing post-earthquake building damage using pre-event IKONOS

optical images and post-event Radarsat-2 and COSMO-SkyMed synthetic aperture

radar images. Similarly, MI has also been applied in the field of pattern recogni-

tion and machine learning for dimensionality reduction by feature extraction and

selection (Wu and Murphy, 2010).

These aforementioned applications of MI are not exhaustive, but they do show-

case its versatility as a statistical measure which is especially relevant to the mul-

timodal image registration challenges this thesis addresses.

Table 2.1 provides a comparative summary, presented in chronological order of

existing similarity measures in terms of their appropriateness for mono and mul-

timodal registration, characteristic type and computational efficiency. It highlights

their drawbacks particularly reflecting their sensitivity to illumination, segmenta-

tion quality, use of spatial information and computational cost.

Broadly, the intensity and feature-based similarity measures are sensitive to

both noise and the quality of segmentation, with their performance being fur-

ther degraded in clinical images containing INU and large homogeneous regions.

Although, incorporating local spatial information into intensity-based similarity

measures to develop hybrid solutions appears promising for multimodal registra-

tion, the associated high dimensionality leads to large computational overheads

(Goshtasby, 2012). Clearly, the computational efficiency is further impacted when

dealing with datasets which include the aforementioned artefacts leading to slower

convergence (Oliveira and Tavares, 2014).
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Monomodal Registration
Multimodal

Type (I=Intensity, F=Feature, H=Hybrid)
Computational Efficiency

SM Method Limitation
WC X X I X Need to define ROI
SAD X × I X Outliers sensitive
SSD X × I X Noise sensitive
CC X × I X Non-uniform illumination sensitive
MI X X I X Small overlapping sensitive
GD X × I X Thin line structure sensitive
CR X X I X Computationally expensive
NMI X X I X Spatial information not used
RIU X × I X Non-uniform illumination sensitive
HO-MI X X H × Computationally expensive
GMI X X H X Noise sensitive
LC X X I × Computationally expensive
NCC X × I X Non-uniform illumination sensitive
DB-ICP X × F X Need accurate segmentation
MC-MI X X H X Noise sensitive
MF-MI X X H × Computationally expensive
RMI X X H × Computationally expensive
DE, PI, GC X × I X Unsuitable for multimodality
cMI X X H × Computationally expensive
SE-MI X X H × Computationally expensive
RIR-BS X X F X Need accurate segmentation
GFM X × F X Need accurate segmentation
OF-MI X X H × Need accurate segmentation
FNMI X X H × Computationally expensive

Table 2.1: Comparative summary of major existing similarity measures.

Overall, these observations conclusively confirm the need for a new hybrid

similarity measure which combines local regional features with MI to enable the

registration of challenging multimodal clinical images while at the same time in-

curring low computational cost. Since iterative EMPCA offers speed benefits over

conventional dimensionality reduction mechanisms, this was the motivation to in-

vestigate whether an efficient hybrid EMPCA-based similarity measure could be
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framed without compromising registration performance. This was the context

for the overarching research question formulated in Section 1.4 and from which

the new EMPCA-MI similarity measure framework presented in this thesis was

developed as detailed in Chapters 4, 6 and 7.

Before presenting the constituent components of this framework, the next

chapter describes the research methodology adopted.

2.6 Summary

This chapter discussed the historical background and developments in the medical

imaging domain in brief. It highlighted the need of multimodal registration and an

insight into the various challenges of the process. It also presents an elaborative

literature review of the various steps involved in the registration process, which

include different transformations, interpolations, similarity measures and optim-

isation methods. Since MI-based similarity measures have been most popular in

the MIR domain, a review of them has been presented. Finally, a comparative

summary table is presented for the limitations of major existing similarity meas-

ures. The next chapter will focus on the research methodology adopted for this

thesis.



Chapter 3

Research Methodology

3.1 Introduction

This chapter presents the research methodology adopted to design, develop as

well as test and critically evaluate the new hybrid EMPCA-MI similarity measure

framework. The methodology is based on the generic MIR model (Oliveira and

Tavares, 2014), to critically analyse the robustness of the framework in a variety

of practical scenarios, including different levels of misregistration along with the

presence of modality artefacts and noise. This enables an equitable performance

comparison of the new framework by assessing its impact both qualitatively and

quantitatively for a given reference and sensed medical image pair (Khalifa et al.,

2011; Zitová and Flusser, 2003). The research methodology utilises images from a

variety of mono and multimodal clinical datasets.
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3.2 Research Methodology and Test-bed

Medical image registration is a challenging and computationally intensive prob-

lem, which has led to its methodological design and development on both dedicated

hardware-based prototype and computer-based simulations (Eklund et al., 2013;

Fluck et al., 2011; Neri et al., 2008). As discussed in Section 2.3, a software im-

plementation offers greater flexibility of rapid development/verification cycle and

is more cost effective in comparison to a hardware-based solution. Hence, a soft-

ware simulation-based test-bed was adopted for developmental and experimental

purposes.

Figure 3.1 shows the high-level block diagram of both the methodology and

test bed used. It highlights the generic MIR model which uses various inputs and

parameter settings; a set of predefined performance metrics for evaluation and a

final registration output of a pair of medical images which are spatially aligned and

have a minimum registration error. The various phases of the adopted research

methodology are summarised in following steps:

1. Critical review of the MIR literature and narrow the research focus to sim-

ilarity measure in the registration process.

2. Implement an established generic MIR model which will be used as an un-

derlying building block for the evaluation process.

3. Identify the gaps and limitations of existing similarity measures. Iteratively

test and develop new ideas for new hybrid EMPCA-MI similarity measure

framework which can close the gap with the objective to improve registration
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Figure 3.1: Block diagram of the research methodology including the simulation test bed.

performance with respect to the challenging conditions highlighted in Section

1.3. This process comprises the development cycle as shown in Figure 3.1,

which includes design, development followed by testing and evaluation.

4. Based on the generic MIR model, implement the EMPCA-MI similarity
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measure framework (step 3 ) in the simulation environment using a refer-

ence and sensed multimodal medical image pair from the image dataset and

chosen set of simulation specific parameter settings.

5. Setup a new scenario experiment to validate the level of robustness of the

EMPCA-MI similarity measure framework in terms of registration perform-

ance for a given level of misregistration and noise artefacts.

6. Perform the registration simulation as in Figure 2.6 and save the final regis-

tration results using (2.1).

7. Critically evaluate the registration quality using appropriate performance

metrics.

8. Repeat steps 5-7 until all scenarios have been considered.

9. Analyse the new similarity measure results for a range of scenario experi-

ments and compare with the performance of existing similarity measures.

These steps provide the necessary rigour to critically evaluate the EMPCA-MI

similarity measure framework. The next section will consider the registration

model set-up.

3.3 Generic MIR Model Setup

As discussed in Section 2.3, most of the literature uses a generic registration model

for the iterative MIR process which comprises of various steps as shown in Figure

2.5. Since the generic model has been rigorously used in the past for a variety of
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medical registration applications (Oliveira and Tavares, 2014), it was considered as

the primary choice for the deployment of the new EMPCA-MI similarity measure

framework. The transformation assumed for the registration model is two dimen-

sional rigid (Brown, 1992) having tx and ty translations along the x and y axes,

and rotational angle θ for all registrations, except the retinal image datasets, where

for the reasons given in Section 2.3.1, a similarity transformation with uniform

scaling S (Gharabaghi et al., 2013; Legg et al., 2008, 2009) is used. For interpol-

ation, in the past various methods have been applied (Zitová and Flusser, 2003)

as discussed in Section 2.3.2. Of these, bicubic, bilinear and nearest neighbour

interpolations were chosen for the generic registration model since they have been

shown to produce minimal artefacts compared to other techniques (Acharya and

Tsai, 2007; Pluim et al., 2000b) and are computationally faster than higher-order

interpolation methods (Thevenaz et al., 2000).

As the behaviour of an interpolator is also dependent on the similarity meas-

ure, a rigorous analysis and investigation using these interpolators within the new

hybrid EMPCA-MI similarity measure will be undertaken in Chapter 4. The most

appropriate interpolation method emerging in this analysis will be then used in the

subsequent chapters. Furthermore, due to the overall faster and better convergence

performance, the Powell Brent optimisation (Press et al., 2007) has been adopted

for the registration model. Table 3.1 shows the different parameter settings and

their empirical selections used in the registration model and these remain fixed

throughout the experimental analysis unless otherwise stated.
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Generic MIR Model

Parameter Setting Selection

Transformation 2D Rigid and Similarity.

Interpolation Bicubic, Bilinear and Nearest Neighbour

Powell Brent Method

Optimisation Tolerance=10−5 (Powell) and 10−3 (Brent line search)

Maximum number of iterations is 10.

Table 3.1: Parameter settings for the generic MIR model.

3.4 Image Datasets

A range of mono and multimodal clinical datasets are chosen for the evaluation

of the EMPCA-MI similarity measure framework for the registration experiments.

Table 3.2 shows the details of the image datasets.

3.4.1 Mono and Multimodal BrainWeb Dataset

The BrainWeb Database (Montreal Neurological Institute and Hospital, nd) com-

prises multimodal MRI T1, T2 and PD brain images which have been synthesised

from a digital phantom (Collins et al., 1998). The BrainWeb images are defined

at a 1 mm isotropic voxel grid in Talairach space, with dimensions as shown in

Table 3.2. They have been used extensively to study the performance of MIR

methods (Gholipour et al., 2007; Razlighi et al., 2013) as well as in other applic-

ations (Khademi et al., 2014; Nordenskjöld et al., 2014). The main advantages of

using this dataset are: i) the ground truth is known a priori, and ii) the imaging

parameters can be independently controlled. Since the source for simulation of
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Dataset Modality
Resolution

(pixels)
INU(α) Noise(β)

BrainWeb

MRI T1 (T1)

[181×217×181]
α20=20% INU,

α40=40% INU

Gaussian

MRI T2 (T2) (µ=0.01,

MRI PD (PD) σ2=0.01)

DRIVE Fundus [768 × 584] INU and noise are not present in these images

Brno-Mono Fundus [3504 × 2336] though they are characterised by having low

Brno-Multi
Fundus [3888 × 2592] contrast, non-uniformly illuminated

SLO [768 × 768] homogeneous regions & different pathologies.

Table 3.2: Various clinical image dataset details (Kolar et al., 2013; Kolar and Tasevsky, 2010;
Montreal Neurological Institute and Hospital, 2000, nd).

the functional images is the same digital phantom, one has a systematic means of

establishing a gold standard for registration and control over the level of image

degradation for all modalities (Collins et al., 1998). For these reasons, this partic-

ular database was used for the experimental work and will be referred throughout

as BrainWeb. Figures 3.2(a) – (c) show a sample set of MRI T1, T2 and PD im-

ages of the BrainWeb dataset. In order to test the robustness of the EMPCA-MI

similarity measure framework, both INU and Gaussian noise-based artefacts were

introduced into the BrainWeb dataset as will be discussed in Section 3.5.2.

3.4.2 Mono and Multimodal Retinal Datasets

As mentioned in Section 2.2, retinal images represent very challenging cases for

MIR due to the presence of low contrasted homogeneous and non-uniformly illu-

minated regions. The following two mono and multimodal retinal databases were

used for the experimental work:
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(a) (b)

(c)

Figure 3.2: Example BrainWeb images of brain MRI (a) T1, (b) T2 and (c) PD from (Montreal
Neurological Institute and Hospital, nd).

DRIVE Retinal Database

Digital Retinal Images for Vessel Extraction (DRIVE) (Image Sciences Institute,

nd) is a clinical database of monomodal retinal images from a diabetic retinopathy

screening program in The Netherlands (Staal et al., 2004). This database comprises

of twenty colour retinal images acquired with 45° field of view, using a Canon

CR5 non-mydriatic 3CCD camera. DRIVE database was initially established to

enable comparative studies on the segmentation of blood vessels in retinal images

(Fraz et al., 2012), but has recently been more widely adopted for retinal image

registration (Gharabaghi et al., 2013; Patankar and Kulkarni, 2015), due to the

lack of publicly accessible retinal datasets (Karnowski et al., 2013; Sim et al.,
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(a) (b)

(c) (d)

Figure 3.3: Example retinal images (a) and (b) of monomodal colour Fundus retinal images
from the DRIVE dataset (Image Sciences Institute, nd) and (c) colour Fundus, (d) SLO from
Brno-Multi dataset (Kolar et al., 2013; Kolar and Tasevsky, 2010).

2015). This database is denoted as the DRIVE dataset in this thesis, with Figures

3.3(a) – (b) showing a sample set of retinal images from this dataset.

Brno Retinal Database

This retinal database is maintained by Brno University of Technology and com-

prises both mono and multimodal retinal datasets (Kolar et al., 2013; Kolar and

Tasevsky, 2010), which are denoted throughout this thesis, as Brno-Mono and

Brno-Multi respectively. The Brno-Mono dataset comprises 44 colour Fundus im-
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age pairs. Each colour Fundus image was acquired with 60° field of view using

Canon CF-60UV with digital camera Canon EOS 20D. The Brno-Multi dataset

comprises 10 pairs of colour Fundus and grayscale SLO images. Each colour Fundus

image of this dataset was acquired using a Canon CR-1, while the SLO images

were obtained from a SLO system from Spectralis, Heidelberg Engineering. This

database is not publicly available and was made available upon request. Figures

3.3(c) – (d) show a set of retinal images from the Brno-Multi dataset.

3.5 Robustness Scenarios

To validate the robustness of the registration performance for the proposed similar-

ity measure, various scenarios were introduced. Ideally a robust similarity measure

must be stable towards perturbations in the condition of input medical images.

For example, different level of misalignment and the presence of noise/INU should

not significantly affect the final registration, though in practice, such scenarios

tend to test the limitations of a similarity measure and the registration model as

a whole, depending on its clinical applicability.

Existing scenarios as in (Argyriou et al., 2015; Brock, 2013; Hajnal and Hill,

2001; Zitová and Flusser, 2003), are deployed for testing the robustness of the new

EMPCA-MI similarity measure, which include: varying the level of misalignment

between the reference and sensed image pair; introducing known artefacts such as

INU and noise, and using image pairs which have large homogeneous non-vascular

regions. The following sections will discuss each of these scenarios in detail:
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3.5.1 Initial Misregistration

The registration process spatially aligns a reference and sensed medical image pair,

which are misregistered. The level of misregistration present can depend on various

reasons such as the medical imaging equipment, its acquisition times, inter/intra

patient imaging and clinical application (Hajnal and Hill, 2001). Ideally, the regis-

tration model is supposed to register an image pair having any level of misregis-

tration, but in practice the result is highly dependent on the initial misregistration

since this governs the amount of initial overlap between the images (Studholme

et al., 1994).

A robust similarity measure should be able to overcome this dependency by

consistently providing lower registration error (RE) even when the level of misreg-

istration in the image pair is increased (Modersitzki, 2004). For this reason, most

literature makes use of a consistent methodology of introducing different levels of

random, but known initial misalignment to the reference image IR before begin-

ning the registration process (Russakoff et al., 2003; Wiest-Daesslé et al., 2007). In

the experiments, the initial misregistration transformation parameters are defined

as τinitial, and this is used to evaluate and compare the robustness of the new

EMPCA-MI similarity measure with existing similarity measures. The τinitial val-

ues for the registration of both BrainWeb and retinal image datasets were adopted

from (Kotsas and Dodd, 2011) and (Gharabaghi et al., 2013) respectively. Since a

known ground truth between IR and IS exits, the initial RE is then computed as

the mean of Euclidean distances between the four corner points of τinitial(IR) and

IS in pixels (Beutel, 2000; Hajnal and Hill, 2001).
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The twenty initial misregistration scenarios for BrainWeb dataset as adopted

from (Kotsas and Dodd, 2011) varies with initial RE=18.59 pixels (for 1st initial

misregistration scenario (−5.55, 17.74, 0.35°) to 109.25 pixels (for 20th initial mis-

registration scenario (0.55, 29.63, −44.7°). Similarly, five initial misregistration

scenarios were used from (Chen et al., 2011) and (Gharabaghi et al., 2013) for

the retinal datasets. These different initial misregistration scenarios represent the

initial misaligments, which occur in practice. Tables A.1 and A.2 in Appendix A

show the various τinitial used throughout this thesis together with the correspond-

ing initial RE for the BrainWeb and retinal datasets respectively. A larger value

of initial RE emphasises that the image pair is more misaligned and will prove to

be more challenging for registration.

3.5.2 INU and Gaussian Noise

Another challenging condition which impacts the performance of registration pro-

cess is the presence of INU in multimodal medical images, as already mentioned in

Section 2.2. According to the radio frequency mapping theory (Insko and Bolinger,

1993; Stollberger and Wach, 1996), INU can be modelled as a multiplicative pro-

cess (Ganzetti et al., 2016; Sled, 2015). The majority of previous studies including

(Belaroussi et al., 2006; Dawant et al., 1993; Pham and Prince, 1999; Wells et al.,

1995), have all formalised the corrupting influence of INU in MRI images as follows:

a(x, y) = u(x, y)α(x, y) + β(x, y) (3.1)
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(a) (b)

(c) (d)

Figure 3.4: Example BrainWeb image of (a) uncorrupted brain MRI T1 u, (b) multiplicative
20% INU α, (c) additive Gaussian noise β and (d) measured T1 image a (Collins et al., 1998;
Montreal Neurological Institute and Hospital, nd; Razlighi et al., 2013).

Where, a is the measured MRI image as a function of spatial location (x, y),

u is the uncorrupted image, α is the multiplicative artefact, and β is the image

noise which is Gaussian distributed and independent of u (Belaroussi et al., 2006;

Gudbjartsson and Patz, 1995; Henkelman, 1985). Figures 3.4(a) – (d) shows the

uncorrupted MRI T1 image u, corresponding 20% INU α and noise β, and the

resultant MRI image a. In order to test the robustness of any new similarity

measure against such artefacts, INU is introduced into the MRI image pairs with

levels of 20% and 40%, denoted by α20 and α40 respectively as detailed in (Collins

et al., 1998), (Leondes, 2005), (Yi and Soatto, 2011) and (Razlighi et al., 2013).

Also Gaussian noise denoted by β having mean µ and variance σ2 values is used,

as shown in Table 3.2.
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(a) (b)

(c)

Figure 3.5: Example BrainWeb images of misregistered brain MRI (a) T1+α40+β, (b)
T2+α40+β and (c) PD+α40+β from (Montreal Neurological Institute and Hospital, nd).

To clarify the nomenclature used, T1+α20 represents a MRI T1 image with

20% INU. Correspondingly T2+α40+β represents a MRI T2 image with 40% INU

and Gaussian noise. Figures 3.5(a) – (c) show a selection of misregistered im-

ages from the BrainWeb dataset, with different levels of INU and Gaussian noise

combinations.

3.5.3 Low Contrast and Homogeneous Regions

As highlighted in Section 2.2, retinal images are challenging to register due to

their innate features (Sanchez-Galeana et al., 2001), especially low-contrast ho-
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(a) (b)

Figure 3.6: Example retinal images from Brno-Mono dataset (a) colour Fundus and (b) only
its green channel (shown in grayscale colour) from (Kolar et al., 2013; Kolar and Tasevsky, 2010).

mogeneous and non-uniformly illuminated regions (Marrugo and Millán, 2011), in

addition to different pathological conditions like haemorrhages, retinal scars and

clumping of the dark pigment (Saine and Tyler, 2002). All these characteristics

are known to cause deterioration of the registration performance in many existing

similarity measures (Legg et al., 2009) while some fail totally (Fang et al., 2005).

For these reasons, the mono and multimodal retinal images are chosen in order

to test the robustness of the hybrid EMPCA-MI similarity measure framework.

Furthermore, for retinal images, registration is performed using only the green

channel, since it has the highest contrast compared with the red and blue chan-

nels, which are saturated and contain acquisition noise (Chanwimaluang et al.,

2006; Laliberte et al., 2003; Skokan et al., 2002). Figures 3.6(a) and (b) respect-

ively show a sample retinal image from the Brno-Mono dataset of colour Fundus

together with its green channel. Clearly the visibility of vascular regions is en-

hanced when only the green channel is considered, while no INU or Gaussian noise

is added to any of the retinal images because these artefacts are not prominent

during the acquisition process (Saine and Tyler, 2002).
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3.6 Performance Metrics

These are pivotal in the evaluation and validation of an image registration process

(Maintz and Viergever, 1998) by measuring the success of a registration outcome

along with their computational cost in both a quantitative and qualitative man-

ner. They also provide the insight for analysing the new EMPCA-MI similarity

measure framework for experiments with the scenarios in Section 3.5. Despite

the importance of this comparison, before deploying image registration for clinical

use, there are no established criteria or standard methods available (D. Forsberg,

2013). This hiatus and inadequate validation practice has tended to impede the

widespread usage of image registration in different clinical workflows. The fol-

lowing sections will review those performance metrics which have previously been

used for quantitative and perceptual assessment of the registration process, along

with the computational cost.

3.6.1 Quantitative Assessment

Various quantitative methods to evaluate the registration performance, including

the target landmarks, embedded fiducial markers, transformation error or Euc-

lidean distance between pair of known points in the reference and sensed images

(Klein et al., 2009), (Murphy et al., 2011) and (Rohlfing, 2012). The applicabil-

ity of these methods depends on different factors such as availability of a ground

truth and whether the fiducial markers are surgically implanted prior to image

acquisition. Of these, a distance-based numerical error is adopted as the ground

truth between the image pair as it is available for all the datasets used in the

experiments (Goshtasby, 2012; Hajnal and Hill, 2001).
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Once the new hybrid EMPCA-MI similarity measure is maximised in (2.1),

the final registration transformation parameters τfinal are saved and the final RE

is computed as the mean of Euclidean distance between the four corner points of

τinitial(IR) and τfinal(IS) in pixels (Bernardes et al., 2014; Dame and Marchand,

2010; Legg et al., 2007; Tang et al., 2010; Yin et al., 2010). For any modality, the

lower the final RE value, the better registered the image pair.

