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Primate and human social groups exhibit a fractal
structure that has a very limited range of preferred
layer sizes, with groups of 5, 15, 50 and (in humans)
150 and 500 predominating. In non-human primates,
this same fractal distribution is also observed in
the distribution of species mean group sizes and
in the internal network structure of their groups.
Here we demonstrate that this preferential numbering
arises because of the critical nature of dynamic self-
organization within complex social networks. We
calculate the size dependence of the scaling properties
of complex social network models and argue that
this aggregate behaviour exhibits a form of collective
intelligence. Direct calculation establishes that the
complexity of social networks as measured by their
scaling behaviour is non-monotonic, peaking globally
around 150 with a secondary peak at 500 and tertiary
peaks at 5, 15 and 50. This provides a theory-based
rationale for the fractal layering of primate and human
social groups.

1. Introduction
Human personal social networks have a characteristic
size (approx. 150) with a distinctive layered structure
based on a hierarchically inclusive series of layers
at 5, 15 and 50 within the 150 and then continuing
as an external series of layers at 500 and 1500 [1].

2023 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2023.0028&domain=pdf&date_stamp=2023-06-07
mailto:robin.dunbar@psy.ox.ac.uk
http://orcid.org/0000-0002-9982-9702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230028

..........................................................

Counting cumulatively, these layers have a very consistent scaling ratio of approximately 3 across
a range of contexts including (but not limited to) ego-centric social networks [2], online social
networks [3,4], cellphone communication networks [4,5] and even trading networks in stock
exchanges [5]. The same motif appears in the structural organization of hunter–gatherer societies
[6], the design of leisure facilities such as caravan parks [7], the size and structure of alliances in
online gaming environments [8] and the structural organization of modern armies [9]. Moreover,
the same pattern has been noted in the distribution of group sizes across primate species [10], as
well as in the internal structuring of primate social groups [11,12].

The fact that this pattern seems to be so widespread in so many different social contexts
suggests that it is underpinned by very general structural principles. It has been noted that social
group size in primates is correlated with brain size [13,14], and that this correlates in turn with
environmental threats such as predation risk [14,15]. Despite these empirical relationships, it has
proven difficult to find any convincing first principles explanations that might explain why social
groupings across both humans and primates have the particular structure they do, and why they
should form such a specific fractal pattern.

West et al. [16] provide a prima facie case for the viewing efficiency of information flow
through networks as being crucial for the structural stability of natural human social groups
(equivalent to the 150 layer). They used two different models of group social dynamics
(a decision-making model (DMM) and a swarm intelligence model (SIM)) to generate criticality-
induced intelligence as a function of social group size. This analysis established computationally
that the scaling of the network time series varies non-monotonically with network size. In the
DMM, N individuals choose between two conflicting decisions under the influence of their
neighbours [17]; in the SIM, the behaviour of a group (such as the response of a flock of birds
in flight from a predator) is determined by the binary choice between continuing on-course or
changing course to escape [18]. These models are derivative of a class of Ising models widely used
in the study of opinion dynamics (i.e. the flow of information through networks), social physics
and complexity science [9,19–21]. All these models assume that spatial or social adjacency results
in neighbours converging on a common opinion or behaviour through copying, infection or some
form of cultural transmission. As such, they apply to a wide variety of social and other contexts.

In both DMM and SIM models, criticality is identified as a condition for optimum information
flow in complex networks. Both models turn out to have criticality in their dynamics [16], with
the second moment of the global time series from these models scaling as a power law in time t2δ .
The scaling index δ has an optimum value of approximately 2/3, peaking globally at the Dunbar
Number N = 150 and falling steeply away on either side of this value. The dependence of the
scaling index on network size is one signature of complexity and the calculations in West et al.
[16] establish that networks of size N = 150 have optimal information transmission properties, in
agreement with the principle of complexity matching (PCM) [22]. The time interval τ between
consecutive ‘crucial events’ (CEs, or state change events) is given by the waiting-time probability
density function (PDF) ψ(τ ), sharing in the intermediate asymptotic regime [23] with the same
inverse power law (IPL) structure as the hyperbolic PDF

ψ(τ ) = (μ− 1)
Tμ−1

(T + τ )μ
(1.1)

with 1< µ< 3. The PCM has been experimentally observed in the information exchange that
occurs between complex networks in a substantial number of naturally occurring interactions,
including turn taking in dyadic conversation [24], the therapeutic influence of arm-in-arm
walking [25] and the influence of zealots on group behaviour [17]. Following West et al. [17],
the tools of network science can then be used to explore the way information flows within and
between these networks in order to identify network sizes where the efficiency of information
flow is optimized.

