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Limit cycles, complex Floquet multipliers, and intrinsic noise

Richard P. Boland,™ Tobias Galla,” and Alan J. McKane*
Theoretical Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
(Received 30 March 2009; published 29 May 2009)

We study the effects of intrinsic noise on chemical reaction systems, which in the deterministic limit
approach a limit cycle in an oscillatory manner. Previous studies of systems with an oscillatory approach to a
fixed point have shown that the noise can transform the oscillatory decay into sustained coherent oscillations
with a large amplitude. We show that a similar effect occurs when the stable attractors are limit cycles. We
compute the correlation functions and spectral properties of the fluctuations in suitably comoving Frenet
frames for several model systems including driven and coupled Brusselators, and the Willamowski-Rossler
system. Analytical results are confirmed convincingly in numerical simulations. The effect is quite general, and
occurs whenever the Floquet multipliers governing the stability of the limit cycle are complex, with the
amplitude of the oscillations increasing as the instability boundary is approached.

DOI: 10.1103/PhysRevE.79.051131

I. INTRODUCTION

The subject of nonlinear dynamics, with its wide range of
tools and techniques, and its classification of the diverse
types of behavior encountered, has in the last 20 or 30 years
transformed our understanding of many models in the physi-
cal and biological sciences [1,2]. All these systems are sub-
ject to random perturbations but the study of the effects that
the noise has on a particular system while still very signifi-
cant [3-5], has not been nearly so extensive. Frequently the
noise is added to the deterministic equations in a fairly ad
hoc manner to obtain stochastic differential equations of the
Langevin type. What is less often done is to start from a
well-defined “microscopic” model defined by either a Mar-
kov chain or a master equation, and to treat the deterministic
(macroscopic) limit of the model in a unified framework
which also incorporates the stochastic elements of the prob-
lem. In this paper we will develop such a treatment for a
particular class of problems. Conventional tools used in de-
terministic nonlinear dynamics (for example, Frenet frames
and Floquet analysis) will turn out to also have a role to play
in the stochastic version of the model.

The particular class of problems we shall investigate will
be those which have a deterministic limit which, at large
times, approaches a limit cycle in an oscillatory manner. That
is, trajectories spiral into the limit cycle at large times. The
motivation for studying such systems is the widespread in-
terest in the analogous phenomena in systems which ap-
proach a fixed point in an oscillatory fashion. In this case, the
effect of noise is, in many cases, to transform the oscillatory
decay into a sustained oscillation about the fixed point. In
this way the long-time behavior of the system is no longer a
fixed point but consists of stochastic oscillations which have
a frequency that may be different to that which appears in the
oscillatory decay in the deterministic version. The possibility
of such an effect occurring has been discussed for some time
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[6,7] but it is only in the last few years that a full quantitative
analysis has been given. The method has been applied to the
study of stochastic oscillations in predator-prey systems
[8.9], epidemiology [10-12], chemical reactions in the cell
[13], and autocatalytic reactions [14], among others. One of
the important aspects of these oscillations is that they have
an amplitude of order ¢/ N relative to the deterministic tra-
jectory, where N is the size of the system (the typical number
of individuals, molecules, etc. that may be put into the sys-
tem) and c¢ is a constant which due to a resonance effect is
usually quite large. This means that even for relatively large
values of N, where the oscillations would be expected to be
small and stochastic effects negligible, the relative amplitude
can be of order of one, and so the fluctuations may dominate
the dynamics. This effect is usually referred to as stochastic
amplification to avoid confusion with the very different ef-
fect of stochastic resonance [15]. In this paper we will leave
N arbitrary since we will be largely concerned with matters
of principle but in applications, such as chemical reactions in
the cell [13], it can be as small as a few thousands.

The question that will interest us here is: does a similar
phenomenon happen in other contexts, in particular when the
stable state of a deterministic dynamical system is a limit
cycle? Much less work has been done for this case as com-
pared with the case of a fixed point, yet intuitively we would
expect a similar effect to occur. In fact, the only previous
studies we are aware of are by Wiesenfeld [16,17], who in-
vestigated the effects of noise on the stability of periodic
attractors of various dynamical systems, such as the driven
pendulum. He obtained analytical and numerical results on
the power spectra of fluctuations about the limit cycles of
such systems but he adopted the approach that we mentioned
above: by adding noise to the deterministic equations of mo-
tion. This is acceptable if the noise is external, as he was
envisaging, but if one wishes to understand the possible am-
plification of the underlying fluctuations due to intrinsic de-
mographic stochasticity, then one needs to begin with the
discrete dynamics, as we have already emphasized.