In order to display and critically analyse the final RE values for a group of

registrations, a box and whisker plot is used. This is a descriptive statistical tool

(Klein et al., 2007) chosen because it represents the spread and skewness of the

RE by displaying the mean, median, lower and upper quartiles and outliers. RE

values outside 1.5 times interquartile range from the lower and upper quartiles are

termed as outliers (Brase and Brase, 1999). In addition, the number of outliers

having RE values higher than a given limit are shown as out-of-range outliers on

top of the corresponding box and whisker plot (Murphy et al., 2011).

3.6.2 Perceptual Assessment

The registration process performance is also qualitatively evaluated using visual

quality assessment (Woods, 2009). A variety of image overlaying visualisation

methods can be used including contour, coloured, Canny edge detection and check-

erboard overlay (Bourland, 2012). In addition, some software-based dynamic

graphic user interfaces use a sliding window method to reflect the correspond-

ence between the reference and sensed image pair (Fedorov et al., 2012; Meyer,

2007).
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This thesis utilises the Canny edge detection and checkerboard overlay method

for perceptual evaluation of the registration process as they can effectively visu-

alise the qualitative differences and degree of physical misalignment between the

registering images.

The Canny edge detection overlay method displays the whole image pair after

the edge detection process, while the checkerboard overlay divides both the im-

age into square regions, with the diagonal squares displaying the regions of the

same image. The checkerboard overlay specifically suits retinal images since it

enables close observation of vascular lines and their continuity (Kolar et al., 2013;

Wilson and Laxminarayan, 2007). Figure 3.7(a) shows the result of multimodal

T1+α40+β/T2 pair registration using Canny edge detection overlay with an in-

set of zoomed in region showing the central lobes. This clearly emphasises the

level of misregistration between the image pair. Similarly, Figure 3.7(b) shows

an example of checkerboard overlay after monomodal retinal Fundus registration,

highlighting the evident discontinuity in vascular lines at the edges of the square

regions (Gharabaghi et al., 2013).

3.6.3 Computational Cost

Another key challenge for MIR besides attaining lower RE, is to minimise the

overall computation cost of registration (Eklund et al., 2013; Shekhar et al., 2003;

Zitová and Flusser, 2003). This is the total computational time incurred for each

registration component as shown earlier in Figure 2.5, which is clearly dependent

on the different algorithms comprising the hybrid EMPCA-MI similarity measure
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(a) (b)

Figure 3.7: Visual quality assessment of (a) multimodal T1+α40+β/T2 pair registration using
Canny edge detection overlay (with inset showing zoomed in region) and (b) monomodal retinal
registration zoomed-in view using checkerboard overlay (reproduced from (Gharabaghi et al.,
2013)).

framework. As registration is an iterative process along with, where appropriate,

an order of time complexity analysis, the average time to compute one cycle of

iteration of the EMPCA-MI framework during registration is also considered as a

key performance metric. This is calculated by averaging the computational time

for all iterations in each registration and is defined as the average runtimes (ART)

in seconds.

3.7 Simulation Platform

A variety of programming languages and open-source coding platforms are avail-

able for designing and developing the MIR model (Goshtasby, 2012; Modersitzki,

2004). High level languages such as C/C++ (Wang and Lai, 2008) and Java (Lyon,

1999) are compiler-based and require development of components and libraries for
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each element, which can be time consuming in most cases. In contrast, open-source

platforms like Python (Chityala and Pudipeddi, 2014) and ImageJ (Pascau and

Mateos, 2013) have specific libraries for image processing applications.

A popular alternative is MATLAB® (Mathworks, nd) which is well accep-

ted by the community because of its rapid prototyping capabilities. Although

it is interpreter-based commercial software and has comparatively slower execu-

tion times, it comes with rich built-in functions, lucid error reporting and has

specifically developed toolboxes for image and signal processing. The slow ex-

ecution speeds can be compensated by choosing a high-end personal computer

(PC). The toolboxes are written and rigorously tested, making them more com-

pact and straightforward to use compared with C/C++ and Java code. Since the

main focus is on having a development platform to design, test and evaluate the

new hybrid EMPCA-MI similarity measure framework, rather than designing new

tools, MATLAB was the pragmatic choice for all experimental work.

The technical specifications for the MATLAB software and high-end PC are

detailed in Table 3.3. These were fixed throughout all the experimentation work

to ensure consistent and accurate performance comparison of the ART metric.

3.8 Software Code Validation

Various code verification and validation techniques (Oberkampf and Roy, 2010)

based on software life cycle model were used throughout the design and imple-

mentation of the EMPCA-MI similarity measure framework. These included both
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Software

Platform

PC Specifications

MATLAB 7.12

R2011a

Processor
Intel® CoreT M2 Duo E7500

(2.93GHz, 1066MHz FSB, 3MB L2 Cache)

RAM 3 GB, DDR2, 800MHz

Hard Disk 160GB, 8MB Cache, 7200 RPM

Operating

System

Ubuntu Release 10.04 (lucid)

Kernel Linux 2.6.32-67-generic

GNOME 2.30.2

Table 3.3: Simulation platform specifications and their details.

static analysis checks, such as data type, control flow and data use, as well as dy-

namic checks including running the model with Shepp-Logan head phantom test

image pair (Haidekker, 2011).

An advantage of using MATLAB was the considerably lower refinement time

incurred between the development and static-dynamic test cycle in Figure 3.1.

In the initial development phase, coding and design errors (like the exception

handling, divide by zero along with checks for integer overflow and conditional

dead logics) were trouble-shot.

The transformation and interpolation methods deployed in the registration

model were available as MATLAB functions in its Image Processing Toolbox

(Mathworks, nd). The Powell Brent optimisation method was implemented as in

(Press et al., 2007) and then validated using the inverted version of standardised

first function of De Jong’s benchmarking test (Molga and Smutnicki, 2005). This

function is convex so has a global maximum which represents the ideal image regis-
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tration scenario (Modersitzki, 2004; Zitová and Flusser, 2003). Furthermore, it has

the ability to extend and simulate three and four variable maximisation represent-

ing the 2D rigid and similarity transformations respectively. This benchmarking

test validated the functionality of Powell Brent optimisation method implementa-

tion which was then integrated into the registration model.

The software implementation of the EMPCA-MI similarity measure framework

was verified as well as validated using two approaches:

1. By independently testing the functionality of each constituent component of

the framework. For example, EMPCA iteratively computes the various PCA

components, so the EMPCA (Roweis, 1998) implementation was tested with

the conventional PCA function in the MATLAB Statistics Toolbox (Math-

works, nd) using a multivariate Iris dataset (Fisher, 1936). Similarly the

MI code was based on (Cover and Thomas, 1991) and tested using the MI

Least-dependent Component Analysis Toolbox (Stögbauer et al., 2004) for

fixed test data. Kaiser Rule (Jackson, 1993; Jolliffe, 2002) and Wichard

(Wichard et al., 2008) approach implementations were also validated using

MATLAB Statistics Toolbox. These tests provide a higher degree of confid-

ence to the software implementation as the functionality of each individual

stage is evaluated independently.

2. To verify the software code of the registration model, dynamic testing was

applied to the Shepp-Logan head phantom test image pair (see Figure 3.8)

(Haidekker, 2011) in different misregistration configurations. This is em-

ployed in (Guo and Huang, 2008; Pilutti et al., 2014) as a model of the human
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Figure 3.8: Shepp-Logan head phantom image (Guo and Huang, 2008; Haidekker, 2011)

head for the development and testing of image registration algorithms since

it has a known ground truth. These experiments confirmed the convergent

nature of the registration model as alignment of this test image was always

achieved. Furthermore, the existing similarity measures used as comparators

were publicly available. Details of the specific individual comparators used

for validation will be given in the respective contribution chapters.

3.9 Summary

This chapter has described the methodology adopted for all experimental work in

this thesis. A software simulation-based test-bed is used to implement the MIR

model, which uses different test scenarios for robustness validation. A set of per-

formance metrics have been selected to evaluate the similarity measures on clinical

and general datasets. The choice of MATLAB as the main simulation platform for

model implementation has been justified and details of the validation procedures

for the code developed have been presented. The next chapter will present the

first contribution, namely the EMPCA-MI similarity measure framework.



Chapter 4

EMPCA-MI for Medical Image

Registration

4.1 Introduction

The performance of the registration for images of some anatomies deteriorates

considerably, such as MRI images having intensity variations and noise due to

radio frequency-based inhomogeneity and similarly retinal images which comprise

inherently large homogeneous regions (Chanwimaluang et al., 2006; Simmons et al.,

1994; Zhuang et al., 2010). It was evident from the literature in Chapter 2 that

the similarity measure plays a pivotal role in the registration process. While MI

has been a popular similarity measure for image registration, two of its recent

variants were identified in Chapter 2, namely GMI and RMI as promising similarity

measures. GMI and RMI combine intensity gradient information and local pixel

regions respectively with MI to improve the image registration performance in
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comparison to traditional MI. However, GMI performance degrades in the presence

of artefacts and noise, while RMI uses a covariance matrix instead of a high-

dimensional histogram, which leads to reduced data complexity but generates a

coarser approximation in certain cases.

In this chapter, a new similarity measure framework called EMPCA-MI is pro-

posed for MIR. EMPCA-MI utilises the concept of neighbourhood region from

the RMI algorithm to extract the spatial features with the help of principal com-

ponent analysis. Unlike the approximation in RMI, EMPCA-MI achieves effective

dimensionality reduction by using an iterative process to determine the dominant

principal component. It uses only first principal component to extract the key

features from a given neighbourhood radius of the image since it always has the

highest variance. This evidently leads to a significant reduction in the computation

cost.

This chapter also includes a thorough empirical EMPCA-MI analysis for the

choice of interpolation and neighbourhood radius on mono and multimodal images.

The rest of the chapter is organised as follows: The new EMPCA-MI framework is

presented in Section 4.2. In Section 4.3, experimental results are conducted to ana-

lyse and choose the interpolation and radius of neighbourhood region from three

perspectives i.e. smoothness of the similarity measure traces, computational cost

involved and finally the quantitative performance in terms of RE. These choices

will be used in the next chapter. Finally a summary of the chapter is provided in

Section 4.4.
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4.2 EMPCA-MI

In Chapter 2, various power iteration and competitive learning-based dimension-

ality reduction methods were discussed. From them, EMPCA was identified as an

attractive solution since it requires fewer number of iterations to find the number

of principal components required and can be deployed with lower computational

overheads (Roweis, 1998). In the past, MI has been utilised to evaluate and select

features for a diverse range of applications (Battiti, 1994; Hossain et al., 2011; Peng

et al., 2005; Yao et al., 2010). Hence its statistical background and ability to per-

form on multimodal images makes it suitable for quantifying the level of alignment

between the EMPCA-extracted features (Paragios et al., 2015). The EMPCA-MI

framework combines the spatial features of neighbourhood region with MI us-

ing EMPCA in three sequential steps (Reel et al., 2012a,b). Step I comprises

of rearranging the image data such that the neighbourhood region features can

be effectively extracted. Step II employs EMPCA to iteratively compute the first

dominant principal component. Finally Step III computes the mutual information

between the features of reference and sensed images.

4.2.1 Step I : Image Neighbourhood Rearrangement

Considering an interpolated sensed image I∗
S ∈ Nn×m with n rows and m columns,

a neighbourhood region-based sliding window of size (2r + 1) × (2r + 1) pixels,

using a given neighbourhood radius r can be rearranged as a row vector s ∈ N1×d,

where d = (2r + 1)2. This can be further generalised as:
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Sk , {h ∈ I∗
S | D∞(h, g) ≤ r} (4.1)

D∞(h, g) := max(| gi − hi |, | gj − hj |) (4.2)

Here, D∞(h, g) denotes the Chebyshev distance (Fernandez-Maloigne, 2012) of

a given pixel location h from the centre pixel g of the neighbourhood region sliding

window at ith row and jth column location. Also, r ≤ i ≤ (n− r), r ≤ j ≤ (m− r)

and 1 < k < q with q = (n−2r)×(m−2r). Hence, all such q neighbourhood region

windows for the complete I∗
S, can be concatenated and defined as Qs ∈ Nq×d, such

that:

Qs ,



S1

S2

...

Sk

...

Sq



(4.3)

Here, Sk denotes the kth neighbourhood region window. Here, Qs can be con-

sidered as a matrix consisting of q observed data vectors in d dimensional sub-

space. Forming this neighbourhood region reduces the artefact effects because the

intensity variations across a localised region will be significantly lower compared

to across the whole image. Since neighbourhood region pixels are more likely to

be locally correlated compared to pixels located further apart, each neighbour-

hood region is rearranged as a d-dimensional vector, enabling the features to be

extracted along with dimensionality reduction.
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r = 1

r = 2

r = 3

(a) (b) (c)

d = 9 d = 25 d = 49
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s

*

Figure 4.1: The neighbourhood region selection for feature extraction in EMPCA-MI, showing
the dimensionality d with radius (a) r=1, (b) r=2 and (c) r=3 pixels.

Figure 4.1 illustrates the neighbourhood region sliding window for I∗
S with

radius r increasing from 1 to 3. Figure 4.1(a) shows using the central pixel of the

neighbourhood (shown in dark blue colour) for which the neighbourhood region

(shown in light blue colour) for radius r=1 is rearranged as s, having d=9. It is

apparent d increases with r2, emphasising that a larger region is considered as a

higher dimensionality for the feature extraction process. For example, in Figures

4.1(a) – (c), the value of d increases from 9 to 49, as r is increased from 1 to 3.

The overall impact of choosing a particular value of r for EMPCA-MI compu-

tation will be rigorously analysed in Section 4.3.2.
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4.2.2 Step II : EMPCA-based feature extraction

This step of EMPCA-MI comprises of dimensionality reduction of the neighbour-

hood region features. Although in Chapter 2, various dimensionality reduction

methods were discussed but EMPCA was identified as an appropriate method due

to its iterative nature and lower computational overheads instead of conventional

PCA which computes all the components simultaneously. As mentioned in the

literature, the sum of the variances of the principal components is equal to the

variance of the original variables. While the first principal component accounts

for most of the variability in the data (Rencher, 1998), various stopping rules such

as Scree Graph and Kaiser Rule (Jackson, 1993; Jolliffe, 2002) are also used for

determining the best P principal components to be retained, which represent the

high percentage of the variation in the data.

Hence, considering that Qs is a linear transformation of a latent variable z ∈

NP ×d, transformed by Φ ∈ Nd×P and additive Gaussian noise v ∈ Nq×d (having a

covariance matrix V ) such that:

Qs = Φz + v z ∼ N(0, 1) v ∼ N(0, V ) (4.4)

Here, z is assumed to be independent and have unity variance. Also v is in-

dependent of z and is normal distributed. Therefore, EMPCA algorithm (Roweis,

1998) can be used for dimensionality reduction to extract the most prominent

P principal components (such that P < d). The expectation step estimates the

unknown states Ωs ∈ NP×d and then choose Φ and the restricted V in the max-

imisation step so as to maximise the expected joint likelihood of the estimated Ωs

and the observed Qs. This can be written as:
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e-step : Ωs = (ΦTΦ)−1ΦTQs (4.5)

m-step : Φnew = QsΩT
s (ΩsΩT

s )−1 (4.6)

Here, Qs is a matrix with dimensions q × d for all neighbourhood regions as in

(4.3). In (4.5), an orientation for the principal subspace is randomly initialised.

Then considering this subspace as fixed, Qs is projected onto it to get the values

of the hidden states Ωs. Then in (4.6), keeping the values of the hidden states

fixed, choose the subspace orientation which minimises the squared reconstruction

errors of the given data-points.

Rowies et al (Roweis, 1998) explains the above-mentioned two steps using a

simple two-dimensional physical analogy. Assuming a rod pinned at the origin

which is free to rotate, consider picking an orientation for the rod. Now, holding

the rod still, project every data-point onto the rod, and attach each projected point

to its original point with a spring. Next release the rod and repeat. The direction of

the rod represents the guess of the principal component of the dataset. The energy

stored in the springs is the reconstruction error which needs to be minimised.

Hence, from the final iteration, the first P principal components can be stored

in Xs ∈ NP×q from Φ. In a similar way, XR can be computed from IR. EMPCA

offers a significant saving in the computation cost in comparison to using conven-

tional PCA for this step of EMPCA-MI, with latter computing all the principal

components at once using the covariance matrix (Jolliffe, 2002). A discussion com-

paring the computational complexity between conventional PCA and EMPCA will

follow later in Section 4.3.2.
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4.2.3 Step III : Finding MI for Registration

This final step of EMPCA-MI aims to find the similarity between the extracted

features of reference and interpolated sensed images. As discussed in Section 2.4,

MI represents the amount of information one variable contains within another and

hence is computed between XS and XR. It assumes that a statistical relationship

exists between XS and XR, which is reflected by their marginal probabilities and

joint probability. Hence, employing (2.7 - 2.15), the marginal entropies H(XR)

and H(XS), as well as joint entropy H(XR, XS) are:

H(XR) = −
∑
XR

pXR
(XR) log2 pXR

(XR) (4.7)

H(XS) = −
∑
XS

pXS
(XS) log2 pXS

(XS) (4.8)

H(XR, XS) = −
∑

XR, XS

pIRIS
(XR, XS) log2 pXRXS

(XR, XS) (4.9)

and

pXR
(XR) = UXR

U
(4.10)

pXS
(XS) = UXS

U
(4.11)

pXRXS
(XR, XS) = UXRXS

U
(4.12)

Hence, the MI between XR and XS can be expressed as:

MI(XR, XS) =
∑

XR,XS

pXRXS
(XR, XS) log2

{
pXRXS

(XR, XS)
pXR

(XR) pXS
(XS)

}
(4.13)
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Here, pXS
(XS) and pXR

(XR) are the marginal probabilities for XS and XR

respectively, and pXRXS
(XR, XS) represents their joint probability as defined in

Section 2.4. These probability distributions are computed using b number of bins.

The value of MI computed between the extracted features XR and XS will reflect

the measure of alignment between IR and I∗
S, for a given set of transformation

parameters. Hence an increasing value of MI for different sets of transformation

parameters will signify the better spatial alignment. This will be more evident

when the EMPCA-MI similarity measure framework is incorporated into the re-

gistration test-bed described in Chapter 3, which will use the optimisation process

to maximise the EMPCA-MI to achieve the best alignment between given IR and

I∗
S.

The corresponding pseudo-code of EMPCA-MI framework is given in Algorithm

4.1.

Algorithm 4.1 Pseudo Code for EMPCA-MI similarity measure framework
Inputs: IR and I∗

S each with spatial resolution m× n pixels; r – neighbourhood
radius; P – number of principal components.

Variables: d– dimensional space; q– total no. of pixels; QR, QS–output from
rearranging IR and I∗

S; XR, XS – first principal component using EMPCA for QR

and QS.

Output: EMPCA-MI value

1: Initialise d = (2r + 1)2 and q = (m− 2r)× (n− 2r).

2: Calculate QR using (4.1) and (4.3) from IR.

3: Calculate XR using (4.4 – 4.6) from QR for a given P.

4: REPEAT Steps 2 to 3 for I∗
S to give XS.

5: Calculate MI(XR, XS) using (4.7– 4.13).

6: STOP
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Figure 4.2: Illustration showing EMPCA-MI computation steps on reference IR and interpol-
ated sensed I∗

S images.

Figure 4.2 illustrates the various steps of EMPCA-MI with the help of example

images having spatial dimensions 10× 10 pixels. In Figure 4.2(a), the Step I uses

neighbourhood radius r=1 and rearrange IR and I∗
S as QR and QS respectively.

Note the colour used for pixels represents the pre-processing step and does not

represent actual image data. Figure 4.2(b) shows the Step II computation of ex-

tracting the most prominent, first principal component XR and XS using EMPCA.

Finally, Figure 4.2(c) shows the Step III where the MI between them is computed

according to (4.13).

A numerical example illustrating the calculation of EMPCA-MI between two

matrices (IR and I∗
S) which represent image data having spatial dimensions 6× 6

pixels, is as follows:

Let,
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IR =



132 140 133 129 124 127

140 121 120 112 111 102

122 118 98 96 81 80

108 92 78 58 59 51

84 64 45 42 35 51

57 46 42 41 40 48


and I∗

S =



120 116 112 106 99 98

107 97 88 80 77 75

85 66 58 54 52 59

53 43 37 43 54 49

43 41 40 45 45 44

46 42 38 41 48 49


.

Where n = m = 6. Therefore, considering r = 1, d = 9 and q = 16.

Thus, in Step I using (4.1) and (4.3):

QR =



132 140 133 140 121 120 122 118 98

140 133 129 121 120 112 118 98 96

133 129 124 120 112 111 98 96 81

129 124 127 112 111 102 96 81 80

140 121 120 122 118 98 108 92 78

121 120 112 118 98 96 92 78 58

120 112 111 98 96 81 78 58 59

112 111 102 96 81 80 58 59 51

122 118 98 108 92 78 84 64 45

118 98 96 92 78 58 64 45 42

98 96 81 78 58 59 45 42 35

96 81 80 58 59 51 42 35 51

108 92 78 84 64 45 57 46 42

92 78 58 64 45 42 46 42 41

78 58 59 45 42 35 42 41 40

58 59 51 42 35 51 41 40 48


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and QS =



120 116 112 107 97 88 85 66 58

116 112 106 97 88 80 66 58 54

112 106 99 88 80 77 58 54 52

106 99 98 80 77 75 54 52 59

107 97 88 85 66 58 53 43 37

97 88 80 66 58 54 43 37 43

88 80 77 58 54 52 37 43 54

80 77 75 54 52 59 43 54 49

85 66 58 53 43 37 43 41 40

66 58 54 43 37 43 41 40 45

58 54 52 37 43 54 40 45 45

54 52 59 43 54 49 45 45 44

53 43 37 43 41 40 46 42 38

43 37 43 41 40 45 42 38 41

37 43 54 40 45 45 38 41 48

43 54 49 45 45 44 41 48 49



.