We here extend this approach and ask whether, in addition to the principal layer at 150
identified by West et al. [16], the other layers that have been identified in human and primate
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social networks [1] are also local maxima. In other words, given that the Dunbar Number of
approximately 150 has been shown to be the result of dynamic criticality in terms of the efficiency
with which information flows through social networks [16], we use this same approach to test the
hypothesis that the layers that immediately surround this value in human social groupings (i.e.
network layer sizes of 5, 15, 50 and 500) are local dynamic criticalities that represent harmonics of
the Dunbar Number. If so, we may then be able to provide a first principles theoretical explanation
for the network sizes that appear in both the distribution of group sizes and the fractal layering
of social networks within groups—not just in humans, but also in primates.

Note that we use ‘information’ here in the cybernetic sense introduced by Wiener [26]. In this
sense, it can refer to anything that constitutes a tie or attraction between nodes in a network.
Hence, while we phrase our analysis in terms of ‘information flow’ between nodes, this might be
actual information (passed on by cultural transmission, learning or teaching) or it might be the
‘gravitational’ attraction between social partners [27] created in primates by social grooming or
in humans by activities like conversation, laughter or storytelling [28]. This same generic usage
has been used to underpin models of economic Webs in global finance and stock markets, the
social meshes of governments and terrorist organizations, the transportation networks of planes
and highways, the eco-Webs of food networks and species diversity, the physical wicker of the
Internet and the bio-net of gene regulation.

2. Methods
Following West et al. [16], we consider a conventional opinion dynamics (or swarm intelligence)
Ising-type diffusion model where N individuals (nodes) are mapped onto an N × N array. Each
node is assigned an initial status synonymous with a compass direction. In successive iterations,
each node can alter its status following interaction with adjacent nodes, as a result of which nodes,
and the network as a whole, can switch in and out of synchrony.

We begin by relating complexity to the use of scaling theory in the search for the origin of an
anomalous series ξ (t) and then use a mobile window to transform the fluctuations characterized
by ξ (t) into many diffusional trajectories X(t). Stanley et al. [29,30] introduced this technique by
treating DNA sequences as steps in a simple random walk (RW) process. The purpose of the RW
procedure was to establish that the departure of ξ (t) from a completely random function could be
detected through the departure of the scaling of X(t) from ordinary diffusion by means of a scaling
index δ different from the default baseline of δ= 0.5. We extend this technique by interpreting X(t)
as being the carrier of CEs that may be different from those hosted by ξ (t). In other words, we
interpret X(t) as being a time series, which can be analysed by studying its diffusive properties. If
the subsequent diffusion is anomalous, we adopt the nomenclature from the sociology literature
and view the subsequent dynamics as a form of SIM [31].

In the case of the SIM, the fluctuations ξ (t) denote the fluctuating velocity of a swarm. It
is important to stress that to detect the action of CEs, in which the time intervals between
consecutive events are renewed with IPL statistics having an index µ, we convert the fluctuations
ξ (t) into a diffusion process. For each of the N members of the swarm, the time step is taken for
convenience to be �t = 1, and the position at each successive time step is calculated using:

Xj(t + 1) = Xj(t) + Vj(t)�t, (2.1)

with the unit’s velocity given by a magnitude |V| and angle θ . The direction of the unit j is
given by