In a recent paper [18], we have investigated a stochastic
model of the well-known Brusselator system, which has a
limit cycle in the deterministic limit. However, in this model
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the approach to the limit cycle is not oscillatory. As in the
case of fixed points and in the applications listed above, a
precondition for finding sustained coherent oscillations is for
the stable limit cycles to be approached in an oscillatory
manner. For a fixed point this condition is that the eigenval-
ues of the stability matrix about the fixed point are complex.
For a limit cycle, the analogous condition is that the Floquet
multipliers for the equations describing the small deviations
away from the periodic path are complex. Floquet multipliers
are found to be real in the Brusselator system, as the number
of degrees of freedom is not large enough to produce com-
plex multipliers, and no coherent amplification phenomenon
is observed. Part of the motivation for the work described in
[18] was to put the necessary tools in place, and to set the
stage, for the investigation of model systems in which per-
sistent oscillatory behavior about a limit cycle is to be ex-
pected.

We begin with a two-dimensional system. If the system is
autonomous, one of the Floquet multipliers will have a value
of unity, which, as we will see, implies that the remaining
Floquet multiplier has to be real. This means that complex
Floquet multipliers can only be found in two-dimensional
systems if they are nonautonomous. It is natural to achieve
this by imposing an external periodic driving so as to induce
a limit cycle as the steady state. In order to make contact
with our previous paper [18] we here first study the Bruss-
elator forced by an external periodic driving. As it turns out,
this system does indeed have complex Floquet multipliers
for a range of possible values for the parameters of the
model. We then discuss an autonomous system in three di-
mensions: the Willamowski-Rossler model, first introduced
to describe chemical chaos. Finally, we consider a coupled
set of two Brusselator systems as a four-dimensional illustra-
tion. Although we focus on these particular examples in the
present paper, the formalism we will develop will hold in
arbitrary dimensions and it will apply whether the system is
autonomous or nonautonomous.

The outline of the paper is as follows. We begin in Sec. II
with the forced Brusselator. By avoiding the technical com-
plexities of working in general dimensions, appealing to
some of the results used in our previous paper on the un-
forced Brusselator [18], and not having to use the Frenet
frame in the analysis, we hope to provide a gentle introduc-
tion to the basic ideas. In Sec. III we extend the analysis to
the Willamowski-Rossler model which introduces some ex-
tra features over and above those used in Sec. II, and in Sec.
IV we carry out the full analysis for a system in an arbitrary
number of dimensions and illustrate its use on the coupled
Brusselator. We conclude in Sec. V. There are three math-
ematical Appendixes which cover the details of the formal-
ism and some aspects of the calculations for the specific
models considered in the earlier sections.

II. FORCED BRUSSELATOR

In this section we will study the Brusselator system, sub-
ject to an external periodic forcing. An analysis of the un-
forced model can be found in [18], and much of the formal-
ism remains unchanged. As it turns out, the introduction of
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the forcing actually simplifies some aspects of the dynamics
as discussed below. While we reiterate the main elements of
the formalism and of the notation in the present paper, our
previous work [18] may be consulted for specific details.

A. Model definitions

The Brusselator model is a relatively simple chemical sys-
tem, composed of five different reactants (A,B,C,X;, and
X,), and governed by the reactions [19-21]

A—X +A, (1)
X, — D, (2)
X,+B—X,+B, (3)
2X,+X,+C—3X,+C. 4)

These reactions conserve the numbers of molecules of
types A, B, and C in the system while those of X; and X, are
the dynamical degrees of freedom. The role of the substances
A,B, and C is mainly to set the rates with which the first,
third, and fourth reactions occur, respectively.

The concentrations of the A and C molecules will be held
constant in time in all variations in the model that we will
consider while the concentration of substance B will be used
to apply an external driving force. The precise manner in
which this forcing is implemented will be detailed below. On
the deterministic level, the system is described by the follow-
ing two coupled ordinary differential equations [19-217:

X1=1-x[1+b(t) — cxyx5],

Xy = x1[b(1) — cxyx,], (5)

where x;(r) and x,(¢) describe the time-dependent concentra-
tions of substances X; and X,, respectively, the constant c is
the concentration of the C molecules (the concentration of
the A molecules has been set equal to unity), and where b(z)
is the externally controlled concentration of B molecules.
The unforced Brusselator is recovered by setting b(r) =b,
independent of time. In this unforced case the system may
exhibit both fixed points and limit cycles, depending on the
choice of the coefficients b, and c (see [18] and references
therein for details) but no oscillatory approach to the limit
cycles is possible as discussed below. For later convenience
we rewrite Egs. (5) as x=A(x,r), where

