
Citation: Ge, J.; Xu, G.; Zhang, Y.; Lu,

J.; Chen, H.; Meng, X. Joint

Optimization of Computation,

Communication and Caching in

D2D-Assisted Caching-Enhanced

MEC System. Electronics 2023, 12,

3249. https://doi.org/10.3390/

electronics12153249

Academic Editor: Flavio Canavero

Received: 16 June 2023

Revised: 11 July 2023

Accepted: 26 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Joint Optimization of Computation, Communication and
Caching in D2D-Assisted Caching-Enhanced MEC System
Jiaqi Ge 1 , Gaochao Xu 1,*, Yang Zhang 2,3,* , Jianchao Lu 3 , Haihua Chen 4 and Xiangyu Meng 1

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China;
jiaqi.ge@mq.edu.au (J.G.); xiangyumeng@jlu.edu.cn (X.M.)

2 School of Information Management, Wuhan University, Wuhan 430072, China
3 School of Computing, Macquarie University, Sydney, NSW 2109, Australia; jianchao.lu@hdr.mq.edu.au
4 Department of Information Science, University of North Texas, Denton, TX 76205, USA; haihua.chen@unt.edu
* Correspondence: xugc@jlu.edu.cn (G.X.); yang.zhang@mq.edu.au (Y.Z.)

Abstract: In the era of intelligent applications, Mobile Edge Computing (MEC) is emerging as a
promising technology that provides abundant resources for mobile devices. However, establishing a
direct connection to the MEC server is not always feasible for certain devices. This paper introduces
a novel Device-to-Device (D2D)-assisted system to address this challenge. The system leverages idle
helper devices to execute and offload tasks to the MEC server, thereby enhancing resource utilization
and reducing offload time. To further minimize offloading time for latency-sensitive tasks, this
paper incorporates edge caching. The problem is formulated by jointly optimizing computation,
communication and caching, and a novel Joint Multiple Decision Optimization Algorithm (JMDOA)
is proposed to solve the minimum-energy-consumption problem. Specifically, the JMDOA algorithm
decomposes the integer-mixed non-convex optimization problem into two subproblems based on
distinct properties of discrete variables. These subproblems are solved separately and optimized
iteratively, ensuring convergence to a suboptimal solution. Simulations demonstrate the effectiveness
and superiority of JMDOA, exhibiting lower energy consumption and reduced time compared to
other baseline algorithms, approaching the optimum. This work contributes to the field by presenting
a novel approach to optimizing resource allocation in MEC systems, with potential implications for
the future development of intelligent applications.

Keywords: D2D-assisted; caching-enhanced; MEC system; joint optimization; block coordinate
descent

1. Introduction

The proliferation of mobile terminal equipment and the increasing complexity of the
Internet-of-Things (IoT)-device applications have highlighted the limitations of mobile
cloud computing [1,2], such as long transmission delays and heavy central server loads.
In response, Mobile Edge Computing (MEC) [3,4] has emerged as a promising solution,
providing abundant computing, communication and storage resources for mobile devices
in close proximity. This technology facilitates task offloading, reduces latency and enables
agile mobile services [5].

With the advent of 5th generation (5G) [6] wireless systems and the growing com-
plexity of application programs, there has been a surge in large-scale intelligent devices
connecting to edge servers [6]. However, some devices face challenges in establishing a
direct connection to the MEC server due to limited network coverage, intermittent con-
nectivity or hardware constraints. Additionally, the execution of latency-sensitive tasks
requires faster processing times. Therefore, it is crucial to find efficient ways for these de-
vices to execute tasks with minimal overhead and high speed to drive further advancements
in mobile edge computing.

Electronics 2023, 12, 3249. https://doi.org/10.3390/electronics12153249 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153249
https://doi.org/10.3390/electronics12153249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6172-4411
https://orcid.org/0000-0001-6821-2710
https://orcid.org/0000-0003-0788-1448
https://orcid.org/0000-0002-7088-9752
https://doi.org/10.3390/electronics12153249
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153249?type=check_update&version=2

Electronics 2023, 12, 3249 2 of 21

Device-to-Device (D2D) communication has been proposed as a solution to reduce
delay and energy consumption through cooperative behavior among mobile devices [7–9].
Integrating D2D with mobile edge computing brings together the advantages of local-
ized computing, reduced latency, improved efficiency and enhanced reliability, offering a
promising solution for various mobile applications and services. For example, Pan et al. [10]
propose D2D communication integrated with content caching to maximize the offloading
gain. Similarly, Yu et al. [11] propose leveraging network-assisted D2D collaboration for
wireless distributed computing and result sharing. However, there are still some limitations
to address. Firstly, appropriate resource management strategies need to be formulated
based on the characteristics of D2D. Secondly, the execution time for latency-sensitive tasks
needs to be further reduced.

To tackle these challenges, we propose a D2D-assisted and caching-enhanced MEC
system, as depicted in Figure 1, aiming to improve resource utilization and shorten exe-
cution time for the offloading of computing-intensive tasks in an energy-efficient manner.
The main contributions of this paper can be summarized as follows:

Figure 1. The D2D-assisted and Caching-enhanced System.

• Unlike traditional approaches that directly offload tasks to the MEC server, our pro-
posed D2D-assisted and caching-enhanced MEC system aims to minimize energy
consumption with lower latency. By combining edge caching, we upload only un-
cached tasks from local devices, while executing cached tasks directly on the edge
server. This approach allows us to jointly optimize computation, communication
and caching, thereby improving resource utilization in the system.

• Additionally, the problem formulated in this paper poses a significant challenge as it
involves a mixed-integer non-convex-optimization NP-hard problem with both dis-
crete and continuous variables. Solving this problem directly is difficult. To overcome
this, we introduce the Joint Multiple Decision Optimization Algorithm (JMDOA),
which utilizes block coordinate descent and convex optimization techniques. Further-
more, we propose a caching-policy-initialization method based on linear weighting,
reducing the number of iterations and overall execution time.

• The evaluation of JMDOA demonstrates its effectiveness in optimizing resource allo-
cation and reducing energy consumption compared to other algorithms. The optimal
solution achieved via JMDOA closely approximates the exhaustive method, while
significantly reducing time complexity. Moreover, our results show that JMDOA
successfully reduces execution time to a certain extent.

The rest of this paper is organized as follows: Section 2 introduces the related works.
Section 3 proposes a D2D-assisted caching-enhanced MEC system and formalizes the

Electronics 2023, 12, 3249 3 of 21

problem of energy-consumption minimization. In Section 4, the integer-mixed non-convex-
optimization NP-hard problem is divided into two parts aiming at energy-consumption
minimization and solution, respectively. Section 5 is the experimental simulation part
and the conclusion is given in Section 6.

2. Related Work

As for the MEC system, the combination of D2D and MEC enhances the computing
ability of the system and shortens transmission distance where the nearby devices pro-
vide close support for simple tasks, while computing-intensive tasks can further obtain
sufficient computing and storage resources at the cost of long-distance transmission in
the MEC server. There are many types of research on the D2D-assisted MEC system.
Ouamri et al. [12] primarily focus on the application of Device-to-Device (D2D) commu-
nication in the context of Unmanned Aerial Vehicles (UAVs), aiming to improve energy
efficiency. Lingjun Pu et al. [13] put forward a new mobile task-unloading framework based
on D2D cooperation, which realizes the dynamic sharing of computing and communication
resources through the control assistance of network operators. Dan Wu et al. [14] put
forward a dynamic distributed-resource-sharing scheme, which is applied to the unified
framework of general D2D communication by jointly optimizing mode selection, resource
allocation and power allocation. Yinghui He et al. [15] integrate D2D communications with
MEC to improve the computation capacity of the cellular networks, aiming to maximize
the number of devices supported by the cellular networks with the constraints of both
communication and computation resources. Y Dai et al. [16] develop the interlay mode
as a unique D2D model to maximize the system sum rate in the non-orthogonal multiple
access (NOMA) cellular networks. However, tasks are offloaded to the MEC server or
devices nearby as above. Almost none of them consider the circumstance that mobile
devices cannot connect to the MEC server directly in the case of no Internet access or poor
signal. Therefore, in our D2D-assisted MEC system, mobile devices choose one of the
helper devices as a relay to help execute and transmit computation-intensive tasks.