θj(t + 1) = 〈θj(t)〉r +�θj, (2.2)

where 〈θj(t)〉r is the average direction of all units within a circle of radius r, at time t of unit j and
�θj is a random number chosen from the interval [−1.75, 1.75]. For every simulation, the range
of the random variable was the same and the constant speed had the magnitude |V| = 0.05.
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Figure 1. The relationships between the diffusional scaling index δ and the crucial event index µ are depicted. The blue line
corresponds to constraining the steps in DEA to always be positive. For this case: 1< µ< 2, δ= (µ− 1)/2. The red line
corresponds to the case where this constraint is not adopted. For that case: 1< µ< 2, δ= µ−1; 2< µ< 3, δ= 1/(µ− 1).
Herein we observe values of δ in the range 0.5≤ δ≤ 0.667, and valuesµ corresponding to them. From the study ofWest et al.
[33] with permission.

The mean global field at each time step is calculated, following [18], as

ξ (t) = 1
N�V�

∣∣∣∣
∑N

n=1
�V�eiθn(t)

∣∣∣∣ , (2.3)

and the resulting diffusion process is

X(t) = X(0) +
∫ τ

0
ξ (t′) dt′. (2.4)

A statistical analysis of time series generated by network models of criticality-induced
intelligence can then be run on the diffusion process generated by equation (2.4) for a wide range
of network sizes in order to detect CEs using diffusion entropy analysis (DEA) [32]. In the sections
that follow, we describe the procedure for doing so.

(a) Method of stripes
We use the diffusion process generated by equation (2.4) to evaluate the scaling index δ. In the
fluctuating mean field ξ (t), each fluctuation corresponding to a CE is either positive or negative
and the scaling is given by δ= (µ−1)/2 for µ< 2 and by δ= 1/2 for µ> 2. This is described by the
blue curve in figure 1. However, West et al. [33] showed that converting the negative fluctuations
into positive fluctuations has the effect of making the detection of the scaling index δ much more
accurate. This changing of negative to positive fluctuations corresponds to moving from the blue
to the red curve in figure 1. It is important to stress that the results discussed herein show that the
networks at criticality move from the condition δ= 1/2 generated by CEs with IPL index µ = 3/2
to δ= 2/3 where the opinion-persistence manifests a scaling index identical to the power law
index of the CEs [33].

Following West et al. [33], the diffusion trajectory X(t) used for the scaling evaluation is built
up by forcing the random walker to make a jump ahead of constant intensity when a fluctuation
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occurs. An alternative but equivalent approach rests on the fluctuations ξ (t) generated by SIM.
Using the method of the stripes (MoS), we record the times at which the fluctuations ξ (t) cross
the border between two consecutive stripes. Should these events not be crucial, they would not
contribute to the scaling emerging in the long-time limit. Furthermore, when an event occurs,
the random walker always makes a step ahead of constant intensity (length). The observation of
the fluctuations ξ in equation (2.3) does not require the adoption of stripes but only needs the
negative values of ξ to be converted into positive values.

(b) Diffusion entropy analysis
Once the diffusional trajectory is properly created based on CEs, we can use a mobile window of
size l to explore the whole diffusional trajectory of length l. For any window position, we record
the difference between X(t) at the end of the window and X(t) at the beginning of the window,
interpreting this as a time-interval travelled by a random walker in the time interval l. Due to
the large number of window positions, we can define the PDF p(x, l) and the Shannon/Wiener
entropy S(l):

S(l) = −
∞∫

−∞
p(x, l)log2[p(x, l)] dx. (2.5)

Under the assumption that the above diffusion process yields the scaling structure determined
by the CEs, the PDF has the scaling form:

p(x, l) = 1
lδ

F
( x

lδ

)
, (2.6)

which when inserted into equation (2.5) yields:

S(l) = A + δlog2(l), (2.7)

where A is a constant determined by the unknown function F(..). This reasoning enables us to
interpret the slope of the curve generated by graphing S(l) versus log2(l) as the scaling index δ of
the diffusion process.