Aj(x,0) =1 =x[1+b(1) - cxx,],

Ay(x,1) = xy[b(1) = cxyx,]. (6)

To complete the definition of the model it remains to
specify the functional form of the forcing. We will here use a
deterministic  periodically varying forcing, b(t)=by[1
+& cos(Q2r)], in Egs. (5). The non-negative control parameter
e sets the amplitude of the external driving, and () is its
angular frequency. We restrict ourselves to € <1 so that the
concentration of B molecules remains non-negative. For &
=0 we recover the unforced Brusselator.
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B. Deterministic dynamics: Floquet analysis
and stability of limit cycles

1. Floquet theory

For periodic functions b(r+Tq)=b(t), and assuming &
#0, any periodic solutions of Egs. (5) must have a time
period T=nT(, where T =2/} and n is a positive integer.
Numerical integration indeed shows that such cycles are
found although not for all choices of the model parameters.
Furthermore, for the parameters that we have tested we only
find limit cycles corresponding to n=1. The stability of these
periodic solutions may then be analyzed within the frame-
work of Floquet theory [1,22]. Assuming model parameters
are set such that a periodic solution, X(r), of Egs. (5) exists,
one considers a small perturbation, &(r), about this solution.
To linear order one then has

()

g = K&, (7

where K(r) denotes a 2X2 matrix with entries K;[X(1),7]

=d;A[X(t),1], i,j=1,2, and d; denotes a derivative with re-

spect to X;. The explicit form of K(#) is given by Eq. (A1) of

Appendix A but given that b(r) and X() are of period Ty, it

follows that K(t+7Tq)=K(r). Equation (A1) is identical to

that for the unforced case [18] except that here b is replaced
by a time-dependent function b(z).

In essence, Floquet theory states that, provided X(z) is a
fundamental matrix of Eq. (7), then there exists a nonsingu-
lar constant matrix B such that

X(t+Tq)=X(1)B, (8)

for all +. While the Floquet matrix B will, in general, depend
on the choice of the particular fundamental matrix X(z), its
eigenvalues can be shown to be independent of this choice
[22]. The eigenvalues of B are usually referred to as the
Floquet multipliers of system (7). For the forced Brusselator
model there are two multipliers, and we denote them by p;
and p, in the following. Since B is real, if one of the multi-
pliers is real, so is the other. This is the situation found in
two-dimensional autonomous systems. Characteristic expo-
nents u; and u, are then defined by p,=e*’® for i=1,2.

We will now briefly discuss the properties of the resulting
Floquet multipliers. In order to make contact with the un-
forced system it is useful to distinguish between the cases
by<l+c and by>1+c, as the attractor of the unforced sys-
tem is a stable fixed point in the former case, and a limit
cycle in the latter [18].

2. Case by<1+c

A trivial application of Floquet theory is to the unforced
case (£ —0) so that b(t) =b,. For by<1+c the deterministic
system is then known to approach a fixed point, see, e.g.,
[18] for further details. Floquet theory remains formally ap-
plicable as the matrix K(r) in Eq. (7) becomes time indepen-
dent at the fixed point; we will write K(r)=K". Indeed, in this
case, formally the time period of the matrix K can be set
arbitrarily, as one has K(t+ 7)=K(¢) for all 7and z. Solutions
to Eq. (7) may be obtained directly by integration, and they
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FIG. 1. (Color online) An Argand diagram of the Floquet mul-
tipliers, p;, for by=1.8 and c=1. The dashed red line indicates the
position of the multipliers as e — 0, with 7€ [7/ w*, 27/ 0*] [cf. Eq.
(10)]. The blue dot-dashed line shows the location of the multipliers
at 1=1.3, where different points on the line correspond to different
values of €>0. The solid line is for 1=1.7. The forcing amplitude
is varied in the range & € [1072,1]. The shaded area is the unit disk.

can be written as &(r)=exp{K'1}&,, where we have set the
initial condition to be &(0)=§,. Considering two solutions,
generated from two linearly independent initial conditions,
we can construct a fundamental matrix, X(). It then follows
from the form of the solutions to Eq. (7) and from Eq. (8)
that the Floquet matrix B depends on the choice of the pe-
riod, 7, as

B(7)= KT, 9)