And, in Step II, the corresponding values of XR and XS assuming P = 1 in

(4.4 – 4.6) are:

XR =



−0.1500

−0.1895
...

−0.1498

−0.0623


16×1

and XS =



−0.3462

−0.3820
...

0.0011

−0.0132


16×1

Finally, in Step III, choosing b = 256 for (4.7– 4.13), is MI(XR, XS) ≈ 2.6875.

From the literature review in Chapter 2, the interpolation used for the trans-

formation of the image during the registration impacts upon the performance of

a similarity measure (Aljabar et al., 2005; Pluim et al., 2000b; Soleimani and
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Khosravifard, 2011; Tsao, 2003). Similarly, as observed in (4.1), the underlying

pre-processing stage of EMPCA-MI is dependent on the neighbourhood radius.

Hence in order to critically assess the performance of the new EMPCA-MI frame-

work, it is important that key parameter choices related to the interpolation and

neighbourhood radius r are appropriately made.

4.3 Choosing interpolation and neighbourhood

radius for EMPCA-MI

This section investigates the various choices available for interpolation and neigh-

bourhood radius parameter settings and then evaluates the EMPCA-MI perform-

ance with the help of registration experiments. These experiments are conducted

on the registration test-bed using the mono and multimodal pairs of MRI T1, T2

and PD human brain images from the BrainWeb dataset (with α20 and β) which

was described in research methodology Chapter 3.

During this analysis, to compute Step II of EMPCA-MI a fixed value of P=1

is used in (4.5) and (4.6). This value of P is chosen because as mentioned before,

it represents the first principal component which has the highest variance and

contains most of the prominent information (Jolliffe, 2002). The value of P will be

relaxed later in Chapter 7, where it will be shown that EMPCA-MI can iteratively

determine the best P from a dataset, instead of calculating all components using

a covariance matrix. Similarly, in Step III of EMPCA-MI, a fixed value of b=256

has been empirically chosen for the number of bins in (4.13), as in (Argyriou et al.,
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2015; Hahn et al., 2010; Legg et al., 2007; Maintz et al., 1998). These fixed number

of bins will be relaxed from Chapter 6 onwards, where its impact on registration

performance is investigated in detail. Next, to evaluate the most appropriate

interpolation strategy as well as the neighbourhood radius, three issues need to be

considered:

1. The smoothness of EMPCA-MI as a cost function.

2. The computational cost.

3. The preliminary registration performance.

The next two sections describe the experiments and results for the choice of inter-

polation and then neighbourhood radius.

4.3.1 Choice of Interpolation Technique

The first series of experiments involved the process of determining the most ap-

propriate interpolation method to be used to compute the EMPCA-MI similarity

measure value for an image registration pair. As discussed in Chapter 2, the choice

of interpolation for estimating intensity values of the transformed image has a signi-

ficant impact on the registration algorithm in determining the final transformation

value. Nearest neighbour, bilinear and bicubic methods have emerged as the most

commonly used interpolation methods (Acharya and Tsai, 2007). Hence, these

three interpolation schemes were examined as possible choices for the EMPCA-

MI framework for image registration purposes using the above three criteria for

assessment.
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Smoothness of EMPCA-MI plots

Each EMPCA-MI trace is obtained by shifting the sensed image along x and y axis

translation and θ rotation and keeping the reference image fixed. The EMPCA-

MI values between the two images are then plotted. These traces emphasise that

a global maximum is attained when the reference and sensed images are fully

aligned and the EMPCA-MI values gradually decrease as higher values of shift are

introduced.

For example, Figures 4.3 and 4.4 show the x and y axis translation EMPCA-

MI traces using different interpolation methods for monomodal T2/T2 and mul-

timodal PD/T1 image pairs respectively. The x axis translation plots in Figures

4.3(a) and (c) show both bilinear and bicubic interpolation methods give a similar

and smooth EMPCA-MI output. On the other hand, a closer inspection in the

zoomed-in view in Figure 4.3(a), shows the nearest neighbour method provides a

non-smooth, stepwise output. A similar trend is also evident in the corresponding

θ rotation plot included in Figure B.2 of Appendix B. Furthermore, for y axis trans-

lation plots in Figure 4.3(b) zoomed-in view it is seen that bilinear method also

has unsmooth behaviour which further aggravates in Figure 4.3(d). Furthermore,

in Figure 4.4(b) a similar trend for the nearest neighbour and bilinear methods is

seen for multimodal PD/T1 image pair. The bilinear method performance worsens

further with the presence of many local maxima on both sides of global maximum,

as seen in Figure 4.4(d) for translation along y axis. For completeness, Appendix

B includes the EMPCA-MI traces for other mono and multimodal T1, T2 and

PD image pairs. On closely examining the behaviour of these plots, bicubic inter-
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Figure 4.3: EMPCA-MI Traces with nearest neighbour, bilinear and bicubic interpolation for x
and y axis translation for monomodal T2/T2 image pairs (a & b) T2+α20/T2, (c & d) T2+β/T2
with inset showing zoomed-in view.

polation is found to be the most effective interpolation method in terms of cost

function smoothness. The better performance of bicubic method is due to the fact

that it utilises a wider weighted average of 4 × 4 pixels window, leading to more

accurate pixel representation in the transformed sensed image. In contrast the

nearest neighbour method gives a non-smooth, step-like trace resulting from the

output pixels assuming the value of nearest neighbouring pixels in the input im-

age. As neighbouring pixels will generally have similar values, it results in identical

EMPCA-MI values for a range of small shifts. Similarly, the bilinear method intro-
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Figure 4.4: EMPCA-MI Traces with nearest neighbour, bilinear and bicubic interpolation
for x and y axis translation for multimodal PD/T1 image pairs (a & b) PD+α20/T1, (c & d)
PD+β/T1.

duces artefacts that result in many local minima. Hence, bicubic method provides

overall smoother plot for EMPCA-MI compared to both nearest neighbour and

bilinear methods.

Computational Cost

Figure 4.5 shows the ART performance for computing the EMPCA-MI value using

nearest neighbour, bilinear and bicubic interpolation methods. It is apparent that
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Figure 4.5: ART performance of EMPCA-MI using nearest neighbour, bilinear and bicubic
interpolation methods for monomodal T2/T2 and multimodal PD/T1 image pairs.

bicubic method is approximately 15% and 25% slower than bilinear and nearest

neighbour methods respectively. Although, bicubic interpolation incurs higher

computation time in order to determine the gradients and cross derivative at each

re-sampled pixel location (Acharya and Tsai, 2007), but offers more accurate in-

terpolated values and especially smoother EMPCA-MI traces.

The nearest neighbour method despite of being fastest, due to its step-like

behaviour requires more overall registration time since the optimisation process

does not converge effectively to the best transformation value. Similarly deploying

bilinear for EMPCA-MI computation for registration will not be effective, since

it will have a higher likelihood of obtaining a sub-optimal solution due to the

optimisation process falling into false maxima instead of the true global maximum

(Wang et al., 2008).
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Preliminary Registration Performance

The preliminary registration performance is evaluated in terms of the RE for

nearest neighbour, bilinear and bicubic interpolation methods in the EMPCA-

MI framework. For this set of experiments, monomodal T2/T2 and multimodal

PD/T1 image pairs having α20 and β artefacts are used. As explained in the

research methodology Chapter 3, 20 levels of initial misregistration will be used

so there are in total 240 separate registration experiments performed for 2 mod-

ality pairs, 2 INU and Gaussian noise settings, 20 initial misregistrations and 3

interpolation methods. Figure 4.6(a) shows the RE vs. iteration plot for the re-

gistration of six monomodal T2/T2 pairs, starting with 1st initial misregistration

scenario (−5.55, 17.74, 0.35°). This initial misregistration scenario was chosen

as in (Kotsas and Dodd, 2011), as already discussed in Section 3.5.1. Instead of

only evaluating the final RE for each registration, RE vs. iteration plots is used.

They give an insight into the registration process by highlighting the converging

capability of a similarity measure.

In Figure 4.6(a), all six registrations start from a common initial RE and

thereon RE is computed at the end of each Powell multidimensional direction set

method iteration. As discussed in Sections 2.3.4 and 3.3, each iteration comprise

of Brent-based line minimisation, with the process stopping either when the max-

imum number of iterations is completed or else when the tolerance for the line

minimisation is achieved. The RE at the end of this process is denoted as final

RE. For example, in Figure 4.6(a), T2+α20/T2 registrations using nearest neigh-

bour, bilinear and bicubic interpolation start with an initial RE=18.6 pixels and

finish with a final RE=1.03, 4.05 and 0.03 pixels respectively.
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Figure 4.6: RE versus iterations plots for nearest neighbour, bilinear and bicubic interpola-
tion with EMPCA-MI-based monomodal T2/T2 registration using (a) 1st initial misregistration
scenario and (b) 20th initial misregistration scenario, multimodal PD/T1 registration using (c)
1st initial misregistration scenario and (d) 20th initial misregistration scenario.

Similarly, Figure 4.6(b) shows another set of registrations using 20th initial

misregistration scenario (0.55, 29.63, −44.71°) having initial RE=109.20 pixels.

Both plots show that bicubic interpolation-based registration outperforms the bi-

linear and nearest neighbour interpolations. It is clear that bicubic interpolation

consistently leads to a lower final RE for both the initial misregistration scenarios.

Especially striking is the monotonic rate of convergence in Figure 4.6(b) for bicubic

interpolation, in contrast to bilinear which converges after only the 7th iteration
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but to a higher RE value. These results are congruent with the EMPCA-MI results

discussed above. Since bicubic interpolation has smoother EMPCA-MI trace, it

will allow the registration process to converge towards actual global maxima com-

pared with the other interpolators. Figures 4.6(c) and (d) show the multimodal

PD/T1 registrations with 1st and 20th initial misregistration scenario respectively.

The nearest neighbour interpolation exhibits the poorest rate of convergence with

interestingly in Figure 4.6(d) for PD+α20/T1 registration, the process terminates

after only the 2nd iteration because the tolerance defined for the Powell-Brent op-

timisation is reached. While computationally being the fastest in terms of ART,

this example highlights the inconsistent RE performance of the nearest neighbour

interpolator.

Figures 4.7(a) and (b) show the detailed RE summary boxplots for monomodal

T2/T2 and multimodal PD/T1 registration using the three interpolators with

EMPCA-MI for all 20 initial misregistration scenarios. Each boxplot shows a

bounding box defining the interquartile range with the bar across representing the

median and whiskers denoting the RE range. The boxplots on top also include the

number of out-of-range RE values corresponding to each interpolation method.

The boxplots in Figure 4.7 reveal the overall better registration performance of

bicubic interpolation which consistently achieves lower mean RE for all cases.

Bicubic interpolation also exhibits the lowest number of out-of-range outliers, due

to the fact that it has a steady converge as seen in Figures 4.6(a) – (d). On the

other hand, nearest neighbour-based registrations lead to higher mean RE as well

as more number of out-of-range outliers because of the inaccurate pixel values

computed during the image transformation process during registration.



4.3 Choosing interpolation and neighbourhood radius for EMPCA-MI 102

3 1 1 1 0 0

0

1

2

3

4

5

6

7

8

9

N.
Ne

igh
bo
ur

Bi
lin

ea
r

Bi
cu
bic

N.
Ne

igh
bo
ur

Bi
lin

ea
r

Bi
cu
bic

T2+α20/T2 T2+β/T2

Monomodal Registration

R
eg

is
tr
a
ti
o
n
E
rr
o
r
(R

E
)

(a)

2 1 0 2 1 1

0

2

4

6

8

10

12

14

N.
Ne

igh
bo
ur

Bi
lin

ea
r

Bi
cu
bic

N.
Ne

igh
bo
ur

Bi
lin

ea
r

Bi
cu
bic

PD+α20/T1 PD+β/T1

Multimodal Registration
R
eg

is
tr
a
ti
o
n
E
rr
o
r
(R

E
)

(b)

Figure 4.7: RE summary boxplot of (a) monomodal T2/T2 registration and (b) multimodal
PD/T1 registration using nearest neighbour, bilinear and bicubic interpolation with EMPCA-MI
for all 20 initial misregistration scenarios. The mean and outliers are denoted by ♦ and + shapes.
The numbers on top of the plots refer to the number of out-of-range outliers with RE higher
than 9 and 14 pixels respectively.

In summarising, on the basis of above critical evaluation of EMPCA-MI traces,

ART and image RE performance, bicubic interpolation was selected for the rest

of the experimental work presented in this thesis.

4.3.2 Choice of neighbourhood radius

The impact of varying the neighbourhood radius for EMPCA-MI was studied next.

These experiments were applied to determine the most appropriate neighbourhood

radius to be used in EMPCA-MI for registration. As discussed in Section 4.2.1,

the neighbourhood region selection uses Chebyshev distance radius r to determine

QS having q × d dimensions.
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Figure 4.8: EMPCA-MI Traces with different radius values for x and y axis translation for
monomodal T2/T2 image pairs (a & b) T2+α20/T2, (c & d) T2+β/T2.

Smoothness of EMPCA-MI plots

In order to evaluate the neighbourhood radius, EMPCA-MI traces are generated as

elaborated in the previous section. In this experimentation, the value of r is varied

between 1, 2, 3, 5, 7 and 10, keeping the interpolation scheme as bicubic. Figures

4.8 and 4.9 show the corresponding EMPCA-MI traces for different r values for

monomodal T2/T2 and multimodal PD/T1 image pairs respectively. As before,

α20 and β was introduced in these image pairs. The x axis translation plots in

Figures 4.8(a) and (c) have a vertical symmetry in-comparison to the asymmetric y
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Figure 4.9: EMPCA-MI Traces with different radius values for x and y axis translation for
multimodal PD/T1 image pairs (a & b) PD+α20/T1, (c & d) PD+β/T1.

axis translation plots in Figures 4.8(b) and (d), highlighting the vertical symmetry

in the anatomic structure of human brain shown earlier, in Figures 2.4(a) and (b).

Furthermore, the x axis translation plots in Figures 4.8(a) and (c) show smoother

EMPCA-MI output at higher radius values. A similar trend is observed for the y

axis translation in Figures 4.8(b) and (d), and θ rotation plots included in Figure

C.2 in Appendix C respectively. But on close inspection, the y axis translation plot

in Figures 4.8(b) and (d) highlight that while EMPCA-MI output value increases

on choosing higher radius also some local maxima are generated around the global
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maximum. These are due to the fact that as the α20 and β is introduced, their

impact on the EMPCA-MI value is higher as the neighbourhood region is larger.

The occurrence of local maxima is more adverse in the y axis translation plots of

multimodal PD/T1 image pair as shown in Figures 4.9(b) and (d). These local

maxima become more pronounced as r increases, with an analogous trend being

seen in the other EMPCA-MI traces for various mono and multimodal T1, T2 and

PD image pairs presented in Appendix C for completeness. The presence of local

maxima around the global maximum is a well-documented problem in image regis-

tration (Hajnal and Hill, 2001), which can undermine the registration performance

during optimisation. As a consequence, in the experiments using a lower radius

value for EMPCA-MI will give a greater likelihood of convergence to the lowest

RE value in comparison to using higher r values.

Computational Cost

To evaluate the impact upon computation complexity of varying the neighbour-

hood radius, it is vital to understand the relationship between the radius and

dimensionality d. As mentioned in Section 4.2.1, d is dependent only on the

choice of r. Consequently, d will be the same for all images irrespective of their

resolution, for a given fixed neighbourhood radius. Therefore, increasing r from 1

to 10, will lead to quadratic increase of d, from 9 to 441, which will clearly have a

commensurate effect on the ART performance. Furthermore, Figure 4.10 shows a

semi-log plot for number of samples q as the function of r for all the datasets used

in the experimental analysis. It is apparent from (4.2) that q is also dependent on

the image resolution in addition to r. For example, as r increases from 1 to 10, the
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Figure 4.10: Number of samples (q) with respect to different neighbourhood radii for the
variety of datasets.

corresponding number of samples in the BrainWeb dataset (consisting of images

with resolution 181× 217 pixels) decrease by approximately 20% (from 3.8× 104

to 3.1 × 104), while for Brno-Multi dataset (consisting of images with resolution

3888 × 2592 pixels) they reduce by 11% (from 1.0 × 107 to 0.9 × 107). Hence for

a fixed dataset, q decreases as r increases.

Figure 4.11 shows the ART performance for EMPCA-MI computation along

with the conventional PCA with MI calculation (PCA-MI), for different radii values

of r, using a log-log plot. It highlights the faster performance of the EMPCA-MI

in comparison to the conventional PCA-MI. For example when r=2, EMPCA-

MI is approximately five times faster than conventional PCA-MI, while in terms

of order of complexity, the QS matrix in Step II of the EMPCA-MI (discussed

in Section 4.2.2 ) has dimensions q × d so for the conventional PCA-MI, O(qd2)

operations are required to compute the covariance matrix and determine the first

PCA component.
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Figure 4.11: ART performances for EMPCA-MI and conventional PCA-MI with respect to
different neighbourhood radii.

In contrast, EMPCA-MI which does not need to compute the covariance mat-

rix, so only requires O(qd) operations. Hence, for different r values and cor-

responding d and q values, EMPCA-MI requires lower computation time than

conventional PCA-MI.

Preliminary Registration Performance

Now, the quantitative registration performance in terms of RE is analysed for

various r values with EMPCA-MI for monomodal T2/T2 and multimodal PD/T1

BrainWeb image pairs having α20 and β artefacts. As in Section 4.3.1 where

the registration experimentation for the choice of interpolation were conducted,

the same 20 levels of initial misregistration are used now for these experiments.

Hence, in all 480 separate registration experiments are performed, consisting of 2

modalities pairs, 2 INU and Gaussian noise settings, 20 initial misregistration and

6 neighbourhood radii settings.
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Figure 4.12: RE versus iterations plots for EMPCA-MI with varying neighbourhood radius for
monomodal (a) T2+α20/T2 pair (using 12th initial misregistration scenario) and (b) T2+β/T2
pair (using 16th initial misregistration scenario). Multimodal (c) PD+α20/T1 pair (using 3rd

initial misregistration scenario) and (d) PD+β/T1 pair (using 17th initial misregistration scen-
ario).

Figure 4.12 consists of four RE vs. iteration plots with each one having six

registration experiments using EMPCA-MI with increasing neighbourhood radius

r=1, 2, 3, 5, 7 and 10. Figures 4.12(a) and (b) shows monomodal results for

T2+α20/T2 pair, starting with the 12th initial misregistration scenario (−19.11,

9.08, −28.42°) and T2+β/T2 pair, starting with 16th initial misregistration scen-

ario (−5.65, 16.94, −36.06°) respectively.
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Similarly, Figures 4.12(c) and (d) show multimodal results for PD+α20/T1

pairs, starting with 3rd initial misregistration scenario (10.11, 27.22, −2.67°) and

PD+β/T1 pair, starting with 17th initial misregistration scenario (0.21, −16.41,

−36.15°) respectively. All the above initial misregistration scenarios were chosen

as in (Kotsas and Dodd, 2011) as already described in the research methodology

Chapter 3.

The results confirm that r=1 has the best rate of convergence as well as a

lower RE in comparison to all other neighbourhood radii for both mono and mul-

timodal pairs. Choosing r=2 also provide good convergence and lower RE, except

in case of the monomodal T2+α20/T2 registration in Figure 4.12(a) where the op-

timisation converges at a local maxima leading to high final RE. However, as the

neighbourhood radius increases, the corresponding registrations all provide higher

RE allied with poorer rates of convergence, incurring more iterations to achieve

their final RE value. This is evident in the cases of T2+β/T2 and PD+α20/T1

registrations for r=3, 5, and 7 shown in Figures 4.12(b) and (c) respectively.

Interestingly at r=10, only multimodal pairs in Figures 4.12(c) and (d) con-

verged but at a considerably higher RE. On the other hand, in the case of monomo-

dal registrations in Figures 4.12(a) and (b), the iterations end prematurely before

the maximum number of iterations are completed with final RE even higher than

the initial RE. This happens due to the convergence of the registration process

to the false local maxima present near the initial misregistration. Hence, increas-

ing r decreases the level of granularity needed for best feature extraction, which

generates local maxima as seen previously on examining the smoothness of the

EMPCA-MI plots.
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Figure 4.13: RE summary boxplot of (a) monomodal T2/T2 registration and (b) multimodal
PD/T1 registration using varying neighbourhood radius with EMPCA-MI for all 20 initial mis-
registration scenarios. The mean and outliers are denoted by ♦ and + shapes. The numbers on
top of the plots refer to the number of out-of-range outliers with RE higher than 140 and 200
pixels respectively.

Figures 4.13(a) and (b) show the detailed RE summary boxplot results for

registration using the varying r values with EMPCA-MI for all 20 initial mis-

registration scenarios for monomodal T2/T2 and multimodal PD/T1 respectively.

These boxplots confirm the improved registration performance at r=1 of EMPCA-

MI with the lowest mean RE and no out-of-range outliers. But as r increases, the
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registration performance deteriorates as mean RE increasing progressively. From

r=5 and beyond, the interquartile range is also prominent along with the presence

of out-of-range outliers.

These results strongly support the earlier qualitative analysis of the EMPCA-

MI traces for varying neighbourhood radius, which means that choosing the lowest

r in the Step I of EMPCA-MI helps to attain the granularity needed for op-

timal feature extraction. As and when the higher radii are chosen, local maxima

were generated due to the INU and noise artefacts as in Figures 4.9(c) and (d),

which consequently lead to poor registration performance. As r=1 has smoother

EMPCA-MI traces, clearly it led to better convergence to the real maxima, in

comparison to others.

Thus, considering the above qualitative analysis of EMPCA-MI traces, compu-

tation complexity/cost and finally registration performance, r=1 is chosen to be

used for the rest of the experimentation work in this thesis.