(c) Modified diffusion entropy analysis
In the present case, we use the modified diffusion entropy analysis (MDEA) procedure developed
by West et al. [16] because it is especially suited for determining the existence of anomalies in the
scaling of diffusion processes. When swarm or criticality-induced intelligence [31] becomes active,
the constructed process is expected to depart from ordinary diffusion as measured by a scaling
index different from δ= 0.5. Culbreth et al. [32] noted that the original version of DEA cannot
assess whether the deviation from the scaling δ= 0.5 is due to the action of CEs or the infinite
memory contained in fractional Brownian motion (FBM) [34]. By contrast, the MDEA procedure
filters out the scaling behaviour of infinite stationary memory of FBM, when it exists, and the
remaining departure of the scaling index from δ= 0.5 is then solely a consequence of CEs.

It is important to notice that in the DEA the diffusion trajectory X(t) is realized using the
experimental data ξ (t) directly. In the more refined version using the MoS given by Culbreth et al.
[32], we obtain the MDEA. Figure 2 shows the result of this procedure in the case where MDEA
is used with the stochastic equation (2.4). Similar results are obtained by using the detection of
CEs through the stripes. It is important to stress that the adoption of MDEA makes S(l) a linear
function of ln(l) in an extended time l interval. We refer to this scaling domain as the intermediate
asymptotic region. At small values of l, the IPL index of the CEs µ is not yet perceived. In the
long-time l region, the deviation from the linear behaviour is usually due to the small number of
CEs and consequently to statistical inaccuracy.

The MDEA method applied to the signal X(t) generated by the criticality-induced intelligence
time-series driving the rate equation (dX(t)/dt) = ξ (t) implements the original DEA in conjunction
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Figure 2. The Shannon/Wiener entropies (orange dots) at each window length l, measured by MDEA on time-series data
generated by the SIMmean field for 150- and 10 000-time steps. The scaling is the slope of the linear portion and gives δ= 0.67
(solid black line).
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Figure 3. A plot of the relationship between the scaling index δ and the CE IPL index detected by using MDEA, with µ= µS .
Note that δ= 0.5 can also occur for µS = 1.5 and µS ≥ 3. From Grigolini et al. [36] with permission.

with the MoS to detect information regarding the phenomenon of opinion persistence. It is
well known that a diffusion trajectory generated by totally random fluctuations yields a rare
recursion to the origin, with the time interval between consecutive origin crossings described
by the hyperbolic PDF given by equation (1.1) with µ = 1.5 [16]. Due to the forward stepping
constraint on the RW in MDEA, we have: δ= µS − 1 for 1< µS < 2 and δ= 1/(µS − 1) for 2< µS< 3,
as well as δ= 0.5 for µS ≥ 3 [35], as shown in figure 3.

Notice that the value δ = 0.66 is the maximum scaling value occurring at N = 150. In the MDEA
approach adopted herein, this scaling value signals the occurrence of the Kardar–Parisi–Zhang
scaling [37]. According to the rule depicted by the solid black curve in figure 3, the scaling index
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δ= 0.5 is generated by the temporal complexity IPL index µS = 1.5 for µS< 2 and for all µS ≥ 3.
The second condition is equivalent to an ordinary Poisson process. In summary, δ= 0.5 may be
determined by both CEs (with µS = 1.5) and non-CEs (when µS ≥ 3).

Note that the heterogeneity observed in the many phenomena modelled by network theory
are determined to be a consequence of the criticality of the underlying network dynamics. This
perspective is non-reductionist, which is to say that the detailed behaviour of the individual
elements no longer determines the behaviour of the network. Instead, the network or group
behaviour is determined by an emergent property of the network dynamics, namely the average
mean field behaviour. Near the critical point, the connectivity of the network elements is IPL
in nature, and it is this IPL variability that provides for the network’s necessary adaptability.
Otherwise, a network might respond too strongly to the slightest perturbation, or be too
indifferent and unresponsive to prolonged stimulation. The capacity of the mean field of a
DMM network to produce the signal can be calculated in two different ways. One is to have
every individual interact with every other individual on the lattice (all-to-all (ATA) coupling);
the other is to have only the nearest neighbours interacting on a two-dimensional lattice with
periodic boundary conditions. In practice, both calculations have critical values for a control
parameter and critical dynamics, resulting in a graph of the non-monotonic behaviour of the
scaling parameter δ as a function of N that essentially overlap one another. Thus, the response
of the mean fields of differently configured networks to the same perturbation turns out to be
similar.

