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Abstract: Research on high-temporal-resolution rock slope monitoring has tended to focus on
scenarios where spatial resolution is also high. Accordingly, there is a lack of understanding of
the implications for rock slope monitoring results in cases with high temporal resolution but low
spatial resolution, which is the focus of this study. This study uses automatically captured photos
taken at a daily frequency by five fixed-base cameras in conjunction with multi-epoch Structure-
from-Motion (SfM) photogrammetric processing techniques to evaluate changes in a rock slope in
Majes, Arequipa, Peru. The results of the monitoring campaign demonstrate that there are potential
issues with the common notion that higher frequency change detection is always superior. For lower
spatial resolutions or when only large changes are of concern, using a high-frequency monitoring
method may cause small volume changes that eventually aggrade into larger areas of change to
be missed, whereas most of the total volume change would be captured with lower-frequency
monitoring intervals. In this study, daily change detection and volume calculation resulted in a
cumulative rockfall volume of 4300 m3 over about 14 months, while change detection and volume
calculation between dates at the start and end of the 14-month period resulted in a total rockfall
volume of 12,300 m3. High-frequency monitoring is still the most accurate approach for evaluating
slope evolution from a rockfall frequency and size distribution perspective, and it allows for the
detection of short accelerations and pre-failure deformations, but longer-term comparison intervals
may be required in cases where spatial resolution is low relative to temporal resolution to more
accurately reflect the total volume change of a given rock slope over a long period of time.

Keywords: rockfall; rock slope; photogrammetry; Structure-from-Motion; monitoring; change
detection; Multi-Epoch and Multi-Imagery (MEMI)

1. Introduction

Monitoring of natural, modified, and engineered rock slopes is sometimes necessary
to provide an indication of slope activity that can be used to assess hazard, inform land
use or hazard mitigation decisions, and possibly provide early warning of a destructive or
life-threatening event [1–3]. With continued population growth and increased traffic and
development in steep and mountainous regions, there has been exponential growth in the
number of publications focused on rockfall since the 1980s, with a notable increase in the
early 2000s [4]. Given that rockfall can cause extensive property damage, injury, loss of life,
and disruptions to human activities (particularly transportation), it is important to further
the understanding of rockfall in a variety of environments. Changes associated with the
failure stage of rockfall can occur in quick succession, making temporal resolution a key con-
sideration with regard to detecting individual rockfalls rather than accumulated changes.
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An increased understanding of the importance of rockfall monitoring frequency, monitoring
method limitations, and, more directly, rock slope evolution can lead to improved hazard
assessment. Structure-from-Motion (SfM) photogrammetry is a convenient tool for the
development of three-dimensional models of natural scenes, and it has frequently been
used for rock slope characterization and monitoring in recent years [5–8].

In this study, terrestrial fixed-base SfM photogrammetry is used to monitor regularly
occurring rockfall at a landslide head scarp located near Majes, Peru. The primary aim
of this study is to examine the impacts of low spatial resolution relative to the temporal
resolution on long-term slope monitoring results. Previous studies have considered the
influence of temporal resolution on rockfall inventories but have either used monthly or
less frequent surveys [9–11], consist primarily of spatially independent rockfalls [12], or
have been able to detect very small volume changes [13–16]. This study is unique in that
the temporal resolution is high (daily data capture) but the spatial resolution is low relative
to the temporal resolution such that the minimum detectable change magnitude is over an
order of magnitude larger than typical daily slope changes. Understanding the implications
of this type of configuration on change detection results is crucial, as monitoring systems
with these types of practical limitations are expected to be implemented increasingly often
in the future as cost reduction and improvements to automation encourage the use of such
systems in practical (non-ideal) conditions.

Several studies have explored ground-based lidar and photogrammetric rockfall moni-
toring solutions with relatively high spatial resolution, thus allowing rockfalls smaller than
1 m3 to be identified. For example, Hartmeyer et al. [17] performed 78 terrestrial lidar scans
between 2011 and 2017 of a rock slope that was buttressed by a thinning glacier. They found
spatial correlations between the location of rockfalls and the recently exposed active layer
(freeze–thaw) where glacial thinning had occurred. Birien and Gauthier [15] performed
17 lidar surveys scheduled based on forecasted weather events and recorded weather data
over a total study period of 554 days to make connections between rockfall magnitude,
rockfall frequency, and different weather conditions. Specific to photogrammetric moni-
toring, there have been a few studies that monitored at daily or sub-daily frequencies or
used systems capable of monitoring at sub-daily frequencies [5,6,16]. Kromer et at. [5]
performed daily close-range SfM change detection for rockfall monitoring using photos
from a system of five fixed cameras, showing that precision similar to lidar can be achieved
for some applications and that using a combination of photos (multi-imagery) with slightly
different lighting conditions can improve point cloud precision. Giacomini et al. [16] used
stereophotogrammetry and semi-automated change detection procedures to monitor for
rockfall in an open pit mine, showing that their system could effectively be used to build
rockfall inventories including details about size, shape, frequency, and geology. Blanch
et al. [6] used a similar camera setup to Kromer et al. [5] but implemented a multi-epoch
image alignment procedure to increase precision and aid in georeferencing. These studies
that used photogrammetric monitoring provide important methods of evaluation to opti-
mize the setup and processing efficiency of photogrammetric monitoring, but there has
been limited evaluation of long-term, high-frequency photogrammetric monitoring results
in the literature. Furthermore, these studies, both lidar- and photogrammetry-based, do
not fully evaluate the importance of spatial resolution with respect to temporal resolution
using examples where the combination of resolutions is less than ideal.

The exact monitoring setups and frequencies used in each of these previous studies
were generally chosen based the site-specific requirements, data processing abilities, cost
considerations, as well as considerations of precision based on geological models for the
monitoring sites. For rockfall monitoring applications, there have been several recent efforts
to more closely evaluate the implications of monitoring system selection, specifically with
regard to monitoring frequency and spatial resolution, on rock slope evolution. Rockfall
volume–frequency relationships are well-documented in the literature [18]. Specific to
evaluating the impact of temporal resolution on detected rockfall volume and frequency,
van Veen et al. [9] captured seven lidar scans of a rock slope with high rockfall activity
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over the course of 15 months and used four different subsets of the scans with different
monitoring intervals to show that at longer intervals, information is lost regarding small
rockfalls because the extents of small rockfalls begin to overlap over time and cannot
be distinguished as individual rockfalls. They also noted that the impact of monitoring
frequency on overall magnitude–frequency relationships was minimal. Williams et al. [13]
showed a similar loss of information at longer intervals as van Veen et al. [9], but they found
that volume–frequency relationships are most sensitive to monitoring frequency over much
shorter monitoring intervals (less than 12 h). While these studies have made significant
contributions toward monitoring program design and rockfall analysis, understanding
rock slope evolution, and showing the implications of different monitoring frequencies,
they have all had spatial resolutions that were relatively high compared to the monitoring
frequencies used. The goal of this study is to explore the limitations of using a high-
temporal-resolution monitoring approach with a relatively low spatial resolution. This
investigation aims to provide insights for slope monitoring system design where near-slope
monitoring is not possible or where sensor quality is poor but short-term slope changes are
of interest.