4.4 Summary

In this chapter, a new hybrid similarity measure framework called EMPCA-MI has

been introduced for MIR, with the aim of providing superior performance in the

presence of artefacts and noise in both mono and multimodal images. EMPCA-MI

utilises the concept of neighbourhood region from the RMI to extract the spatial

features via principal component analysis, but unlike RMI, EMPCA-MI provides

dimensionality reduction by iteratively determining the dominant principal com-
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ponents. The computation of EMPCA-MI in this chapter was based on choosing

one dominant principal component for EMPCA and fixed number of bins for MI

computation, though these assumptions will be relaxed in subsequent chapters.

A critical analysis and evaluation of various system choices and parameters re-

lating to interpolation and neighbourhood radius for the EMPCA-MI framework

has been presented based on their impact on three factors, namely smoothness

of the EMPCA-MI traces, computational complexity/cost involved and RE per-

formance. This analysis showed how the choices of these parameters influence

the overall registration performance, with bicubic interpolation and unity radius

for neighbourhood regions emerging as the best choices for EMPCA-MI frame-

work. While bicubic interpolation is computationally expensive, it still provided a

smoother EMPCA-MI trace and lowest RE during preliminary registration. Sim-

ilarly, r=1 for neighbourhood regions for EMPCA-MI gives consistently smoother

traces, lower RE and minimal computational cost.

The next chapter will further investigate the quantitative as well as qualit-

ative registration performance of EMPCA-MI framework on different mono and

multimodal medical images. Furthermore, it will include a comparative analysis of

EMPCA-MI framework with other existing similarity measures from the literature.



Chapter 5

EMPCA-MI-based Registration

Results

5.1 Introduction

This chapter investigates the performance of the proposed EMPCA-MI similarity

measure framework for the registration of medical image datasets. As evident

from the rigorous analysis in the previous chapter, the bicubic interpolation and

neighbourhood region with r=1 were chosen as the most appropriate parameter

choices for EMPCA-MI, so they are deployed through all the experiments of this

chapter. Other than testing the EMPCA-MI framework, the experiments will also

draw a comparison with MI, GMI, RMI, GFM and RIR-BS which were identified

as comparators in Chapter 3. This comparative study will examine them from the

perspective of both quantitative and qualitative registration performance as well

as the computational cost involved.
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EMPCA-MI Framework

Parameter Setting Value

Neighbourhood radius (r) 1

Principal components (P) 1

Number of bins (b) 256

Table 5.1: Parameter settings for EMPCA-MI framework.

Different initial misregistration scenarios along with various INU and noise

levels were used during the experiments to test the robustness of EMPCA-MI

framework as well as other comparators.

5.2 Experimental Setup

To critically assess the performance of the new EMPCA-MI framework, various

experimental steps are employed. Firstly, EMPCA-MI framework is integrated

within the MIR test bed. Then, the test trials using Shepp-Logan head phantom

test image pair are used to validate and verify the implementation, as already elab-

orated in the research methodology Chapter 3. The generic MIR model discussed

in Section 3.3 is employed for experiments along with the parameter settings of

the EMPCA-MI framework shown in Table 5.1.

For the EMPCA-MI framework fixed values of P and b are chosen. This as-

sumption for P and b values will be relaxed and investigated in the next chapters.

Registration experiments were conducted in two sets namely Set 1 and Set 2 as

detailed in Table 5.2.
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Experiment Set Set 1 Set 2

Dataset Name BrainWeb DRIVE Brno-Multi
Dataset Modality Monomodal Multimodal Monomodal Multimodal

T1/T1, T1/T2,
Fundus/Fundus Fundus/SLODataset Images T2/T2, T2/PD,

PD/PD PD/T1

Added INU & Noise
5 levels (No INU & noise,
α20, α40, β and α40 + β)

N.A (inherently low
contrast and homogeneous

regions present)
Initial
Misregistration
Scenarios

20 (See Section 3.5.1 ) 4 3

Transformation Rigid Similarity
Comparators MI, GMI, RMI GFM RIR-BS
Total Registrations 2400 160 60

Table 5.2: Experiments and their relevant parameter details.

The Set 1 of registration experiments uses the mono and multimodal pairs of

MRI T1, T2 and PD human brain images of the BrainWeb dataset. It comprises

of all 2400 separate registration experiments, which include 3 monomodal image

pairs, 3 multimodal image pairs, 5 levels of INU and Gaussian noise settings, 20 ini-

tial misregistration scenarios and 4 similarity measures (including the EMPCA-MI

framework). Also, MI, GMI and RMI have emerged as prominent intensity-based

similarity measures and were used as the comparators. The Set 2 of registration

experiments is performed on the mono and multimodal pairs of retinal images

from the DRIVE and Brno-Multi datasets respectively. The monomodal retinal

Fundus registration uses GFM (Gharabaghi et al., 2013) for comparison. This sub-

set consists of 160 registrations, which include 20 monomodal image pairs, 4 initial

misregistration scenarios and 2 methods (GFM and EMPCA-MI framework) (Reel

et al., 2013c). Similarly, the multimodal registration of Fundus and SLO images
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uses the recent RIR-BS (Chen et al., 2015, 2011) as a comparator. This subset

consists of 60 registrations, which include 10 multimodal pairs, 3 initial misreg-

istration scenarios and 2 methods (RIR-BS and EMPCA-MI framework) (Reel

et al., 2013b). The quantitative final RE and the qualitative checkerboard overlay

are used to compare all the registration results.

5.3 Experimental Results Discussion

5.3.1 Set 1 : BrainWeb Dataset-based Experiments

The first set of experimental results is for the Set 1 of registration experiments

which included both mono and multimodal BrainWeb dataset.

Monomodal Results

Figure 5.1 consists of five RE vs. iteration plots for the monomodal subset for

five levels of INU and noise levels in Table 5.2. It shows the 18th initial misreg-

istration scenario (−23.6, −7.72, −37.6°) with initial RE=92.12 pixels. Each of

these five plots of Figures 5.1(a) – (e) shows four registration experiments using

EMPCA-MI alongside the comparators MI, GMI and RMI. They are plotted with

a broken y axis, in order to highlight and zoom on the lower RE value as the regis-

tration process progresses to higher iteration values. It is clear from Figures 5.1(a)

and (b) that all four similarity measures converge to a lower RE for monomodal

T1/T1 registration both when no INU and noise are present and when α20 INU is

introduced.
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Figure 5.1: RE versus iteration plots for MI, GMI, RMI and EMPCA-MI using 18th initial mis-
registration scenario for monomodal registration of (a) T1/T1, (b) T1+α20/T1, (c) T1+α40/T1,
(d) T1+β/T1 and (e) T1+α40+β/T1 pairs.
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But as INU is increased to α40 as observed in Figure 5.1(c) only EMPCA-MI

provides a lower RE and better rate of convergence with less number of iterations

in comparison to others.

Furthermore, as β (Figure 5.1(d)) and then finally α40 + β (Figure 5.1(e)) are

used, EMPCA-MI consistently provides lower RE throughout. This is due to the

fact that the neighbourhood region (with r=1 ) pre-processing used for extrac-

tion of first principal component with EMPCA provides accurate information for

the computation of MI, even when high levels of INU and Gaussian noise are in-

troduced. In addition, using bicubic interpolation during the registration helped

EMPCA-MI to achieve smoother EMPCA-MI traces, which leads to its better

convergence. On the other hand, GMI used gradient information for its compu-

tation. Hence, in cases with higher INU and Gaussian noise levels, more noise is

introduced into the gradient information, which leads to its inferior convergence

(Figures 5.1(d) and (e)). For example, in Figure 5.1(d) GMI failed to register

the monomodal pair and gave final RE even higher than the initial misregistra-

tion value. While EMPCA-MI is able to accurately quantify the spatial alignment

between the image pairs with lower RE, RMI using a rough approximation of MI

shows a degrading performance with increasing levels of INU and noise conditions

(Figures 5.1(c) – (e)).

To have a qualitative assessment of the registration process outcome, Figures

5.2(a) – (f) show the Canny edge detection overlay results corresponding to the

monomodal T1+α40+β/T1 pair registration shown in Figure 5.1(e). Figure 5.2(a)

shows the initial misregistration for 18th initial misregistration scenario and the

ground truth in Figure 5.2(b).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Qualitative results of monomodal T1+α40+β/T1 pair using 18th initial misregis-
tration scenario showing (a) initial misregistration, (b) ground truth and (c) MI, (d) GMI, (e)
RMI, (f) EMPCA-MI output with inset showing zoomed-in central lobes.
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Figures 5.2(c) – (f) show the registration output for MI, GMI, RMI and EMPCA-

MI respectively. The yellow colour in these images represents the correct alignment

of the region, while red and green colour shows the misalignment. The quality of

registration is apparent, particularly from the alignment of the two central lobes

in the insets of Figures 5.2(c) – (f) of the registration output. Figure 5.2(f) clearly

shows that EMPCA-MI provides best alignment in comparison to MI, GMI and

RMI output and is nearest to the ground truth shown in Figure 5.2(b). These

results are consistent with the earlier qualitative results and highlight the superior

registration performance of EMPCA-MI in comparison to others.

Similar results were also observed for monomodal T2/T2 and PD/PD pair re-

gistrations for the same initial misregistration scenario. For completeness, Figures

D.1(a) and (b) in Appendix D, shows the RE versus iterations plots for MI, GMI,

RMI and EMPCA-MI for T2+α40+β/T2 and PD+α40+β/PD pairs respectively.

They were predominantly chosen for display since they show the results for the

images with highest level of INU and noise present. Similarly, Figures D.2 and

D.3 show the qualitative results of the above two mentioned pairs with their cor-

responding ground truths.

Multimodal Results

Figure 5.3 shows the RE vs. iteration plots for the multimodal T1+α40+β/T2

pair using 15th initial misregistration scenario (−5.23, 2.31, 34.8°) with initial

RE=84.16 pixels. It is again evident that EMPCA-MI provides a better rate of

convergence and leading to the lowest RE, followed by GMI and MI.
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Figure 5.3: RE versus iterations plots for MI, GMI, RMI and EMPCA-MI using 15th initial
misregistration scenario for multimodal registration of (a) T1+α40+β/T2 pair.

Even at higher level of INU and Gaussian noise, EMPCA-MI converges to a

lower RE from 4th iteration onwards due to its ability to accurately represent the

neighbourhood region features and quantify the spatial alignment between them.

On the contrary, MI and GMI provide much higher RE, while RMI exhibits poor

rate of convergence which locks into a local maximum too far from the global

maximum.

To have a qualitative assessment of this particular multimodal T1+α40+β/T2

pair, Figures 5.4(a) – (f) shows the Canny edge detection overlaid corresponding

results. Figure 5.4(a) shows the initial misregistration for 15th initial misregistra-

tion scenario and the corresponding ground truth in Figure 5.4(b). While Figure

5.4(c) – (f) show the registration output for MI, GMI, RMI and EMPCA-MI re-

spectively. It is apparent, particularly from the alignment of the two central lobes

in the insets of Figures 5.4(c) – (f) showing the registration output. Figure 5.4(f)

clearly shows that EMPCA-MI provides best alignment followed by GMI output

and is the closest to the ground truth in Figure 5.4(b).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Qualitative results of multimodal T1+α40+β/T2 pair using 15th initial misregis-
tration scenario showing (a) initial misregistration, (b) ground truth and (c) MI, (d) GMI, (e)
RMI, (f) EMPCA-MI output with inset showing zoomed-in central lobes.
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In addition, similar trends are seen in the results for the registration of the other

four INU and Gaussian noise levels of this multimodal pair, included in Figures

D.4(a) – (d) of Appendix D for completeness. These plots show the subsequent RE

vs. iteration plots for the T1/T2, T1+α20/T2, T1+α40/T2 and T1+β/T2 pairs.

It is clear from them that MI, GMI and RMI perform well when no or low INU

is present, but as high INU and Gaussian noise are introduced, their performance

worsens significantly with a lower rate of convergence. This can be further verified

from the multimodal T2/PD and PD/T1 pair registrations for the same initial

misregistration scenario. Figures D.4(e) and (f) in Appendix D, show the RE versus

iterations plots for T2+α40+β/PD and PD+α40+β/T1 pairs. They were chosen

because they represent the results for the most challenging pairs with highest level

of INU and Gaussian noise. Similarly, Figures D.5 and D.6 of Appendix D show

the qualitative results of both these pairs with their corresponding ground truths.

Results Summary

Finally, the overall RE performance for the Set 1 experiments are summarised.

Figures 5.5(a) and (b) show the detailed summary boxplot for all INU and noise

levels, over the 20 initial misregistration scenarios for monomodal T1/T1 and

multimodal T1/T2 registration experiments respectively. Each boxplot shows a

bounding box defining the interquartile range with the bar across representing the

median and whiskers denoting the RE range. The boxplots on top also include the

number of out-of-range RE values corresponding to each similarity measure used.



5.3 Experimental Results Discussion 124

1 1 2 0 2 2 0 0 3 2 1 0 3 2 2 0 3 3 2 1

0

20

40

60
65

MI
GM

I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI

T1/T1 T1+α20/T1 T1+α40/T1 T1+β/T1 T1+α40 + β/T1

R
eg

is
tr
a
ti
o
n
E
rr
o
r
(R

E
)

(a)

1 0 0 0 0 1 0 0 2 1 0 1 3 1 0 1 2 0 1 2

0

20

40

60

80
85

MI
GM

I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI

T1/T2 T1+α20/T2 T1+α40/T2 T1+β/T2 T1+α40 + β/T2

R
eg

is
tr
a
ti
o
n
E
rr
o
r
(R

E
)

(b)

Figure 5.5: RE summary boxplot of (a) monomodal T1/T1 pair and (b) multimodal T1/T2
pair using MI, GMI, RMI and EMPCA-MI for all 20 initial misregistration scenarios. The mean
and outliers are denoted by ♦ and + shapes. The numbers on top of the plots refer to the number
of out-of-range outliers with RE higher than 65 and 85 pixels respectively.

Both boxplots in Figure 5.5 confirm the improved registration performance of

EMPCA-MI with the lowest mean RE and few number of out-of-range outliers in

comparison to the other three comparative similarity measures. For monomodal

T1/T1 pair in Figure 5.5(a), EMPCA-MI consistently achieve better RE than all

other similarity measure, especially in the latter two cases (β and α40+β).
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For example in case of the monomodal T1+α40+β/T1 pair, EMPCA-MI main-

tains a lower RE and interquartile range with single out-of-range outlier, on the

contrary the mean RE for RMI overshoots due to the large RE values for two out-of-

range outliers. Similarly for multimodal T1/T2 pair in Figure 5.5(b), EMPCA-MI

has lowest mean RE for all five INU and noise settings, while GMI performance

degrades in the last two challenging cases (α40 and α40+β). Furthermore, the

mean RE and interquartile range for RMI is also significantly large as higher INU

and noise levels are introduced.

These results strongly support the individual RE vs. iteration plots for mono

and multimodal registration experiments. Similar observations can be deduced

from the boxplots for the mono (T2/T2 and PD/PD) and multimodal (T2/PD

and PD/T1) registration experiments, which are included as Figures D.7 and D.8

of Appendix D for completeness. In summary, considering all these boxplots for

all the set of registrations for BrainWeb dataset, EMPCA-MI is able to reduce

the RE on an average by 45%, 42% and 61% for MI, GMI and RMI respectively.

These results clearly help to draw the conclusion that EMPCA-MI using r=1

for neighbourhood region pre-processing with P=1, to select the most prominent

feature to calculate the MI, while other comparators perform well when no or

low INU is present, at higher levels of INU and Gaussian noise their performance

degrades.

On closer examination however, it is also evident from these results that there

are few cases of EMPCA-MI-based registrations, which gave higher RE. For ex-

ample, the outlier (with final RE value of 44.80 pixels) shown in the EMPCA-MI

boxplot for monomodal T1+α40+β/T1 in Figure 5.5(a). A few other results with
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Figure 5.6: ART performance of various similarity measures for Set 1 : BrainWeb Dataset-based
mono and multimodal registration experiments.

higher RE for EMPCA-MI can also be seen in Figure D.7 and D.8 of Appendix D.

Interestingly, all these cases are mostly observed where high INU and noise levels

are present. The reason of EMPCA-MI underperformance particularly in these

cases will be discussed later in Section 5.3.3 of this chapter.

To evaluate the computational cost involved in the iterative registration pro-

cess, an ART analysis was undertaken of all the similarity measures. Figure 5.6

shows the corresponding ART performance of all the four similarity measures con-

sidered for the mono and multimodal BrainWeb dataset registration experiments

of Set 1. Here, EMPCA-MI requires around 15% less computation time in com-

parison to RMI and despite of being slower than other two comparators (MI and

GMI) it is able to afford more robust and accurate registration performance both

quantitatively and qualitatively. This is due to the fact that it utilises the iterative

EMPCA mechanism to compute the first principal component from the neighbour

region features, which helps in overcoming the artefacts due to the high INU and

noise levels. While, MI takes the minimum computation time among all the sim-



5.3 Experimental Results Discussion 127

ilarity measures since it bins the intensity values of the image into histograms to

compute the individual and joint probability distribution, it was observed to have

degraded registration performance. Also in case of GMI, the computation time in-

creases by 25% with respect to MI, which reflects the added overhead of gradient

information computation needed in addition to the MI calculation. Although RMI

deploys a covariance matrix-based approximation to compute the individual and

joint entropies, it consequently leads to doubling of the computation time with

respect to GMI.

Overall, it is comprehensible that while EMPCA-MI has higher ART in contrast

with other two similarity measure (MI and GMI), it is still able to provide better

registration performance in terms of quantitative RE and qualitative assessment.

5.3.2 Set 2 : DRIVE and Brno-Multi Dataset Experiments

This section discusses the experimental results for EMPCA-MI on Set 2 of monom-

odal DRIVE dataset followed by those of the multimodal Brno-Multi dataset.

Monomodal Results

For the monomodal registrations, GFM was chosen as a comparator since it has

emerged as one of the recent methods developed specifically for monomodal Fundus

registration and has been used upon the same DRIVE dataset. In these experi-

ments four initial misregistration scenarios were used. The first three initial mis-

registration scenarios were chosen as in (Gharabaghi et al., 2013) in order to enable

a direct comparison.
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Figure 5.7: RE summary bar graph of 20 monomodal Fundus retinal image pairs using GFM
and EMPCA-MI for 3rd initial misregistration scenario. N.B. Bar graph does not show GFM
result for Image Pair 9 since the registration fails for the particular image pair.

Moreover, in order to further investigate the performance of EMPCA-MI, an

additional 4th initial misregistration scenario was introduced. In the 1st and 2nd

initial misregistration scenarios, only one registration parameter varies i.e. rotation

θ=5° and θ=60° with the other parameters being fixed. While in 3rd and 4th initial

misregistration scenario all four registration parameters are varied. This includes

S, which simulates that Fundus image have been acquired using different equipment

magnifications.

Figure 5.7 consists of RE summary bar graph of 20 monomodal Fundus image

pairs using EMPCA-MI and GFM for the 3rd initial misregistration scenario (5,

5, 20°, 2.8 ). This bar graph are plotted with twice broken y axis in order to

accommodate all the RE values on the same plot as well as to able to show the lower

RE values. For example, the RE for Image Pair 5 using EMPCA –MI is almost 5

times lower than GFM. Image Pair 5 highlights the inherent characteristics present

in all retinal images which lead to challenges in their registration. The EMPCA-MI

framework is able to register with lower RE since by using a neighbourhood region-
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based extraction of the first principal component helps in accurately compute MI

despite of homogeneous regions and low contrast present, whereas GFM being a

point-based method provided a false match for the registration and had significant

RE for this Image Pair.

To have a qualitative assessment of the registration outcome in this subset,

Figures 5.8(a) – (e) show the checkerboard overlay results of Image Pair 5 using 3rd

initial misregistration scenario. Figure 5.8(a) shows the initial misregistration for

3rd initial misregistration scenario and the ground truth with three marked regions

in Figure 5.8(b). Also, Figures 5.8(c) and (d) show the registration output for

GFM and EMPCA-MI with corresponding marked regions respectively. In Figure

5.8(e) the zoomed three marked regions of the ground truth and two registration

outputs are shown. It is clear from Figure 5.8(e) that EMPCA-MI provides best

vascular structure continuity in comparison to GFM and is also nearer to the

ground truth in terms of alignment. Overall, these results confirm that EMPCA-

MI afforded better registration performance compared to GFM in variable contrast

and illumination conditions.

It is especially notable to highlight that EMPCA-MI successfully registered

Image Pair 9 as shown in Figures 5.9(a) – (e), whereas GFM failed to converge

(Gharabaghi et al., 2013). This is due to the fact that EMPCA-MI does not rely

on point-based feature extraction, but uses intensity-based feature extraction and

hence it was more robust in being able to successfully registering Image Pair 9.

In contrast, GFM extracts the closed boundary regions from Image Pair 9 but

since they have similar shapes and their corresponding affine moment invariant

descriptors were very close to each other, it led to its failure in registering them.
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(a) (b)

(c) (d)

(e)

Figure 5.8: Qualitative results of monomodal Fundus retinal Image Pair 5 using 3rd initial
misregistration scenario, showing (a) initial misregistration, (b) ground truth, (c) GFM and (d)
EMPCA-MI output. Also (e) shows the zoomed-in regions of ground truth (1st row), GFM (2nd

row) and EMPCA-MI output (3rd row) respectively.
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(a) (b) (c)

(d)

(e)

Figure 5.9: Qualitative results of monomodal Fundus retinal Image Pair 9 using 3rd initial
misregistration scenario, showing (a) initial misregistration, (b) ground truth, (c) EMPCA-MI
output, with (d) zoomed-in ground truth and (e) EMPCA-MI regions. N.B. GFM failed to
register this image pair.

The zoomed in qualitative results for Image Pair 9 using EMPCA-MI along with

the corresponding ground truth are shown in Figures 5.9(e) and (d) respectively.