The time interval between consecutive origin crossings provides information about the system
maintaining its state, while MDEA applied to ξ (t) detects the IPL index of CEs. Therefore, it is
convenient to use the symbol µR to denote the complexity of the opinion-persistence (recrossing)
index and the symbol µS to denote the index for the temporal complexity of CEs. When N 
= 150,
but where the temporal complexity index is µS = 1.5, we expect from equation (2.5) that the
complexity opinion-persistence index will be µR = 1.75. To evaluate µR, we study the diffusional
variable X(t), which will typically spend an extended time in the region X(t)> 0 (corresponding
to the system selecting the ‘yes’ state) or an extended time in the region where X(t)< 0
(corresponding to the system selecting the ‘no’ state). This is the opinion-persistence effect,
previously mentioned. Evaluating the IPL index µR is a challenging computational problem, but
we can overcome this by applying the MDEA to X(t). In this case, the scaling index δ evaluated by
MDEA yields µR = 2 – δ/2. This scaling of δ is different from the scaling obtained by observing ξ (t)
directly, but the value of µR should be identical to the observation of the regression to the origin
of X(t), as we discuss in respect of the comparison of the calculated value with the empirically
observed value in figure 6. Note that we used no prescribed time to run the diffusion calculation:
the run must simply be long enough to obtain good statistics on the slope of the curve depicted
in figure 2. This is typically equivalent to one and a half to two decades in model time covering
the temporal complexity.

(d) Relations among scaling indices
The MDEA applied to empirical time series ξ (t) determines the IPL index µS for the time-interval
PDF for the transitions between the positive (negative) to negative (positive) values of ξ (t).
However, when applied to the generated diffusion process, X(t) determines the IPL index µR

for the time-interval PDF for the transitions between the positive (negative) to negative (positive)
values of X(t). A relation exists between these two scaling indices that is a consequence of the
scaling property of the PDF for the diffusive trajectory

p(x, t) = 1
tδ

F
( x

tδ

)
. (2.8)

Assuming that all the trajectories of a Gibbs system are located on the origin X(0) = 0 at t = 0,
we have

p(0, t) =
∑N

n=1
ψ

(R)
n (t) = 1

tδ
F(0), (2.9)
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Table 1. Number of runs of SIM analysis for different principal network sizes (number of agents).

network size no. simulations network size no. simulations

5 10 120 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 20 130 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 22 130 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 17 150 28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 6 180 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40 10 260 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 13 330 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60 15 380 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70 12 500 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80 14 600 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90 10 820 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 14 1000 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For intermediate network sizes between these numbers, N= 10 in all cases.

where ψ (R)
n (t) is the probability that a trajectory starting from the origin at time t = 0 returns to the

origin n times, with the last return occurring at time t. It is well known that if the recrossing of
the origin is a renewal process, then it is readily determined that µR = 2 − δ. Using a continuous
time random walk (CTRW), Failla et al. [38] established the relationship δ= (µS − 1)/2, thereby
establishing a connection between µR and µS

μR = 2 − μS − 1
2

, (2.10)

a relation proposed by Failla & Grigolini [39] to account for the results obtained from the Barabási
Ballistic Deposition model [40].

3. Results
Since the DMM and SIM models produce virtually identical results (see also the study of West
et al. [16]), we here give results for the SIM analysis only. For the SIM analysis, we hold the
noise parameter (denoted as η in Vicsek et al. [18]) constant at 1.35. Agent density (the other
free parameter in the model of Vicsek et al. [18]) was adjusted by holding the simulation area
constant and changing the number of agents (referred to as the ‘number of units’ in the figures),
using a two-dimensional model so that density is equivalent to the number of agents per unit
area. The analysis was run across a specified set of network sizes (range 5–1000 individuals), with
an average of 12.6 (range 3–28) runs per network size (table 1). Since the principal focus for the
analysis was on network sizes in the vicinity of the Dunbar layer sizes (5, 15, 50, 150 and 500),
the number of runs is larger in the vicinity of these values. The values used to seed the runs were
selected so as to be roughly evenly spaced on a log scale on either side of the prospective maxima
corresponding to each Dunbar number (except in the case of N = 5 where networks less than five
were meaningless). Smaller numbers of runs were carried out for intermediate values to provide
an indication of the overall pattern.