Although the D2D-assisted MEC system solves the problems of limited computing
resources and power of mobile devices by reasonable offloading for large-scale and complex
tasks, shortening the task-offloading process and reducing the offloading-task data are
effective ways to reduce energy consumption further. Therefore, researchers have begun to
combine edge caching [17,18] with the MEC system. Reference [19] proposes a D2D-cache
strategy using multi-agent reinforcement learning. The D2D-cache problem is formalized
as a bandit problem with multiple agents and weapons and Q-learning is used to learn how
to coordinate cache decisions. Reference [20] investigates a joint pushing and caching policy
in a general mobile-edge-computing (MEC) network with multi-user and multi-cast data
based on hierarchical-reinforcement learning. Reference [21] investigates the collaborative-
caching problem in the edge-computing environment to minimize the system cost and
proposes an online algorithm called CEDC-O to solve this problem. Reference [22] studies
edge caching in fog-computing networks, where a capacity-aware edge-caching framework
is proposed by considering both the limited fog-cache capacity and the connectivity capacity
of base stations. Reference [23] studies the unique problem of caching fairness in edge-
computing environments. Reference [24] formulates the Edge Data Caching (EDC) problem
as a constrained-optimization problem to minimize the caching-data cost and maximize
the reduction in service latency.

Regarding edge caching, most researchers pay more attention to content caching [25,26].
Yu, G et al. [27] propose a content-caching strategy based on mobility prediction and joint-
user prefetching. J. Guo et al. [28] propose a novel context-aware object-detection method
based on edge-cloud cooperation. Y. Dai et al. [29] integrate DRL and permit blockchain
into vehicular networks for intelligent and secure content caching. Wu W et al. [30] propose
a content-based D2D cooperative edge-caching strategy. The content can be cached in the
user equipment or the surrounding small base stations according to popularity. However,
except for content, the task’s size, popularity and complexity are also important factors

Electronics 2023, 12, 3249 4 of 21

that deserve consideration. Thus, unlike previous research, we propose a caching-strategy-
initialization method based on a linear weighting of complexity, size and popularity.

In addition, the complexity of tasks further accelerates the energy consumption of
mobile devices, causing battery consumption to be a critical factor in restricting the devel-
opment of mobile devices. Meanwhile, executing tasks with low power will prolong the
execution time, which cannot meet the quality of service requirements of users. To this end,
it is necessary to manage resources reasonably to reduce the energy consumption of mobile
devices. Reference [31] focuses on resource allocation in a downlink 5G tri-sectorial cell for
non-orthogonal multiple access (NOMA) systems. Reference [32] proposes a proportional
fair-based scheduler algorithm that incorporates Signal Interference Noise Ratio (SINR)
compensation to address the challenge of resource allocation in cellular networks. Refer-
ence [33] studies resource allocation for a multi-user mobile-edge-computation-offloading
system under infinite or finite cloud-computation capacity. Reference [34] investigates
the latency-minimization problem in a multi-user time-division multiple access mobile-
edge-computation-offloading system with joint communication- and computation-resource
allocation. Reference [35] studies the problem of joint task offloading and resource alloca-
tion to maximize the users’ task-offloading gains. Reference [36] proposes an integrated
framework for computation offloading and interference management in wireless cellular
networks with MEC, which formulates the computation-offloading decision, physical-
resource-block (PRB) allocation. Reference [37] designs an iterative heuristic MEC resource-
allocation algorithm to make the offloading decision dynamically. Reference [38] optimizes
the joint caching, offloading and time-allocation policy to minimize the weighted-sum
energy consumption subject to the caching and deadline constraints. Resource management
varies in the MEC system, but few of them jointly optimize computing, communication
and caching of the offloading process, which is an all-sided optimization.

According to the research above, we propose a D2D-assisted and caching-enhanced
MEC system with no Internet access or poor signal for mobile devices to minimize energy
consumption. With the help of D2D cooperation, devices that cannot access the Internet
choose one of the helper devices as a relay to execute and transmit tasks to the MEC server.
Combined with edge caching and jointly optimized resource allocation, the model can
improve resource utilization, shorten execution time and reduce energy consumption. To
enhance readability, we present a comparative analysis as Table 1.

Table 1. Comparison of the current work with other literature.

Reference Main Contributions Limitations

[12–16]
These studies propose various methods for efficient

resource allocation and task offloading, integrating D2D
communication with mobile edge computing.

These works do not incorporate caching strategies, which
could further reduce latency.

[17–24] These papers present different strategies for caching in
mobile D2D networks.

These studies primarily focus on edge caching and do
not sufficiently consider the interplay between

computation and communication.

[25–30] These papers primarily focus on content-caching
strategies.

These works do not adequately consider the size,
popularity and complexity of tasks, which could impact

caching efficiency.

[31–38] These papers propose different optimization strategies
for computation, communication and caching.

While these studies consider multiple aspects of the
offloading process, few of them offer a comprehensive

optimization approach that jointly considers computing,
communication and caching.

Our work
We propose a comprehensive optimization approach that
jointly considers computing, communication and caching

in the offloading process.
—

Electronics 2023, 12, 3249 5 of 21

3. System Model and Problem Formalization

As shown in Figure 1, our study focuses on a D2D-assisted and caching-enhanced
MEC system consisting of a single base station and N mobile devices equipped with
multiple antennas. In this system, certain local mobile devices are unable to access the MEC
server directly (ND) due to lack of Internet access or poor signal. The set of NDs is denoted
by I = {1, 2, ..., I}. On the other hand, there are idle devices, referred to as helper devices
(HDs), denoted by K = {I + 1, I + 2, ..., I + K}. HDs have access to the MEC server, which
helps execute and transmit tasks. I +K = N, where N is the total number of devices in
the system.

The base station covering these N devices has deployed an edge server supporting
multi-user caching. This edge server provides mobile users with computing and com-
munication resources and caching services. Due to the limited storage space of the MEC
server, tasks are cached selectively and only uncached tasks require offloading. Cached
tasks can be executed directly at the MEC server without requesting and configuring data.
Furthermore, our study considers that the time is divided into multiple time slots with
duration T. Each ND is supposed to execute a computation-intensive and latency-sensitive
task at the beginning of each slot.

3.1. Task Model

Suppose there is a set of computation-intensive and latency-sensitive tasks, which
is described asM = {1, 2, . . . , M}. Each task consists of two elements, M = (Vm, Cm),
where Vm represents the data size of task m (kilobytes) and Cm represents the number of
cycles for executing one bit. In addition, each task must be completed within the time slot
T. It is worth mentioning that we only consider the delay of sending data while ignoring
the transmission delay of data results since the size of the returned result is considerably
smaller compared to the entire task data.

At the beginning of each time slot, each ND requests a task from M randomly,
which is requested by multiple NDs concurrently. Additionally, each ND has a unique
preference for tasks and we have access to task-popularity information. Suppose the
probability of ND i executes the task Mi; Mi ∈ M is represented as PMi (m), where
PMi (m) = Pr[Mi = m], m ∈ M. All tasks are independent, each ND only executes one
task in each time slot, then ∑m∈M PMi (m) = 1. Suppose the task set of all NDs composes a
new state in each time slot, which is denoted by S = {M1, M2, . . . , MI}. In this system, we
consider B time slot, where b = {1, 2, . . . , B} represents the index of the time slot. In the
b-th time slot, we denote the task set as Sb and the set of nodes executing task m as Nm(b).
The number of nodes requesting task m is denoted as | Nm(b) |. The offloading process is
illustrated in Figure 2 and the variables and symbols used in the model are summarized in
Table 2.

Figure 2. Process of Task Offloading.

Electronics 2023, 12, 3249 6 of 21

Table 2. Units for Magnetic Properties.