2. Study Site

The rock slope considered in this study is in the Siguas River Valley near the Majes
District in Arequipa, Peru (Figure 1).
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Figure 1. Site location map showing the project site location in southern Arequipa Region, Peru.

Landslides are a common occurrence in the river valley, with most activity occurring
on the northern valley wall [19]. There are a few publications related to landslides in
this valley and neighboring valleys that have investigated groundwater conditions [19,20],
analyzed geophysical survey data [21], monitored landslide activity with satellite remote
sensing and GPS [22,23], and conducted detailed investigations of existing landslides [24].
All of these publications point to increased groundwater levels due to irrigation as a major
contributing factor to landslide activity. Similar relationships between landslide activity
and irrigation can be seen in several other regions globally [25]. These landslides often
leave steep exposed head scarps that exhibit high levels of rockfall activity.

The Siguas River Valley incises into a relatively flat-lying mesa (or pampas). Local to
the study site, the main geological unit of interest is the Moquegua Formation. The Mo-
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quegua Formation is composed of a series of sub-horizontally bedded conglomerates and
sandstones with weak layers of volcanic tuff, clay, poorly cemented gravels, and occasional
carbonate marine deposits [24]. The upper 20–30 m is sometimes considered separately
as the Millo Formation, which is predominantly conglomerate [19,21]. The Moquequa
Formation generally has higher strength than the rocks of the Millo formation, making the
Moquequa more of a cliff-forming unit compared to the Millo, which erodes quickly when
over-steepened. A schematic cross section of the rock slope is shown in Figure 2.
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The site (lat: −16.41951, lon: −72.16939) includes a roughly 700 m long and 600 m
wide landslide that can be further classified as a rockslide-debris-slide. The slide is locally
referred to as Pachaqui Grande, which is a nearby annex. The location for this study was
selected after the identification of a large tension crack at the top of the slope during a site
visit in 2019, suggesting that a large-scale scarp retrogression event was likely imminent.
The presence of a road on the opposite side of the valley where fixed cameras could be
easily installed was also a consideration. Prior to initialization of the photogrammetric
monitoring system (in December 2020), the anticipated large-scale displacement did occur,
and material from the head scarp moved up to 70 m over the course of five months based
on satellite imagery from Planet Labs [26]. While the major event was not captured, the
freshly exposed head scarp contributes to the suitability of this site for research as there is
consistent rockfall activity, with several individual events over 100 m3 in volume occurring.
Although parts of the landslide body were imaged as part of the conducted monitoring
campaign, evaluation of the landslide movement is a complex problem in and of itself and
is outside the scope of this study.

3. Materials and Methods
3.1. Fixed Camera System

The camera system consisted of five Canon EOS 5D Mark IV 30-megapixel cameras
with 85 mm fixed-zoom lenses that were manually focused. Still-image monitoring was
chosen over video monitoring because lower-cost, higher-resolution still-image options are
available and because the amount of data to transfer and store is much more manageable
compared to video for long monitoring periods. The locations of the cameras were chosen
on the basis of accessibility (located on a road bench), proximity to the landslide (the toe of
which was only 100 m from the cameras), having a viewing angle that allowed for a large
portion of the landslide body as well as the head scarp to be captured, and not being easily
visible from roads in the area to limit the potential of tampering or theft. Each camera was
placed in waterproof housing that was mounted on a metal pole and anchored into the
ground with epoxy (Figure 3). The cameras were installed roughly 50 m apart from each
other and oriented such that the final image network was convergent. The approximate
look angle of the cameras was an azimuth of 297 degrees, which is the same approximate
look angle used for all subsequent photos and SfM models of the slope in this paper unless
otherwise specified. The ground sampling distance (GSD) at the head scarp for each camera
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was roughly between 6 and 7 cm. The camera locations and the total field of view for all five
cameras is shown in Figure 3. For georeferencing, six Metashape standard 12-bit circular
coded targets (sometimes referred to as markers) served as ground control points (GCPs)
and were installed on the middle and lower portions of the slope (Figure 3). Each target
had a diameter of 1 m. The targets were installed on the landslide body because there was
no stable or accessible area of the slope within the field of view where they could be placed.
To the northwest of the depicted targets and on the landslide body, the slope was either
occluded from the view of the cameras or was not accessible for target placement, resulting
in a somewhat confined distribution of GCPs relative to the size of the monitored area.
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view extents are shown with unique colors for each camera. The area shaded in grey was unsuitable
for target placement.

3.2. Data Acquisition and Quality Control

Once all five cameras were fully operational (24 December 2020), three photos were
captured from each camera twice a day—once at 8 a.m., and once at 2 p.m. The choice to
capture three photos per epoch was a compromise between increased model precision (see
Section 3.3) and practical limitations, such as data storage, telemetry data transfer speeds,
and system power usage. Having multiple camera triggers also allows for redundancy
should a camera fail to trigger or if an image is corrupted or temporarily obstructed.
The cameras were triggered six minutes apart during both the morning and afternoon
epochs using Digisnap camera controllers that are a part of the Cyclapse timelapse system
produced by Harbortronics [27]. During the first few months of system operation, photos
were automatically uploaded to a remote storage location via a cellular-enabled data logger,
but issues with signal quality ultimately led to the decision to collect the photos manually
once per month. Regarding the reliability of the camera triggering system itself, there were
a few extended periods where camera 1 was non-operational, a few periods where camera
3 was non-operational, and a brief period of 5 days in March where all cameras failed to
trigger. There was also a brief period in December 2020 where cameras 3 and 4 were out of
focus due to a faulty connector in the timelapse system.



Remote Sens. 2024, 16, 66 6 of 26

Poor-quality photos can lead to poor-quality photogrammetric models, so to mitigate
this, photos below 12 megabytes (MB) (15–20 MB was found to be typical in more ideal
conditions) were removed from the dataset. Some of the photos removed during this
step were corrupted, some were out of focus, and some were a low file size due to image
compression resulting from atmospheric conditions, such as clouds and haze, having
caused large areas of the images to be similar in color. There were still photos over
12 MB that were captured in poor atmospheric conditions. These photos were manually
identified and excluded from subsequent processing steps. The most common cause of
poor atmospheric conditions for higher-quality photos was dust, haze, and fog in the later
afternoon, particularly in the winter months (June–September). This initial rejection process
left the acceptable photo count at 9417 compared to the original count of 11,209, a roughly
16% reduction. Overall, 83% of days (350/424) had at least one epoch of remaining photos
from four or five cameras.

3.3. Workflows for Multi-Epoch Photogrammetric Model Construction

Agisoft Metashape v.1.6.6 and v.1.8.3 [28] were used to create 3D point cloud models
using the site photos. Only photos captured in the morning are further considered in
this paper because the number of usable morning photos is higher than for afternoon
photos and because comparisons between models developed using morning and afternoon
photos were not typically successful due to dramatic differences in lighting. Processing
was automated using scripts in Python v.3.9 [29] in conjunction with the Metashape Python
API. The steps to produce a point cloud include image alignment (or sparse point cloud
construction), alignment optimization, and dense point cloud construction.