Finally, Figure 5.10 summarises the first subset of Set 2 registration experi-

ments. It shows the RE summary boxplot of all monomodal Fundus retinal image

pairs using GFM and EMPCA-MI for the 4 test initial misregistration scenarios.

The boxplots reveal the overall better registration performance of EMPCA-MI



5.3 Experimental Results Discussion 132

0 0 1 1 3 2 2

0

2

4

6

8

10

12

14

16

18

GF
M

EM
PC

A-
MI

GF
M

EM
PC

A-
MI

GF
M

EM
PC

A-
MI

EM
PC

A-
MI

Scenario No. 1 Scenario No. 2 Scenario No. 3 Scenario No. 4

R
eg

is
tr
a
ti
o
n
E
rr
o
r
(R

E
)

Figure 5.10: RE summary boxplot of 20 monomodal Fundus retinal image pairs using GFM
and EMPCA-MI for all 4 initial misregistration scenarios. The mean and outliers are denoted
by ♦ and + shapes. The numbers on top of the plot refer to the number of out-of-range outliers
with RE higher than 18 pixels. N.B. GFM results for scenario no. 4 were unavailable.

over GFM. In all the initial misregistration scenarios EMPCA-MI achieves a lower

mean RE as well the interquartile range, except for 2nd initial misregistration scen-

ario where its mean RE is marginally higher than GFM, despite of having a lower

interquartile range. This was due to the one out-of-range outlier for which the

final RE was much higher and was challenging for both EMPCA-MI and GFM to

register. Such particular cases will be discussed in detail in Section 5.3.3.

Multimodal Results

Now the registration experiment results for the second subset of Set 2 using mul-

timodal Fundus/SLO Brno-Multi dataset are discussed. To draw a comparison,

RIR-BS was chosen as a comparator for these multimodal registrations, as it was

recently developed specifically for multimodal retinal registration. As discussed

earlier in Section 2.3.3, it employs a bifurcation structure matching which com-

prises of a master bifurcation point and three connected neighbours (Chen et al.,

2015, 2011).
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Figure 5.11: RE summary bar graph of 10 multimodal Fundus/SLO retinal image pairs using
RIR-BS and EMPCA-MI for 2nd initial misregistration scenario.

In these registration experiments, three initial misregistration scenarios were

used. In the 1st initial misregistration scenario, only the rotation parameter was

varied to θ=60° with the other parameters being fixed. The 2nd and 3rd misregistra-

tion represents more challenging scenarios with all the four registration parameters

being varied. The value of S as in previous subset reflects the multimodal pair has

been acquired with different equipment magnifications while the translations are

pragmatically kept low as these motions are generally minimal during the image

acquisition process.

In Figure 5.11, the RE summary bar graph of 10 multimodal Fundus/SLO im-

age pairs using EMPCA-MI and RIR-BS for the 2nd initial misregistration scenario

(10, 10, 30°, 2 ) are shown. For example, for Image Pair 3 and 8, EMPCA–MI

provides 25% and 50% less RE respectively, in comparison to RIR-BS. EMPCA-

MI is in fact able to attain a lower RE since it utilises the local neighbourhood

region using r=1 to extract the most prominent feature from the largely homo-

geneous and variable contrasted multimodal image pairs. Other than evaluating

the quantitative RE performance, in order to appreciate the superiority of the
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EMPCA-MI results, a qualitative assessment of the registration outcome in also

conducted.

Figures 5.12(a) – (e) show the checkerboard overlay result of Image Pair 3 us-

ing 2nd initial misregistration scenario. Figures 5.12(a) and (b) show the initial

misregistration for 2nd initial misregistration scenario and the ground truth with

three marked regions respectively. Whereas, Figures 5.12(c) and (d) show the re-

gistration output for RIR-BS and EMPCA-MI with corresponding marked regions

respectively. In Figure 5.12(e) the zoomed three marked regions of the ground

truth and two registration outputs are shown. It is evidently clear that EMPCA-

MI provides much better structural continuity in comparison to RIR-BS output.

Overall, it is apparent that EMPCA-MI provided lower RE for almost all image

pairs, except Image Pair 4 and 6.

Interestingly, notable exceptions for EMPCA-MI are Image Pair 4 and 6 where

RIR-BS has a marginally lower RE. Similar higher RE for EMPCA-MI was again

observed for the 3rd initial misregistration scenario for Image Pair 4. This is due to

the fact that two image pairs, especially Image Pair 4 is one of the most challenging

pairs in the Brno-Multi dataset as it exhibits pathology alongside low contrast and

large homogeneous regions, which compromises EMPCA-MI performance when

only one principal component is used. In contrast, since RIR-BS method uses

segmentation, its registration quality is influenced much more by low contrast in

the images rather than the presence of large homogeneous regions in this pair. The

higher RE of EMPCA-MI highlights a limitation of the EMPCA-MI in the case of

such challenging Image Pair, which will be analysed in the next section.
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(a) (b)

(c) (d)

(e)

Figure 5.12: Qualitative results of multimodal Fundus/SLO retinal Image Pair 3 using 2nd

initial misregistration scenario, showing (a) initial misregistration, (b) ground truth, (c) RIR-BS
and (d) EMPCA-MI output. Also (e) shows the zoomed-in regions of ground truth (1st row),
RIR-BS (2nd row) and EMPCA-MI output (3rd row) respectively.
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Figure 5.13: RE summary boxplot of 10 multimodal Fundus/SLO retinal image pairs using
RIR-BS and EMPCA-MI for all 3 initial misregistration scenarios. The mean and outliers are
denoted by ♦ and + shapes. The numbers on top of the plot refer to the number of out-of-range
outliers with RE higher than 190 pixels.

Finally, Figure 5.13 summarises the second subset of Set 2 registration exper-

iments. It shows the RE summary boxplot of all multimodal Fundus/SLO retinal

image pairs using RIR-BS and EMPCA-MI for the three initial misregistration

scenarios. The boxplots reveal the overall superior registration performance of

EMPCA-MI in terms of both mean RE and interquartile range over RIR-BS in all

scenarios.

The boxplot for the 3rd initial misregistration scenario highlights the better RE

performance achieved by EMPCA-MI with lower mean RE, smaller interquartile

range and no out-of-range outlier RE value. Here, the neighbourhood region-based

pre-processing followed by the feature extraction for MI computation enables the

EMPCA-MI to perform better multimodal registration. On the contrary, despite

of using a point-based approach, RIR-BS does not avail from any vessel width-

based refinement (Chen et al., 2011) for its matching, which leads to an overall

higher mean RE in these multimodal experiments. Hence, these results confirm
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that overall EMPCA-MI provided better registration performance compared to

RIR-BS especially in the presence of low contrast and large homogeneous non-

vascular regions.

Moreover, the summary boxplots in Figures 5.10 and 5.13 help to conclude

that EMPCA-MI is able to overall reduce the RE on an average by 30% for mono

and multimodal retinal image registrations with respect to GFM and RIR-BS.

5.3.3 EMPCA-MI Framework Robustness

The previous sections have investigated the performance of EMPCA-MI framework

along with other comparators for two sets of mono and multimodal registration

experiments. Although overall EMPCA-MI achieved lower RE in comparison to

others, as shown in Figures 5.5, 5.10 and 5.13, there were cases when EMPCA-

MI performance is not as accurate as the comparators. To critically evaluate the

reasons for this, two worst case scenarios are considered.

In Section 5.3.1, there were few individual cases in the mono and multimodal

registration of Set 1, having high levels of INU and noise (for example α40 and

α40+β) where EMPCA-MI gave higher RE values. For example in Figure 5.5(a) the

EMPCA-MI boxplot for monomodal T1+α40+β/T1 shows one such outlier (with

RE value of 44.80 pixels) for 11th initial misregistration scenario (24.21, −25.2,

−25.8°). Few similar cases can also be observed for multimodal registrations of

Set 1. The EMPCA-MI boxplot for multimodal T2+α40+β/PD in Figure D.8(a)

of Appendix D shows two such outliers (with RE values of 29.48 and 49.35 pixels)

representing result of 7th and 20th initial misregistration scenarios.
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(a) (b)

(c)

Figure 5.14: Qualitative results of multimodal T1+α40+β/T1 pair using 11th initial misreg-
istration scenario showing (a) initial misregistration with (b) ground truth and (c) EMPCA-MI
output with inset showing zoomed-in central lobes.

To analyse the impact on the quality of registration, Figures 5.14(a) – (c)

show the qualitative result for EMPCA-MI of monomodal T1+α40+β/T1 regis-

tration with 11th initial misregistration scenario. The initial misregistration for

this monomodal pair is shown in Figure 5.14(a). It is clear from the misaligned

central lobes shown in the zoomed-in inset in Figure 5.14(c) that the EMPCA-MI

registration performance is inferior in comparison to the ground truth in Figure

5.14(b). It can be argued that the deterioration in the EMPCA-MI performance

specifically in the presence of high levels of INU and noise is due to the design of

Step I of the EMPCA-MI framework in Figure 4.2 (which shows an example of

the EMPCA-MI framework).
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However, in closely observing Figure 4.2, there is a noticeable repetitive pat-

tern in QR and QS which correspond to the rearranged neighbourhood region

information for the reference and sensed image respectively. This 1st order rep-

resentation of the neighbourhood region does not include any relative information

about neighbourhood pixels, so at higher levels of INU and noise, the Step I of

the EMPCA-MI framework may not always be able to represent the neighbour-

hood information accurately. This could indeed lead to inaccurate EMPCA-based

extraction of features, which are used for the MI computation.

Moreover, as mentioned in Legg et al. (2013), the number of bins for MI com-

putation has been shown to be a critical parameter for accurate MI computation.

Therefore, the empirically fixed number of bins in the Step III of the EMPCA-

MI framework may lead to inaccurate MI calculation especially when the image

intensity values are corrupted by noise due to high levels of INU. Hence, the role

of the neighbourhood region rearrangement (in Step I ) and number of bins for

MI (in Step III ) in EMPCA-MI framework will be separately investigated in the

next chapter, with an aim to enhance the EMPCA-MI framework as described in

Figure 1.1.

Furthermore in Section 5.3.2, which discussed the Set 2 of registration exper-

iments, EMPCA-MI provided high RE for the Image Pair 4, which is one of the

most challenging pairs in the multimodal Brno-Multi dataset. To understand the

reasons behind this degraded performance for this particular case, further experi-

mentation was conducted by choosing two principal components i.e. P=2 manually

in the Step II of EMPCA-MI framework, while keeping all other parameters fixed

for both the 2nd and 3rd initial misregistration scenarios.
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(a) (b)

(c)

Figure 5.15: Qualitative results of multimodal Fundus/SLO retinal Image Pair 4 using 3rd

initial misregistration scenario, showing (a) EMPCA-MI output (with P=2 ) and (b) RIR-BS
output. Also (c) shows the three zoomed-in regions of EMPCA-MI output (with P=2 ) (1st row)
and RIR-BS (2nd row) respectively.

Figures 5.15(a) – (c) show the qualitative results for this particular multimodal

experiment for the 3rd initial misregistration scenario. It is clear, that using

EMPCA-MI with P=2 provided improved registration results in comparison to

RIR-BS, which is attributed to the empirically chosen P=2, which represents the

overall variance of the image pair, but now with two orthogonal principal com-

ponents. This also highlights the versatility of the EMPCA-MI framework to

iteratively determine more principal components and this feature can be exploited
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in such cases. This provided the motivation to investigate this feature of EMPCA-

MI framework in more detail. Hence, Chapter 7 of this thesis will investigate a

mechanism, which has the ability, in Step II of EMPCA-MI framework to automat-

ically select the number of principal components adaptively instead of manually

as shown in Figure 1.1.

5.4 Summary

This chapter investigated the registration performance of EMPCA-MI framework

using human brain BrainWeb dataset followed by monomodal retinal DRIVE data-

set and multimodal Brno-Multi dataset. It also conducted a comparative per-

formance study using recent suitable comparators from the literature to enable a

critical and thorough analysis of registration experiments using RE vs. iteration

plot, quantitative and qualitative RE and ART as the performance metrics. This

chapter showed how the EMPCA-MI framework is able to outperform its compar-

ators by reducing the RE and providing a robust registration performance for the

various mono and multimodal datasets, even when high levels of INU, low con-

trast and large homogeneous regions, which are known to make the registration

process challenging. Finally, this chapter also gave an insight into the shortfalls

of EMPCA-MI framework, while discussing two such cases in detail, where the

registration performance degraded. The next chapter will propose and investigate

enhancements based on the rearrangement of neighbourhood region and number

of bins for MI computation in the EMPCA-MI framework, with an aim to further

increase the robustness and achieve lower RE.



Chapter 6

EMPCA-MI Framework

Enhancements

6.1 Introduction

In the previous chapter, the experimental results of proposed EMPCA-MI frame-

work provided consistent and robust registration performance for both mono and

multimodal medical datasets. However, in a few registration experiments, the

performance of EMPCA-MI framework was observed to be compromised, espe-

cially where high INU noise and large homogeneous regions were present. This

was associated to the 1st order-based rearrangement of the neighbourhood region

and choosing fixed number of bins for the MI computation for the EMPCA-MI

framework. Hence, this chapter proposes two novel modifications to the EMPCA-

MI framework, primarily in its pre-processing and MI computation steps. Firstly,

it utilises the 2nd order representation of the image intensity values for direct
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Figure 6.1: Schematic showing (a) the original EMPCA-MI framework and the various ap-
proaches investigated as enhancements in (b) Step I and (c) Step III respectively.

(4-pixel) and indirect (8-pixel) neighbourhood connectivity, instead of just re-

arranging the pixels in the pre-processing stage. Secondly, it explores the effect of

introducing either fixed or adaptive number of bins selection strategy for the MI

computation stage. Both these enhancements have been rigorously investigated

using separate experiments to provide the numerical and qualitative registration

results which confirm the improved robustness and show their corresponding com-

putational cost. Figure 6.1(a) shows the original EMPCA-MI framework, which

utilised the 1st order indirect (8-pixel) neighbourhood region connectivity for the

pre-processing stage and fixed number of bins for MI computation. Section 6.2

describes the introduction of 2nd order direct (4-pixel) and indirect (8-pixel) neigh-

bourhood connectivity for the pre-processing of the reference and sensed images.
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Section 6.3 explores the use of different fixed and adaptive number of bins selec-

tion approaches for the MI computation step. Figures 6.1(b) and (c) show the

various approaches explored as Enhancement 1 and 2, which will be discussed in

Sections 6.2 and 6.3 respectively.

6.2 EMPCA-MI Framework Enhancement 1

As detailed in Chapter 4, the pre-processing step of EMPCA-MI framework re-

arranges the neighbourhood region grayscale data values into a vector form to pre-

serve both the spatial and intensity information of the images. Figure 6.2(a) shows

the illustration of EMPCA-MI framework with Step I in detail, which reorganises

the image grayscale values using 1st order-based (8-pixel) neighbourhood region

to incorporate the spatial information. This provided noteworthy performance in

the registration experiments in Chapter 5, particularly when there is neither INU

nor noise present. However, when there was high levels of INU and noise, the

corresponding registration performance dropped.

This limitation of EMPCA-MI framework was due to the 1st order-based neigh-

bourhood region representation, which considers each pixel independently and

without cognisance of any neighbourhood relations. This was reflected in the re-

petitive patterns in the columns of QR and QS matrix for the neighbouring position

of the sliding window, which can be seen in Figure 6.2(b). This provides the motiv-

ation for modifying this step of EMPCA-MI framework such that the neighbouring

relations within a given neighbourhood region are preserved for other steps in the

EMPCA-MI framework.
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Figure 6.2: Illustration of the original EMPCA-MI framework with 1st order (8-pixel) and the
proposed 2nd order (8-pixel and 4-pixel) region connectivity-based pre-processing in Step I, for
an image pair with size of 10× 10 pixels.
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Hence, in order to achieve more robust registration between the reference and

sensed images, this rationale during the pre-processing step a neighbourhood re-

gion can be more precisely characterised by a 2nd order representation, where the

relationship between pixels can be exploited instead of just pixel values.

6.2.1 Neighbourhood Region Selection

This section illustrates the modified pre-processing step for EMPCA-MI similarity

measure framework (Reel et al., 2013a). Considering a sliding window B with

radius r having a (2r + 1) × (2r + 1) pixels neighbourhood region. Then the

resulting single row vector B∗ will have length c+1, and can be represented as:

B∗
i =


Bi −B c

2 +1 i ∈ [1, c+ 1]; i ̸= c
2 + 1

B c
2 +1 i = c

2 + 1
(6.1)

Each row vector B∗ now represents the differential value of c connected pixels

with respect to the centre pixel B c
2 +1. Figure 6.2(a) gives an example using an

image pair with size of 10 × 10 pixels showing the proposed 2nd order 4-pixel

(direct neighbours) and 8-pixel (indirect neighbours) connectivity alongside the

original EMPCA-MI framework. Here, B is having a 3 × 3 pixel neighbourhood

region when r=1 for both c=4 and 8 (shown with yellow colour in Figure 6.2(a))

and the corresponding row vector B∗ with centre pixel B3 and B5 (shown with

orange colour in Figure 6.2(b)) respectively. Here, the modified EMPCA-MI pre-

processing no longer generates repetitive pattern as in original EMPCA-MI, but

instead provides unique relative intensity values (See B∗ in Figure 6.2) for its next
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computational steps. Hence this enhancement helps in representing the spatial

information for effectively and thus now leading to more accurate EMPCA-MI

value in comparison to the original EMPCA-MI.

Although both 2nd order (8-pixel and 4-pixel) neighbourhood connectivity will

provide better spatial information in comparison to the 1st order (8-pixel) neigh-

bourhood, amongst the latter both, the 2nd order (8-pixel) neighbourhood is known

to have degraded performance (Demirkaya et al., 2008). Since, 8-pixel connectiv-

ity assumes all the 8 pixels to be connected to the centre pixel, it gives an equal

weighting to them but in fact the diagonal pixels have a weaker linkage to the

centre pixel in comparison to the horizontal and vertical neighbouring pixels. Also

as observed from Figure 6.2(b), the dimensionality d for 2nd order (8-pixel and

4-pixel) neighbourhood connectivity will be 9 and 5, respectively.

6.2.2 Experiment Setup

To assess the performance of the EMPCA-MI framework Enhancement 1, registra-

tion experiments on mono and multimodal BrainWeb dataset are performed while

keeping the remaining two processing steps (Step II and Step III ) of EMPCA-MI

framework the same in Chapter 4. All the parameter settings of the generic re-

gistration model and the EMPCA-MI framework for the experiments are same as

mentioned in Tables 3.1 and 5.1, respectively, except the neighbourhood region

enhancement in the EMPCA-MI framework.

Furthermore, the mono and multimodal BrainWeb dataset was chosen with

all experimental settings same as in the previous chapter, as shown in Table 5.2.



6.2 EMPCA-MI Framework Enhancement 1 148

In all 1800 separate registration experiments are performed in this set, which

include, 3 monomodal image pairs, 3 multimodal image pairs, 5 levels of INU

and Gaussian noise settings, 20 initial misregistration scenarios and 3 similarity

measures (including the 2nd order (8-pixel and 4-pixel) modifications along with

the original EMPCA-MI framework).

6.2.3 Experimental Results Discussion

The first set of experiments included both mono and multimodal BrainWeb dataset

in order to evaluate the impact of modifying the Step I of EMPCA-MI framework

on the registration performance, especially in the presence of high INU and noise

levels. The three neighbourhood region connectivity considered for these experi-

ments were the 2nd order (8-pixel and 4-pixel) based enhancements as well as the

original EMPCA-MI similarity measure with 1st order (8-pixel) connectivity.

Figures 6.3(a) and (b) show the detailed summary boxplot for all INU and

noise levels, over the 20 initial misregistration scenarios for monomodal T1/T1 and

multimodal T1/T2 registration experiments respectively. Both boxplots in Figure

6.3 confirm the improved registration performance of EMPCA-MI framework using

2nd order (4-pixel) neighbourhood region connectivity with the lowest mean RE

and fewer out-of-range outliers in comparison to the other two neighbourhood

region connectivity schemes.

For example, in Figure 6.3(a) which shows the monomodal T1/T1 pair regis-

trations, 2nd order (4-pixel) neighbourhood region connectivity consistently have

lower mean RE than the original EMPCA-MI (1st order (8-pixel)) as well as 2nd
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Figure 6.3: RE summary boxplot of (a) monomodal T1/T1 pair and (b) multimodal T1/T2
pair using 1st order (8-pixel), 2nd order (8-pixel) and 2nd order (4-pixel) neighbourhood region
connectivity in EMPCA-MI framework for all 20 initial misregistration scenarios. The mean and
outliers are denoted by ♦ and + shapes. The numbers on top of the plots refer to the number of
out-of-range outliers with RE higher than 14 and 20 pixels respectively.

order (8-pixel) due to the more accurate representation of relative spatial inform-

ation.

On the other hand, the performance of 1st order (8-pixel) and 2nd order (8-

pixel) neighbourhood connectivity worsens in the later three cases (α40, β and
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α40+β) due to the presence of high INU and noise. The 2nd order (4-pixel) neigh-

bourhood region connectivity still provides consistent lower mean RE performance,

with an exception of one out-of-range outlier in case of monomodal T1+α40/T1

pair. Both 2nd order (8-pixel) and original EMPCA-MI (1st order (8-pixel)) have

more out-of-range outliers as well as larger interquartile range as the level of INU

and noise increases.

These results show that using 2nd order (4-pixel) neighbourhood region con-

nectivity in the Step I of EMPCA-MI framework reflects neighbourhood spatial

information more accurately by considering a 2nd order representation of the dir-

ectly related pixel values with respect to the centre pixel of the neighbourhood

region.