Symbol Description

I Device set of local devices which cannot access the Internet
K Device set of helper devices
Cm The number of cycles for executing one-bit data
Vi,b The execution-data size of local device i
Vk

i,b The execution-data size of helper device k
µk

i,b User association from device i to device k
f l
i The CPU computing power of local device i

f l
k The CPU computing power of helper device k

pwait Idle waiting power of the device
pk

i,b Transmission power from device i to k
pe

k,b Transmission power from device k to the edge
a Cache policy
Bk Transmission channel bandwidth from device i to k
Be Channel bandwidth from device K to edge server
D Edge-server caching capacity

3.2. Computing Model

Suppose the device i, i ∈ I , which enables one to directly access the MEC server (ND),
requests a computation-intensive and latency-sensitive task. It chooses a helper device
(HD) as helper. The computing model includes three parts, the task is executed locally
on device i, on the corresponding HD and concurrently on the MEC server. Resource
allocation is dynamically redistributed in each time slot. We consider device i executing
task m in time slot b, where m ∈ M, i ∈ Nm(b) and b ∈ {1, 2, . . . , B}.

3.2.1. Local Computing Model

Assume that the CPU computing power of the ND i is f l
i , Vi,b denotes the amount of

data executed locally and Cm is the number of cycles for executing one-bit data; then, the
local computing delay can be expressed as:

Dl
i,b =

Vi,bCm

f l
i

. (1)

The local computing energy consumption can be represented as:

El
i,b = κ f l

i
2
Vi,bCm, (2)

where κ is the effective capacitance related to the CPU core and we default κ = 10−26 in
this paper.

3.2.2. Helper Devices Computing Model

The helper device k helps compute and transmit tasks from ND i, the local computing
delay of the helper device k when executing the task offloaded by device i can be expressed
as:

Dl
k,b =

µk
i,bVk

i,bCm

f l
k

, (3)

where µk
i,b represents the user association between ND i and HD k during time slot b.

µk
i,b = 1 indicates the presence of a direct D2D link established from device i to device k;

otherwise, there is no link. Once the connection is established, device k provides computing
and communication resources for device i. f l

k is the CPU computing power of helper device
k and Vk

i,b indicates the amount of data offloaded by the ND i and executed by the helper

Electronics 2023, 12, 3249 7 of 21

device k in the time slot b. The computing energy consumption consumed by helper device
k is described as:

El
k,b = κµk

i,b f l
k

2
Vk

i,bCm. (4)

3.2.3. Edge Computing Model

At the start of each time slot, the MEC server reallocates its resources. Suppose the
computing capacity allocated by the edge server to the device k for executing the offloaded
task from device i is denoted by f e

i,b; then, the edge computing delay is calculated as:

De
i,b =

(Vm −Vi,b − µk
i,bVk

i,b)Cm

f e
i,b

. (5)

Although the mobile device is idle in the calculation period of the edge server, the en-
ergy consumption of the waiting time can be considered proportional to the execution time.
Suppose that the waiting power consumed is pwait; then, the power consumption of the
device i during the execution of the server can be expressed as:

Ee
i,b = pwait ∗ De

i,b. (6)

3.3. Communication Model

If ND i requests to perform a task that is not cached in the edge server, it requires
assistance from helper device k to upload the task to the MEC server. The task is then
executed concurrently locally, on the helper device and the edge server. The transmission
of communication includes two stages, transmission from ND i to HD k and transmission
from HD k to the edge server.

3.3.1. Transmission Model from NDs to HDs

The ND i selects an HD k as a helper device based on their distance. We assume that a
direct D2D link can be established between i and k if they are within a certain threshold
range, which we denote as R. Let the transmission power provided by the device i in time
slot b be denoted as pk

i,b. The communication rate between ND i and the corresponding HD
k can be expressed as:

rk
i,b = Bk log2(1 +

pk
i,bhk

i,b

σ2), (7)

where σ2 indicates the noise interference of the channel, Bk is the channel bandwidth and
hk

i,b represents the channel gain from the device i to k, which is assumed to be a constant in
order to facilitate calculation.

Since the amount of data executed locally is set to Vi,b, the delay from device i to k can
be expressed as:

Dk
i,b =

µk
i,b(Vm −Vi,b)

rk
i,b

, (8)

then the required energy consumption is:

Ek
i,b = pk

i,bDk
i,b. (9)

Given the limited transmission power of each mobile device, denoted as pmax, and the
one-to-one user-association between devices, the transmission power within each time slot
is subject to the following constraint:

pk
i,b ≤ pmax, ∀i ∈ Nm(b), b ∈ {1, 2, . . . , B}. (10)

Electronics 2023, 12, 3249 8 of 21

3.3.2. Transmission Model from HDs to the MEC Server

In the process of edge transmission, the mobile edge server assigns the same sub-
channel, denoted as Be, to each mobile device. Let pe

k,b represent the transmission power
allocated from the helper device k to the edge server. he

k,b denotes the channel gain from
mobile device k to the edge server in the b-th time slot. While this value remains con-
stant within each time slot, it varies across different time slots. Therefore, we define the
offloading rate from helper device k to the mobile-edge-computing (MEC) server as:

re
k,b = Be log2(1 +

pe
k,bhe

k,b

σ2). (11)

The offloaded data calculated at the edge server is Vm −Vi,b − µk
i,bVk

i,b, then the trans-
formation delay from mobile device k to the edge server can be expressed as:

De
k,b =

Vm −Vi,b − µk
i,bVk

i,b

re
k,b

. (12)

The energy consumption during transmission can be expressed as:

Ee
k,b = pe

k,bDe
k,b. (13)

Due to the resource constraints mobile device k can bring, we set the maximum
transmission power as pmax, then the constraint of transmission power from the device k to
the edge server is restricted as follows:

pe
k,b ≤ pmax, ∀i ∈ Nm(b), b ∈ {1, 2, . . . , B}. (14)

3.4. Cache Model

In our study, we assume that all applications are cached in the edge server, since
memory is insufficient for most types of applications. Therefore, the caching strategy
primarily focuses on task-data caching. Caching task data offers several advantages,
including reduced data transmission, lower latency and decreased energy consumption.
When a task is cached, it eliminates the need for data transmission. However, given the
limited storage space of the edge server, it becomes crucial to allocate the cache space
effectively. This allocation depends on factors such as task popularity, task data size and the
complexity of task execution. Considering these factors is vital for optimizing the caching
strategy and improving overall system performance.

Let D represent the caching capacity of the edge server. If the task is cached on
the server, the returned results are negligible throughout the entire execution process.
Therefore, the execution time and energy consumption of the task are equivalent to those
of executing the task on the edge server alone, denoted as Dcache

i,b = De
i,b and Ecache

i,b = Ee
i,b,

respectively. Conversely, the task is not currently cached, which requires the collaboration
of local computing, helper devices and an edge server for its execution. The offloading
process can be divided into two parts. Initially, the task is offloaded to the helper device,
where both the local computing of mobile device i and the transmission process to mobile
device k are performed simultaneously. Subsequently, the local execution of mobile device k
is carried out in parallel with the transmission from device k to the edge server, as depicted
in Figure 3. Thus, the time delay depends on the longer execution time among them.
The calculation delay can be expressed as:

Electronics 2023, 12, 3249 9 of 21

Figure 3. Delay of task offloading.