Following a check to ensure that the dates being processed all had photos from at
least four cameras, image alignment in Metashape v.1.8.3 was performed using the highest
accuracy setting, an upper key point limit of 200,000, and no tie point limit. Generic
preselection was enabled, while reference preselection, adaptive fitting, and guided image
matching were disabled. The camera positions and orientations solved during alignment
were then optimized using an iterative process of gradual tie point selection, deleting the
selected tie points, and then performing optimization with all default fitting parameters
enabled. “Fit additional corrections” was not enabled. The first iteration selected tie points
down to a reconstruction uncertainty ratio of 10. The second iteration selected tie points
down to a projection accuracy of 3. The final three iterations selected tie points down to a
maximum reprojection error of 0.3 key point units (~1 pixel). In each iteration, a maximum
of 20% of tie points were selected, and the process was stopped if the tie point count dropped
below 60,000. Only one iteration was performed for both reconstruction uncertainty and
projection accuracy, as performing multiple iterations was found to consistently cause the tie
point count to drop below 60,000 before the reprojection error filtering could be performed.
Following alignment, photos with fewer than 300 total projections were disabled.

Metashape 1.8.3 was the latest version when these methods were established, but it
was found that the dense point clouds in versions 1.7 and 1.8 had large gaps and holes,
which was interpreted to be a consequence of stricter filtering in the depth map calculations.
Performing the dense point cloud construction in v.1.6.6 avoided this issue. Metashape
v.1.8.3 was still used for earlier steps due to its ability to automatically sort cameras into
appropriate calibration folders based on camera serial number.

Accordingly, dense point cloud construction was performed in Metashape v.1.6.6 using
the medium density setting and aggressive depth filtering to produce point clouds between
three and six million points. The point spacing at the head scarp (where rockfall occurs)
was generally around 0.25 m. Figure 4 shows the portion of the head scarp considered for
rockfall detection in both a site photo and a resulting dense point cloud from the workflow
described above.
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For SfM-based point cloud change detection to be effective, the compared point clouds
need to have consistent geometry and georeferencing such that all features and changes are
aligned appropriately. A multi-epoch image alignment approach can be used to achieve
this consistent georeferencing and model geometry [7,30–32], which can be improved
further with multi-imagery, as demonstrated by Blanch et al. [6] and termed Multi-Epoch
and Multi-Imagery (MEMI). A multi-imagery workflow implies that for each camera in
each epoch, multiple photos are captured within a short time frame (seconds to minutes)
and then used for all subsequent processing steps that involve that epoch. The theory
is that the slight variations in lighting result in the identification of additional features
(i.e., key points), thus leading to a larger number of tie points from the image alignment
step. Using a multi-imagery workflow has been shown to improve model precision [6].
A multi-epoch workflow implies that two or more epochs of photos are used during the
image alignment processing such that dense point clouds for each epoch can then be
created from a single set of tie points (shared between each epoch). According to results
shown by Blanch et al. [6], multi-epoch workflows that also use multi-imagery offer further
improvements in precision.

We chose to implement a MEMI workflow for this study not necessarily because of
the possibility of improved model precision (although it was a consideration) but because
models created with single-epoch image alignment were geometrically dissimilar enough
that alternative scaling and registration techniques were not sufficient to closely register the
point clouds for subsequent change detection, which is similar to results shown by Cook
and Dietze [31]. Recently developed multi-sensor, non-rigid registration methods [33] were
not applicable given that no additional sensors or remote sensing surveys other than the
fixed cameras were used for this research. Fixing camera calibration parameters across
multiple epochs (i.e., solving external calibration parameters initially with the reference
epoch and then using the same calibration parameters to build models for subsequent
epochs) was also not effective as the cameras did experience some movement throughout
the course of this study due to opening of the camera housing for manual data transfer,
wind, and, potentially, other factors. The reason the multi-epoch approach was found
to work is that the tie points found between epochs are generally only in areas where
effectively no change has occurred (in this case, unchanged portions of the head scarp) [34].
This does limit the application of this method to sites where there is some sufficiently large
portion of the scene that is relatively stable (in the absence of stable GCPs or repeated
surveys of unstable GCPs). For the study site in this research, roughly 15 percent of the
2D image area in any given photo can be considered globally stable over the course of the
monitoring period. The vast majority of the stable area corresponds to the head scarp of
the landslide.

Implementation of the MEMI workflow involved including one reference epoch in
every MEMI set. The reference epoch date was set to be 24 December 2020, which was
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the first day that the setup was completed. The coded targets (GCPs) on the slope, which
were surveyed at the beginning of the monitoring period, were marked in all of the images
from the reference epoch for initial georeferencing purposes. The GCPs were only used in
the one epoch because there was no accessible stable ground and there were no additional
ground surveys completed after targets had moved with the slide body. For rockfall
monitoring, three epochs in total were included in the image alignment step. This included
the reference epoch (with surveyed GCPs) and two comparison epochs. Rockfall detection
was performed between the comparison epochs, which resulted in ~24 h day-to-day
comparisons (in most cases). Under ideal conditions, a MEMI set for rockfall monitoring
contained 35 photos (2 comparison epochs × 5 cameras × 3 photos + 1 reference epoch ×
5 cameras × 1 photo). The maximum number of photos was rarely achieved, as the cameras
sometimes failed to trigger, and many photos were removed during preliminary quality
control (Section 3.2). For each three-epoch set of photos, image alignment (with no pre-
calibration) and optimization were performed, and then three separate dense clouds were
constructed by only selecting photos from one epoch, building the dense cloud, exporting
the dense cloud, and then selecting only the photos from the next epoch and repeating the
sequence until all three dense point clouds were constructed and saved. A schematic of the
described MEMI workflow as implemented in this study is shown in Figure 5.
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3.4. Change Detection, Clustering, and Volume Estimation

Methods originally developed for rockfall detection using lidar point clouds were
applied to point clouds developed using the photogrammetric workflow [35–39]. Rockfall
monitoring in this study consisted of a processing workflow that included initial masking
(i.e., cropping) of the dense point clouds to an area of interest relevant for rockfall detection,
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computing Multiscale Model to Model Cloud Comparison (M3C2) change [35] in the
forward and reverse directions, merging and filtering the M3C2 results, and applying the
DBSCAN clustering algorithm [37]. Similar to other studies [6,16,36,38], the full workflow
was implemented in Python, with masking, merging, and filtering being executed using
CloudComPy and DBSCAN being executed from the machine learning Python module
scikit-learn [40].

The created mask was consistent with the head scarp outline in Figure 4. The mask
ensured that areas of talus and loose material both above and below the main rock slope
face were not included. The mask also excluded about 80 m of the leftmost (southern)
extent of the models and about 40 m of the rightmost (northern) extent. These portions of
the point clouds were consistently noisier than the central part of the scarp, particularly
for point clouds built using photos from only four cameras. The mask also excluded an
approximately vertical sliver of the right side of the largest gully near the north extent of
the head scarp, because this section almost always had severe shadowing and the local
slope trend was roughly parallel to the look direction of the cameras, leading to a large
hole in the point cloud at this location.