Denoting the eigenvalues of K* by \;, i=1,2, and those
of B(7) by p;(7), Eq. (9) yields the relation p;(7)=exp{\;7}.
If the eigenvalues \; are complex, then they are a com-
plex-conjugate pair, N\.. Setting c=1 (which we do from
now on), the eigenvalues of K* are given by N.=(by/2)
—1xiVby(4-by), i.e., they are a pair of complex conjugates
with nonzero imaginary part so long as by<<4. The imagi-
nary parts of \o will be denoted by * w*. We will refer to w*
as the natural frequency of the unforced Brusselator. When
forcing is applied, then in the limit € —0, the functions
pi(7)=p+(7) are logarithmic spirals in the complex plane if
by<l+c, i.e., they are of the form

p (1) = 02U cos(w* ) * i sin(w*)]. (10)

Following Wiesenfeld [17], we illustrate the position of the
Floquet multipliers in the complex plane on an Argand dia-
gram, see Fig. 1. The dashed line here corresponds to Eq.
(10) at by=1.8 for the range 7€ [(7/ w*), 27/ 0*)].

If the forcing amplitude & is small but nonzero, the deter-
ministic dynamics [Eq. (5)] no longer approaches a fixed
point but instead it is found to have a limit cycle. In this limit
however, the deterministic trajectory is observed to remain
close to the fixed point of the unforced case. The matrix K(z)
in Eq. (7) then approaches K* as € —0. It then follows that
p;i—exp{\;Tq} so that the Floquet exponents u;—\; as &
—0. We find from a numerical integration of the determin-
istic dynamics that increasing the level of the forcing ampli-
tude tends to make the forced limit cycle more stable; that is,
we find that the modulus of p; and p, decreases when ¢ is
increased, as shown in Fig. 1.
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FIG. 2. (Color online) The top panel is a schematic plot of a
deterministic approach, shown as a thin gray (red) curve, to a limit
cycle with complex Floquet multipliers; the cycle itself appearing
as the closed dark curve (blue). The lower panel, showing a strobo-
scopic section, illustrates the spiraling return to the limit cycle with
a frequency distinct from that of the limit cycle itself.

Let us end this subsection by returning to the interpreta-
tion of complex Floquet multipliers. According to Floquet
theory, a solution to Eq. (7) may be written as a linear com-
bination of solutions which have the property &(r+Tq)
=p,;&,(t) for i=1,2. When the p; are complex-conjugate pairs,
this means that linear displacements from the periodic solu-
tion X(¢) return to the limit cycle in elliptical spirals, in a way
similar to the stable fixed point of the unforced case. We
illustrate this typical behavior of complex Floquet multipliers
in Fig. 2.

3. Case by>1+c¢

The case in which by>1+c is slightly more complicated
than the one in which the unforced deterministic system ap-
proaches a fixed point. For by > 1+c the unforced system has
a stable limit-cycle solution [18]; we will denote its angular
frequency by w,, where w, generally depends on b, and on c.
One of the Floquet multipliers is equal to unity [18,21], p,
=1, while the other one is found to be in the range 0<<p,
<1, consistent with a stable limit-cycle attractor. We were
not able to find any stable periodic solutions when integrat-
ing Egs. (5) at small but nonzero forcing amplitudes & at
generic forcing frequencies. At fixed values of b, and ¢, pe-
riodic solutions are however found for all {) when the forc-
ing amplitude exceeds a critical value, which we denote by
£,(Q), suppressing a potential dependence on b, and c. For
e=¢g.()) these solutions are stable limit cycles, and the cor-
responding Floquet multipliers lie within the unit circle. Here
we will exclusively focus on this regime. At e=¢.({)) the
multipliers have a modulus of one so that the cycle loses its
stability, and as in the previous subsection, increasing the
forcing amplitude reduces the moduli of p; and p,, as shown
in Fig. 3.

For our purposes it is sufficient to go on to study the case
where the Floquet multipliers remain inside the unit circle,
and to analyze the power spectra of stochastic fluctuations
about the limit cycle in this regime.
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FIG. 3. (Color online) Location of the Floquet multipliers in the
complex plane for by=2.1 and c=1. The dot-dashed blue line is for
a forcing frequency of (1=1.3 while the solid black line is for )
=1.7. Periodic solutions are found above &.=0.068 and ¢,=0.14,
respectively. Floquet multipliers are shown for e,=e=1 for both
values of (). The shaded area is the unit disk; Floquet multipliers
approach the unit circle as € approaches ¢. from above.