Duncache
i,b = max{Dl

i,b, Dk
i,b + Dl

k,b, Dk
i,b + De

k,b + De
i,b}. (15)

The energy consumed by the mobile device during the offloading process without
caching can be expressed as follows:

Euncache
i,b = El

i,b + El
k,b + Ek

i,b + Ee
k,b + Ee

i,b. (16)

Let am be a binary variable indicating whether task m is cached (am = 1) or not
(am = 0). amEcache

i,b represents the energy consumed when task m is cached, while the term
(1− am)Euncache

i,b represents the energy consumed when task m is not cached; then, the
total energy consumption of the mobile device i in the b-th slot can be calculated with the
following formula:

Etotal = ∑
i∈ Nm(b)

∑
m∈M

amEcache
i,b + (1− am)Euncache

i,b . (17)

During the execution of tasks, the interactions between resource allocation and caching
strategy play a crucial role. However, caching has a lasting impact on tasks due to its long-
term nature, while resource allocation requires real-time updates. To address this, we
propose a method that involves utilizing the same caching strategy for consecutive time
slots, denoted as B, while updating resource allocation and other variables at the start of
each slot. One of the primary constraints affecting task execution is the power consump-
tion of mobile devices. As a result, our objective is to minimize energy consumption by
optimizing the transmission power, task partitioning, user association and caching strategy.
Let a denote the caching strategy which is a vector of m dimensions. It can be expressed
as a = {a1, a2, . . . , aM}. VI and VK correspond to the execution data of device i and the
corresponding helper device k, respectively. Each device has a preference for the requested
task. Specifically, VI is only related to each device and can be represented as a vector of
dimension I, denoted as Vi = V1, V2, . . . , VI . On the other hand, VK is related to device
i and is a matrix of dimension I ∗ K. pI represents the transmission power from mobile
device I to mobile device K in the b-th time slot. Similarly, pk represents the transmission
power provided by the device k when uploading the task from device I to the edge server.
µ represents the user association which is a one-to-one mapping from I to K. All three
variables, pI , pk and µ, are vector matrices with dimensions I × K. By jointly considering

Electronics 2023, 12, 3249 10 of 21

these factors, we aim to achieve efficient task execution on mobile devices. The problem is
formalized as follows:

P1 : min
a,VI ,VK ,pI ,pK ,µ

∑B
b=1 Etotal

s.t. C1 : µk
i,t ∈ {0, 1}

C2 : ∑
i∈ Nm(b)

∑
m∈M

µk
i,t ≤ 1, ∀k ∈ K

C3 : ∑
k∈K

µk
i,t ≤ 1, ∀i ∈ Nm(b), m ∈ M

C4 : am ∈ {0, 1}, ∀m ∈ M

C5 : ∑
m∈M

amVm ≤ D

C6 : amDcache
i,b + (1− am)Duncache

i,b ≤ T

C7 : Vm −Vi,b − µk
i,bVk

i,b ≥ 0, ∀i ∈ Nm(b), m ∈ M

C8 : 0 ≤ pk
i,b, pe

k,b ≤ pmax, ∀i ∈ Nm(b), m ∈ M

∀k ∈ K, ∀b ∈ {1, 2, . . . , B}.

(18)

The objective of this study is to minimize the overall energy consumption of mobile
devices, where a, VI , VK, pI , pK, µ are optimization variables of the problem. Constraint
C1 indicates that the user association is represented by a 0-1 integer variable. Constraints
C2 and C3 guarantee a one-to-one mapping between mobile device I and mobile device
K for user association. Constraint C4 states that the caching strategy is a binary variable.
To maintain the capacity limit D, constraint C5 ensures that the total amount of task data
cached on the server does not exceed this limit. Regardless of caching in the edge server or
not, constraint C6 states that the task execution time for all devices must not exceed the time
constraint T. Constraint C7 denotes the amount of execution data of device i, device k and
the edge server are all in the range of 0 to Vm. Constraint C8 indicates that the transmission
power from mobile device i to device k and the transmission power from mobile device k
to the edge server cannot exceed the maximum power pmax. Since resources are reallocated
at the beginning of each period, all constraints should be met within B periods.

4. Problem Solution

P1 is a non-convex NP-hard problem that involves a combination of integer and
mixed variables. The problem includes two important variables, caching strategy a and
user association µ, both of which can take binary values. Solving this problem is further
complicated by the presence of second-order terms in the objective function and constraints,
specifically in the form of x · y. However, it is worth noting that the caching strategy a
remains fixed across consecutive time slots, while user association µ varies in each time
slot. This distinction allows us to address these variables separately, simplifying the
problem-solving process.

In the case of user association µ, each variable µk
i,b is a 0-1 integer variable. One

approach is to exhaustively enumerate all 2I∗K possible solutions. While this method may
be feasible for small values of I ∗ K, it becomes impractical as I ∗ K increases. Therefore,
to facilitate subsequent optimization, we introduce a relaxation technique where we con-
sider the range 0 ≤ µk

i,b ≤ 1 for each variable. By relaxing the discrete nature of µk
i,b, we

eliminate constraint C1.

Electronics 2023, 12, 3249 11 of 21

Furthermore, to simplify the subsequent solution process, we undertake a variable

transformation for P1. Given δk
i,b = pk

i,b
µk

i,b(Vm−Vi,b)

Bk log2(1+
pk

i,bhk
i,b

σ2)

, then pk
i,b = σ2(2

µk
i,b(Vm−Vi,b)

δk
i,b Bk −1)
hk

i,b
. Simi-

larly, if we have δe
k,b =

Vm−Vi,b−µk
i,bVk

i,b

Be log2(1+
pe

k,bhe
k,b

σ2)
, we obtain pe

k,b = σ2(2

Vm−Vi,b−µk
i,bVk

i,b
δe
k,b Be −1)
he

k,b
. Meanwhile,

we can replace constraint C6 with C9 and constraint C8 with C10 and C11. Consequently,
problem P1 can be transformed into problem P2.

P2 : min
a,VI ,VK ,δI ,δK ,µ

∑B
b=1 h(a, VI , VK, δI , δK, µ)

C9 : am
VmCm

f e
k,b

+ (1− am)max{Vi,bCm

f l
i

,

δk
i,b +

µk
i,bVk

i,bCm

f l
k

, δk
i,b + δe

k,b +
(Vm−Vi,b−µk

i,bVk
i,b)Cm

f e
k,b

} ≤ T

C10 : 0 ≤ δk
i,b ≤

µk
i,b(Vm−Vi,b)

Bk log2(1+
pmaxhk

i,b
σ2)

C11 : 0 ≤ δe
k,t ≤

Vm−Vi,b−µk
i,bVk

i,b

Be log2(1+
pmaxhe

k,b
σ2)

C2, C3, C4, C5, C7,

(19)

where the objective function h can be represented by:

h = ∑
m∈M

∑
i∈Nm(b)

∑
k∈K

am pwait VmCm

f e
k,b

+ (1− am)(κ f l
i

2
CmVi,b + κµk

i,b f l
k

2
CmVk

i,b

+
σ2(2

µk
i,b(Vm−Vi,b)

δk
i,b Bk − 1)
hk

i,b
δk

i,b +
σ2(2

Vm−Vi,b−µk
i,bVk

i,b
δe
k,b Be − 1)
he

k,t
δe

k,b

+ pwait (Vm −Vi,b − µk
i,bVk

i,b)Cm

f e
k,b

).

(20)

P2 is an integer-mixed non-convex joint optimization problem. To address this prob-
lem, we propose a new algorithm Joint Multiple Decision Optimization Algorithm (JM-
DOA), which is based on iterative block coordinate descent and convex optimization
technologies. Specifically, we decompose P2 into two subproblems to minimize energy
consumption. The first subproblem involves jointly optimizing computing and communi-
cation using a predefined caching strategy. The second subproblem focuses on optimizing
the caching strategy based on the solution obtained from the first subproblem.

4.1. User Association, Task Partition and Transmission Power Optimization.

In this part, we focus on enhancing computing and communication efficiency by
utilizing a specific caching strategy. To achieve this, we aim to optimize the user association,
task partitioning and transmission power in a coordinated manner. Firstly, we set the initial

Electronics 2023, 12, 3249 12 of 21

caching policy as a = a0. By doing so, constraint C9 can be transformed into C12 and we
derive the subproblem P3 by incorporating the initial cache policy into problem P2:

P3 : min
VI ,VK ,δI ,δK ,µ

∑B
b=1 f (VI , VK, δI , δK, µ)

s.t. C12 : a0
m

VmCm

f edge
k,b

+ (1− a0
m)max{Vi,bCm

f local
i

,

δk
i,b +

µk
i,bVk

i,bCm

f local
k

, δk
i,b + δe

k,b +
(Vm−Vi,b−µk

i,bVk
b,t)Cm

f edge
k,b

} ≤ T

C2, C3, C7, C10, C11.

(21)

P3 is a non-convex problem due to the presence of second-order terms involving the
multiplication of variables x and y in both the objective function and multiple constraints.
To address this issue, we adopt the Reformulation–Linearization Technique (RLT) [39],
which allows us to linearize second-order terms and eliminate all quadratic terms. We
present the solution of VI , δI , δK, γ, β in Appendix A.