The change detection portion of the rockfall monitoring workflow consisted of per-
forming M3C2 twice: once forward in time (projected onto the earlier-in-time dense point
cloud) and once in reverse (projected onto the later-in-time dense point cloud). The input
parameters for M3C2 consisted of a normal diameter of 1.5 m, a projection diameter of 1.5 m,
a max depth of 50 m, and point cloud normals computed for all points with a preferred
orientation approximately perpendicular to the overall head scarp. The current state of
practice when using M3C2 to compare lidar point clouds is to use a projection diameter
equal to or slightly greater than the point spacing [41], but because this rule of thumb is
for point clouds where each point is an individual measurement, it does not necessarily
translate directly to photogrammetry tie point clouds and even less so to dense point clouds.
We used a diameter of 1.5 m, which is roughly five times larger than the typical dense point
spacing, as a means of filtering out some of the noise in the point clouds. M3C2 results
were then filtered such that only points with a change magnitude above 0.40 m remained.
This value was chosen to be slightly larger than the average M3C2 standard deviation of
0.35 over the full monitoring period and is therefore below the two-standard-deviation
“limit of detection” for many change calculations; this relatively low filter threshold value
was selected to ensure the detectability of relatively small rockfalls, although it necessitated
extensive manual validation efforts to discard regions of false change (see Section 3.6).
Overall, change filter application ensured that large-scale real change was captured while
simultaneously limiting the amount of noise and low magnitude change that was carried
through to subsequent processing steps. The filtered change point clouds were then merged
such that the front and back faces of the change regions were grouped together in a single
point cloud.

The final step to produce change clusters was to run the filtered and merged change
point cloud through the DBSCAN clustering algorithm. The two input parameters for
DBSCAN are epsilon and a minimum point count value. Epsilon is the maximum distance
between two points such that they are considered part of the same neighborhood. The
minimum point count is the total number of points required to define a cluster. In some
cases, these two parameters can be estimated based on point cloud characteristics, such
as point spacing and k nearest neighbor relationships [42], but for our photogrammetric
point clouds, where there can be large spatial and temporal variations in point density,
distortion, and noise (compared to lidar point clouds), we opted to manually test and
choose the epsilon and minimum point values. At higher values of minimum points, some
small but visually identifiable rockfalls were not clustered. At higher values of epsilon,
it was increasingly common for small, close-together areas of change to be grouped into
single clusters. Several combinations of parameters were initially tested with epsilon not
exceeding 2.0 and minimum points parameter not exceeding 400 points. The final selected
parameters for epsilon and minimum points were 0.8 and 80, respectively.
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Cluster volumes were calculated using an iterative Alpha-shape procedure that iterates
through the Alpha volumes that result in unique shapes and “finds the smallest Alpha-
radius that produces a watertight manifold surface mesh” [36]; this is equivalent to the
smallest Alpha-radius that results in a single-volume closed shape that can exist in real
3D space. This was performed on a cluster-by-cluster basis so that a single enclosed
Alpha-shape was produced for each cluster.

3.5. Identification and Removal of High-Noise Point Clouds and Anomalous M3C2 Results

Because lighting conditions and, ultimately, the amount of noise in the dense point
clouds from the Majes site were highly variable, there was a tendency for large numbers of
false positive clusters (i.e., erroneously identified rockfalls) to be produced in some cases. To
reduce the number of false positives resulting from less-than-optimal point cloud compar-
isons and correspondingly limit the manual effort needed for cluster validation, clustering
results and change detection metrics were used as criteria for point cloud rejection. The
two metrics used were the number of clusters of 10 m3 or greater and the M3C2 standard
deviation. If there were more than 10 clusters greater than 10 m3 and M3C2 standard
deviation was above 0.5 m, the comparison was flagged and manually evaluated to make
sure the large clusters did not represent real rockfall, and then those comparisons were
rejected and new comparisons were performed to span the dates of the rejected compar-
isons by modifying a comparison adjacent in time (whichever had a lower M3C2 standard
deviation). This rejection procedure was not iterative, and the rejection criteria were only
evaluated once. Prior to comparison rejection, there were 348 comparisons over a total time
span of 399 days. After comparison rejection, there were 330 remaining comparisons.

3.6. Manual Cluster Validation

Using the cluster database created after the data rejection procedure described in
Section 3.5, clusters with calculated volumes over 5 m3 were manually confirmed using
site photos. To accomplish this, photos from the same camera and different epochs were
spatially aligned in 2D, and then one of the two photo layers was activated and deactivated
repeatedly to see if changes were apparent in the photos within the vicinity of the identified
changes in the point clouds. In the photos, much smaller changes were evident than in
the dense point clouds because the pixel spacing is finer than the point spacing, but, more
critically, because the noise (i.e., point location imprecision) in the dense point clouds made
interpretations of small changes impractical, if not impossible. Clusters with volumes
below 5 m3 were not assessed to limit the amount of manual cluster validation required
due to excessive numbers of false positive clusters below this volume as well as to exclude
the smallest clusters, which were visually observed to exhibit the largest discrepancies
between apparent areal extent of change (per the point clouds) and actual rockfall (per the
photos). If there was no change consistent with rockfall identified in the photos within
the extent of a cluster, the cluster was marked as a false positive. Regardless of apparent
discrepancies in the overall areal extent, for clusters above 5 m3, if there was any change
identified in the photos that was visually consistent with rockfall and was at all within
the extent of a point cloud change cluster, the cluster was marked as validated (i.e., real)
change. The changes were further manually classified as block falls, block falls with areal
extent agreement (AEA), and non-block-fall changes (slope ravel). These classifications
were assigned through manual evaluation of site photos. Blocks were considered to have
AEA if the areal extent of the clusters (as viewed in the look direction of the cameras) was
estimated to be less than two times the extent of change evident In the site photos or if the
extent in the photos was less than two times larger than the cluster extent. At decreasing
volumes, AEA became less common, and the relative error (percent difference) between
cluster and photo areal extents was often greater. While errors near the minimum volume
limit were a concern, the overall impact of these errors is limited because the full range of
rockfall volumes spans several orders of magnitude. A breakdown of the classifications of
detected change is shown in Figure 6.
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magnitude–cumulative frequency (MCF) plots. A power law distribution can be fit to 
rockfall MCF data. MCF curves were only fit to datasets with five or more rockfalls for 
this paper. These fitted MCF curves can be used to estimate the recurrence interval for a 
rockfall of a given volume. The power law distribution in terms of these two measure-
ments is shown in Equation (1), where V is rockfall volume and the constants a and b are 
fitting parameters. 

F(V) = aV−b, (1)

MCF curves typically have a “roll-over” at low volumes below which the power law 
relationship is no longer representative of the data [11]. The roll-over is typically at-
tributed to spatial resolution because low volumes begin to be under-sampled toward the 
minimum detectable rockfall volume (i.e., small-volume rockfalls are less likely to be iden-
tified) [10,18]. No signs of such a phenomenon were seen in the MCF plots for volumes 
over 5 m3, suggesting that the transition from complete to incomplete sampling would 
occur in this case at a volume below the volume selected for manual cluster validation. 