In the case of multimodal T1/T2 pair, Figure 6.3(b) shows that both 2nd or-

der (8-pixel and 4-pixel) neighbourhood region connectivity perform better than

original EMPCA-MI (1st order (8-pixel)) for all INU and noise levels. Since, the

2nd order (4-pixel) neighbourhood region connectivity exploits the strong pixel

relations providing more relevant spatial information about a region’s local neigh-

bourhood for subsequent EMPCA and MI computation. Whereas, the 2nd order

(8-pixel) neighbourhood region connectivity has higher number of out-of-range

outliers, which emphasises its poor rate of convergence due to the weaker indirect

pixel neighbours, especially when higher INU and noise levels are present. Similar

trends can also be observed from the summary boxplots of the remaining mono

(T2/T2 and PD/PD) and multimodal (T2/PD and PD/T1) registration experi-

ments, which are included as Figures E.1 and E.2 of Appendix E for completeness.
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Figure 6.4: ART performance for using original EMPCA-MI (1storder (8-pixel)) followed by
2nd order (8-pixel) and 2nd order (4-pixel) neighbourhood region connectivity in the EMPCA-MI
framework for BrainWeb dataset-based mono and multimodal registration experiments.

In summary, considering all these boxplots for all the set of registrations for

BrainWeb dataset, EMPCA-MI framework using 2nd order (4-pixel) is able to

reduce the average RE by 79% and 71% with respect to original EMPCA-MI (1st

order (8-pixel)) and 2nd order (8-pixel), respectively. Hence, it helps to draw the

conclusion that 2nd order (4-pixel) provides more accurate features of the reference

and the sensed images in comparison to both the original EMPCA-MI (1st order

(8-pixel)) and 2nd order (8-pixel), especially when higher INU and noise levels were

present.

In order to evaluate the computational cost of Enhancement 1, an ART ana-

lysis for the registration experiments is considered. Figure 6.4 shows the ART

performance of all the neighbourhood region connectivity considered for the mono

and multimodal BrainWeb dataset registration experiments. As illustrated in Fig-

ure 6.2, since the data dimensionality of EMPCA-MI framework using 2nd order

(4-pixel) neighbourhood region connectivity is reduced to 5 from the fixed value

of 9 for both original EMPCA-MI framework using 1st order (8-pixel) and 2nd
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order (8-pixel), the corresponding ART value is considerably lower, i.e., 95 ms

compared to 155 ms for 2nd order (8-pixel) and 160 ms for 1st order (8-pixel)

to determine only the first principal component. Hence, evidently EMPCA-MI

framework using 2nd order (4-pixel) neighbourhood connectivity is able to provide

40% improvement in computational efficiency along with the better registration

performance in comparison to others.

In Section 5.3.1, there were few individual cases in both mono and multimodal

registration of BrainWeb dataset, having high levels of INU and noise (for ex-

ample α40 and α40+β) where the standard EMPCA-MI framework (using 1st order

(8-pixel) neighbourhood region connectivity) provided higher RE. One particular

example of deteriorated registration performance was monomodal T1+α40+β/T1

registration (with RE value of 44.80 pixels) with 11th initial misregistration scen-

ario (24.21, −25.2, −25.8°), shown in Figure 5.14.

The EMPCA-MI framework using 2nd order (4-pixel) gave lowest RE (RE value

of 0.39 pixels) in comparison to both the 2nd order (8-pixel) (RE value of 10.30

pixels) and original EMPCA-MI framework (1st order (8-pixel)) (RE value of 44.80

pixels) respectively. In order to observe the corresponding quality of registrations,

Figure 6.5 shows the qualitative results.

Figures 6.5(a) and (b) display the initial misregistration of 11th initial mis-

registration scenario and the ground truth respectively. Also Figures 6.5(c) – (e)

consist of Canny edge detection overlay results for EMPCA-MI framework using

original EMPCA-MI framework (1st order (8-pixel)) and 2nd order (8-pixel and

4-pixel) neighbourhood region connectivity respectively.
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(a) (b)

(c) (d)

(e)

Figure 6.5: Qualitative results of monomodal T1+α40+β/T1 pair using 11th initial misreg-
istration scenario showing (a) initial misregistration and (b) ground truth followed results for
(c) original EMPCA-MI framework (1st order (8-pixel)), then EMPCA-MI framework with (d)
2nd order (8-pixel) and (e) 2nd order (4-pixel) neighbourhood region connectivity enhancements
(with inset showing the zoomed-in central lobes).

Clearly, the EMPCA-MI framework using 2nd order (4-pixel) neighbourhood

region connectivity outperformed the other two connectivity schemes. This is evid-
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ent from the aligned central lobes in Figure 6.5(e), which is in correspondence to

the ground truth illustrated in Figure 6.5(b). The other two connectivity schemes

have significant misalignments, as seen in Figures 6.5(c) and (d).

Hence, the EMPCA-MI framework using 2nd order (4-pixel) is consistently

able to provide better registration performance in terms of RE and qualitative

assessment with also the lowest computational cost in comparison to both the 2nd

order (8-pixel) and original 1st order (8-pixel) connectivity schemes.

The aforementioned connectivity schemes explored as enhancement for EMPCA-

MI framework are not exhaustive and can be deployed in many more shapes as well

as sizes. In order to explore these possibilities and investigating them, they are

considered as one of the major future works which are discussed later in Chapter

8.

6.3 EMPCA-MI Framework Enhancement 2

The standard EMPCA-MI framework computes MI between the principal com-

ponents XR and XS to determine the final EMPCA-MI value using fixed number

of bins value b=256. While, the registration results in Chapter 5 showed the

framework was robust and efficient in its performance with lower computational

overheads, due to the challenging characteristics of some medical modalities, such

as retinal images, the EMPCA-MI framework performance can deteriorate. For

example the inherently large homogeneous regions in retinal images mean that

choosing a high number of bins for probability distribution estimation can produce
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many empty bins and more inaccurate MI value. This provided the motivation to

develop a formal mechanism for the best number of bins selection in the Step III

of EMPCA-MI framework, which is based on image statistics.

6.3.1 Number of bins for MI computation

In the MI literature, as noted in (Legg et al., 2013), the role of number of bins se-

lection has often been overlooked with initial works (Collignon et al., 1995; Pluim

et al., 2003) not specifically stating the chosen choices for number of bins. Though

later on (Maes et al., 1997) have primarily relied on experimental selection rather

than any statistical basis, they still highlight that an appropriate choice of num-

ber of bins for MI computation can significantly improve the overall registration

performance (Breitner et al., 2008; Nam et al., 2009; Ritter et al., 1999). These

optimal number of bins selection methods, used for probability distribution estim-

ation to compute MI, were also successfully employed for registration applications

in remote sensing domain (Moigne et al., 2011). While, some methods employ

empirically testing of fixed number of bins in the range from 256 to 4 bins, in a

binary-reducing approach (Kang et al., 2011; Tsao, 2003; Zhu and Cochoff, 2002),

others use different statistical analysis (Birgé and Rozenholc, 2006; Davies et al.,

2009, 2007; Parmehr et al., 2013) such as skewness and kurtosis factors to choose

the most appropriate number of bins for MI computation.

Hence, different fixed and adaptive number of bins selection approaches were

considered to be incorporated for individual and joint probability estimation for

more accurate MI computation between XR and XS in Step III of EMPCA-MI
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framework (Reel et al., 2014a). The first set of approaches investigated empirically

reducing the fixed number of bins from 256 in the original EMPCA-MI framework

to 128, 64, 32, 16, 8 and 4 bins respectively and analysing the corresponding impact

on registration performance. Intuitively, reducing the number of bins will improve

the probability distribution estimation, since the data is now distributed across

fewer sparse bins. Conversely, radically reducing the number of bins will lead to

a loss of the unique features, which could lead to inaccurate MI between them.

Furthermore, in terms of computation cost, the approach of fixed number of bins

is faster since the number of bins are predefined and not iteratively computed,

though more bins require more computation time for calculating the individual

and joint probabilities.

An alternative number of bins selection strategy was to investigate the various

statistical methods which are adaptive in nature, as they are dependent on the

statistical characteristics of the given data Z. Sturges (1926) proposed a rule

which utilised the properties of Z assuming it to be normal, then its histogram

can be approximated with a binomial distribution. Hence the Sturges Rule defined

the number of bins as:
R

(1 + log2(w)) (6.2)

Here, R and w represent the range and number of elements in Z respectively.

Since Sturges Rule assumes Z to be normally distributed, it will give inaccurate

results when this condition is not met. Meanwhile, Scott (Scott, 1979) proposed a

rule similar to Sturges Rule-based on the standard deviation of Z. It defined the
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number of bins as:
R

3.49σw− 1
3

(6.3)

Here, σ represents the standard deviation of Z.

While Scott Rule also assumed Z to be normal, it would provide number of bins

based on the actual values of Z. Various closely related variants of Scott and Sturges

Rules also exist which have change the number of bins based on similar properties

(Devroye and Gyorfi, 1985; Izenman, 1991; Kanazawa, 1993; Taylor, 1987). Later,

Scott proposed a new extension to its own previous work by multiplying by a

skewness factor (Scott, 1992), defined as:

skewness factor = 2 1
3σ

e
5σ2

4 (σ2 + 2) 1
3 (eσ2 − 1) 1

2

(6.4)

The amount of skewness allowed the Scott’s New Rule (denoted as Scott1 )

to recommend slightly higher number of bins, which improved the registration

performance. Similarly, the peak or flat nature of the distribution in comparison

to normal distribution can also be estimated using kurtosis. While, higher kurtosis

signifies the steep peak close to the mean of Z, a lower kurtosis denotes that Z has

a much flatter distribution. This was deployed by (Wichard et al., 2008), which

adapted the Sturges Rule to incorporate kurtosis such that the number of bins is:

R

log2(n) + 1 + log2(1 +K(n
6 ) 1

2 ))
(6.5)
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K =
∑n

i=1(Zi − Z)4

(n− 1)σ4 (6.6)

Here, Z and K represent the mean and kurtosis of Z respectively.

Here, including the higher-order moments (skewness and kurtosis) of Z will

accurately model their flat or peak distribution nature, which will be better rep-

resented in the number of bins selection strategy. Though, inclusion of higher-order

moments will impact on the computational times for Scott1 and Wichard, it will

be marginally lower for Sturges and Scott. Overall, adaptive number of bins se-

lection approaches will incur higher computational costs because of their iterative

nature, as the number of bins will be computed for every iteration.

These different approaches for Step III of EMPCA-MI framework will provide

a mechanism for determining the best number of bins for accurate MI calcula-

tion between XR and XS. In comparison to the fixed 256 bins used for original

EMPCA-MI framework, these approaches will introduce a new degree-of-freedom

based on the statistical characteristics of the reference and sensed images. Hence,

a fixed number of bins approach (along with the 256 bins) and four adaptive se-

lection methods (Scott, 1979, 1992; Sturges, 1926; Wichard et al., 2008) will be

incorporated into the MI computation (Step III ) of EMPCA-MI framework as

shown in Figures 6.1(a) and (c), and a comparative analysis will be undertaken to

evaluate their impact on the overall registration performance.
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6.3.2 Experimental Setup

In order to evaluate the performance of the EMPCA-MI framework with the adapt-

ive number of bins enhancement, various registrations experiments were conducted

using the generic registration model and EMPCA-MI with parameter settings same

as mentioned in Tables 3.1 and 5.1, respectively, except the various fixed and ad-

aptive number of bins for MI computation in the EMPCA-MI framework. These

registration experiments were especially performed on the monomodal pairs of ret-

inal images from the Brno-Mono dataset (details in Section 3.4.2 ) for the analysis

since they are considered challenging for registration due to the presence of dif-

ferent pathologies including haemorrhages, retinal scars and clumping of the dark

pigment which all accentuated the registration. Unlike in the previous chapter

where four initial misregistration scenarios were used, this set of experiment only

uses one initial misregistration scenario (100, 100, 45°, 0.8 ), which had emerged

as the most challenging. Therefore, this experiment consisted of 484 registrations

which included 44 monomodal image pairs, 1 initial misregistration scenario and 11

methods (including the 7 fixed number of bins settings along with 256 for original

EMPCA-MI framework and the 4 adaptive number of bins strategies).

6.3.3 Experimental Results and Discussion

Now the results for registration experiments corresponding to the adaptive num-

ber of bins enhancement of Step III of EMPCA-MI framework are presented. The

detailed boxplot in Figure 6.6 summarises the RE results of the retinal registra-

tion experiments using different fixed and adaptive techniques integrated with the

original EMPCA-MI framework.
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Figure 6.6: RE summary boxplot for EMPCA-MI framework using different number of bins
selection strategies for monomodal Brno-Mono retinal dataset registration. Blue and red colour
represent the fixed and adaptive number of bins selection approaches, while mean and outliers
are denoted by ♦ and + shapes.

It is evident from Figure 6.6 that in terms of registration performance, that

the Wichard adaptive approach (Wichard et al., 2008) has the lowest mean RE of

33.65 pixels since it iteratively computes the best number of bins based upon the

characteristics of XR and XS for each monomodal retinal pair. In terms of the

empirically fixed number of bins approaches, 32 bins performed best with a mean

RE of 51.82 pixels. The boxplot reveals a clear trend the mean RE decreases as the

fixed number of bins is reduced from the standard 256 bins of the original EMPCA-

MI framework to 32, before it then starts increasing again when the number of bins

are further reduced. The reason for this is that when large numbers of bins are

used in the MI computation in Step III, there is a tendency to have more sparsely-

populated bins within the joint histogram which leads to poorly estimated entropy.

Conversely, for fewer number of bins (16, 8 and 4), unique features will tend to

be assigned to the same bin, leading to a corresponding degradation in retinal

registration performance.
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Hence for this particular clinical dataset, 32 number of bins is most appropri-

ate within the fixed bin approaches. This may vary for different retinal datasets

depending upon the precise characteristics of the retinal dataset, which highlights

one of the limitations of adopting a fixed number of bins approach. For adaptive

number of bins selection, the results show that Wichard approach (Wichard et al.,

2008) achieved the lowest mean RE followed by Scott1 adaptive strategy (Scott,

1992). These techniques include higher-order moments of kurtosis and skewness of

the data distribution which assists to better model the retinal characteristics. In

contrast, the performance of both Sturges (Sturges, 1926) and Scott (Scott, 1979)

is much lower which is due to the fact that their underlying assumption is that the

retinal data is normally distributed which leads to inaccurate MI computation and

higher mean RE. In summary, considering the mean RE values, it is clear from

Figure 6.6 that the EMPCA-MI framework using Wichard adaptive approach is

able to reduce the RE by upto 68% in comparison to the original EMPCA-MI

using 256 fixed bins.

Moreover, Figure 6.7 shows the computational overheads in terms of ART for

EMPCA-MI framework-based retinal registration, when integrated with different

fixed and adaptive number of bins selection strategies. It is clear from Figure 6.7

that the ART decreases for fewer fixed number of bins e.g., 1.32 s to 0.86 s for 256 to

4 bins respectively, due to the lower individual and joint probability computational

times incurred for fewer number of bins. While, higher ART of 3.98 s and 3.14 s

are respectively observed for the two adaptive approaches of Wichard and Scott1

since they required the calculation of higher-order moments in their number of

bins selections for determining the respective individual and joint probabilities to
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Figure 6.7: ART summary bar graph for EMPCA-MI framework for monomodal Brno-Mono
retinal dataset registration using different number of bins selection strategies. Blue and red
colour represent the fixed and adaptive number of bins approaches.

compute MI and provide much lower mean RE in comparison to other strategies.

Finally, Figure 6.8 shows the qualitative results for Image Pair 22, using the

checkerboard overlay, with reference and sensed retinal images in light and dark

respectively. This particular retinal pair was especially challenging as it includes

pathologies along with low contrast and large homogeneous regions. Hence it

was chosen for qualitative comparison. Figure 6.8(a) and (b) shows the initial

misregistration and ground truth respectively. Furthermore, Figure 6.8(c) consists

of the zoomed in ground truth for a given region and the corresponding results

for different fixed and adaptive number of bins selection strategies. The superior

continuity of the vessel structures is evident for the Wichard adaptive approach and

fixed 32 bins. It also validates their effective qualitative performance in contrast

to employing either 256 bins-based standard EMPCA-MI framework or minimum

number of bins (4 bins) in EMPCA-MI. Clearly, using 32 bins gives both the

best numerical and qualitative results amongst fixed number of bins considered
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32 bins 16 bins 8 bins 4 bins

Sturges Scott Scott1 Wichard
(c)

Figure 6.8: Qualitative results of monomodal Fundus retinal Image Pair 22, showing (a) initial
misregistration, (b) ground truth and (c) the zoomed-in regions of ground truth and different
fixed and adaptive number of bins selection strategies with EMPCA-MI framework.
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because it represents the probability distribution most accurately, leading to an

overall retinal performance improvement. But as mentioned earlier, this choice of

fixed number of bins was empirical in nature and hence provided better registration

performance on this particular retinal dataset.

Hence, overall, it is confirmed that using Wichard adaptive approach in Step

III of the EMPCA-MI framework gave better registration performance in terms of

quantitative RE and qualitative assessment in comparison to other with a trade-off

in terms of computational cost.

6.4 Summary

This chapter proposed and investigated Enhancement 1 and 2 in the Step I and

III of EMPCA-MI framework respectively. Enhancement 1 uses the 2nd order

neighbourhood region connectivity for the pre-processing, while Enhancement 2

proposes to use different fixed and adaptive number of bins selection strategies for

the MI computation in EMPCA-MI framework. The experimental results for En-

hancement 1 of EMPCA-MI framework showed that 2nd order (4-pixel) neighbour-

hood region connectivity provided robust registration performance for BrainWeb

dataset and was also computationally more efficient in comparison to the 2nd order

(8-pixel) as well as the original EMPCA-MI using 1st order (8-pixel) scheme. Sim-

ilarly, the experimentation for Enhancement 2 of EMPCA-MI framework showed

that fixed 32 bins and Wichard adaptive number of bins selection strategy provided

lower RE performances for the retinal Brno-Mono dataset amongst all the fixed

and adaptive approaches analysed. Although Wichard approach provided lowest
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overall RE, it still had a trade-off in terms of higher computational cost in com-

parison to others. Furthermore, all the experiments for these enhancements used

the underlying assumption of choosing only one principal component (P=1 ) in the

Step II of the EMPCA-MI framework. Therefore, the next chapter will propose a

mechanism for relaxing this assumption and allow adaptively choosing the number

of principal components within the EMPCA-MI framework. In addition, it will

also integrate the enhancements presented in this chapter to make all the steps of

EMPCA-MI framework more effective.



Chapter 7

Adaptive EMPCA-MI Framework

7.1 Introduction

In the previous chapter, Steps I and III of EMPCA-MI framework in Figure

6.1, were modified by respectively utilising Enhancement 1 and 2, both of which

incurred corresponding computational costs. The experimental results for these

two enhancements were independently evaluated and both provided improved and

robust registration performance for different medical datasets. These datasets are

difficult to register due to their inherent characteristics. However, the EMPCA-MI

framework still makes the same assumption as in Chapter 4, of calculating only

the first principal component using EMPCA in Step II.

Interestingly, in Section 5.3.3 it was shown that by empirically increasing the

number of principal components (from P=1 to P=2 ), the framework provided con-

siderably improved performance for multimodal retinal registration of Fundus/SLO
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image pair from the Brno-Multi dataset. This was due to the fact that two ortho-

gonal principal components provided more variance than a single component for

this retinal image pair. This provided the impetus to formalise the new EMPCA-

MI framework so that it is able to adaptively determine the most appropriate

number of principal components to represent prominent neighbourhood region

features for a particular dataset.

This chapter proposes an adaptive EMPCA-MI framework for MIR. It exploits

the Kaiser Rule (Jackson, 1993; Jolliffe, 2002) to iteratively find the best number

of principal components to be computed by the EMPCA framework in Step II of

the registration process. In addition, it also employs both the Enhancement 1 and

2 proposed in Chapter 6 for Steps I and III.

Two sets of experiments using human brain BrainWeb and retinal DRIVE and

Brno-Multi datasets confirm that the adaptive EMPCA-MI framework provides

consistently lower RE and improved robustness with a corresponding trade-off in

computational overheads.

7.2 Adaptive EMPCA-MI framework

This section describes the adaptive EMPCA-MI framework (Reel et al., 2014b).

Section 7.2.1 briefly discusses the concept of stopping rules for PCA, before Section

7.2.2 explores the use of applying the Kaiser Rule (Jackson, 1993; Jolliffe, 2002)

to find the most appropriate number of principal components for EMPCA.
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7.2.1 Stopping Rules for PCA

In PCA, selecting the best number P of principal components is a major challenge,

because while retaining too many components can potentially lead to overfitting

by including noise in the data, choosing too few components can equally mean

discarding valuable information (Jackson, 1993). Commonly the first principal

component is empirically chosen since it accounts for the majority of variability in

the data (Rencher, 1998), and so was used for the EMPCA-MI framework. But as

mentioned in Chapter 2, various approaches for selecting the best subset of signific-

ant principal components have been proposed including Scree Graph, Broken-stick

and their variants (Cangelosi and Goriely, 2007; Jolliffe, 2002), which select a sub-

set by computing the cumulative variance for all components. In contrast, the

Kaiser Rule (Jackson, 1993; Jolliffe, 2002) retains all principal components whose

eigenvalues are greater than one. It assumes that image data variables are in-

dependent. Hence their principal components are same as variable, having unity

variance in case of correlation matrix. Hence, any component with an eigenvalue

less than one is assumed to not contain valuable information (Ravi and Palaniap-

pan, 2005). This important attribute of the Kaiser Rule is image dependent, so it

can automatically choose the number of significant principal components required

to represent image features for a given accuracy. Furthermore, it is suited to the

EMPCA-MI framework since it iteratively determines the P principal components

in descending order of eigenvalues. These two distinct and relevant characterist-

ics provided the motivation to investigate incorporating the Kaiser Rule into the

Step II of the EMPCA-MI framework to determine the best P value choice for a

particular dataset.
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Figure 7.1: Flowchart for the adaptive EMPCA-MI framework.