C. Stochastic dynamics and system-size expansion
1. Specification of the model

We now turn to a discussion of the stochastic microscopic
Brusselator system, as defined by reactions (1)—(4). Labeling
the reactions by v=1,...,4, we denote the rates with which
each of the reactions occurs by 7,(n,?). These rates depend
on the state of the system n=(n,,n,), where n; is the number
of molecules of species X;, and, for the forced system, have
an additional explicit dependence on time. For the Brussela-
tor system T,=N, To(n)=n,, T3(n,t)=b[1+€ cos(Qt)]n,,
and T,(n)=cN~2n’n,. The combinatorial factors are the same
as in the unforced case [18]. The time-dependent expression
for T; reflects the periodic forcing, implemented through an
externally controlled variation in the number of B molecules
in the system. We also define the vectors v, v=1,...,4, each
capturing the effects of a single occurrence of a reaction of
type v on the numbers of X; and X, molecules in the system.
For the Brusselator v;=(1,0), v,=(-1,0), v3=(-1,1), and
vy=(1,-1) [18].

2. Analytical description and system-size expansion

The time evolution of the probability, P,(¢), of finding the
system in state n at time ¢ is then governed by the master
equation

4

dPy(1) =S [T,n- Vi) Py (1) = T, (0 Py(1)]. (11)
r=1

dt

Solving the master equation analytically is generally not fea-
sible but an effective description in terms of a Langevin
equation, valid at large but finite system size, can be obtained
by means of a van Kampen expansion in the inverse system
size [23].

This procedure is well established and has been applied to
a number of microscopic interacting particle systems so that
we do not describe the mathematical details here but instead
refer to [13,23]. The main idea is to expand realizations n(z)
of the microscopic dynamics about a deterministic trajectory,

x(1),
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n(r) _ 1

N = X0+ g0, (12)
and to derive an equation of motion for the fluctuations, &(z),
from an expansion of the master equation (11) in powers of
N~"2.To lowest order one finds that self-consistency requires
x=A(X,1), where A(x,1)=[A,(x,1),A,(x,t)] is given by the
expressions in Eq. (6), recovering the deterministic dynamics
of Egs. (5). These equations may also be derived by defining

(n(1)) = 2 nPy(1), (13)
and noting that
4
A0 S v, 1 Lo, (14)
=1

where we have used a deterministic approximation to write
(T,(n,1))=T,[(n(r)),r]. Equations (6) are then recovered by
setting x(7)=(n(7))/N. At next-to-leading order the van Ka-
mpen expansion gives a linear Langevin equation for the
fluctuations, &(z), about the deterministic trajectory which
has the general form [13,23]

dé(r)
——=K() &) +1£(2), (15)
dt
where, for the forced Brusselator, the matrix K(¢) is defined
in Eq. (A1). The term f(z) on the right-hand side represents a
Gaussian noise of zero mean and with correlator

(filO)f(t"))=2D;(t) 8t —1'). (16)

The matrix D(7) may be straightforwardly calculated from
the van Kampen expansion [13,23]. The explicit form for the
forced Brusselator is given by Egs. (A2) and (A3) in Appen-
dix A.

Equation (15) is a linear Langevin equation, and analyti-
cal progress is therefore possible. Of particular interest to us
here are the correlation functions and power spectra of the
fluctuations &(r). The time-averaged elements of the covari-
ance matrix Cy;(t,1")=(&(1)€;(¢')) are defined as

1 (Ta
Ci(n)= T—Qf d&()E(t+ 7)). (17)
0

We will in the following mostly focus on the diagonal ele-
ments C;(7). Even though Eq. (15) is linear, the analytical
computation of C;(7) requires several intermediate steps, and
final expressions need to be evaluated numerically. The de-
tails are left until the general theory, applicable to systems in
an arbitrary number of dimensions, is explained in Sec. IV.

3. Comparison with simulations

In Fig. 4 we compare results from the analytical calcula-
tion just described, with measurements obtained from simu-
lations of the microscopic dynamics. Simulations are carried
out using the Gillespie algorithm [24], suitably modified to
account for the explicit time dependence of the reaction rates
induced by the external forcing [25]. Measurements in simu-
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FIG. 4. (Color online) The autocorrelation (top panel) and the
power spectra (bottom panel) of stochastic fluctuations about the
deterministic trajectory of the forced Brusselator. Simulation results
for fluctuations &, of the number of X; molecules are shown as open
circles while those for &, are indicated by full squares. The solid
lines are the predictions of the theory, and are seen to match the
simulations perfectly. Model parameters are by=2.1, c=1, Q
=1.3, and £=0.14. The corresponding nontrivial Floquet multipliers
are p=0.023+0.46i so that |p|=0.46. The imaginary part of the
Floquet exponent is Im ©=0.32. The system size in simulations is
N=2X 10’ and averages over 5000 independent runs are taken. Ver-
tical lines in the lower panel mark the frequencies of n{Q—Im u
(solid lines) and nQ)+Im w (dashed), where n is a positive integer.