Figure 6. Number of clusters over 5 m3 categorized by all clusters (prior to manual validation); only
clusters that were validated manually using site photos; validated clusters that were identified as
rock blocks; and validated clusters that were identified as blocks and also had areal extent agreement
(AEA) between cluster and site photos.

Figure 7 shows all false positive clusters identified from the high-frequency workflow,
which cover the majority of the area of interest. Areas with concentrated clusters corre-
spond to consistently shadowed regions or regions where point density was particularly
inconsistent. These clusters correspond to the difference between “validated change” and
“all change”, as shown in Figure 6.
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high-frequency workflow. The area of interest (AOI) where change detection was performed is
outlined in green.

3.7. Magnitude–Cumulative Frequency Curves

The two primary components of rockfall activity that go into evaluation of a given
site are rockfall frequency and rockfall volume. These measurements can be used to create
magnitude–cumulative frequency (MCF) plots. A power law distribution can be fit to
rockfall MCF data. MCF curves were only fit to datasets with five or more rockfalls for
this paper. These fitted MCF curves can be used to estimate the recurrence interval for
a rockfall of a given volume. The power law distribution in terms of these two measure-
ments is shown in Equation (1), where V is rockfall volume and the constants a and b are
fitting parameters.

F(V) = aV−b, (1)

MCF curves typically have a “roll-over” at low volumes below which the power
law relationship is no longer representative of the data [11]. The roll-over is typically
attributed to spatial resolution because low volumes begin to be under-sampled toward
the minimum detectable rockfall volume (i.e., small-volume rockfalls are less likely to be
identified) [10,18]. No signs of such a phenomenon were seen in the MCF plots for volumes
over 5 m3, suggesting that the transition from complete to incomplete sampling would
occur in this case at a volume below the volume selected for manual cluster validation.
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3.8. Single Start-to-End Comparison

To evaluate the influence of high-temporal-resolution rockfall monitoring with spatial
resolution being a limiting factor in terms of total rockfall volume, a separate, single
start-to-end comparison (SSEC) was performed between the monitoring start and end
dates of 24 December 2020 and 27 January 2022 (399 days), thus producing a single set of
clusters representative of the total rock slope changes over the course of the monitoring
period. The clusters were validated in the same way as described in Section 3.6 through
manual evaluation of photos from the two compared dates. Evaluation of the enclosed
volumes produced by the Alpha-shape algorithm (as described in Section 3.4) revealed
that substantial regions unassociated with observed change were being included in the
calculated volumes (compare Figure 8a,b). This was found to be a result of the clustering
procedure creating very large clusters with irregular and tortuous geometries associated
with overlapping or adjoining rockfall regions as opposed to individual rockfall blocks
(for which the applied procedure was designed). To mitigate this, the large clusters were
manually split up to produce clusters with less large-scale concavity, and cluster volumes
were re-calculated. As a primary criterion for this manual splitting process, if a single
cluster had multiple regions joined by a small number of points relative to the number
of points in the individual regions, the cluster was divided. Additionally, if an otherwise
blocky/uniform cluster had localized regions that were tortuous or protruding, these
regions were extracted as separate clusters. The result of manual cluster splitting can be
seen in Figure 8b, and the associated outlines of the corresponding Alpha-shapes used to
calculate volumes are shown in Figure 8c.
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Figure 8. Visualization of manual cluster splitting process showing (a) outlines of Alpha-shapes
prior to cluster splitting, (b) manually split-up clusters, and (c) the resulting Alpha-shape outlines
of the divided clusters. The colors used to show individual clusters are a visual aid and have no
additional meaning.
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4. Results
4.1. Point Cloud Model Quality

The MEMI method allowed for generally consistent quality and alignment of point
clouds between different dates, although there was some degree of remaining variability
depending on the exact combination of photos being used for the comparisons. Figure 9
shows M3C2 distance for a typical comparison as well as end-member cases. For the typical
case where the M3C2 standard deviation was 0.40 m as well as the higher-quality result
where the standard deviation was 0.22 m, the compared models were in good agreement, as
indicated by the predominance of green and yellow colors corresponding to low-magnitude
change. The lower quality result, where the standard deviation was 0.70 m, had many
local areas of higher-magnitude change, which, in this case, were not associated with
obvious rockfall but can rather be attributed to local variations in point density (i.e., holes
in the dense point clouds), possibly due to lighting and shadowing differences between the
photos from the compared dates. The total distribution of M3C2 standard deviation results
for the full monitoring period is shown in Figure 10.
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Figure 9. Multiscale model-to-model cloud comparison (M3C2) change point cloud results where
the standard deviation was (a) 0.22 m between dates 6 January 2021 and 7 January 2021, (b) 0.40 m
between dates 29 March 2021 and 30 March 2021, and (c) 0.70 m between dates 7 November 2021
and 8 November 2021. Note the slight change in overall color, from green to a more yellowish hue,
indicative of the shift toward higher change values overall.
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4.2. MCF Curves

MCF results for the whole monitoring period were relatively consistent regardless of
the specific change classification or monitoring frequency classification (Figure 11), although
there were some minor but notable variations. The slope of the MCF curve becomes less
steep when only considering blocks and even less steep when only considering AEA
blocks. This shows that validated changes classified as slope ravel as well as blocks that
did not have AEA were generally small in magnitude (closer to the 5 m3 minimum volume
limit), so excluding them causes the MCF curve to be more heavily weighted toward
larger-magnitude changes. There was also a slight reduction in slope when shifting from
considering all comparisons to only one-day comparisons (see Figure 11).

MCF results separated by month show the high degree of variability in block fall MCF
relationships over the course of the 14-month monitoring period (Figures 12 and 13 for
all blocks and AEA blocks, respectively). Monthly block fall frequencies were highest in
January and February of 2021, with June 2021, December 2021, and January 2022 showing
moderate frequencies of block fall, while the remaining months showed little or no block
fall activity. Except for a 136 m3 block in March 2021 and a 354 m3 block in December 2021,
most of the large block falls occurred in January and February 2021.

The standard errors of the ‘b’ parameter (slope) estimates for the MCF fits from both
Figures 12 and 13 are shown in Figure 14. The standard error was of course higher with
fewer data points, but, overall, the differences in slope between months were significant,
even when considering the error of each slope estimate. The slope was generally between
−1 and −1.5 during the monitoring period, with January and February having notably
lower magnitude slopes and June having a notably high-magnitude slope.