After obtaining the solution VI , δI , δK, γ, β, the suboptimal solution of problem P3 is
obtained. However, it is important to note that µ represents the solution obtained after
relaxation, where the solution vector contains continuous values ranging from 0 to 1.
In reality, user association is represented by a binary vector. Therefore, we need a method
to convert the relaxed values into binary variables while aiming to approach the optimal
solution. Here is the specific procedure for this conversion: if the value of µk

i,b is less than
0.3, we set µk

i,b to 0. If the value is larger than 0.7, we set µk
i,b to 1. Otherwise, we sort the

values in descending order. This conversion process helps align the relaxed solution with
the optimal solution to the greatest extent possible.

4.2. Optimization of Caching Strategy

With the initial cache policy denoted as a = a0, we obtain the jointly optimized
scheme VI , VK, δI , δK, µ. By incorporating these results into problem P2, we can derive a
new optimized caching policy. Consequently, the energy consumption can be expressed as:

g(a) = ∑
m∈M

∑
i∈Nm(b)

amEcache
i,b + (1− am)Euncache

i,b . (22)

The energy consumption of B time slots can be expressed as:

P5 : min
a

∑B
b=1 g(a)

s.t. C17 : am
VmCm

f e
k,b

+ (1− am)

max{V0
i,bCm

f l
i

, δk,0
i,b +

µk,0
i,b Vk,0

i,b Cm

f l
k

, δk,0
i,b + δe,0

k,b

+
(Vm−V0

i,b−µk,0
i,b Vk,0

i,b)Cm

f e
k,b

} ≤ T

C4, C5.

(23)

The question P5 is an integer-programming problem with binary variables. By utilizing
the exhaustive method, we can enumerate all possible caching strategies, amounting to a
total of 2 to the power of M possibilities. This approach has a time complexity of O(2M).
For small values of M, the time complexity falls within an acceptable range. However,
as M gradually increases, the computational cost becomes excessively high, rendering
it unsuitable for scenarios involving a large number of tasks. To address this limitation
and accommodate general situations, we employ a method based on convex optimization
to solve the problem. As a is a discrete variable, P5 cannot be regarded as a convex

Electronics 2023, 12, 3249 13 of 21

optimization problem; thus, we relax the vector a as 0 ≤ a ≤ 1; then, P5 can be converted
into P6:

P6 : min
a

∑P
t=1 g

′
(a)

s.t. C18 : 0 ≤ a ≤ 1

C5, C17.

(24)

It is obvious that P6 is a convex optimization problem, which can be solved by the
conventional convex optimization method.

4.3. Design and Implementation of Global Algorithm

Based on the analysis provided, we present a comprehensive overview of the global
algorithm as shown in Algorithm 1. Our primary focus is on problem P1, which involves
a combination of discrete and continuous variables. Both the problem and its constraints
feature second-order terms of the form x · y. Notably, P1 is a non-convex NP-hard problem
that incorporates integer-mixed elements. To tackle this complexity, we approach the
discrete variables µ and a based on their inherent properties. By relaxing the variable µ, we
transform P1 into a new problem denoted as P2. This conversion allows us to effectively
handle the aforementioned challenges and enhance the overall solution. Next, we propose
an alternative iterative algorithm to address the optimization problem P2 in this study.
Our algorithm combines block coordinate descent and convex optimization techniques
and decomposes P2 into two subproblems, namely P3 and P5. The first subproblem,
P3, focuses on optimizing user association, task partition and transmission power while
considering a given caching strategy a. To efficiently solve P3, we employ the Reformulation–
Linearization Technique (RLT) to eliminate all quadratic terms and then solve the resulting
problem using the SLSQP method. The second subproblem, P5, aims to optimize the
caching strategy using the variables obtained from the solution of the first subproblem. P5
is solved directly by relaxing the constraints on a. We iteratively solve P3 and P5 until the
growth of energy consumption falls below a certain threshold denoted as ε. This iterative
process ensures the convergence of the algorithm. Both P3 and P5 are convex optimization
problems and can be regarded as multi-convex problems, as confirmed in Reference [40].
The overall process is illustrated in Figure 4.

Algorithm 1 JMDOA algorithm for solving global problem

Initialization: Caching strategy a = a(0); Aiming function f = 0; Execution times
x = 0

1: repeat
2: solve problem P4
3: obtain V(x)

I , V(x)
K , p(x)

I , p(x)
K , µ(x)

4: f x ← solve problem P6 for given V(x)
I , V(x)

K , p(x)
I , p(x)

K , µ(x)

5: compute ax

6: x=x+1
7: until f x − f x+1 < ε

return f ,a, VI , VK, pI , pK, µ

Electronics 2023, 12, 3249 14 of 21

Figure 4. Process of problem transformation and solving.

It is worth noting that the caching strategy obtained via P6 is represented as a con-
tinuous vector, but it actually functions as a binary (0-1) integer variable. Therefore, we
need to discretize the continuous variable am. The discretization process for the caching
policy follows the same approach as variable µ. If the caching strategy value is greater than
0.7, we set am to 1; if the value is less than 0.3, am is set to 0. For values between 0.3 and
0.7, they are sorted in ascending order and stored based on the available storage space.
Our discretization method is determined through experimental testing. Although different
schemes have been proposed by researchers for discretizing continuous variables, there
is currently no unified approach. Consequently, the precision of our method may not be
optimal, but experimental results demonstrate its effective performance and efficiency.

4.4. Initialization of Caching Strategy

The initialization of a caching strategy greatly impacts the time complexity. By em-
ploying a suitable initialization method, the number of iterations and time required can be
minimized. In this study, we propose a weight-based caching method. To implement this
method, we introduce a utility function:

f (m) = w1λ(sm) + w2λ(pm) + w3λ(cm), (25)

where sm represents the size of the task m, pm denotes the popularity and cm denotes the
complexity of the task. w1,w2 and w3 are the weight of three factors above, respectively,
which can be obtained via the principal component analysis [41] and w1 + w2 + w3 = 1.
Since the three factors have varying magnitudes, we normalize them using the max-min
normalization method:

λ(x) =
x− Xmin

Xmax − Xmin
, (26)

where x represents the original value of a current attribute, X represents the set of attributes
that require normalization. Xmin and Xmax denote the minimum and maximum values
within the set of attributes X that require normalization. For instance, we measure task
popularity during the total execution times of B slots, which can be represented as ∑B

b=1 |
Nm(b) |. Then, the set of popularities is X = {∑B

b=1 | N1(b) |, ∑B
b=1 | N2(b) |, . . . , ∑B

b=1 |
Nm(b) |}. By applying a normalization process, we can derive the normalized value
λ(pm). Next, after calculating the revenue function for each task, we sort the resulting
set S = f (1), f (2), ... f (m) in descending order. Subsequently, we cache the first n values
based on the available storage space, leading to the determination of the initial caching
strategy a(0)m .

5. Simulation Results

This section presents the design of the simulation environment for the D2D-assisted
and caching-enhanced MEC system, along with the verification of our proposed JMDOA

Electronics 2023, 12, 3249 15 of 21

algorithm through simulation. Unless specified otherwise, all parameters adhere to the
defined values. The system under consideration consists of 16 mobile devices and an edge
server, where half of the mobile devices are unable to establish a connection with the edge
server. The task list comprises 10 tasks, denoted as M = 10, N = 16. The CPU frequency
of each device i and device k is randomly distributed as f l

i ∼ random[0.6, 0.8] GHz and
f l
k ∼ random[0.8, 1] GHz, respectively. Meanwhile, the CPU frequency of the edge server

is set at f e
k,t = 2 GHz. The computation task involves input data with a size ranging

from Vm ∼ random[800, 1000] Mbytes. Executing one-bit data requires a varying number
of cycles, denoted as Cm within the range of [800, 1000]. The caching space of the edge
server is represented by D = 106 bits and the effective switched capacitance is κ = 10−26.
Regarding the communication model, the bandwidth between local devices and helper
devices is assumed to be Bk = 2 Mbps, while the bandwidth between helper devices
and the edge is set as Be = 5 Mbps. The noise power is defined as σ2 = 10−9. Each
mobile device has a maximum transmission power of pmax = 1.2 W and an idle power
consumption of pwait = 0.1 W. The channel power gain from local devices to helper devices
is modelled as hk

i,t ∼ (3, 5) ∗ 10−7 and he
k,t ∼ (6, 8) ∗ 10−7 from helper devices to the edge.