Using the MoS, we record the times at which the fluctuations ξ (t) cross the border between two
consecutive stripes. Should these events not be crucial, they would not contribute to the scaling
emerging in the long-time limit. Furthermore, when an event occurs, the random walker always
makes a step ahead of constant intensity (length). Where the time series (t), with positive and
negative fluctuations, is generated by CEs only, we obtain a CTRW [36], along with the scaling,
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Figure 4. The scaling index δ shows its non-monotonic dependence on a network of size N using the SIM. Note the global
maximum at the Dunbar Number 150 and the weaker secondary maximum at N= 500 and weaker still tertiary maxima at
N= 15 and 50, commensurate with the layering of the Dunbar network. Symbols indicate means; error bars are standard
deviations.

which can be properly evaluated using DEA without stripes: δ= (µS − 1)/2. In this case, the
IPL index for CEs is given by µR = 2 − δ. Under the strict condition that both CEs and opinion
persistence are renewal processes we obtain, using the relation between the scaling index δ and
IPL index µR

μR = 2 − μS − 1
2

= 5 − μS

2
, (3.1)

a relation originally proposed by Failla et al. [38] for studying the random growth of surfaces. Note
that, since these results were obtained using the MDEA, this means that the fluctuation function
ξ (t) of SIM is not directly used to define the CEs.

We follow West et al. [16] and evaluate first the mean field for a SIM network to produce a
signal. The calculations yield criticality at values of the scaling parameter whose local maxima
depend on the size of the network. Identifying the calculated value of the time rate of change of
the mean field variable with the empirical time series ξ (t), we generate the RW and obtain the
trajectory X(t) to which we apply the MDEA to obtain the scaling index δ as a function of network
size N (as detailed in §2). The resulting scaling parameter varies non-monotonically with the size
of the network (figure 4).

In order to identify peaks in the distribution of δ-values in figure 4, polynomials of order 2–15
were fitted to the data. To avoid overfitting, we ran this analysis for N ≥ 10 since in the natural
world networks of five are superdense with very different structural characteristics. Figure 5 plots
the goodness-of-fit (indexed by conventional r2) as a function of equation order. Goodness-of-fit
will always increase as more terms are added to the regression equation; instead, we seek the
polynomial that optimizes fit. Although there are no formal methods for identifying the best-fit
value in these cases, a convention is to identify the value on the X-axis equivalent to the point
at which the slope changes (the point of diminishing returns). On an asymptotic graph, this
can be identified as the value equivalent to the point on the Y-axis that is 1/eth down from the
asymptote. This criterion identifies a ninth-order polynomial as the best-fit to the data (r2 = 0.348,
t278 = 12.18, p< 0.0001), suggesting that there are four peaks in the data between 10 ≤ N ≤ 1000.
Besides achieving a global maximum δ= δm ≈ 0.67 when N is at the Dunbar number 150, the
scaling index δ has additional local maxima with δm>δ> 0.5 at network sizes of N ≈ 15, 50 and
500. Note how the data appear to be rising towards another peak at some value of N> 1000.



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230028

..........................................................

polynomial order
151310853

go
od

ne
ss

-o
f-

fi
t

0.5

0.4

0.3

0.2

0.1

0

1/e

Figure 5. Goodness-of-fit (r2) for different polynomial regression fits. The long-dashed line indicates the best-fit cubic
regression fitted to these data. Note that goodness-of-fit approaches an asymptotic value at polynomials above the 13th order.
The horizontal dotted line identifies the theoretical inflection point where the slope changes to yield diminishing returns
(indexed as the value on the y-axis that is 1/eth down from the asymptote (indicated by a thick vertical line). The optimum
polynomial order is a ninth-order equation (indicated by the boxed datapoint), with r2= 0.348 (t278= 12.18, p< 0.0001). This
also represents the largest absolute pairwise increase in goodness-of-fit.