4.3. Comparison between High-Temporal-Resolution Monitoring Results and Single
Start-to-End Change

For high-temporal-resolution rockfall monitoring where spatial resolution is relatively
low, it is important to consider the volume missed by high-frequency workflows that detect
rockfall only over short time spans (typically daily in this study). The true positive clusters
for the high-frequency workflow as well as the clusters from the SSEC workflow are shown
in Figure 15. This shows the areal extent disagreement between the two workflows viewed
from an approximately slope-normal orientation. This difference can be attributed to daily
changes of less than 5 m3 that accumulate to larger changes over time, which were captured
in the single start-to-end comparison.
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Much of the volume discrepancy was in the weaker Millo Formation, which can be
seen in the upper 1/3 of the rock slope. As a point of comparison (and to avoid potential
influences of the applied Alpha-shape volume estimation algorithm), total volumes were
estimated based on 2D areal extents and average cluster M3C2 change distances; based on
this calculation, the total volume for the high-frequency workflow was 3200 m3, and for SSEC
it was 8500 m3. In comparison, based on the Alpha-shape approach, the total volume of all
validated change with the high-frequency workflow was 4300 m3, while the total volume
with the single start-to-end comparison workflow was 12,300 m3. Figure 16 shows the total
Alpha-shape volume of all clusters from two workflows: the high-frequency workflow, where
clusters detected over short time spans are all added together, and the SSEC workflow, where
the total volume of clusters produced from a single start-to-end comparison is shown. The idea
behind comparing the two workflows was to evaluate the sensitivity of the workflows to the
minimum cluster volume considered (as representative of the effective spatial resolution). This
allows for rough extrapolation to lower volumes below 5 m3, and it also shows the impacts of
using an even lower spatial resolution system (i.e., larger minimum volume thresholds).

The “minimum volume threshold” in Figure 16 was the smallest volume cluster con-
sidered in the volume summation (i.e., for a minimum volume threshold of 10 m3, the
corresponding total volume was only calculated from clusters over 10 m3). These results show
that there was a large total volume discrepancy between the two workflows. There was a
notable trend in terms of total volume as a function of minimum volume threshold for the
high-frequency workflow, while the SSEC showed a relatively constant total volume with
different minimum volume thresholds. Given that SSEC clusters were manually split prior to
filtering, what trend is seen may artificially reduce the volume at any given minimum volume
threshold; with that in mind, the lack of sensitivity to minimum volume threshold for the
SSEC results is especially clear, as the degree of variation in total SSEC volume as a function
of the minimum volume threshold presented can be considered to be an upper bound. The
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reason for the relative lack of a trend in the case of the SSEC results is that most of the volume
can be attributed to the large areas of spatially correlated change that are captured in single,
large clusters, so filtering out small-volume clusters negligibly affects the total volume.
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Figure 12. Magnitude-cumulative-frequency (MCF) plots created using all validated block falls.
Months not shown had no clusters corresponding to validated block fall (July 2021, August 2021,
November 2021). MCF curves were only fit to the data if there were more than five clusters.

To illustrate the different results obtained from the two different temporal resolutions
(the high-frequency workflow and SSEC), an example for a small portion of the slope where
the two approaches were in disagreement as to the extent of rock slope changes is shown
in Figure 17. In this example, a portion of the scarp is shown where there was an area of



Remote Sens. 2024, 16, 66 17 of 26

change that was detected with the SSEC approach but missed using the high-frequency
workflow. This particular section was chosen because it was a relatively large area with
clear areal extent and an area where the photos were typically good enough in quality
that small changes were readily apparent during manual validation. Figure 18 shows
the progression of rockfall activity in this same section of the slope at an approximately
monthly interval. Even at the monthly frequency, it is apparent that the changes between
the images were relatively small between any two months, but the total change over the
course of the year was quite significant.
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Figure 13. Magnitude-cumulative-frequency (MCF) plots created using all validated areal extent
agreement (AEA) block falls. Months not shown had no clusters corresponding to validated AEA
block fall (July 2021, August 2021, November 2021). MCF curves were only fit to the data if there
were more than five clusters.
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Much of the volume discrepancy was in the weaker Millo Formation, which can be 
seen in the upper 1/3 of the rock slope. As a point of comparison (and to avoid potential 
influences of the applied Alpha-shape volume estimation algorithm), total volumes were 
estimated based on 2D areal extents and average cluster M3C2 change distances; based on 
this calculation, the total volume for the high-frequency workflow was 3200 m3, and for 

Figure 14. Standard error for ‘b’ parameter estimates of magnitude-cumulative-frequency (MCF)
curve fitting for (a) monthly MCF data for all validated block falls (see Figure 12) and (b) all validated
areal extent agreement (AEA) blocks (see Figure 13).
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Figure 15. Comparison of the extent of change (validated clusters over 5 m3) identified using the
high-frequency (HF) workflow and a single start-to-end comparison (SSEC). The area of interest
(AOI) where change detection was performed is outlined in green. The black outline is showing a
large portion of the slope that failed through progression of large-volume block falls and the red
outline is showing an area where the HF workflow failed to identify an area of real change.
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Figure 17. Example of an area of change (outline in red, see Figure 15) that was included in a cluster 
over 5 m3 in the single start-to-end comparison (SSEC) but was not detected using the high-fre-
quency (HF) workflow because the long-term change was the result of many changes less than 5 m3 
that accumulated over time. The approximate area of the section outlined in red is 70 m2. 

 
Figure 18. Photos for the area of change in Figure 15 at different times (yyyy-mm-dd) throughout 
the monitoring period. The arrows show the general locations of the largest change(s) since the pre-
vious date. The solid red square in the upper left panel is approximately 1 m2 at the rock slope. 

The aggradation of change that occurred at a relatively small scale in Figures 17 and 
18 also occurs at larger scales that are captured by the high-frequency workflow. Figure 
19 shows this large-scale aggradation as a series of large rockfalls that are spatially corre-
lated and contribute to a significant proportion of the total volume identified using the 
high-frequency workflow. All of these large-volume rockfalls occurred toward the end of 
January and the beginning of February, with the exception of the one rockfall in March. 

Figure 17. Example of an area of change (outline in red, see Figure 15) that was included in a cluster
over 5 m3 in the single start-to-end comparison (SSEC) but was not detected using the high-frequency
(HF) workflow because the long-term change was the result of many changes less than 5 m3 that
accumulated over time. The approximate area of the section outlined in red is 70 m2.
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Figure 18. Photos for the area of change in Figure 15 at different times (yyyy-mm-dd) throughout the
monitoring period. The arrows show the general locations of the largest change(s) since the previous
date. The solid red square in the upper left panel is approximately 1 m2 at the rock slope.

The aggradation of change that occurred at a relatively small scale in Figures 17 and 18
also occurs at larger scales that are captured by the high-frequency workflow. Figure 19
shows this large-scale aggradation as a series of large rockfalls that are spatially correlated
and contribute to a significant proportion of the total volume identified using the high-
frequency workflow. All of these large-volume rockfalls occurred toward the end of January
and the beginning of February, with the exception of the one rockfall in March.



Remote Sens. 2024, 16, 66 20 of 26
Remote Sens. 2024, 16, 66 20 of 26 
 

 

 
Figure 19. Large block falls in the center of the head scarp (see Figure 15 for location) that occurred 
progressively over the course of the first few months of the monitoring period. Dates given in yyyy-
mm-dd format. 