lations are taken after a suitable equilibration period in order
to minimize the effects of transients. Figure 4 shows results
from the theory (lines) and from simulations (markers), and
as seen in the figure, the agreement between them is excel-
lent, both for the time-averaged autocorrelation functions
C;i(7) and the corresponding power spectra. The latter are
obtained as the Fourier transforms of the correlation func-
tions:

P,-(w)=JdTei“’TCi,-(T). (18)

In the numerical simulations we first measure C;(z,t'),
and then perform a time average to obtain C;(7). Subse-
quently a discrete Fourier transform is taken to obtain P;(w).
From a practical point of view, C;(7) is found only for 7
=0, and then the even nature of the function (discussed
later) is invoked. Wiesenfeld [16] suggested peaks would be
expected to be seen at frequencies n{) = Im u, where n is a
positive integer and Im & is [Im M|, where w5 are the two
Floquet exponents. However, our results indicate that the
presence or otherwise of such peaks depends strongly on the
choice of model parameters, and in particular on the position
of the Floquet multipliers in the complex plane. For the case
shown in Fig. 4, for example, p; ,=0.023 * 0.46i and marked

051131-5



BOLAND, GALLA, AND MCKANE

3
s

—_
(=]
W

—_
(=)
(S}

P(w)

—_
(=]

—_
S
=]

/Ny

T
2
(O]

_
On

FIG. 5. (Color online) Power spectrum of stochastic fluctua-
tions, &, in the forced Brusselator system as obtained from the
analytical calculations. Model parameters are by=2.1, c=1, ()
=1.3, resulting in &.=0.068. The different curves correspond to
forcing amplitude £=0.07,0.11,0.15, from top to bottom, at the
peaks. The corresponding Floquet multipliers have modulus 0.97,
0.66, and 0.41, respectively. Vertical lines are given at frequencies
of nQ)—Im u (solid lines) and nQ+Im u (dotted), where n is a
positive integer and where Im pw=0.31 for all three cases.

peaks are found at n{)—Im u but not at nQ)+Im u. A second
example is shown in Fig. 5, where we show data for a num-
ber of model parameters, resulting in Floquet multipliers
much closer to the unit circle than for the example shown in
Fig. 4. Peaks are now found at all n{) = Im wu, with the peaks
becoming more pronounced as the Floquet multipliers ap-
proach the unit circle (from within). In the limit [p; | — 1,
the relaxation of autocorrelation functions becomes very
slow and so larger values of 7 need to be taken into account
when performing the Fourier transform. This makes both the
analytical expressions and the Gillespie simulations more
computationally expensive and, for the parameters illustrated
in Fig. 5, Gillespie simulation is not feasible.

III. WILLAMOWSKI-ROSSLER SYSTEM
A. Microscopic model

We have seen that forcing the two-dimensional Brussela-
tor opens up the possibility of complex Floquet multipliers.
This was not possible in the unforced case since there the
deterministic dynamics is autonomous, leading directly to a
Floquet multiplier of unity. Therefore, in order to see the
effects of complex Floquet multipliers in an autonomous sys-
tem, the simplest case has three dimensions. One such sys-
tem is the Willamowski-Rossler model and we shall study
the particular form given in [26,27]. The model may be writ-
ten as a chemical reaction system, involving three species X,
X,, and X3, defined by

by
X,=2X|, (19)

X,=2X,, (20)
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1

Xl +X2—> @ N (21)
1
X] +X3—>2X3, (22)
d3

The parameters above and below the arrows indicate the
relative rates with which each of the reactions occur. Absorb-
ing potential combinatorial factors in the definition of the
model parameters b;,b,,d;, and d,, the four reactions given
in Egs. (19) and (20) occur with rates 7;(n)=bn;, T,(n)
=d\niN', Ty(n)=b,n,, and T,(n)=d,n3N"". In isolation,
these four reactions [Egs. (19) and (20)] ensure that the av-
erage numbers of species X; and X, are of the order of N so
that N is again a measure of the system size. We will take
annihilation process (21) to occur with rate Ts(n)=nn,N";
the prefactor in the rate of the reaction is taken to equal unity
in order to agree with [26,27]. The mathematically interest-
ing limit is that in which the number of X5 particles, ns, is of
order N as well. This is the case when the remaining reaction
rates are scaled suitably with N. Specifically we will assume
that Eq. (22) occurs at rate T4(n)=n,n;N"' and Eq. (23) at
rate T,(n)=d;n;. The vectors, v,, which correspond to the

reactions v=1,...,7 are given by
v, =(1,0,0), v,=(-1,0,0),
v3=(0,1,0), v,=(0,-1,0),
vs=(=1,-1,0), vg=(-1,0,1),
v;=(0,0,—1). (24)