To ensure reliable results, we conducted 100 simulations and calculated the average values.
The simulations are performed on a standard PC with a CPU speed of 2 ∗ 2.88 GHz, 8 G of
memory, using Python and Pyopt [38] for convex optimization. Additionally, the time slot
is set to T = 10 s.

5.1. Effect of JMDOA

In this simulation, we verify the effect of our proposed JMDOA compared with the
other three comparison schemes from time cost and energy consumption.

Greedy Algorithm (GA): This approach involves updating the caching strategy based
on the current optimal value and obtaining results through an iterative solution.

Exhaustive Algorithm (EA): To achieve the optimal solution, we systematically enu-
merate all possible values of a. Despite the time-intensive nature of this algorithm, it
consistently delivers optimal results that serve as valuable references.

Preconditioned Sequential Quadratic Programming (PSQP): This algorithm is a
highly efficient algorithm known as the sequential quadratic programming method with a
BFGS variable metric update. It is widely recognized for its effectiveness in problem-solving.
Our main objective is to apply this algorithm to address problem P3 in a comparative ex-
periment.

Figures 5 and 6 demonstrate the effectiveness of our proposed JMDOA algorithm
in reducing both energy consumption and execution time. In comparison to the efficient
PSQP algorithm, JMDOA exhibits superior performance. While PSQP is well suited for
convex optimization problems, the problem at hand involves a combination of integer and
mixed variables, making it non-convex and NP-hard. JMDOA, designed to handle such
complex problems, provides a more efficient solution. Although our algorithm slightly
trails the EA in terms of energy consumption, the difference is minimal. However, the EA
incurs significantly increased execution time as it systematically enumerates all possible
values, which can be extremely time-consuming. In contrast, JMDOA utilizes a more
efficient optimization approach, striking a better balance between energy consumption
and execution time. Additionally, JMDOA outperforms the GA in initializing the caching
strategy, leading to improved performance in both energy conservation and time efficiency.
Efficient caching significantly reduces the time and energy required for data retrieval,
contributing to overall performance improvement. These results validate the effectiveness
of JMDOA in optimizing resource allocation in D2D-assisted mobile-edge-computing
systems.

Electronics 2023, 12, 3249 16 of 21

Figure 5. Effect of JMDOA on Energy Consumption.

Figure 6. Effect of JMDOA on Excution Time.

5.2. Effect of Joint Resource Allocation

In this simulation, we evaluate the performance of the joint resource-allocation strategy
with edge caching, where we give the contrasting tests as follows:

All helper device execution (AH): All tasks not stored in cache are delegated to helper
devices for execution.

All edge server execution (AE): All tasks are offloaded to the edge server by the
helper devices and computing resources are average allocated to each task.

Joint execution (LHE): The task is divided into three parts, with each part being exe-
cuted in a different location. One-third of the task is executed locally, one-third is executed
at the mapping helper device and the remaining part is offloaded to the edge server.

The result in Figure 7 confirms the effectiveness of JMDOA in joint optimizing re-
sources in terms of energy consumption. From Figure 7a, we observe when the average
cycle for executing one bit is small, the energy consumption difference among the four
algorithms is minimal. However, as the average cycle increases, AH exhibits the highest
energy consumption, while JMDOA consistently has the lowest. This discrepancy can be
attributed to the fact that the energy consumption of helper devices primarily depends
on their computing ability, whereas the energy consumption of the edge server relies on
its communication ability. With a small average cycle for executing one bit, the energy
consumption of computing on the helper device and offloading to the edge server may be
similar. Nevertheless, as the average cycle for executing one bit increases, the computing
ability decreases, leading to lower energy consumption for JMDOA.

Electronics 2023, 12, 3249 17 of 21

Figure 7. Effect of Joint Resource Allocation with the change of frequency and task size.

In Figure 7b, AE incurs the highest energy consumption, followed by LHE with
relatively lower energy consumption and JMDOA has the lowest energy cost. When
tasks are offloaded to the edge server, they are first offloaded to the helper devices. This
implies that edge caching can accommodate more tasks for caching when the task size
is small. The energy consumption gap between AH and AE gradually increases because
the communication energy consumption for tasks that are not cached is higher than the
computation energy consumption of the helper device. While LHE is somewhat inefficient
in resource utilization. On the other hand, the joint resource allocation approach performs
well in both scenarios, as it effectively balances computing and communication resources
to make optimal choices.

5.3. Effect of Task Caching

In this simulation, we verify the effect of edge caching and demonstrate the superior
performance of JMDOA’s caching strategy. To achieve this, we conduct three contrast-
ing tests.

Random caching (RC): The initial caching strategy is given randomly.
No caching (NC): All tasks are not cached in the edge server, i.e., a = {0, 0, . . . , 0}.
Size base caching (SC): The initial caching strategy is determined by the task size.

Tasks are cached in ascending order until the cache space limit is reached.
Figure 8 illustrates the energy consumption for different caching strategies, considering

task sizes ranging from 600 KB to 1500 KB and average cycles for executing one bit varying
from 400 to 1300. It is evident that caching tasks result in lower energy consumption
compared to non-caching tasks, highlighting the significance of edge caching.

Figure 8. Effect of Task Caching with the change of frequency and task size.

Electronics 2023, 12, 3249 18 of 21

Among the strategies evaluated, the NC strategy exhibits the least efficient perfor-
mance due to its lack of task caching at the edge server, necessitating task offloading for
execution. Conversely, the SC strategy, which considers the size of edge caching, outper-
forms the RC strategy by strategically caching tasks based on their size. Our proposed
JMDOA achieves the lowest energy consumption. This approach not only takes into ac-
count factors influencing edge caching but also optimizes user association, task partitioning
and transmission power in response to the actual situation.

The disparity in energy-consumption speed between Figure 8a,b can be attributed
to the task size. When the task size is small, a larger number of tasks is cached in the
edge server, resulting in slower energy consumption. However, as the task size increases,
the number of cached tasks decreases, leading to a significant rise in energy consumption.
Notably, as shown in Figure 8a, the computing ability has a minimal impact on task caching,
further emphasizing the importance of task size in energy consumption.

6. Conclusions

To enhance resource utilization and reduce offload time in the mobile-edge-computing
(MEC) system, particularly for devices that cannot directly connect to the MEC server,
this paper introduces a novel system that integrates device-to-device (D2D) assistance
and caching techniques. The primary objective of this system is to minimize energy con-
sumption while improving task execution and offloading efficiency. By jointly optimizing
computation, communication and caching, we formulate the problem as an integer-mixed
non-convex problem. To address this challenge, we propose a Joint Multiple Decision
Optimization Algorithm (JMDOA). Leveraging block coordinate descent and convex op-
timization techniques, the JMDOA algorithm provides an efficient and effective solution
approach. The experimental results highlight the superior performance of the JMDOA
algorithm. Compared to single caching strategies or resource allocation methods, our
proposed method achieves lower energy consumption and significant energy savings with
minimal time cost. In future research, we plan to conduct experiments involving power
measurements on physical devices to validate the practical implementation of our system.
Additionally, we will prioritize ensuring the privacy of the transmission process.