7.2.2 Adaptively choosing P in the EMPCA-MI frame-

work

This section describes the adaptive mechanism for choosing P for the EMPCA-

MI framework. The three primary computation steps include the pre-processing

of neighbourhood region information for both IR and I∗
S followed by adaptively

determining the P principal components using EMPCA. Finally, the MI output

is computed. Figure 7.1 shows the flowchart diagram of the adaptive EMPCA-MI

framework with these three steps indicated.

Step I of adaptive EMPCA-MI pre-processes the various image grayscale values

by using the Enhancement 1 -based 2nd order (4-pixel) neighbourhood region con-

nectivity between them as described in Section 6.2. This retains the local spatial

neighbourhood relationship rather than using pixel values as in 1st order (8-pixel)
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neighbourhood relations. Hence, by using (6.1), QR and QS are computed using

IR and I∗
S respectively.

Step II of the adaptive EMPCA-MI proposes the dimensionality reduction for

QR and QS using Kaiser Rule (Jackson, 1993; Jolliffe, 2002) to adaptively find the

most significant P principal components using EMPCA. The flowchart in Figure

7.1 shows how the adaptive EMPCA computes the first P principal components

from QR having eigenvalue λP > 1. Similarly the first P′ principal components

from QS are computed with these then concatenated as XR and XS respectively.

Crucially, unlike P=1 assumption considered in earlier chapters, this adaptive ap-

proach retains accurate image features which will be reflected in the corresponding

registration performance.

Finally, Step III of adaptive EMPCA-MI determines the MI between the highest

number of common principal components in both XR and XS of the reference and

sensed images. This step adopts the Enhancement 2 proposed in Section 6.3, with

the Wichard (Wichard et al., 2008) approach chosen to select the best number of

bins to calculate the individual and joint probabilities, since it exploits the kur-

tosis measure of the data distribution to facilitate a more accurate MI value. Next

section discusses the experimental setup used for the registration experiments.

7.3 Experimental Setup

In order to assess the performance of the adaptive EMPCA-MI framework, various

registration experiments were conducted. The nomenclature used in this chapter
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Adaptive EMPCA-MI framework

Parameters Selection

Neighbourhood radius (r) 1 (using Enhancement 1 )

Number of Principal Components (P) Adaptively (using Kaiser Rule)

Number of bins (b) Variable (using Enhancement 2 )

Table 7.1: The different parameter selections for the adaptive EMPCA-MI framework.

is adaptive EMPCA-MI {P}, where P denotes the number of principal compon-

ents determined by the Kaiser Rule in Section 7.2.2. Similarly, the EMPCA-MI

framework with P=1 in Chapter 4, 5 and 6 will be denoted as EMPCA-MI {1}.

These notations allow a clear distinction to be made between both the original and

adaptive EMPCA-MI frameworks in the subsequent result analysis. To evaluate

adaptive EMPCA-MI {P}, the registration experiments were categorised into two

sets (Set 1 and Set 2 ) as in Table 5.2, with the parameter selections for the adapt-

ive EMPCA-MI {P} and EMPCA-MI {1} models being given in Tables 7.1 and

5.1, respectively. The MIR model used for experiments employ the same parameter

settings as in Table 3.1.

The Set 1 of registration experiments used the mono and multimodal pairs

of MRI T1, T2 and PD human brain images of the BrainWeb dataset, with all

experimental settings as in the previous chapters. In all 1200 individual regis-

tration experiments were performed in this set, which included: 3 monomodal

pairs, 3 multimodal pairs, 5 levels of INU and Gaussian noise settings, 20 initial

misregistration scenarios and 2 similarity measures, including both the adaptive

EMPCA-MI {P} and EMPCA-MI {1} frameworks.
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The Set 2 of registration experiments were performed on the mono and mul-

timodal pairs of retinal images from the DRIVE and Brno-Multi datasets respect-

ively. A detailed description of these datasets was discussed earlier in Section

3.4.2. The monomodal subset using Fundus retinal images of DRIVE dataset

consists of 160 registrations which include 20 monomodal pairs, 4 initial misreg-

istration scenarios and 2 similarity measures including the adaptive EMPCA-MI

{P} and EMPCA-MI {1} frameworks. Similarly for the multimodal subset using

Fundus and SLO retinal images from the Brno-Multi dataset consists of 60 regis-

trations which include 10 multimodal pairs, 3 initial misregistration scenarios and

2 similarity measures including the adaptive EMPCA-MI {P} and EMPCA-MI

{1} frameworks.

7.4 Experimental Results Discussion

7.4.1 Set 1 : BrainWeb Dataset Registration Experiments

This section discusses the registration experiments results for adaptive EMPCA-

MI {P} on Set 1 of the BrainWeb dataset, with EMPCA-MI {1} used as the

comparator. Figure 7.2(a) and (b) show the detailed summary boxplot for all INU

and noise levels of 20 initial misregistration scenarios for the monomodal T1/T1

and multimodal T1/T2 registration experiments respectively. Each boxplot shows

a bounding box defining the interquartile range with the bar across representing

the median and whiskers denoting the RE range. The boxplots also include the

number of out-of-range RE values corresponding to either the EMPCA-MI {1} or
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adaptive EMPCA-MI {P} frameworks.

The two boxplots in Figure 7.2 confirm the superior registration quality of ad-

aptive EMPCA-MI {P} with both lower mean RE and smaller interquartile ranges

compared with EMPCA-MI {1}. For the T1/T1 pairs in Figure 7.2(a), no out-of-

range outliers with high RE are observed for adaptive EMPCA-MI {P} with the

exception of the monomodal T1+α40+β/T1 pair. In contrast the RE monoton-

ically increases in the case of EMPCA-MI {1} reflecting its poor convergence in

achieving the best alignment between the reference and sensed images. This trend

is also manifest in Figure 7.2(b) for the multimodal T1/T2 pairs, with again the

improved registration performance of adaptive EMPCA-MI {P} clearly evident.

Similar conclusions can be deduced from the boxplots for the remaining mono

(T2/T2 and PD/PD) and multimodal (T2/PD and PD/T1) registration experi-

ments which for completeness, are included in Figures F.1 and F.2 respectively in

Appendix F.

In analysing all the BrainWeb dataset results for different registrations, adapt-

ive EMPCA-MI {P} has been able to reduce RE by an average of 84% in compar-

ison to the EMPCA-MI {1}. Similarly, comparing the adaptive EMPCA-MI {P}

with MI, GMI and RMI (See Section 5.3.1 ) reveals an overall RE reduction of by

an average of 93%. These results confirm that adaptive EMPCA-MI {P} is able to

more accurately extract features from the reference and sensed images enabling a

consistently superior quality of registration, even in the presence of significant INU

and noise levels. In contrast, EMPCA-MI {1} performs satisfactorily only when

little or no INU is present in the images and as the levels of INU and Gaussian

noise increase, its performance deteriorates.
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Figure 7.2: RE summary boxplot of (a) monomodal T1/T1 pair and (b) multimodal T1/T2 pair
using EMPCA-MI {1} and adaptive EMPCA-MI {P} for all 20 initial misregistration scenarios.
The mean and outliers are denoted by ♦ and + shapes. The numbers on top of the plots refer
to the number of out-of-range outliers with RE higher than 10 and 20 pixels respectively.

In order to demonstrate the performance of adaptive EMPCA-MI {P} espe-

cially in presence of higher INU and noise, one of the individual registrations of

monomodal T1+α40+β/T1 pair shown in Figure 7.2(a) is analysed. Registration

of the T1+α40+β/T1 pair with the 14th initial misregistration scenario (−26.32,
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0.55, 33.23°) has an initial RE of 82.27 pixels. The adaptive EMPCA-MI {3} for

this registration computed with Kaiser Rule in combination with Enhancement 1

and 2, provides a significantly lower final RE value of just 1.59 pixels. Conversely,

the EMPCA-MI {1} provides a final RE value of 98.91 pixels and therefore it

is demarcated as an out-of-range outlier in Figure 7.2(a). Interestingly, reflecting

on the registration performance of the T1+α40+β/T1 pair with same initial mis-

registration scenario analysed in Chapter 6, EMPCA-MI {1} using Enhancement

1 provided final RE of 9.01 pixels, which is seen as an outlier in Figure 6.3(a).

This highlights the improved performance attained by the adaptive EMPCA-MI

{3} by choosing higher numbers of principal components and more accurate MI

computation, to facilitate lower RE and better convergence, even for registration

cases which have higher INU and noise levels.

Figure 7.3 shows the qualitative performance for the above mentioned monomo-

dal T1+α40+β/T1 pair registration. The initial misregistration and the corres-

ponding Canny edge detection ground truth are displayed in Figures 7.3(a) and

(b) respectively, with Figures 7.3(c) and (d) showing the corresponding registered

images using the EMPCA-MI {1} and adaptive EMPCA-MI {3} frameworks. The

latter clearly outperforms the EMPCA-MI {1} in terms of its alignment with the

ground truth, as the three zoomed-in areas confirm.

Analogous findings are observed for the multimodal registrations. For example,

the multimodal T1+α40+β/T2 pair shown in Figure 7.2(b) for the 13th initial mis-

registration scenario (−6.45, −20.83, −32.64°) has an initial RE of 80.60 pixels.

The adaptive EMPCA-MI {2} for this registration computed with Kaiser Rule and

using Enhancement 1 and 2, affords a final RE value of only 0.67 pixels. In con-
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(a) (b)

(c) (d)

Figure 7.3: Qualitative results of monomodal T1+α40+β/T1 pair using 14th initial misregis-
tration scenario showing (a) initial misregistration, (b) ground truth and (c) EMPCA-MI {1}
and (d) adaptive EMPCA-MI {3} output (with inset showing the zoomed-in central lobes).

trast, EMPCA-MI {1} provided a final RE value of 21.85 pixels and so has been

demarcated as an out-of-range outlier in Figure 7.2(b). Similarly, EMPCA-MI {1}

using Enhancement 1 gave a final RE of 17.18 pixels, and was also designated as

an outlier in Figure 6.3(b).

Figure 7.4 shows the corresponding qualitative performance for this particular

multimodal T1+α40+β/T2 pair registration, which has high INU and Gaussian

noise. Figures 7.4(a) and (b) display the initial misregistration and the corres-

ponding Canny edge detection ground truth. While the registered images using the

EMPCA-MI {1} and adaptive EMPCA-MI {2} framework are shown in Figures
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(a) (b)

(c) (d)

Figure 7.4: Qualitative results of multimodal T1+α40+β/T2 pair using 13th initial misregis-
tration scenario showing (a) initial misregistration, (b) ground truth and (c) EMPCA-MI {1}
and (d) adaptive EMPCA-MI {2} output (with inset showing the zoomed-in central lobes).

7.4(c) and (d) respectively, with strikingly adaptive EMPCA-MI {2} providing a

better perceptual outcome than EMPCA-MI {1} when compared with the ground

truth shown in Figure 7.4(b).

These mono and multimodal results confirm that the adaptive EMPCA-MI {P}

framework is able to achieve more consistent improved registration performance

for the BrainWeb dataset, even in the presence of high INU and noise levels.
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Figure 7.5: RE summary bar graph of 20 monomodal Fundus retinal image pairs using EMPCA-
MI {1} and adaptive EMPCA-MI {P} for 3rd initial misregistration scenario.

7.4.2 Set 2 : DRIVE and Brno-Multi Dataset Experiments

This section analyses the registration results for adaptive EMPCA-MI {P} on

Set 2 of monomodal retinal DRIVE dataset and multimodal retinal Brno-Multi

dataset. To draw a comparison as in earlier section, EMPCA-MI {1} was used as

a comparator.

The first subset of registration experiments of DRIVE dataset used four initial

misregistration scenarios, the same as in Chapter 5. In the first two initial misreg-

istration scenarios, only one registration parameter (namely rotation θ) was varied,

while in the last two scenarios all the four registration parameters are varied. Fig-

ure 7.5 shows the RE summary bar grpaph of 20 monomodal Fundus image pairs

using EMPCA-MI {1} and adaptive EMPCA-MI {P} for the 3rd initial misregis-

tration scenario (5, 5, 20 °, 2.8 ). This bar graph is plotted with twice broken y axis

in order to accommodate all the RE values on the same plot as well as to equit-

ably show the lower RE values. The RE results confirm adaptive EMPCA-MI {P}

provided superior registration performance with consistently lower RE compared
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with the EMPCA-MI {1} in challenging contrast and illumination conditions.

For example, the RE for Image Pair 20 using adaptive EMPCA-MI {P} is

nearly half that of EMPCA-MI {1}. It was stressed in Chapter 5, that for this

particular Image Pair, EMPCA-MI {1} provided poorer registration performance

than GFM as shown earlier in Figure 5.7, because EMPCA-MI {1} uses only

one principal component, which is insufficient for the inherent challenging homo-

geneous regions and leads to its underperformance. On the other hand, adaptive

EMPCA-MI {3} with Kaiser Rule computation and using Enhancement 1 and

2 for this particular Image Pair gives a better registration performance with RE

reduction of 54% and 52% respectively compared with EMPCA-MI {1} and GFM.

The qualitative assessment of the registration for Image Pair 20 can be ob-

served in Figure 7.6. It shows the checkerboard overlay results with the initial

misregistration in Figure 7.6(a) and the ground truth with three marked regions

for visual inspection in Figure 7.6(b). Figures 7.6(c) and (d) show the registra-

tion output for EMPCA-MI {1} and adaptive EMPCA-MI {3} frameworks, with

the correspondingly marked regions. Moreover, Figure 7.6(e) shows the zoomed

three marked regions of the ground truth and two registration outputs. It is clear

from the Figure 7.6(e) results that adaptive EMPCA-MI {3} gives better vascular

structure continuity in comparison to EMPCA-MI {1}, and in terms of alignment,

is also much closer to the ground truth by virtue of adaptively choosing more prin-

cipal components to better represent the localised features in Image Pair 20.

Finally, Figure 7.7 summarises the first subset of Set 2 registration experiments.

It shows the RE summary boxplot of all monomodal Fundus retinal image pairs
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(a) (b)

(c) (d)

(e)

Figure 7.6: Qualitative results of monomodal Fundus retinal Image Pair 20 using the 3rd initial
misregistration scenario, showing (a) initial misregistration, (b) ground truth, (c) EMPCA-MI
{1} and (d) adaptive EMPCA-MI {3} output. Also (e) shows the zoomed-in regions of ground
truth (1st row), EMPCA-MI {1} (2nd row) and adaptive EMPCA-MI {3} (3rd row).
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Figure 7.7: RE summary boxplot of 20 monomodal Fundus retinal image pairs using EMPCA-
MI {1} and adaptive EMPCA-MI {P} for all 4 initial misregistration scenarios. The mean and
outliers are denoted by ♦ and + shapes. The numbers on top of the plot refer to the number of
out-of-range outliers with RE higher than 18 pixels.

using EMPCA-MI {1} and adaptive EMPCA-MI {P} for all 4 initial misregistra-

tion scenarios. The boxplot highlights the overall superior registration performance

of adaptive EMPCA-MI {P} over EMPCA-MI {1}, consistently providing lower

mean RE in all scenarios, as well as fewer out-of-range outliers. The monomodal

results of adaptive EMPCA-MI {P} provide an overall RE reduction of 54% and

51% respectively compared with GFM and EMPCA-MI {1}.

Now considering the results for second subset of Set 2 using multimodal Fundus

/SLO Brno-Multi dataset, as in Chapter 5, this subset utilises three separate initial

misregistration scenarios. In the first, just one registration parameter (θ) is varied,

while in the other two scenarios all the four registration parameters are varied.

Figure 7.8 shows the corresponding RE summary bar graph of 10 multimodal

Fundus/SLO image pairs using adaptive EMPCA-MI {P} and EMPCA-MI {1}

for the 2nd initial misregistration scenario (10, 10, 30°, 2 ). It is apparent adaptive
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Figure 7.8: RE summary bar graph of 10 multimodal Fundus/SLO retinal image pairs using
EMPCA-MI {1} and adaptive EMPCA-MI {P} for the 2nd initial misregistration scenario.

EMPCA-MI {P} again consistently provides lower RE than EMPCA-MI {1} for

all Image Pairs. It is especially notable to scrutinise the results for the challenging

Image Pair 6, which previously in Figure 5.11, produced a higher RE for EMPCA-

MI {1} in comparison to RIR-BS. Using adaptive EMPCA-MI {2} with Kaiser

Rule, together with Enhancement 1 and 2 now gives better registration with an

average RE reduction of 35% and 33% respectively compared to EMPCA-MI {1}

and RIR-BS.

To affirm this superior performance, Figure 7.9 shows the matching qualit-

ative results for Image Pair 6 for the 2nd initial misregistration scenario, with

three zoomed-in regions shown in Figure 7.9(e). Figures 7.9(a) and (b) show

the initial misregistration for the 2nd scenario and the ground truth respectively

with three marked regions. Also, Figures 7.9(c) and (d) show the registration

output for EMPCA-MI {1} and adaptive EMPCA-MI {P} with corresponding

marked regions respectively. Figure 7.9(e) shows the zoomed three marked re-

gions of the ground truth and two registration outputs. Note, in all three marked

regions, adaptive EMPCA-MI {2} provides enhanced structural continuity com-
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(a) (b)

(c) (d)

(e)

Figure 7.9: Qualitative results of multimodal Fundus/SLO retinal Image Pair 6 using the 2nd

initial misregistration scenario, showing (a) initial misregistration, (b) ground truth, (c) EMPCA-
MI {1} and (d) adaptive EMPCA-MI {2} output. Also (e) shows the zoomed-in regions of ground
truth (1st row), EMPCA-MI {1} (2nd row) and adaptive EMPCA-MI {2} (3rd row).
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Figure 7.10: RE summary boxplot of 10 multimodal Fundus/SLO retinal image pairs using
EMPCA-MI {1} and adaptive EMPCA-MI {P} for all 3 initial misregistration scenarios. The
mean and outliers are denoted by ♦ and + shapes. The numbers on top of the plot refer to the
number of out-of-range outliers with RE higher than 150 pixels.

pared with EMPCA-MI {1} by adaptively determining P directly from the images

and thereby leading to consistently superior and more robust registration, even for

challenging Image Pairs.

Figure 7.10 summarises the second subset of Set 2 registration experiments for

the multimodal Fundus/SLO retinal image pairs using EMPCA-MI {1} and ad-

aptive EMPCA-MI {P} for the three initial misregistration scenarios. The results

reveal the superior registration performance of adaptive EMPCA-MI {P} in terms

of both lower mean RE and interquartile range over EMPCA-MI {1} in all the

scenarios. Moreover, the underperformance of EMPCA-MI {1} is evident from the

presence of one out-of-range outlier in last two scenarios, while in contrast adapt-

ive EMPCA-MI {P} is able to consistently afford lower RE with no out-of-range

outliers. Overall these multimodal results of adaptive EMPCA-MI {P} provide

a respective average reduction in RE by 59% and 39% in comparison to those of
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RIR-BS and EMPCA-MI {1} in Section 5.3.2.

In summary, these findings confirm that adaptive EMPCA-MI {P} provides

better image registration performance compared to EMPCA-MI {1} with an over-

all 45% reduction for the DRIVE and Brno-Multi datasets, which are especially

characterised by the presence of low contrast and large homogeneous non-vascular

regions.

7.4.3 Computational Cost of Adaptive EMPCA-MI

Framework

As shown earlier in Section 4.3.2, the order of computational complexity for the

EMPCA {1} was O(qd). Similarly for the adaptive EMPCA {P}, the order of

complexity is O(Pqd), but as q >> P, d the order will be same as EMPCA {1},

though the iterative nature of the Kaiser Rule to determine the best P means the

overall time cost will tend to be slightly higher. Adaptive EMPCA-MI {P} can

thus be viewed as a generalisation of the EMPCA-MI framework, with EMPCA-MI

{1} being a special case.

While the adaptive EMPCA-MI {P} framework more effectively registers the

mono and multimodal BrainWeb, DRIVE and Brno-Multi medical datasets, it

does incur a commensurate increase in computational time due to its inherently

iterative nature. While the order of computational complexity remains the same

as EMPCA-MI {1}, it is insightful to undertake an ART analysis to evaluate the

extra cost of using the Kaiser Rule to determine the best P value.
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Figure 7.11: ART performance for EMPCA-MI {1} and adaptive EMPCA-MI {P} frameworks
for Set 1 and Set 2 registration experiments.

Figure 7.11 shows the ART performance of adaptive EMPCA-MI {P} for re-

gistration of the Sets 1 and 2 clinical datasets in comparison with EMPCA-MI

{1}. Clearly the adaptive EMPCA-MI {P} computation time for both Set 1 and

2 registration results is higher, with in case of Set 1, the increase being 25% with

respect to EMPCA-MI {1} and 35% for Set 2. Note, the reason for the overall

higher Set 2 registration ART values is they reflect the greater resolution of the

Fundus/SLO retinal images.

While the Enhancement 1 introduced in Chapter 6 reduces data dimensional-

ity by using 2nd order region connectivity, overall the adaptive EMPCA-MI {P}

framework does incur a higher computational cost because of the inclusion of the

adaptive Kaiser Rule to find P and then use Enhancement 2 to determine the best

number of bins for MI computation. This pragmatically, however, is more than

offset by the significant improvements achieved by the framework in superior and

more robust registration performance, particularly in the processing of multimodal
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image datasets characterised by high INU and noise, and large homogeneous non-

vascular regions.

7.5 Summary

This chapter has presented an adaptive EMPCA-MI framework for MIR. It exploits

one of the popular stopping rules for principal components namely the Kaiser Rule

to adaptively find the number of principal components to be computed by the it-

erative EMPCA. In addition, it also employs Enhancement 1 and 2 proposed

in Chapter 6. Two sets (Set 1 and 2 ) of rigorous experiments using mono and

multimodal human brain BrainWeb and retinal DRIVE and Brno-Multi datasets

proved that adaptive EMPCA-MI provides consistently better registration per-

formance with a corresponding trade-off in computational cost. Overall, the nu-

merical and qualitative results for adaptive EMPCA-MI show improved robustness

and consistently lower RE in comparison to EMPCA-MI using only one principal

component. The next chapter presents some ideas for the future to extend the

findings from this thesis.