B. Deterministic dynamics and Frenet frame

As in the case of the forced Brusselator, we may now find
the equations of the corresponding deterministic dynamics
using Eq. (14). For the Willamowski-Rgssler model these are

X1 =A (%) =x,(by = dyx; = X = x3), (25)
X = Ay(X) = x5(by — dyxy — X)), (26)
K3 =A3(x) = x30x) — ds). (27)

There are a total of six fixed points of this system but only
one at which all concentrations are nonzero. This fixed point
is given by

X' = (d3,u,bl —dydy - by d3>. (28)
dy dy

The stability matrix, K;;(x)=d,A,(x), at this fixed point may

be found from Egs. (A4) and (A5) in Appendix A by setting

x(r)=x". If the above nontrivial fixed point is unstable then

limit-cycle solutions of the deterministic equations may ex-

ist. Such solutions have, for example, been reported in
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[26,27], and we will focus on this limit-cycle regime in this
section.

Following the notation of the previous sections we will
denote the deterministic limit-cycle trajectory by X(¢), and
we will write &(r) for the fluctuations about it, again similar
as before. Much of the formalism we require has either been
discussed in Sec. II, or in [18]. In particular one has an
equation of form (7) within a linear stability analysis of the
limit cycle, and in the absence of noise. A direct consequence
of the system being autonomous is that the velocity vector,

x(1), is itself a solution to Eq. (7). Since the velocity is peri-
odic, one of the Floquet multipliers is equal to unity, as it is
generally the case for limit cycles of autonomous systems.
The dynamics is marginally stable in the direction of the
velocity so that longitudinal fluctuations behave diffusively
and may grow without bound in the long run [18,21]. We
will focus our interest instead on the fluctuations in the trans-
verse directions since it is these that have the oscillatory
behavior of interest to us. For stable limit cycles and in the
absence of persistent noise, these transverse fluctuations de-
cay in a manner characterized by the remaining Floquet mul-
tipliers. If the latter are complex, and if the system is subject
to intrinsic noise, as induced by the underlying microscopic
dynamics at finite system sizes, we expect these fluctuations
to be enhanced into quasicycles about the limit cycle.

In order to separate longitudinal from transverse modes
we need to introduce a suitable frame of reference. Such
coordinates are provided by the Frenet frame [28], which
may be constructed by applying the Gram-Schmidt orthogo-
nalization procedure to the first three time derivatives of the
limit-cycle solution X(7). Specifically, the comoving basis
vectors €,(t), i=1,2,3, of the Frenet frame are constructed
sequentially, as discussed further in Appendix B. The fluc-
tuations are governed by a Langevin equation of form (15).
In order to isolate the transverse fluctuations, we rotate the
Langevin equation into the Frenet frame. After the rotation,
defined by a matrix, J(¢), the Langevin equation takes the
form

q(r) =K (r)q(r) + g(1), (29)

where we follow our earlier paper [18] and write q(z)
=J(r)&(r) for the fluctuations in the Frenet frame. The matrix
is periodic and given by K“Y(r)=J()K(t)J (1) +J(1)J"\ (1)
(see Appendix B) and g(r)=J(¢)f(¢) is the rotated noise term.
It follows from Eq. (16) that the components of g(¢) are each
Gaussian white-noise variables with zero mean and correla-
tors

(gi()g(t") =2G ()8t~ 1'), (30)

where G(1)=J(1)D(t)J~ (7).

For autonomous systems, it is shown in Appendix B that
the existence of a longitudinal direction, as described above,
implies that the elements of the first column of the matrix
K"™'(¢) vanish except for the entry in the first row. A conse-
quence of this is that the transverse dynamics may be effec-
tively considered independently of the dynamics in the lon-
gitudinal direction. For the Willamowski-Rossler limit cycle
this yields a pair of coupled linear Langevin equations in the
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two transverse directions, with exactly the same mathemati-
cal form as those of the forced Brusselator model. Hence the
same techniques as before may be applied to produce ana-
lytical curves for the autocorrelations and power spectra in
the two transverse directions. Note that in our previous work
[18], we were able to simplify the rotated Langevin equa-
tions further by a rescaling of the coordinates in the Frenet
frame. We do not apply this additional transformation here
since for our purposes it is not essential.