5. Discussion 
A five-sensor, ground-based camera system captured daily photos that were used in 

a MEMI SfM workflow to reconstruct surface topography over time. Topographic models 
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ously evaluated in detail by Kromer et al. [5], although the range from the cameras to the 
rock slope is much larger at our research site in Majes. The MEMI step of the photogram-
metric workflow has been proven to be effective for constructing point clouds of consistent 
geometry between comparison epochs by Blanch et al. [6], and the change detection work-
flows are closely based off of previous work [35–39]. The MEMI approach is relatively 
new and has yet to see wide implementation [6,30], so this study serves as a unique appli-
cation of the method where MEMI was critical for ensuring consistent model geometry 
because there were no stable GCPs (GCPs were only marked in images from one initial 

Figure 19. Large block falls in the center of the head scarp (see Figure 15 for location) that occurred
progressively over the course of the first few months of the monitoring period. Dates given in
yyyy-mm-dd format.

5. Discussion

A five-sensor, ground-based camera system captured daily photos that were used
in a MEMI SfM workflow to reconstruct surface topography over time. Topographic
models in the form of point clouds were then compared to extract clusters of topographic
change consistent with rockfall. The camera system and the basic SfM workflow have
been previously evaluated in detail by Kromer et al. [5], although the range from the
cameras to the rock slope is much larger at our research site in Majes. The MEMI step of the
photogrammetric workflow has been proven to be effective for constructing point clouds
of consistent geometry between comparison epochs by Blanch et al. [6], and the change
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detection workflows are closely based off of previous work [35–39]. The MEMI approach
is relatively new and has yet to see wide implementation [6,30], so this study serves as a
unique application of the method where MEMI was critical for ensuring consistent model
geometry because there were no stable GCPs (GCPs were only marked in images from one
initial epoch separate from the epochs being used for any given comparison), and when
models for different dates were created separately, slight geometrical distortions between
models precluded the use of standard rigid transformation approaches for point cloud
registration. Given that the photogrammetric and change detection methods used for this
research have already been established, the primary novel contribution of this paper is
the consideration of the balance between spatial and temporal resolution when spatial
resolution is relatively low in comparison to a relatively high temporal resolution.

5.1. Volume Calculation Uncertainty

Separate from implications related to temporal resolution, the volume calculations for
this study have some uncertainties. One uncertainty is that depending on the magnitudes
of M3C2 change and the spatial extents of individual areas of change on the rock slope,
DBSCAN did not always successfully isolate individual areas of change that were close
together. This may have occasionally caused a given comparison to have a slightly misrep-
resentative MCF relationship where the MCF scaling parameter would be slightly lower
than it would be with better isolation of change areas. This uncertainty was likely not an
issue at high frequencies, but in the SSEC, it was more of an issue because so much of the
slope had experienced change and the gaps between areas of change were sometimes small.
There is also some level of uncertainty associated with the smoothing effect that M3C2 and
the subsequent M3C2 change filter threshold had on which points were included with a
given cluster. M3C2 smooths the cluster in that the distances are not calculated from indi-
vidual points but rather from the average point location within a defined search diameter.
Regardless of smoothing, a larger uncertainty in calculated volumes comes from the “halo”
of small-magnitude change around a rockfall that is below the change filter threshold [43].
This effect would be limited for large clusters relative to their overall magnitude but may
significantly affect smaller clusters where the size of the excluded “halo” represents a large
proportion of the overall rockfall extent.

Specific to the SSEC workflow, the use of a change filter threshold that was typically
below the two-standard-deviation limit of detection caused some merging of independent
change areas that were near one another. This effect was mostly mitigated by manually
segmenting SSEC clusters where this occurred (Section 3.8). The effectiveness of manual
cluster splitting was checked by calculating change volumes via an alternate method (see
Section 4.3). The ratio of volumes between the two temporal resolutions was in agreement
for both volume calculation methods, suggesting that the manual cluster segmentation
reduced the amount of excess volume associated with geometric irregularities by a reason-
able amount.

5.2. Comparison of MCF Scaling Parameter to Literature Values

The overall power law scaling exponent (b parameter in Equation (1)) for rock blocks
was found to be approximately 1 regardless of whether blocks without AEA were consid-
ered (Figure 11). By comparing this value to values reported in the literature, connections
can be drawn between overall site geology, rockmass quality, and monitoring methods.
Graber and Santi [18] conducted a thorough review of MCF relationships in the literature,
and their analysis of variance between different site conditions and the scaling exponent
can be used to make comparisons to the results of this study. Regarding general site geology
(i.e., igneous, metamorphic, and sedimentary), Graber and Santi [18] found that sedimen-
tary rock slopes had the highest average scaling parameter of around 0.9, and igneous
slopes had the lowest average scaling parameter of about 0.6. For rockmass conditions,
they found that the scaling exponent tends to decrease with decreasing rockmass quality.
For “good-quality” rockmasses, an average scaling parameter of about 1 was found, while
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for “poor-quality” rockmasses, the average was closer to 0.6. Regarding the method of data
collection, there was a wide range of average scaling exponent values, but for terrestrial
lidar scanning, which is the closest method to terrestrial photogrammetry as applied in
this study, the scaling exponent interquartile range was from about 0.5 to 0.8. The overall
ranges of scaling parameter values for each of these categories were shown to be quite
large, from about 0.2 to 1.4 over all three variables. Given the actual site conditions in this
study of poor to medium rockmass quality, a rock slope of predominantly sedimentary
rock, and a monitoring method similar to terrestrial lidar, the scaling exponent of 1 in this
study is consistent with trends in the literature [18].

There was a limited amount of variation in the scaling parameter, with differences in
temporal resolution and the type of change considered (Figure 11). For all comparisons,
where temporal frequency ranged from daily to six days, the scaling parameter had a varia-
tion of 0.03 between results that included all blocks and only AEA blocks (see Section 3.6).
For results including all blocks, the scaling parameter had a variation of 0.08 for results
considering comparisons of all temporal resolutions, one-day and two-day comparisons,
and only one-day comparisons. These slope variations are slightly larger than those ob-
tained with method differences, such as the volume reconstruction method [44], and are
similar to the slope variation seen with different data quality and filtering decisions [43].
The variations in scaling parameter as a function of temporal resolution are larger than
those found by van Veen et al. [9] when considering four temporal resolutions ranging
from a few months to a single 461-day comparison, but they are significantly smaller than
the variation found by Williams et al. [13] when considering temporal resolutions ranging
from 30 days to 1 h. Note that the results of this study are not directly comparable to
either of these previous studies because the three variations of temporal resolution that we
considered were only slightly different, and they were all dominated by daily temporal
resolution comparisons.

5.3. High Temporal Resolution and SSEC Volume Discrepancy

This study shows that in photogrammetric monitoring system design, it is critical to
account for the effects of combining low spatial resolution with high temporal resolution,
which causes low-magnitude changes to be missed. At a highway rock slope monitoring
site, for example, it may be important to have high enough temporal resolution to trigger
response teams to check the road conditions after a rockfall occurs, but it is also important
to be able to evaluate the long-term changes at the slope to be able to schedule maintenance,
such as removing loose rock from rockfall containment features. Where issues might
arise is when changes are missed because a significant portion of the change occurs as
very low-volume rockfalls that are spatially correlated and accumulate to large-volume
changes over time. With daily monitoring in this study, there was often not enough change
between days to be detectable, either because the change magnitudes were too small (as
measured by M3C2) or because the total cluster volumes fell below the minimum volume
threshold used. Comparisons and change detection between dates that are further apart
can be performed to capture these changes that would otherwise be missed with the
high-frequency change detection.