Table 2. Comparison of δ-values in the vicinity of the predicted values network sizes of 15, 50, 150 and 500.

network sizes t d.f.b pc

peak versus comparisona
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 versus 10 −2.15 18 0.0226
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 versus (10+ 20) −51.87 52 <0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 versus (40+ 60) −1.51 33 0.0600
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

150 versus (130+ 180) −7.08 43 <0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

500 versus (380+ 600) −4.12 26 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aNumbers refer to those in table 1.
bDue to correction for unequal variances, d.f. is less than the conventional N–2.
cOne-tailed tests that the δ-values are higher on the peak than at the network sizes on either side (given in brackets in column 1).

Based on the observed layering in the empirical data on human group sizes [1], we would expect
a further peak at around N = 1500. In effect, these inner and outer optima appear to be harmonics
of the central peak at 150 (Dunbar’s number).

To confirm that the δ-values at network sizes of N = 5, 15, 50, 150 and 500 are indeed local
maxima, we tested whether the values of δ at each of these maxima is higher than the values
immediately on either side of them (or immediately to the right in the case of N = 5). The
differences in each case are statistically significant or very close to significance (table 2). Taken
together as a set, the peaks are significantly higher than the valleys between them (Fisher’s meta-
analysis: χ2 = 67.05, d.f. = 2 × 5 = 10, p<< 0.0001), indicating a consistent pattern across the five
natural layer sizes.

We cannot emphasize too strongly that the peaks in figure 4 are determined only by the
dynamic properties of the complex network, in the same way the single peak at the Dunbar
Number was determined in the study of West et al. [16]. It is the critical nature of the network
dynamics that determines the N-dependence of the scaling parameter δ. However, it is the
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Figure 6. The theoretical IPL index for CEs is given in terms of the scaling index by equation (2.1) (red points). The experimental
IPL index is calculated using MDEA to process X(t) (blue points). Symbols indicate means; error bars are standard deviations.

emergent property of the network that determines the macroscopic behaviour; consequently, the
dynamic behaviours of differently configured networks are inconsequential.

Of course, just as predicting the Dunbar Number alone did not establish that this network size
optimizes the transmission of information between networks but required a separate calculation,
the same is true for the other local maxima. This independent determination of the existence and
location of layering numbers as a function of network size is made using the IPL scaling index (see
West et al. [16]). The recrossing IPL index µR is determined by direct calculation from the diffusion
trajectory and is compared with the theoretical values determined by the scaling parameter δ
depicted in figure 4. The set of blue dots in figure 6 is obtained assuming the theoretical relation
given by equation (3.1) is true and the scaling index δ has the values depicted in figure 4. In this
case, the optima are indicated by the minima on the graph. It is evident that, despite modest
divergence on the extremes of the graph, the fit is excellent (comparing means: Pearson r = 0.709,
N = 37, p< 0.0001).

4. Discussion
A substantial number of observational studies [1–8] support the concept of Dunbar layering in
human social networks. Independently of the mode of communication in human networks, the
numerical values of the layered structure are remarkably consistent [1,3,41]. The present results
suggest that the distinctive sizes of these layers (as observed in the empirical data) are the product
of self-organizing processes in social networks that yield optimal information flow at networks
of these specific values. The dependence of the scaling index on network size in figure 4 is
one signature of complexity, and calculations in the study of West et al. [16] present a theory-
predicted value for the optimal group size for humans that agrees with the empirical Dunbar
number [1]. The theory also establishes that networks of this size have optimal information
transmission properties in agreement with the PCM [18]. These values, thus, act as attractors
both for network size and for the internal subnetwork structuring within these networks. It is of
particular significance that these constraints on grouping size apply not just to humans [1] but
also to the sizes and sub-structuring of anthropoid primate social groups as well as those of other
mammals with complex multi-level social systems (e.g. elephants and orcas) [10–13,42].