Chapter 8

Future Work

There are a number of potential opportunities to extend the EMPCA-MI similarity

measure framework presented in this thesis, as well as exploring other domains for

its applicability. Some of these prospective research avenues will now be reviewed.

1. The presented work had the overarching objective of achieving effective ro-

bust registration of 2D medical images without incurring high computational

cost. As most advanced medical imaging modalities nowadays generate 3D

images, one promising area of investigation would be to extend the frame-

work to 3D image registration. A new 3D region connectivity (using the 6,

18 or 26 neighbourhood) based sliding window could be considered as the

pre-processing stage for the framework (J. Toriwaki and H. Yoshida, 2009; J.

Toriwaki and T. Yonekura, 2002; Noël and Biri, 2015), exploiting the proven

enhanced neighbourhood region relations shown in Section 6.2, while leav-

ing the other two processing blocks of the EMPCA-MI similarity measure

framework as is. In addition, it would be interesting to assess the impact
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of using different interpolations and higher neighbourhood radius for the

EMPCA-MI similarity measure in the above mentioned extension, with an

overall objective to reduce the computational costs.

2. The EMPCA-MI similarity measure framework processes local neighbour-

hood regions in order to extract spatial features. The thesis has focused

upon the direct (4-pixel) and indirect (8-pixel) connectivity-based 1st/2nd

order neighbourhood relationships, so the underlying idea could be exten-

ded to higher-order patterns and object shapes. More neighbourhood pat-

terns could be inspired from the Local Binary Pattern (LBP) scheme and

its recent variants (Liu et al., 2012; Pietikäinen et al., 2011), which have

gained popularity in the texture classification domain due to its ability to

deal with illumination variations and computational simplicity. It would be

insightful to study the impact of integrating a LBP-based approach into the

pre-processing stage of the EMPCA-MI similarity measure framework which

can help to robustly extract the spatial information from the neighbourhood

region leading to more effective registration.

3. The EMPCA-MI similarity measure framework could be applied to other

domains in addition to medical imaging. While the framework determines

the statistical relationship between different medical modalities, it is feasible

to use it in other domains such as remote sensing image registration (Chen

et al., 2003) and high dimensional hyper-spectral imagery (Yao et al., 2010).

Furthermore, since it integrates local spatial information along with mutual

information, it can be used for quantitative assessment of the visual quality

of generic images (Li et al., 2012).
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4. Although 3D registration is used in both medical and non-medical applica-

tions, the long run times involved in the convergence of these registrations

is an obstacle to their deployment in time-critical applications (Argyriou

et al., 2015). Hence in order to develop time sensitive registration process

for such applications, it is desirable to utilise graphic processing unit-based

computing. This requires granularity level visualisation of the various blocks

of registration process in terms of memory and mathematical operations

(Shi et al., 2012). Another extension to the EMPCA-MI similarity measure

framework would be to examine graphic processing unit-based implement-

ations for accelerated registration. The iterative and parallel process flows

of EMPCA-MI could be leveraged from multi-core processor architectures,

especially when deployed together with multi-resolution approaches for sig-

nificant speed-ups.

5. While the EMPCA-MI similarity measure framework has been developed

for rigid transform-based registration of medical images, it can be general-

ised to non-rigid registration scenarios for different imaging modalities as

well as being utilised for sequential rigid followed by non-rigid registration

in advanced biomedical applications. For example, EMPCA-MI similarity

measure framework could be used for non-rigid B-Spline registration ex-

periments on 2D mouse embryonic micro-CT data using a multi-resolution

approach. This could facilitate the high-throughput mouse embryonic micro-

CT data phenotyping which aims to map each mouse gene to its correspond-

ing physiological functionality in line with International Mouse Phenotyping

Consortium (Roy et al., 2013).



Chapter 9

Conclusion

Medical imaging is increasingly used for diagnosis and treatment planning applic-

ations in healthcare as well as an innovative tool for medical research. The ability

to establish correspondences between locations in medical images is ubiquitous in

most applications. Even though research into MIR has progressed rapidly in the

last three decades, there are still many challenges. Previously, various feature and

intensity-based similarity measures have been proposed for registration purposes,

with MI establishing itself as a popular similarity measure due to its information-

theoretic properties and ability to register multimodal medical images. Some mod-

alities include inherent characteristics like high INU, noise and large non-vascular

homogeneous regions, which makes the registration process especially challenging.

Recent efforts at the robust registration of multimodal images have used hybrid

similarity measures utilising spatial information from local regions along with MI,

though they either incur a significant computational cost or use covariance-based

approximation leading to poorer registration quality.
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A new flexible, robust hybrid EMPCA-MI similarity measure framework has

been presented which comprises a suite of innovative algorithms to improve the

registration performance by extracting the local features from the neighbourhood

region using iterative EMPCA in combination with MI to lower the computational

time complexity. The new EMPCA-MI framework has been critically evaluated

using different mono and multimodal clinical datasets, and makes three original

contributions to the rigid image registration domain, which are summarised as

follows:

1. The most significant contribution is the adaptive EMPCA-MI similarity

measure framework which has the capability to flexibly choose the num-

ber of principal components from the neighbourhood region, based on the

image characteristics and then to compute the MI thereby affording a key

computational trade-off mechanism. The framework uses a stopping rule

for guiding the iterative EMPCA to ascertain the most appropriate number

of features, so EMPCA-MI becomes image dependent with the features re-

flecting the image information. Rigorous mono and multimodal registration

experiments confirm the improved quantitative performance for the challen-

ging brain MRI and retinal images, with the average registration error being

reduced by up to 93% and 60% respectively, compared to existing similarity

measures.

2. The underlying EMPCA-MI similarity measure framework also utilises local

neighbourhood region information of the image, though it only employs the

first iteratively computed principal component in EMPCA when computing

the MI. This means it is computationally more efficient than the adaptive
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EMPCA-MI similarity measure framework and crucially provides the user

with the flexibility to trade between speed and registration quality. Nonethe-

less it has been conclusively shown to afford superior mono and multimodal

registration performance compared with current techniques, with registra-

tion errors reduced by on average, 61% and 30% for the brain MRI and

retinal datasets respectively.

3. Finally, a series of novel enhancements has been embedded into the EMPCA-

MI similarity measure framework to further improve its performance. En-

hancement 1 exploits the neighbourhood region relationships to remove in-

formation redundancy, while Enhancement 2 employs variable number of

bins selection strategies to enable more accurate MI computation. Experi-

mental results confirm both enhancements collectively provide reductions in

the average registration error of up to 79% and 68% respectively, compared

with the original EMPCA-MI similarity measure model.

In summarising, this new hybrid EMPCA-MI similarity measure framework makes

a notable contribution to the registration performance of multimodal clinical im-

ages characterised by high INU, noise and non-vascular homogeneous regions.

Most importantly, it offers a flexible and robust solution for 2D rigid registra-

tion which is able to, not only be extended to non-rigid registration, but also the

3D registration domain in the future.
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Appendix A

Initial Misregistration Scenarios

This Appendix includes the details of the initial misregistration scenarios (τinitial)

mentioned in Section 3.5.1 and used for mono and multimodal registration through-

out this thesis. Table A.1 displays the details of twenty initial misregistration

scenarios for BrainWeb dataset as adopted from (Kotsas and Dodd, 2011). Sim-

ilarly, the five initial misregistration scenarios were used for DRIVE, Brno-Mono

and Brno-Multi retinal datasets as adopted from (Gharabaghi et al., 2013).
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Scenario No
Initial Misregistration (τinitial)

Initial RE (in pixels)
xinitial yinitial θinitial

1 −5.55 17.74 0.35 18.59

2 12.88 −8.11 7.09 20.42

3 10.11 27.22 −2.67 29.45

4 26.23 −13.42 8.17 32.58

5 −17.08 12.91 −14.40 38.24

6 −10.88 −11.62 −16.18 41.05

7 13.62 16.41 15.82 41.79

8 16.71 −23.55 20.60 54.13

9 −9.41 −19.11 21.37 54.70

10 29.72 2.83 24.54 63.11

11 24.21 −25.20 −25.82 67.98

12 −19.11 9.08 −28.42 70.55

13 −6.45 −20.83 −32.64 80.60

14 −26.32 0.55 33.23 82.27

15 −5.23 2.31 34.80 84.16

16 −5.65 16.94 −36.06 88.11

17 0.21 −16.41 −36.15 88.12

18 −23.64 −7.72 −37.63 92.12

19 7.20 0.23 −40.08 96.46

20 0.55 29.63 −44.71 109.25

Table A.1: Initial misregistration scenarios for the BrainWeb (Collins et al., 1998) dataset as
in (Kotsas and Dodd, 2011).
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Scenario

No

Initial Misregistration (τinitial) Initial RE (in pixels)

xinitial yinitial θinitial Sinitial DRIVE Brno-Mono Brno-Multi

1 0 0 5 1 42.08 183.69 203.82

2 0 0 60 1 482.41 2105.64 2336.39

3 5 5 20 2.8 912.49 3982.79 4419.26

4 8 9 45 0.8 344.12 1501.72 1666.29

5 100 100 45 0.8 355.71 1503.80 1668.17

Table A.2: Initial misregistration scenarios for the retinal datasets as in (Gharabaghi et al.,
2013).



Appendix B

EMPCA-MI Results for

Interpolation

This Appendix includes the detailed x axis translation, y axis translation and θ

rotation plots of EMPCA-MI traces as mentioned in Section 4.3.1. These plots

show the results for nearest neighbour, bilinear and bicubic interpolation methods

for mono and multimodal T1, T2 and PD image pairs from BrainWeb dataset

having five INU and noise levels (No INU and noise, α20, α40, β and α40+β) as

discussed in Section 3.5.2.

Figures B.1, B.2 and B.3 show the EMPCA-MI traces for monomodal T1/T1,

T2/T2 and PD/PD image pairs respectively. Similarly, Figures B.4, B.5 and B.6

show the EMPCA-MI traces for multimodal T1/T2, T2/PD and PD/T1 image

pairs respectively.
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Figure B.1: EMPCA-MI Traces for monomodal T1/T1, T1+α20/T1, T1+α40/T1, T1+β/T1
and T1+α40+β/T1 image pairs for x, y translation and θ rotation.
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Figure B.2: EMPCA-MI Traces for monomodal T2/T2, T2+α20/T2, T2+α40/T2, T2+β/T2
and T2+α40+β/T2 image pairs for x, y translation and θ rotation.
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Figure B.3: EMPCA-MI Traces for monomodal PD/PD, PD+α20/PD, PD+α40/PD,
PD+β/PD and PD+α40+β/PD image pairs for x, y translation and θ rotation.
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Figure B.4: EMPCA-MI Traces for multimodal T1/T2, T1+α20/T2, T1+α40/T2, T1+β/T2
and T1+α40+β/T2 image pairs for x, y translation and θ rotation.
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Figure B.5: EMPCA-MI Traces for multimodal T2/PD, T2+α20/PD, T2+α40/PD, T2+β/PD
and T2+α40+β/PD image pairs for x, y translation and θ rotation.



Appendix B: EMPCA-MI Results for Interpolation 252

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

x (mm)

E
M
P
C
A
-M

I

PD/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

y (mm)

E
M
P
C
A
-M

I

PD/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

θ (degrees)

E
M
P
C
A
-M

I

PD/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

x (mm)

E
M
P
C
A
-M

I

PD+α20/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

y (mm)

E
M
P
C
A
-M

I

PD+α20/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

θ (degrees)

E
M
P
C
A
-M

I

PD+α20/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

x (mm)

E
M
P
C
A
-M

I

PD+α40/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

y (mm)

E
M
P
C
A
-M

I

PD+α40/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.1

0.2

0.3

0.4

0.5

θ (degrees)

E
M
P
C
A
-M

I

PD+α40/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.05

0.1

0.15

0.2

x (mm)

E
M
P
C
A
-M

I

PD+β/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.05

0.1

0.15

0.2

y (mm)

E
M
P
C
A
-M

I

PD+β/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.05

0.1

0.15

0.2

θ (degrees)

E
M
P
C
A
-M

I

PD+β/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.06

0.12

0.18

x (mm)

E
M
P
C
A
-M

I

PD+α40+β/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.06

0.12

0.18

y (mm)

E
M
P
C
A
-M

I

PD+α40+β/T1

N.Neighbour
Bilinear
Bicubic

−50 −25 0 25 50
0

0.06

0.12

0.18

θ (degrees)

E
M
P
C
A
-M

I

PD+α40+β/T1

N.Neighbour
Bilinear
Bicubic

Figure B.6: EMPCA-MI Traces for multimodal PD/T1, PD+α20/T1, PD+α40/T1, PD+β/T1
and PD+α40+β/T1 image pairs for x, y translation and θ rotation.
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EMPCA-MI Results for

Neighbourhood Radius

This Appendix includes the detailed x axis translation, y axis translation and θ

rotation plots of EMPCA-MI traces as mentioned in Section 4.3.2. These plots

show the results for value of neighbourhood radius r varied between 1, 2, 3, 5, 7

and 10, (keeping the interpolation scheme as bicubic) for mono and multimodal

T1, T2 and PD image pairs from BrainWeb dataset having five INU and noise

levels (No INU and noise, α20, α40, β and α40+β) as discussed in Section 3.5.2.

Figures C.1, C.2 and C.3 show the EMPCA-MI traces for monomodal T1/T1,

T2/T2 and PD/PD image pairs respectively. Similarly, Figures C.4, C.5 and C.6

show the EMPCA-MI traces for multimodal T1/T2, T2/PD and PD/T1 image

pairs respectively.
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Figure C.1: EMPCA-MI Traces for monomodal T1/T1, T1+α20/T1, T1+α40/T1, T1+β/T1
and T1+α40+β/T1 image pairs for x, y translation and θ rotation.
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Figure C.2: EMPCA-MI Traces for monomodal T2/T2, T2+α20/T2, T2+α40/T2, T2+β/T2
and T2+α40+β/T2 image pairs for x, y translation and θ rotation.
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Figure C.3: EMPCA-MI Traces for monomodal PD/PD, PD+α20/PD, PD+α40/PD,
PD+β/PD and PD+α40+β/PD image pairs for x, y translation and θ rotation.
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Figure C.4: EMPCA-MI Traces for multimodal T1/T2, T1+α20/T2, T1+α40/T2, T1+β/T2
and T1+α40+β/T2 image pairs for x, y translation and θ rotation.
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Figure C.5: EMPCA-MI Traces for multimodal T2/PD, T2+α20/PD, T2+α40/PD, T2+β/PD
and T2+α40+β/PD image pairs for x, y translation and θ rotation.
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Figure C.6: EMPCA-MI Traces for multimodal PD/T1, PD+α20/T1, PD+α40/T1, PD+β/T1
and PD+α40+β/T1 image pairs for x, y translation and θ rotation.



Appendix D

Supplementary Results for

Chapter 5

This Appendix includes supplementary results for Chapter 5. Figures D.1 (a) and

(b) show the RE versus iterations plots for MI, GMI, RMI and EMPCA-MI using

18th initial misregistration scenario for the monomodal registration of T2/T2 and

PD/PD image pairs. Figures D.2 and D.3 display the corresponding qualitative

results for T2+α40+β/T2 and PD+α40+β/PD respectively. Next, Figure D.4

shows the RE versus iterations plots for MI, GMI, RMI and EMPCA-MI using

15th initial misregistration scenario for multimodal registration of T1/T2, T2/PD

and PD/T1 pairs with different INU levels and noise. They are followed by Figures

D.5 and D.6 which display the corresponding qualitative results for T2+α40+β/PD

and PD+α40+β/T1 respectively.
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Finally, Figures D.7 and D.8 show the RE summary boxplot of mono (T2/T2

and PD/PD) and multimodal (T2/PD and PD/T1) pairs respectively using MI,

GMI, RMI and EMPCA-MI for all 20 initial misregistration scenarios (having five

INU and noise levels).
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Figure D.1: RE versus iterations plots for MI, GMI, RMI and EMPCA-MI using 18th

initial misregistration scenario for monomodal registration of (a) T2+α40+β/T2 and (b)
PD+α40+β/PD pairs.



Appendix D: Supplementary Results for Chapter 5 262

(a) Initial Misregistration (b) Ground Truth

(c) MI Result (d) GMI Result

(e) RMI Result (f) EMPCA-MI Result

Figure D.2: Qualitative results for T2+α40+β/T2 with inset showing zoomed-in central lobes
for 18th initial misregistration scenario.
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(a) Initial Misregistration (b) Ground Truth

(c) MI Result (d) GMI Result

(e) RMI Result (f) EMPCA-MI Result

Figure D.3: Qualitative results for PD+α40+β/PD with inset showing zoomed-in central lobes
for 18th initial misregistration scenario.
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Figure D.4: RE versus iterations plots for MI, GMI, RMI and EMPCA-MI using 15th ini-
tial misregistration scenario for multimodal registration of (a) T1/T2, (b) T1+α20/T2, (c)
T1+α40/T2 and (d) T1+β/T2 (e) T2+α40+β/PD and (f) PD+α40+β/T1 pairs.
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(a) Initial Misregistration (b) Ground Truth

(c) MI Result (d) GMI Result

(e) RMI Result (f) EMPCA-MI Result

Figure D.5: Qualitative results for T2+α40+β/PD with inset showing zoomed-in central lobes
for 15th initial misregistration scenario.
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(a) Initial Misregistration (b) Ground Truth

(c) MI Result (d) GMI Result

(e) RMI Result (f) EMPCA-MI Result

Figure D.6: Qualitative results for PD+α40+β/T1 with inset showing zoomed-in central lobes
for 15th initial misregistration scenario.
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Figure D.7: RE summary boxplot of monomodal (a) T2/T2 and (b) PD/PD pairs using MI,
GMI, RMI and EMPCA-MI for all 20 initial misregistration scenarios. The mean and outliers are
denoted by ♦ and + shapes. The numbers on top of the plots refer to the number of out-of-range
outliers with RE higher than 65 and 85 pixels respectively.



Appendix D: Supplementary Results for Chapter 5 268

2 1 0 0 3 2 2 0 3 2 3 0 4 2 1 0 3 4 4 1

0

20

40

60
65

MI
GM

I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI

T2/PD T2+α20/PD T2+α40/PD T2+β/PD T2+α40 + β/PD

R
eg

is
tr
a
ti
o
n
E
rr
o
r
(R

E
)

(a)

0 0 0 0 2 1 0 0 3 0 1 1 2 0 0 1 1 1 1 1

0

30

60

90
95

MI
GM

I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI MI

GM
I
RM

I

EM
PC

A-
MI

PD/T1 PD+α20/T1 PD+α40/T1 PD+β/T1 PD+α40 + β/T1

R
eg

is
tr
a
ti
o
n
E
rr
o
r
(R

E
)

(b)

Figure D.8: RE summary boxplot of multimodal (a) T2/PD and (b) PD/T1 pairs using MI,
GMI, RMI and EMPCA-MI for all 20 initial misregistration scenarios. The mean and outliers are
denoted by ♦ and + shapes. The numbers on top of the plots refer to the number of out-of-range
outliers with RE higher than 60 and 95 pixels respectively.
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Supplementary Results for

Chapter 6

This Appendix includes supplementary results for Chapter 6. Figures E.1 and E.2

show the RE summary boxplot of mono (T2/T2 and PD/PD) and multimodal

(T2/PD and PD/T1) pairs respectively using the 1st order (8-pixel), 2nd order (8-

pixel) and 2nd order (4-pixel) neighbourhood region connectivity in EMPCA-MI

framework for all 20 initial misregistration scenarios (having five INU and noise

levels).
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Figure E.1: RE summary boxplot of monomodal (a) T2/T2 and (b) PD/PD pairs using 1st

order (8-pixel), 2nd order (8-pixel) and 2nd order (4-pixel) neighbourhood region connectivity in
EMPCA-MI framework for all 20 initial misregistration scenarios. The mean and outliers are
denoted by ♦ and + shapes. The numbers on top of the plots refer to the number of out-of-range
outliers with RE higher than 35 and 15 pixels respectively.
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Figure E.2: RE summary boxplot of multimodal (a) T2/PD and (b) PD/T1 pairs using 1st

order (8-pixel), 2nd order (8-pixel) and 2nd order (4-pixel) neighbourhood region connectivity in
EMPCA-MI framework for all 20 initial misregistration scenarios. The mean and outliers are
denoted by ♦ and + shapes. The numbers on top of the plots refer to the number of out-of-range
outliers with RE higher than 21 and 16 pixels respectively.
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Supplementary Results for

Chapter 7

This Appendix includes supplementary results for Chapter 7. Figures F.1 and F.2

show the RE summary boxplot of mono (T2/T2 and PD/PD) and multimodal

(T2/PD and PD/T1) pairs respectively using the EMPCA-MI {1} and adaptive

EMPCA-MI {P} for all 20 initial misregistration scenarios (having five INU and

noise levels).
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Figure F.1: RE summary boxplot of monomodal (a) T2/T2 and (b) PD/PD pairs using the
EMPCA-MI {1} and adaptive EMPCA-MI {P} for all 20 initial misregistration scenarios. The
mean and outliers are denoted by ♦ and + shapes. The numbers on top of the plots refer to the
number of out-of-range outliers with RE higher than 11 and 15 pixels respectively.
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Figure F.2: RE summary boxplot of multimodal (a) T2/PD and (b) PD/T1 pairs using the
EMPCA-MI {1} and adaptive EMPCA-MI {P} for all 20 initial misregistration scenarios. The
mean and outliers are denoted by ♦ and + shapes. The numbers on top of the plots refer to the
number of out-of-range outliers with RE higher than 17 and 16 pixels respectively.
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