At volumes below 5 m3 in this study, the error (difference between estimated and
actual rockfall volume) was expected to be relatively large (Section 3.6), and the number of
false positive clusters was high, so a minimum volume threshold of 5 m3 was used. The
decision to use 5 m3 was not directly related to a limit of detection. Rather, it was selected to
achieve a balance between spatial resolution (minimum rockfall volume detected), manual
validation effort required, and volume estimate accuracy for individual clusters. A smaller
volume cutoff could have been used, but that would have led to significant increases in the
manual validation effort required and provided a larger number of volume results with
low reliability. For example, the 5 m3 threshold led to around 1500 clusters that had to
be manually validated, while a 1 m3 threshold resulted in almost 16,000 clusters (the vast
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majority of which would undoubtedly be false positive or highly erroneous in volume);
manual validation of this many clusters was not practical for this study.

While the 5 m3 volume was larger than what was able to be captured in change
detection and what was manually identifiable in site photos, by roughly extrapolating the
cumulative cluster volume results in Figure 16, the required minimum volume threshold
(i.e., volume limit of detection) to match the SSEC total volume would be in the order of
0.5 m3. Extrapolation of the MCF curves (Figure 11) suggests a similar minimum volume
would be required. This required detectable volume was below what could be reliably
detected using the methods applied in this study. Rockfalls with an areal extent in the
photos less than about 1 m2 (~15 × 15 pixels) were difficult to distinguish from lighting
variations and image distortion. Using the change filter threshold of 0.4 m as described
in Section 3.4 and an area of 1 m2 gives a rough approximation of the best case scenario
minimum volume limit for detectable rockfalls of 0.4 m3. If smaller clusters were considered
and validated, the discrepancy between the high-frequency workflow and SSEC would be
smaller, but it would not be eliminated.

5.4. Spatiotemporal Resolution Considerations for Rockfall Monitoring

While it is important to be able to accurately measure the long-term, cumulative
volume change of a given rock slope, it is also important to have high enough temporal
resolution monitoring to identify the most accurate MCF relationships. High-temporal-
resolution monitoring allows for a higher number of individual rockfalls to be detected
rather than the detection of accumulated changes from multiple rockfalls. This is especially
critical when material characteristics are such that large portions of the slope change over
relatively short periods of time, which is the case for the Millo Formation in this study. The
Moquegua Formation, while still showing similar rockfall spatial trends as in the Millo, has
less aggregated change and more areas of small-magnitude individual changes, which can
be attributed to its higher strength in comparison to the Millo Formation. This difference
is expected to be more distinct if material strengths differ more significantly. The high
temporal resolution of this study also allows for evaluation of changes in MCF relationships
through time (Figures 11–13). We observed variations in the scaling exponent from 0.5
to 1.3 on a month-to-month basis, with one anomalous value over 2.5. This variability is
generally consistent with the findings of Janeras et al. [45], who showed a fluctuation of
the scaling exponent from about 0.25 to 0.81 at one location and from about 0.38 to 0.78 at
another location, although their rockfall database monitoring intervals were in the order
of a year rather than monthly. Both of these findings show that rockfall hazard is not
constant through time over all time intervals. There are certainty benefits to developing an
overall rock slope characterization that can be used in practical applications where repeat
monitoring may not be planned, but to develop such a characterization, an understanding
of the potential variability in MCF relationships through time is needed, as shown by the
results of this study. In addition to concerns of temporal variability, the rockfall frequency
at a given site partly dictates the required temporal resolution, as the monitoring frequency
should be high enough that there are a sufficient number of detected changes that an MCF
curve can be fit in a statistically significant manner.

Future work could consider a wider array of site conditions and spatial–temporal
resolution combinations to better outline monitoring system recommendations. In cases
where spatial resolution is the limiting factor, a multi-temporal change detection approach
could be used, where high-frequency (e.g., daily) comparisons allow for the most accu-
rate detection of individual changes and supplemental lower-frequency (e.g., monthly)
comparisons allow for the total volume change to be accurately measured.

5.5. Prevalence of False Positive Clusters and Monitoring Method Limitations

While it was not the focus of this study, it is important to consider the prevalence of
false positive clusters with the presented change detection workflow (Figure 7). Many of
these false positives were a result of shadows or other lighting differences between dates
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being compared. Reliable methods of cluster identification and classification are required
for the methods presented in this study to be fully automated and applicable to real-world
scenarios where rigorous manual validation is not practical [46,47]. Relatedly, almost half
of the validated changes over 5 m3 corresponded to slope-ravel-type processes where
there was no identifiable or coherent rock block that moved. It is important to distinguish
between blocks and ravel because blocks are generally capable of causing more damage
compared to ravel processes, and while the volumes of ravel events at the study site tended
to follow MCF trends consistent with block fall, this may not be the case at other sites. Fully
automating the workflow shown in this study is critical not only to reduce manual efforts,
but also to enable on-site processing to limit the data that have to be transferred off-site,
which, in turn, will allow for higher monitoring frequencies.

6. Conclusions

Fixed-base terrestrial SfM can be used for topographic reconstruction and change
detection with relatively high temporal resolution. In this study, five cameras were used to
automatically capture photos of a rock slope in the Arequipa Region of Peru. The photos
were used in a semi-automated processing workflow that implemented a MEMI approach
for image alignment, which was required to ensure consistent point cloud model geometry
between comparisons.

The findings of this study show that with limited spatial resolution, high-temporal-
resolution (daily) monitoring leads to a large discrepancy in total long-term rock slope
volume loss compared to a single comparison spanning nearly the full monitoring period
(399 days). At the study site, the total rockfall volume identified using a daily monitoring
frequency was less than one fourth of the total rockfall volume identified in the 399-day
comparison, suggesting that much of the total slope volume loss occurs as high-frequency,
low-magnitude events that were not able to be effectively captured by the monitoring
system that was used at this study site. While high-frequency monitoring was not ideal
for capturing overall volume loss, it was well-suited for establishing MCF relationships
that were true to the actual slope evolution. High-frequency monitoring allowed for the
identification of progressive, spatially correlated rockfalls that would have otherwise been
detected as single, larger-volume rockfalls if a lower monitoring frequency was used. The
implications of these findings are that when selecting a monitoring system for a given site,
spatial and temporal resolution specifications should be selected based on the importance of
identifying MCF relationships as well as identifying overall volume loss. For systems that
are limited in spatial resolution but not necessarily limited in temporal resolution, it may be
beneficial to institute a multi-temporal change detection workflow where high-frequency
comparisons are made in conjunction with longer-term, rolling window comparisons,
possibly of multiple sizes (e.g., weekly, monthly, yearly).
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