Author Contributions: Conceptualization, J.G. and J.L.; methodology, J.G. and G.X.; experiment, J.G.
and Y.Z.; writing—original draft preparation, J.G.; writing—review and editing, Y.Z., J.L. and X.M.;
visualization, H.C.; supervision, G.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the China Scholarship Council (CSC) (Grant No. 202106170092)
and Jilin Province Science and Technology Development Plan Project under Grants 20200401076GX.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We introduce βk
i,b=µk

i,bVk
i,b, where 0 ≤ µk

i,b ≤ 1, 0 ≤ Vk
i,b ≤ Vm, and then the constraint

factor product can be obtained:

{[µk
i,b − 0] · [Vk

i,b − 0]}LS

{[1− µk
i,b] · [V

k
i,b − 0]}LS

{[µk
i,b − 0] · [Vm −Vk

i,b]}LS

{[1− µk
i,b] · [Vm −Vk

i,b]}LS

, m ∈ M, i ∈ Nm(b), k ∈ K, (A1)

Electronics 2023, 12, 3249 19 of 21

where {·}LS denotes the steps of the linearization step of βk
i,b=µk

i,bVk
i,b. Similarly, by intro-

ducing βk
i,b into Formula (23), we obtain the following expression:

βk
i,b ≥ 0

Vk
i,b − βk

i,b ≥ 0

µk
i,bVm − βk

i,b ≥ 0

Vm − µk
i,bVm −Vk

i,b + βk
i,b ≥ 0

,m ∈ M, i ∈ Nm(b), k ∈ K. (A2)

In the same way, denote γk
i,b = µk

i,b(Vm −Vi,b), where 0 ≤ µk
i,b ≤ 1, 0 ≤ Vi,b ≤ Vm; then,

the constraint can be obtained as follows:

γk
i,b ≥ 0

Vi,b − γk
i,b ≥ 0

µk
i,bVm − γk

i,b ≥ 0

Vm − µk
i,bVm −Vi,b + γk

i,b ≥ 0

,m ∈ M, i ∈ Nm(b), k ∈ K. (A3)

After substituting βk
i,b and γk

i,b to the objective function and constraints in P3, P3 can
be transferred to P4 as:

P4 : min
VI ,δI ,δK ,β,γ

∑B
b=1 f

′
(VI , δI , δK, β, γ)

s.t. C13 : 0 ≤ Vm −Vi,b − βk
i,b

C14 : 0 ≤ δk
i,b ≤

γk
i,b

Bk log2(1+
pmaxhk

i,b
σ2)

C15 : 0 ≤ δe
k,b ≤

Vm−Vi,b−βk
i,b

Bk log2(1+
pmaxhe

k,b
σ2)

C16 : a0
i

VmCm
f e
k,b

+ (1− a0
m)max{Vi,bCm

f l
i

,

δk
i,b +

βk
i,bCm

f l
k

, δk
i,b + δe

k,b +
(Vm−Vi,b−βk

i,b)Cm

f e
k,b

} ≤ T

C17 : (23)
C18 : (24),

(A4)

where the function f
′

is denoted by:

f
′
= min

VI ,δI ,δK ,β,γ
∑

m∈M
∑

i∈Nm(b)
∑

k∈K
a0

m pwait VmCm

f e
k,b

+ (1− a0
m)(κ f l

i
2
CmVi,b + κβk

i,b f l
k

2
Cm

+
σ2(2

γk
i,b

δk
i,b Bk − 1)
hk

i,b
δk

i,b +
σ2(2

Vm−Vi,b−βk
i,b

δe
k,b Be − 1)
he

k,b
δe

k,b

+ pwait (Vm −Vi,b − βk
i,b)Cm

f e
k,b

).

(A5)

The function f (x) , A(2
B
x − 1) is a monotonically increasing convex function for

x > 0 and B > 0. Its perspective function f (x) , A(2
B
x − 1)x is also convex. Therefore,

Electronics 2023, 12, 3249 20 of 21

the objective function and all constraints in problem P4 are convex, making it a convex
optimization problem. To solve this problem, we can employ convex optimization methods,
such as the Lagrange Method or Interior Point Method, as outlined in [42]. In this case, we
will utilize the Sequential Least-Square Quadratic Programming (SLSQP) method due to
its superlinear speed in finding the solution. The solution of SLSQP is achieved through
the following steps: Firstly, the nonlinear constraint problem is transformed using the
Taylor formula, expanding the function of P4 at the iterative point. This transformation
yields a quadratic programming problem. The algorithm employs a quasi-Newton Hessian
approximation with a BFGS update of the B-matrix and an L1-test function in the line search
algorithm. To validate the accuracy of the results, the Python tool package pyOpt [43]
is utilized.

References
1. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A view

of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]
2. Zhang, Q.; Cheng, L.; Boutaba, R. Cloud computing: State-of-the-art and research challenges. J. Internet Serv. Appl. 2010, 1, 7–18.

[CrossRef]
3. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450–465.

[CrossRef]
4. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutorials 2017, 19, 2322–2358. [CrossRef]
5. Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A survey on mobile augmented reality with 5G mobile edge

computing: Architectures, applications and technical aspects. IEEE Commun. Surv. Tutorials 2021, 23, 1160–1192. [CrossRef]
6. Wijethilaka, S.; Liyanage, M. Survey on network slicing for Internet of Things realization in 5G networks. IEEE Commun. Surv.

Tutorials 2021, 23, 957–994. [CrossRef]
7. Gismalla, M.S.M.; Azmi, A.I.; Salim, M.R.B.; Abdullah, M.F.L.; Iqbal, F.; Mabrouk, W.A.; Othman, M.B.; Ashyap, A.Y.; Supa’at,

A.S.M. Survey on device to device (D2D) communication for 5GB/6G networks: Concept, applications, challenges and future
directions. IEEE Access 2022, 10, 30792–30821. [CrossRef]

8. Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.; Dustdar, S.; Liu, J. Task co-offloading for d2d-assisted mobile edge computing in
industrial Internet of things. IEEE Trans. Ind. Inform. 2022, 19, 480–490. [CrossRef]

9. Omidkar, A.; Khalili, A.; Nguyen, H.H.; Shafiei, H. Reinforcement-Learning-Based Resource Allocation for Energy-Harvesting-
Aided D2D Communications in IoT Networks. IEEE Internet Things J. 2022, 9, 16521–16531. [CrossRef]

10. Pan, Y.; Pan, C.; Yang, Z.; Chen, M.; Wang, J. A caching strategy towards maximal D2D assisted offloading gain. IEEE Trans. Mob.
Comput. 2019, 19, 2489–2504. [CrossRef]

11. Yu, S.; Dab, B.; Movahedi, Z.; Langar, R.; Wang, L. A socially-aware hybrid computation offloading framework for multi-access
edge computing. IEEE Trans. Mob. Comput. 2019, 19, 1247–1259. [CrossRef]

12. Ouamri, M.A.; Barb, G.; Singh, D.; Adam, A.B.; Muthanna, M.; Li, X. Nonlinear Energy-Harvesting for D2D Networks
Underlaying UAV with SWIPT Using MADQN. IEEE Commun. Lett. 2023, 27, 1804–1808. [CrossRef]

13. Pu, L.; Chen, X.; Xu, J.; Fu, X. D2D fogging: An energy-efficient and incentive-aware task offloading framework via network-
assisted D2D collaboration. IEEE J. Sel. Areas Commun. 2016, 34, 3887–3901. [CrossRef]

14. Wu, D.; Cai, Y.; Hu, R.Q.; Qian, Y. Dynamic distributed resource sharing for mobile D2D communications. IEEE Trans. Wirel.
Commun. 2015, 14, 5417–5429. [CrossRef]

15. He, Y.; Ren, J.; Yu, G.; Cai, Y. D2D communications meet mobile edge computing for enhanced computation capacity in cellular
networks. IEEE Trans. Wirel. Commun. 2019, 18, 1750–1763. [CrossRef]

16. Dai, Y.; Sheng, M.; Liu, J.; Cheng, N.; Shen, X.; Yang, Q. Joint mode selection and resource allocation for D2D-enabled NOMA
cellular networks. IEEE Trans. Veh. Technol. 2019, 68, 6721–6733. [CrossRef]

17. Zeydan, E.; Bastug, E.; Bennis, M.; Kader, M.A.; Karatepe, I.A.; Er, A.S.; Debbah, M. Big data caching for networking: Moving
from cloud to edge. IEEE Commun. Mag. 2016, 54, 36–42. [CrossRef]

18. He, S.; Huang, W.; Wang, J.; Ren, J.; Huang, Y.; Zhang, Y. Cache-enabled coordinated mobile edge network: Opportunities and
challenges. IEEE Wirel. Commun. 2020, 27, 204–211. [CrossRef]

19. Jiang, W.; Feng, G.; Qin, S.; Yum, T.S.P.; Cao, G. Multi-agent reinforcement learning for efficient content caching in mobile D2D
networks. IEEE Trans. Wirel. Commun. 2019, 18, 1610–1622. [CrossRef]

20. Qian, Y.; Wang, R.; Wu, J.; Tan, B.; Ren, H. Reinforcement learning-based optimal computing and caching in mobile edge network.
IEEE J. Sel. Areas Commun. 2020, 38, 2343–2355. [CrossRef]

21. Xia, X.; Chen, F.; He, Q.; Grundy, J.; Abdelrazek, M.; Jin, H. Online collaborative data caching in edge computing. IEEE Trans.
Parallel Distrib. Syst. 2020, 32, 281–294. [CrossRef]

22. Li, Q.; Zhang, Y.; Li, Y.; Xiao, Y.; Ge, X. Capacity-aware edge caching in fog computing networks. IEEE Trans. Veh. Technol. 2020,
69, 9244–9248. [CrossRef]

http://doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/COMST.2021.3061981
http://dx.doi.org/10.1109/COMST.2021.3067807
http://dx.doi.org/10.1109/ACCESS.2022.3160215
http://dx.doi.org/10.1109/TII.2022.3158974
http://dx.doi.org/10.1109/JIOT.2022.3151001
http://dx.doi.org/10.1109/TMC.2019.2933843
http://dx.doi.org/10.1109/TMC.2019.2908154
http://dx.doi.org/10.1109/LCOMM.2023.3275989
http://dx.doi.org/10.1109/JSAC.2016.2624118
http://dx.doi.org/10.1109/TWC.2015.2438292
http://dx.doi.org/10.1109/TWC.2019.2896999
http://dx.doi.org/10.1109/TVT.2019.2916395
http://dx.doi.org/10.1109/MCOM.2016.7565185
http://dx.doi.org/10.1109/MWC.001.1900317
http://dx.doi.org/10.1109/TWC.2019.2894403
http://dx.doi.org/10.1109/JSAC.2020.3000396
http://dx.doi.org/10.1109/TPDS.2020.3016344
http://dx.doi.org/10.1109/TVT.2020.3001301

Electronics 2023, 12, 3249 21 of 21

23. Huang, Y.; Song, X.; Ye, F.; Yang, Y.; Li, X. Fair and efficient caching algorithms and strategies for peer data sharing in pervasive
edge computing environments. IEEE Trans. Mob. Comput. 2019, 19, 852–864. [CrossRef]

24. Xia, X.; Chen, F.; He, Q.; Cui, G.; Lai, P.; Abdelrazek, M.; Grundy, J.; Jin, H. Graph-based data caching optimization for edge
computing. Future Gener. Comput. Syst. 2020, 113, 228–239. [CrossRef]

25. Safavat, S.; Sapavath, N.N.; Rawat, D.B. Recent advances in mobile edge computing and content caching. Digit. Commun. Netw.
2020, 6, 189–194. [CrossRef]

26. Vigneri, L.; Spyropoulos, T.; Barakat, C. Quality of experience-aware mobile edge caching through a vehicular cloud. In
Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems,
Miami, FL, USA, 21–25 November 2017; pp. 91–98.

27. Yu, G.; Wu, J. Content caching based on mobility prediction and joint user Prefetch in Mobile edge networks. Peer-to-Peer Netw.
Appl. 2020, 13, 1839–1852. [CrossRef]

28. Guo, J.; Song, B.; Chen, S.; Yu, F.R.; Du, X.; Guizani, M. Context-aware object detection for vehicular networks based on
edge-cloud cooperation. IEEE Internet Things J. 2019, 7, 5783–5791. [CrossRef]

29. Dai, Y.; Xu, D.; Zhang, K.; Maharjan, S.; Zhang, Y. Deep reinforcement learning and permissioned blockchain for content caching
in vehicular edge computing and networks. IEEE Trans. Veh. Technol. 2020, 69, 4312–4324. [CrossRef]

30. Wu, W.; Zhang, N.; Cheng, N.; Tang, Y.; Aldubaikhy, K.; Shen, X. Beef up mmWave dense cellular networks with D2D-assisted
cooperative edge caching. IEEE Trans. Veh. Technol. 2019, 68, 3890–3904. [CrossRef]

31. Alkama, D.; Zenadji, S.; Ouamri, M.A.; Khireddine, A.; Azni, M. Performance of Resource Allocation for Downlink Non-
Orthogonal Multiple Access Systems in Tri-Sectorial Cell. In Proceedings of the 2022 IEEE International Conference on Electrical
Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 26–28 October 2022; Volume 4, pp. 1–6.

32. Sylia, Z.; Cédric, G.; Amine, O.M.; Abdelkrim, K. Resource allocation in a multi-carrier cell using scheduler algorithms. In
Proceedings of the 2018 4th International Conference on Optimization and Applications (ICOA), Mohammedia, Morocco,
26–27 April 2018; pp. 1–5.

33. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 2016, 16, 1397–1411. [CrossRef]

34. Ren, J.; Yu, G.; Cai, Y.; He, Y. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Trans.
Wirel. Commun. 2018, 17, 5506–5519. [CrossRef]

35. Tran, T.X.; Pompili, D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE
Trans. Veh. Technol. 2018, 68, 856–868. [CrossRef]

36. Wang, C.; Yu, F.R.; Liang, C.; Chen, Q.; Tang, L. Joint computation offloading and interference management in wireless cellular
networks with mobile edge computing. IEEE Trans. Veh. Technol. 2017, 66, 7432–7445. [CrossRef]

37. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A cooperative partial computation offloading scheme for mobile edge computing enabled
Internet of Things. IEEE Internet Things J. 2018, 6, 4804–4814. [CrossRef]

38. Wen, W.; Cui, Y.; Quek, T.Q.; Zheng, F.C.; Jin, S. Joint optimal software caching, computation offloading and communications
resource allocation for mobile edge computing. IEEE Trans. Veh. Technol. 2020, 69, 7879–7894. [CrossRef]

39. Sherali, H.D.; Adams, W.P. A Reformulation–Linearization Technique for Solving Discrete and Continuous Nonconvex Problems; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 31.

40. Xu, Y.; Yin, W. A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative
tensor factorization and completion. SIAM J. Imaging Sci. 2013, 6, 1758–1789. [CrossRef]

41. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
42. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
43. Perez, R.E.; Jansen, P.W.; Martins, J.R. pyOpt: A Python-based object-oriented framework for nonlinear constrained optimization.

Struct. Multidiscip. Optim. 2012, 45, 101–118. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMC.2019.2902090
http://dx.doi.org/10.1016/j.future.2020.07.016
http://dx.doi.org/10.1016/j.dcan.2019.08.004
http://dx.doi.org/10.1007/s12083-020-00954-x
http://dx.doi.org/10.1109/JIOT.2019.2949633
http://dx.doi.org/10.1109/TVT.2020.2973705
http://dx.doi.org/10.1109/TVT.2019.2896906
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/TWC.2018.2845360
http://dx.doi.org/10.1109/TVT.2018.2881191
http://dx.doi.org/10.1109/TVT.2017.2672701
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.1109/TVT.2020.2993359
http://dx.doi.org/10.1137/120887795
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1007/s00158-011-0666-3

	Introduction
	Related Work
	System Model and Problem Formalization
	Task Model
	Computing Model
	Local Computing Model
	Helper Devices Computing Model
	Edge Computing Model

	Communication Model
	Transmission Model from NDs to HDs
	Transmission Model from HDs to the MEC Server

	Cache Model

	Problem Solution
	User Association, Task Partition and Transmission Power Optimization.
	Optimization of Caching Strategy
	Design and Implementation of Global Algorithm
	Initialization of Caching Strategy

	Simulation Results
	Effect of JMDOA
	Effect of Joint Resource Allocation
	Effect of Task Caching

	Conclusions
	Appendix A
	References