The correspondence between theory and experiment (computation) in figure 6 is clearly
excellent, especially within the range 10 ≤ N ≤ 200, after which there is a 3–4% deviation between
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the two, with a somewhat larger deviation at the lower end (N = 5). However, a difference of
even this magnitude cannot be considered large and we may be requiring too much from the
computation, given the simplicity of the SIM model, to expect the fit to be exact. Notwithstanding
this quantitative divergence, the two sequences are highly correlated: in figure 6, we observe the
same qualitative dipping of the two curves in the vicinity of N = 500, with weaker dips in the
vicinity of N = 5, 15 and N = 50.

A secondary feature of the structure of these networks is the consistency of the scaling
parameter, with its distinctive scaling ratio of approximately 3 across layers [1]. The strength of the
scaling parameter in actual social networks does not vary with the layer size, but is remarkably
consistent [1]. This was investigated by Mac Carron et al. [5] using a very large mobile phone
dataset to determine whether the layering can be identified based on call frequency alone. Using
several different statistical methods, they found that the interaction frequencies clustered in a way
that consistently yielded the Dunbar layers. This sensitivity of the layering structure to the size
of the population is given further support by the change in the coupling of the elements of the
DMM network in our theoretical model [16]: comparing the dependence of the scaling index δ on
the size of the network N for a square lattice with nearest neighbour only interactions with that
for an ATA coupling of the elements on the lattice produced nearly identical results (fig. 1 in West
et al. [16]).

Mac Carron et al. [5] were unable to provide an explanation as to why these structured layers
should have such a consistent pattern. The present findings go some way towards providing
an explanation: the efficiency with which information flows around the network is optimized at
these particular network values. There are two alternative ways this might come about. One is
that when large groups are created (presumably in response to some external selection pressure),
a natural top-down sub-structuring of the internal network takes place into a set of distinct sub-
networks that each represent local optima, producing a top-down cascade of sub-structuring to
yield the layers we observe. Alternatively, large groups may be produced, when required by some
external need, by a bottom-up process of agglutination whereby sets of lower level groupings
are ‘bolted’ together to create a higher level grouping (three 15-layer groups create a 50-layer,
three 50-layer groups create a 150-layer, etc.). If the base unit is always of a constant size in all
species (as appears to be the case [27]), this would explain why only certain group sizes are
possible [10]. What remains to be explained is why the scaling relationship is approximately 3,
rather than, say, approximately 2 or approximately 4. This may have something to do with the
dynamic stability of social triads [43] and the way these are held together by time-dependent
bonded relationships [44].

In real-life networks, it seems that the layers in human networks, at least, are related to
emotional rather than cognitive closeness [35,45,46]. This is consistent with the two-system
model of the brain proposed by Kahneman [47], in which System 1 (intuition) has a fast, almost
immediate response time and System 2 (cognition) has a much slower response time due to the
need to organize logical thinking. It seems likely that the fast-acting intuitive part of the brain is
primarily responsible for the layering structure, in support of the emotional rather than cognitive
closeness of the individuals within the group [44], as discussed at length by West et al. [33]. The
fact that the cognitive component converges on the same solution, albeit more slowly, is supported
by the finding that the layers emerge naturally out of a first principles model of optimal decisions
on how social capital should be invested in different alters when the benefits they offer differ in
value [39,48,49].

In sum, it appears that Dunbar layering is a consequence of the nonlinear dynamics of
the underlying complexity of networks that set up a series of fractally patterned attractors
for group size as a consequence of efficiencies in information flow. The critical nature of the
dynamics gives rise to a size dependence of the interaction parameter thereby entailing a size
dependence on the parameter value at which criticality occurs. One way this might arise is
that it is the effectiveness with which the smallest groupings are integrated that percolates
through to determine the efficiency of the 150 groupings: a set of well-ordered 15-groupings
necessarily creates a well-ordered 150-grouping. These results have obvious implications for our
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understanding of pathogen transmission, as well as the way in which social media and online
multi-player gaming environments are organized [3,8,50]. It has been suggested that several
physical and chemical properties due to the thermodynamics of finite-sized systems, including
protein folding [51] and the chain length dependence of the optical properties of Perovskites [52],
may analogously be due to such collective behaviour.
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