C. Stochastic simulation and results

The Gillespie algorithm can again be used to generate
realizations of the microscopic dynamics defined by Egs.
(19)—(23). Since one Floquet multiplier in the Willamowski-
Rossler system is equal to unity, there is a diffusive mode in
the longitudinal direction. This means that the time evolution
[1n,(t)/N,ny(t)/N,ns(t)/N] of any single realization of this
stochastic process may not remain close to the deterministic
trajectory X(f) but instead {(|n(z)/N-X(1)|*)~t, where |-|
stands for the Euclidean norm. This complication is not
present in the driven Brusselator discussed in Sec. II since in
that case no such longitudinal diffusive mode exists.

This issue can however be dealt with as discussed in [18].
The procedure of extracting the deviation from the limit
cycle is as follows: for every given data point n(¢)/N gener-
ated by the Gillespie algorithm one identifies the point
X[n(7)] on the limit-cycle trajectory which is geometrically
closest to n(z)/N, and then uses k(f)=n(t)/N-x[n(z)] as the
displacement vector. As described in [18] the longitudinal

component of #(z) vanishes, i.e., one has ?.K=0, while the
remaining components define a stochastic process in the co-
moving transverse plane, and as seen in [18] the magnitude
of k remains of order N~'2. This procedure allows one to
effectively decouple the diffusive longitudinal mode from the
transverse ones, and we will focus on the transverse compo-
nents in the following in order to characterize stochastic os-
cillations about the deterministic limit cycle. These compo-
nents are then expressed in the Frenet coordinates, defined at
X[n(7)]. As an illustration, trajectories of the transverse com-
ponents obtained from a single realization of the microscopic
dynamics are shown in Fig. 6 for a fixed set of model pa-
rameters. In this figure, N(¢) denotes the normal component,
N(t)=k(r)-é,(¢), and B(r) denotes the deviation from the
limit cycle in the binormal direction, B(f)= #(t) - €5(z). Recall
here that é, and é; define a comoving frame, i.e., that they
carry a time dependence as well.

In Fig. 7, we show the resulting power spectra, and find
very good agreement between simulation and theory for both
the normal and binormal directions. There is a slight system-
atic deviation of data points from the theory, which occurs at
integer multiples of the limit-cycle frequency. We attribute
these to remnants of the deterministic dynamics. The data
shown in Fig. 7 was taken at model parameters resulting in
complex Floquet multipliers with a modulus of approxi-
mately 0.3, and peaks are found in the power spectra close to
frequencies nwy = Im u, where wy is the angular frequency
of the limit cycle. However, we also note that peaks are not
observed at all frequencies nwy*Im u, especially in the
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FIG. 6. The fluctuations in the directions transverse to the limit-
cycle trajectory in the Willamowski-Rossler model. Data for the
normal component, N(7), and the binormal direction, B(r), are
shown for a single realization of the stochastic simulation. Model
parameters are b;=80, b,=20, d;=0.16, d,=0.13, and d3=16.

spectrum of normal fluctuations. As for our findings in the
driven Brusselator, this may be due to the fact that the Flo-
quet multipliers in the example shown in Fig. 7 are relatively
distant from the unit circle in the complex plane. Again
based on our observations in the driven Brusselator one may
expect additional peaks at frequencies nwy* Im @ to emerge
as the Floquet multipliers move closer to the unit circle. De-
spite an extensive search we have however not been able to
find a set of model parameters which would result in Floquet
multipliers with modulus close to unity so that we are not
able to give any further confirmation of this expectation here.
We conclude this section by reiterating our main result, the
near perfect agreement of the analytically obtained power
spectra with simulations as shown in Fig. 7.
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FIG. 7. (Color online) Comparison of the theoretical and simu-
lated estimates for the power spectra of transverse fluctuations in
the Willamowski-Rossler system. The top panel shows the normal
fluctuations (in the direction €,) while the bottom panel compares
those in the binormal direction, €;. Model parameters are again set
to b;=80, b,=20, d;=0.16, d,=0.13, and d;=16. Vertical lines are
given at frequencies nwy+Im w (dotted) and nwy—Im w (solid),
where n is a positive integer. The numerical value of w is 17.25,
and the nontrivial Floquet multipliers are p=—0.002 + 0.303 (result-
ing in |p|=0.30 and Im u=4.33).
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IV. GENERALIZATION TO HIGHER DIMENSIONS
AND THE COUPLED BRUSSELATOR

A. General theory

It is expected that, in the study of any real system, for
example, in biochemistry or in ecology, the number of dis-
tinct species, S, would be significantly larger than two or
three. It is also possible that solutions to the S-dimensional
deterministic equations in such a model may be periodic or-
bits, X(¢). