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Abstract

Motivation: Alzheimer’s disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Mild cognitive impairment (MCI)
is an intermediary stage between cognitively normal state and AD. Not all people who have MCI convert to AD. The diagnosis of AD is made af-
ter significant symptoms of dementia such as short-term memory loss are already present. Since AD is currently an irreversible disease,
diagnosis at the onset of the disease brings a huge burden on patients, their caregivers, and the healthcare sector. Thus, there is a crucial need
to develop methods for the early prediction AD for patients who have MCI. Recurrent neural networks (RNN) have been successfully used to
handle electronic health records (EHR) for predicting conversion from MCI to AD. However, RNN ignores irregular time intervals between suc-
cessive events which occurs common in electronic health record data. In this study, we propose two deep learning architectures based on RNN,
namely Predicting Progression of Alzheimer’s Disease (PPAD) and PPAD-Autoencoder. PPAD and PPAD-Autoencoder are designed for early pre-
dicting conversion from MCI to AD at the next visit and multiple visits ahead for patients, respectively. To minimize the effect of the irregular
time intervals between visits, we propose using age in each visit as an indicator of time change between successive visits.

Results: Our experimental results conducted on Alzheimer’s Disease Neuroimaging Initiative and National Alzheimer’s Coordinating Center data-
sets showed that our proposed models outperformed all baseline models for most prediction scenarios in terms of F2 and sensitivity. We also
observed that the age feature was one of top features and was able to address irregular time interval problem.

Availability and implementation: https://github.com/bozdaglab/PPAD.

1 Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative
disease that leads to problems in cognitive functioning (e.g.
memory loss and impaired reasoning) and behavioral changes
(e.g. aggression, wandering, and anxiety) (Hampel et al. 2011;
Rodriguez and Verkhratsky 2011; Huang et al. 2016; Cui et al.
2019). Unusual accumulation of amyloid plaques and neurofi-
brillary tangles in the brain are considered as the main causes
of AD (Perrin et al. 2009; Tong et al. 2015; Patterson 2018;
Lee et al. 2019). According to the World Health Organization,
there are about 40 million AD cases worldwide. In the United
States, there are about 6 million AD cases, and this number is
expected to reach 14 million by 2050 (Alzheimer’s Association
2015; Venugopalan et al. 2021).

Mild cognitive impairment (MCI) is an intermediary stage
between cognitively normal (CN) state and AD (Petersen
et al. 2014; Petersen, 2016; Patterson 2018). MCI is deter-
mined through an impairment of memory on standard tests
with the absence of significant impairment in daily living ac-
tivities and dementia (Winblad et al. 2004). Using a standard-
ized test, impairment on cognitive is defined as performance
below 1.5 SD of the age-, sex-, and education-adjusted

normative mean; according to the test, MCI can be classified
based on the severity into early and late MCI. Early MCI
(EMCI) refers to a case when the performance is between 1.0
SD and 1.5 SD below the normative mean on the test,
whereas late MCI (LMCI) refers to a case when the perfor-
mance is 1.5 SD below the normative mean on the test (Aisen
et al. 2010; Jessen et al. 2014). About 15% of MCI patients
convert to AD per year while 80% of MCI patients convert to
AD within about 6 years (Tabuas-Pereira et al. 2016). MCI
cases who progress to AD eventually are called MCI-
converter and MCI cases who stay as MCI or revert to CN
are called MClI-nonconverter.

The diagnosis of AD can be made after significant symp-
toms of dementia such as short-term memory loss are already
present (Frost et al. 2010). The diagnosis after the onset of the
disease creates emotional burden for patients and their family
members and economic burden to the healthcare. The esti-
mated healthcare cost for AD was over $300 billion in 2020
(Wong 2020). As a result, developing a robust method that
can early predict conversion from MCI to AD is crucial for
patients to have better treatments, interventions to delay or
prevent AD progression.
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Electronic health record (EHR) is a sequential data repre-
sented as temporal sequences of clinical features and has been
used to train machine learning models to classify and cluster
patient records for improving clinical decision-making
(Menachemi and Collum 2011). Traditional machine learning
methods, however, aggregate clinical features; thus, ignores
temporal relations between these sequences (Marti-Juan et al.
2020; Tanveer et al. 2020). Recurrent neural network (RNN)
is a deep learning model used to process sequential data and
maintains temporal relations between sequences (Goodfellow
et al. 2016). Long short-term memory (LSTM) (Hochreiter
and Schmidhuber 1997) and gated recurrent unit (GRU)
(Gers et al. 2000; Cho et al. 2014) are RNN variants that
have the capability to handle long-term dependencies, which
is considered the drawback of the vanilla RNN. The main dif-
ference between the GRU and LSTM is their complexity (i.e.
number of learnable parameters). The GRU is a less complex
architecture than LSTM, thus are more preferable especially
when training data are not abundant (Greff et al. 2017).

To identify biomarkers of conversion from MCI to AD,
various machine learning methods have been utilized.
Support vector machine (SVM), a popular technique for clas-
sification and regression (Bisgin et al. 2018) has been widely
used for the diagnosis of AD using a single data modality
such as magnetic resonance imaging (MRI) data (Retico et al.
20135; Plocharski et al. 2016; Alam et al. 2017; Tangaro et al.
2017; Sheng et al. 2019). In Zeng et al. (2018), an optimized
SVM based on a new switching delayed particle swarm opti-
mization (PSO) was proposed for the classification of AD and
MCI using MRI. The proposed model achieved 72.94% accu-
racy for static MCI versus AD classification, and 57.14% ac-
curacy for progressive MCI versus AD classification. In Sun
et al. (2018), spatial-anatomical information was integrated
to MRI data to train and evaluate a new SVM model for the
classification of AD. The proposed model achieved 65.7% ac-
curacy to differentiate between MCI and AD. In Zhang et al.
(2012), SVM was applied with a multitask learning to identify
AD biomarkers and predict the 2 years conversion from MCI
to AD using baseline measurements from MRI and cerebro-
spinal fluid (CSF). The proposed model achieved 73.9% accu-
racy, 68.6% sensitivity, and 73.6% specificity. In Cheng et al.
(2015), a domain transfer learning model was proposed for
using not only MCI samples but also AD and CN as auxiliary
samples to identify biomarkers that can be used for a classifi-
cation task to distinguish between MCl-converter and MCI-
nonconverter samples. The proposed model achieved 79.4%
accuracy, 84.5% sensitivity, and 72.7% specificity.

Moreover, artificial neural networks (ANN) have been
used for the classification of AD using biomarkers or MRI
data (Huang et al. 2008; Joshi et al. 2010; Quintana et al.
2012; Al-Naami et al. 2013; Aljovi¢ et al. 2016). In Wang
et al. (2015), three variants of feed-forward neural network
(FNN) were proposed based on PSO and artificial bee colony
(ABC) to differentiate between normal and abnormal brain
using MRI data. The proposed recombination of PSO and
ABC FNN (FNN-HPA) model achieved 99.45% accuracy,
99.37% sensitivity, and 100% specificity. In Kar and
Majumder (2019), diffusion tensor visualization-based neuro-
fuzzy classification ANN model was proposed to differentiate
between CN and AD using MRI. The proposed model was
able to achieve 100% accuracy. However, these results were
based on a small sample set (i.e. 9 AD and 11 CN patients).
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Integration of multimodality data has been performed to
improve the performance of predicting conversion from MCI
to AD by extracting AD biomarkers from each modality. A
graph-based semisupervised learning method that integrates
brain image data from MRI and positron emission tomogra-
phy (PET) was proposed to distinguish between EMCI from
CN cases (Kim et al. 2013). The proposed method achieved
68.5% accuracy, 53.4% sensitivity, and 77% specificity. In
Lee et al. (2019), a multi-modal GRU model was trained us-
ing longitudinal cognitive performance and CSF biomarkers
data, and cross-sectional neuroimaging and demographic
data to predict MCI to AD conversion. The results showed
that the proposed model achieved 81% accuracy and an area
under the receiver operation characteristics curve (AUC) of
86%. In Venugopalan et al. (2021), an integrative classifica-
tion method was proposed to classify patients into AD, MCI,
and CN. The model was trained on clinical and genetic fea-
tures extracted using stacked denoising autoencoders and
brain image features extracted using convolutional neural net-
work (CNN). The results have shown that integrating multi-
modality data outperforms single modality models. In
Nguyen et al. (2020), an RNN model was applied to the lon-
gitudinal cognitive performance, MRI, and CFS data of 1677
samples in Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database to predict the diagnosis of patients in the fu-
ture up to 6 years and achieved better performance than base-
line models. In Li and Fan (2019), a deep learning model
based on an LSTM autoencoder was proposed to extract the
hidden temporal pattern in longitudinal data for five cognitive
measures for 1-year follow-up. The new extracted features
were combined with baseline hippocampal measures
extracted from MRI scans to train and evaluate a prognostic
model using Cox regression to predict AD progression for
MClI individuals.

In analyzing longitudinal biomedical data, irregular time
intervals between clinical visits poses a technical challenge.
Deep learning methods that can handle sequential data (e.g.
RNN) assume equal intervals between inputs in the sequence.
To address this issue, time-aware LSTM (T-LSTM) was pro-
posed to modify the memory state of the current cell state
based on the time gap between the current and previous cell
states (Baytas et al. 2017). The results on progression of
Parkinson’s disease data showed improved performance than
baseline methods. In another study, T-LSTM was evaluated
on synthetic and real data for chronic kidney disease (Luong
and Chandola 2018). The results showed that T-LSTM
autoencoder can be used to deal with sequential data to gener-
ate the latent space of the longitudinal profile, but the latent
space of the longitudinal of real data was not able to subtype
chronic kidney disease.

Studies have shown an association between AD and several
genes such as CTNNA3, GAB2, PVRL2, and TOMM40.
Among these, epsilon4 allele of apolipoprotein E gene
(APOEe4) is the most important genetic risk factor for AD
(Chalmers et al. 2003; Scheltens et al. 2021). In addition, de-
mographic such as age, gender, alcohol consumption, smok-
ing, depression, head injury, education, race, ethnicity, and
nutrition have also been reported as nongenetic risk factors
(Hall et al. 1998; Ikeda and Yamada 2010; Patterson 2018).
As a result, these genetic and nongenetic risk factors can play
role if they are utilized by a predictive model for AD
progression.
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In general, irregular number of visits for patients, irregular
intervals between visits, and missing values are common
drawbacks of EHR (Yadav et al. 2018) Since datasets from
AD cohorts suffer from the same drawbacks, there is a crucial
need to develop methods for early predicting conversion from
MCI to AD while addressing such data irregularities. Most of
the existing methods do not consider the irregular time inter-
vals between consecutive visits and give equal weight to sensi-
tivity and specificity of the model. However, increasing
sensitivity (i.e. correctly predicting individuals who would
convert to AD) is more important. Moreover, several existing
studies do not integrate longitudinal data with cross-sectional
demographic data such as gender, race, ethnicity, patients’ ed-
ucation, and APOEe4. Most tools are also not made publicly
available, which limits their application to new datasets.

To address these limitations, in this study, we propose two
open-source deep learning models, PPAD and PAD-AE, for
early predicting conversion from MCI to AD at the next visit
and multiple visits ahead for patients, respectively. The
novelty of our proposed models is three-fold. PPAD and
PPAD-AE integrate multimodal longitudinal features with
cross-sectional demographic data. To minimize the effect of
the irregular time intervals between visits, PPAD and PPAD-
AE use patient age in each visit as an indicator of time change
between consecutive visits. In addition, PPAD and PPAD-AE
utilize a customized loss function to give more weight on pre-
dicting conversion to AD cases, thereby increasing the model’s
sensitivity. To show robustness of our proposed models, we
used two evaluation setups, by which (i) ADNI dataset was
used to train and test the proposed models; (ii) ADNI dataset
was used to train the proposed models and the National
Alzheimer’s Coordinating Center (NACC) dataset was used
to test the proposed models. Our experimental results showed
that our proposed models outperformed all baseline models
for most of the prediction scenarios in terms of F2 and sensi-
tivity. We also demonstrated that using age feature improved
the model performance by helping address the irregular time
interval between consecutive visits. We made PPAD and
PPAD-AE publicly available at https://github.com/bozdaglab/
PPAD wunder Creative Commons Attribution Non-
Commercial 4.0 International Public License.

2 Materials and methods
2.1 Datasets

In this study, longitudinal and cross-sectional data from two
datasets were used. The main dataset was from the ADNI
database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public—private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial MRI, PET, other biolog-
ical markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild MCI and
early AD. Since it has been launched, the public—private coop-
eration has contributed to significant achievements in AD re-
search by sharing data to researchers from all around the
world (Jack et al. 2010; Jagust et al. 20105 Risacher et al.
20105 Saykin et al. 2010; Trojanowski et al. 2010; Weiner
etal. 2010, 2013).

The second dataset was from the NACC (Besser et al.
2018) database, which is a large, centralized resource for AD
research. It contains data from multiple study sites across the
United States, including demographic, cognitive, genetic, and
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MRI data. The database is designed to facilitate research on
the causes, diagnosis, and treatment of AD.

In this study, we have used two different experimental set-
ups to train and evaluate our proposed models. In the first
setup, ADNI dataset was split into training and test datasets
to train and test the proposed models. In the second setup, the
whole ADNI dataset was used to train the proposed models
while the NACC dataset was used as an external dataset to
test the proposed models.

2.1.1 ADNI dataset for training and testing the proposed
models

To obtain longitudinal and cross-sectional data from all ADNI
studies (ADNI1, ADNI2, and ADNI-GO), ADNImerge R
package was used (https://adni.bitbucket.io/) (Jiang et al. 2020;
McCombe et al. 2020). The raw data consisted of 15 087
records from 2288 unique patients. Each record represents a
patient visit that consists of feature values from four data mo-
dalities namely cognitive performance measurement, MRI,
CSF, and demographic, and the diagnosis label (i.e. CN, MCI,
or AD). The dataset had several irregularities: the patients had
varying number of visits ranging from 1 to 21; the time be-
tween consecutive visits for a patient varied from 3to
60 months; and several visits had missing feature values. To ad-
dress these issues, we preprocessed the dataset by performing
several steps (Fig. 1). K nearest neighbor algorithm was
employed to impute the missing values. Each missing feature
was imputed using the average of values from the nearest
neighbors that had a value for that feature. When finding the
nearest neighbors, only the records with the same diagnosis
(i.e. MCI or AD) were considered. The Euclidean distance met-
ric was used and the number of neighbors, k, was set to five.

In the preprocessing stage, there was a trade-off between the
number of patients and the quality of data. As a result, we were
keen to reduce data imputation as much as possible through re-
moving visits and features that had high missing rate based on
carefully determined thresholds (40% and 60% for visits and
features, respectively). Reducing data imputation—high data
quality—was at the expense of the number of patients.

After the imputation, the final dataset had 20 longitudinal
and 5 demographic features for 1169 patients and 5759 visits.
To train the proposed models, the dataset was randomly split
into 70% train and 30% test data in a stratified manner.
After the splitting, each feature was normalized using min-
max normalization. For generalization, the whole procedure
was repeated for three random splits.

2.1.2 ADNI dataset for training and NACC dataset for
testing the proposed models

In this setup, we performed a data harmonization to collect the
overlapping features from ADNI and NACC datasets. To do
so, first, we obtained three different data modalities from
NACC dataset namely cognitive, genetic, and MRI data.
Demographic information including gender, race, ethnicity,
and education were in the cognitive data. We obtained
APOEe4 status from genetic data for all the patients in the cog-
nitive data. We could not integrate MRI data features with the
cognitive data due to the low number of overlapping patients,
mismatching number and date of visits for the overlapping
patients, and high rate of missing values (>90%) of the over-
lapping features between ADNI and NACC datasets. At the
end, we harmonized nine features between ADNI and NACC
datasets (Supplementary Table S2). ADNI had 1205 patients
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Removing irrelevant features
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v

Removing visits with > 40% missing rate
V:10,108 F:60 P:2,255
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Removing patients with missing APOE4 status
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)
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Min-Max Min-Max
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Figure 1. ADNI data preprocessing steps. V, F, and P represents the
number of visits, features, and patients, respectively.

and 6066 visits while NACC had 8121 patients and 35 423
visits. The same preprocessing steps discussed in the previous
section were applied to prepare ADNI and NACC datasets.

2.1.3 Dataset notations

After preprocessing, we prepared the datasets as a multivari-
ate longitudinal data. Let M denote a dataset with N samples
(patients), M = (X1, ..., Xn) where each sample X represents
measurements of F features collected over T time points (vis-
its): X ={x1,x2,...,XT} € RT*F, For each visit
t=1,2,....T, x, ={x}, 2, ..., xf} e R¥ represents a
vector of features of sarnlf)le X at visit ¢. For each feature
=1,2,...,F, «xf = {xi,xz,...,x’;} ¢ RT represents the fth
feature value of sample X over T visits, and x! represents the
fth feature value of sample X at visit £. In M, each sample has
a corresponding diagnosis (Yq,...,Yy) for each time point:
Y = {y1,y2,...,yr} ¢ RT*L. For each visit t € {1,2,...,T},
y: € {0, 1} where 0 denotes MCI and 1 denotes AD.

2.2 Method

In this study, we built two RNN-based deep learning models
to predict conversion from MCI to AD at the next visit and
the multiple visits ahead. In both models, we utilized the age
feature to alleviate the limitation of RNN models with
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irregular time intervals between consecutive inputs in the se-
quence. Our proposed models also utilized a customized bi-
nary cross entropy loss function to give a higher weight to its
sensitivity since early prediction of conversion cases correctly
is more important than making a false positive prediction. In
the proposed models, the type RNN cell was a hyperpara-
meter with possible choices of LSTM, GRU, bidirectional
LSTM (Bi-LSTM), and bidirectional GRU (Bi-GRU).

2.2.1 A primer on GRU and Bi-GRU

In GRU, each cell consists of reset (Equation (1)) and update
gate (Equation (2)) through which the cell determines what
portion of the previous cell state and the current input will be
utilized. To compute the hidden state at time point ¢, b, first a

candidate hidden state, 5, is computed (Equation (3)) by utiliz-
ing the current input vector x;, the reset gate 7;, and the hidden
state at the previous time point, »,_1. Then, utilizing the update
gate z;, the current hidden state is computed as a weighted av-

erage of b, 1 and b, (Equation (4)). In Equations (1)—(4),
w,, U,, W., U,, W, and U, are the trainable linear transfor-
mation matrices; b,, b,, and by, are the bias vectors; o is the sig-
moid function, and © is the Hadamard product.

"= O-(Wrxt + Urhtfl + br) (1)
2 =0(Wex, + Uy + by) (2)
by = tanh(Wy,x; + Uy (r: © by1) + by) (3)
k’t = (1 — Zz) ® htfl +zz ® ht (4)

In Bi-GRU, two unidirectional GRUs are used to learn infor-
mation from the previous and the later inputs in the sequence
while processing the current input (Liu et al. 2021). The first
GRU is a forward GRU (GRUy), which is explained in the pre-
vious paragraph. The second GRU is a backward GRU
(GRUy), which is exactly same as (GRUy) except that the hid-
den state of the cell is computed based on the current and the
later inputs. In other words, the hidden state of a backward
GRU cell is calculated based on Equations (1)—(4) except that
all h;_y terms are replaced with h,,1. To compute the hidden
state of Bi-GRU at time point ¢, the hidden states of GRUy and
GRU,, are computed and concatenated (Equation (5)). In
Equation (5), © denotes the concatenation operation.

Bi — GRU(x;) = GRUj(x,)®GRUj(x:) (5)

2.2.2 Prediction model for conversion to AD at the next visit

To predict AD conversion at the next visit, we developed a
framework named Predicting Progression of Alzheimer’s
Disease (PPAD) that consists of a RNN and multilayer per-
ceptron (MLP) (Fig. 2). In this architecture, the RNN compo-
nent learns x;, a latent representation of the longitudinal
clinical data up to t visits (Equation (6)). Then, the MLP
model is trained with concatenation of the cross-sectional de-
mographic data (D) and x; to predict conversion to AD at
next visit (Equation (7)).

x, = RNN(X) (6)
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y = o(Wy (ReLU(Wy (2 ®D) +52)) +51)  (7)

In Equation (7), ¥ represents the predicted diagnosis, Wy
and W), are the trainable linear transformation matrices, and
by and b, are the bias vectors.

2.2.3 Prediction model for conversion to AD at multiple visits
ahead

For early predicting conversion of AD at multiple visits ahead,
we propose another architecture PPAD-AE that composes of
a RNN autoencoder and an MLP (Fig. 3). In this architecture,
the RNN component learns a latent representation (x;) of the
longitudinal clinical data up to # visits (Equation (6)). Then,
the latent representation is used by the decoder component to
generate representations of multiple visits ahead up to # visits.
Finally, the MLP model is trained with concatenation of the
cross-sectional demographic data (D) and the representation
of the last generated visit by the decoder to predict conversion
to AD at the (¢ 4 n)th visit (Equation (8)).

yl = 0(W1 (ReLU(Wz (xt+(n71>@D) + bz)) + b]) (8)

2.2.4 Parameter learning and evaluation metrics

To increase the prediction’s sensitivity for both architectures,
all trainable parameters for the RNN, RNN autoencoder, and
the MLP were learned in an integral way using a customized
binary cross-entropy loss function (Equation (9)) to give more
weight on predicting conversion to AD cases. By using this
customized loss function, we seek to minimize the false nega-
tive cases while predicting diagnosis of the future visit which
leads to increased sensitivity of the predictive model.

Latent Space

Multi-layer Perceptron

<
2
-
=
i)
~
<

isi

! (¥)concatenation

{ Longitudinal Data } Demographic Dala]

Figure 2. The architecture of PPAD to predict the conversion to AD at the
next visit.
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Loss = —% (- (y-logy'))
+((1=a) - (1~y)-log(1~')) )

In Equation (9), « is a real number between 0 and 1 to define
the relative weight of positive prediction, y is the true diagnosis,
and ' is the predicted diagnosis. In this study, we set a to 0.7.
Based on the proposed customized loss function, all trainable
parameters for the RNN, RNN autoencoder, and MLP
(Equations (7) and (8)) were updated while training models in
the backpropagation. For optimization, all models were trained
using adaptive moment estimation (Adam) optimizer and the
learning rate was set to 0.001. RNN cell, number of epochs,
batch size, dropout rate, and L2 regularization are the hyper-
parameters that have been tuned. For model evaluation, F2
score (Equation (10)) and sensitivity were used.

precision - recall

Fp=(1+p)- (10)

ﬁz.precision + recall

In Equation (10), recall is considered f§ times more impor-
tant than precision. In this study, f was set to 2. We decided
to use F2 score instead of other popular evaluation metrics
such as AUC because in situations where there are wide dis-
parities in the cost of false negatives versus false positives, it
may be crucial to maximize one type of prediction error. In
our case, increasing sensitivity (i.e. predicting patients who
will convert to AD correctly) is more important than making
false positive predictions (i.e. predicting someone will convert
to AD incorrectly).

3 Results and discussion

In this study, we propose two RNN-based architectures,
namely PPAD and PPAD-AE for the prediction of conversion
to AD at the next visit and the multiple visits ahead, respec-
tively. We evaluated the proposed architectures in two experi-
mental setups. In the first setup, ADNI dataset was utilized to
train and test the proposed architectures using the longitudi-
nal multimodal and the cross-sectional demographic data.
The longitudinal data consisted of 20 features from cognitive
performance and neuroimaging biomarker data modalities
(Supplementary Table S1). The cross-sectional demographic
data consisted of gender, race, ethnicity, education, and
APOEe4. We split the data into 70% training and 30% test
three times and reported the average performance across these
splits. In the second setup, the models were trained on the en-
tire ADNI longitudinal and cross-sectional data and tested on

Output Encoder

Input

Visit 1 Visit 2 vista 7 Wiswt

( Longitudinal Data ]

Output Decoder

Ot

Multi-layer Perceptron

°

@cunca{ennhun

[ Demographic Data ]

Figure 3. The architecture of PPAD-AE to predict the conversion to AD at the future visits.
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NACC data. The longitudinal data consisted of five features
and the cross-sectional demographic data consisted of gender,
race, ethnicity, education, and APOEe4 (Supplementary
Table S2). For both experimental setups, we used age as a lon-
gitudinal feature to represent the time difference between con-
secutive visits. To select the optimal values for the
hyperparameters (i.e. RNN cell, number of epochs, batch size,
dropout rate, and L2 regularization), we performed grid
search with 5-fold cross-validation for each investigated sce-
nario in both experimental setups. Supplementary Tables S3
and S4 show the best hyperparameter values for PPAD and
PPAD-AE for all splits in the first experimental setup, respec-
tively. Supplementary Table S5 and S6 show the best hyper-
parameter values for PPAD and PPAD-AE in the second
experimental setup, respectively. Supplementary Tables S7
and S8 show the number of converters and nonconverters in
each scenario in the first and second experimental setup,
respectively.

3.1 Predicting the conversion to AD at the next visit

To evaluate PPAD, which predicts conversion to AD at the
next visit, we trained it using different scenarios for both ex-
perimental setups. Specifically, we trained four models using
two, three, five, and six visits to predict the conversion to AD
at the next visit (i.e. at the third, fourth, sixth, and seventh
visits, respectively). For comparison, we trained a T-LSTM-
based architecture using the same training data. Since T-
LSTM can handle irregular intervals between visits internally,
to check the effectiveness of utilizing the age feature, we did
not use the age feature for T-LSTM. In addition, Random
Forest (RF)- and SVM-based models were trained as baseline.
Since RF and SVM cannot handle longitudinal data, they
were trained using the same training data used for RNN mod-
els after aggregating each feature value by computing its
mean. For a fair comparison, demographic features were not
utilized in PPAD, RF, and SVM since T-LSTM does not have
the ability to integrate these features. For generalization, the
whole procedure was repeated 15 times. The results on both
experimental setups showed that PPAD outperformed all
baseline models in terms of F2 (Fig. 4A and B) and sensitivity
(Supplementary Fig. S1A and B). The results also showed
that, as expected, training using more visits improved the per-
formance of next visit diagnosis prediction for all RNN mod-
els. In addition, PPAD outperformed T-LSTM in seven out of
eight cases, which shows the ability of our model to address
the irregular time intervals problem better than T-LSTM.
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3.2 Predicting the conversion to AD at multiple visits
ahead

To evaluate PPAD-AE, which predicts the conversion to AD
at multiple visits ahead, we trained it using different scenarios.
Specifically, we trained four models using two, three, five,
and six visits to predict the diagnosis at the following second,
third, and fourth visits ahead. For example, the model that
was trained using two visits was evaluated on predicting the
diagnosis at the fourth, fifth, and sixth visits. For generaliza-
tion, the whole procedure was repeated 15 times. We com-
pared PPAD-AE to RF and SVM. T-LSMT was unable to
predict multiple visits ahead, thus was not used in this evalua-
tion. We observed that PPAD-AE outperformed all baseline
models in terms of F2 (Fig. 5) and sensitivity (Supplementary
Fig. S2) in both experimental setups except for one scenario
(Fig. SF and Supplementary Fig. S2F). As observed in the
PPAD results (Fig. 4), training the model with more visits im-
proved the prediction performance in general, whereas the
performance of most models dropped when predicting diag-
nosis at the farther time points. We also observed that the per-
formance of PPAD-AE on NACC dataset was higher than
held-out dataset of ADNI. This could be due to using a larger
training set (i.e. the entire ADNI data) when testing the model
on NACC cohort.

3.3 Feature importance analysis

We investigated the performance of the proposed models
(Figs 2 and 3) to determine feature importance through
SHapley Additive exPlanations (SHAP). Figure 6 and
Supplementary Fig. S3 show the mean absolute SHAP value
for the longitudinal features for the proposed models with
first and second experimental setups, respectively. The results
indicate that functional activities questionnaire and the logical
memory delayed recall total (LDELTOTAL) are the most im-
portant features to predict conversion to AD in all scenarios.
In addition, age is among important features in predicting
conversion to AD. For example, age was the seventh impor-
tant feature among 20 features (Fig. 6A).

3.4 Ablation study for the demographic features

Through an ablation study, we investigated the performance
of the proposed models (Figs 2 and 3) with and without inte-
grating the demographic features. We observed that for both
models, the performance did not change much due to the de-
mographic features. In the first experimental setup, we
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Figure 4. F2 scores for PPAD models to predict conversion to AD at the next visit. (A) Models tested on held-out samples in ADNI after training using
two, three, five, and six visits in ADNI, respectively. (B) Models tested on NACC after training using two, three, five, and six visits in ADNI, respectively.
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Figure 5. F2 scores for PPAD-AE models to predict conversion to AD at
the second, third, and fourth visits ahead. (A-D) Models tested on held-
out samples in ADNI after training using two, three, five, and six visits in
ADNI, respectively. (E-H) Models tested on NACC after training using
two, three, five, and six visits in ADNI, respectively.

Figure 6. SHAP values for all features used in the first experimental setup
using (A) two, (B) three, (C) five, and (D) six visits to train the models. 2_1
means trained using two visits to predict conversion to AD at the next
visit, 3_2 means trained using three visits to predict conversion at two
visits ahead, and so on.

observed a slight increase when excluding demographic fea-
tures in PPAD (Fig. 7), whereas there was a slight increase
when including them in PPAD-AE for 9 out of 12 cases
(Fig. 8). In the second experimental setup, we observed a
slight increase when excluding demographic features in PPAD
for three out of four cases (Supplementary Fig. S4), whereas
there was a slight increase when including them in PPAD-AE
for 6 out of 12 cases (Supplementary Fig. S5).

4 Conclusion

In this study, we present two deep learning architectures
PPAD and PPAD-AE to predict the conversion to AD in the
future. We utilized longitudinal cognitive and neuroimaging
features and cross-sectional demographic data from two large
AD databases to evaluate our models. We conducted two ex-
perimental setups where ADNI data were used partially or
completely to train the model and held-out data and NACC
data were used to test the models. In both experimental set-
ups, our tools outperformed other existing tools and baseline
models. We also investigated other tools, but could not test
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Figure 7. PPAD ablation results for the demographic features. PPAD
tested on held-out samples in ADNI after training using two, three, five,
and six visits in ADNI.
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Figure 8. PPAD-AE ablation results for the demographic features. (A-D)
PPAD-AE tested on held-out samples in ADNI after training using two,
three, five, and six visits in ADNI, respectively.

them as the code or the tool was not made available. By utiliz-
ing a customized loss function, we gave higher emphasis on
the sensitivity of the models. Because for AD prediction, a
false positive prediction (predicting someone to convert to AD
falsely) is less severe than a false negative prediction (not be-
ing able to predict a conversion case). PPAD and PPAD-AE
are also flexible to incorporate additional features including
omics features from gene expression, DNA methylation data-
sets, and blood-based biomarker measurements. To increase
its usability, we make PPAD and PPAD-AE publicly available
at https://github.com/bozdaglab/PPAD/.
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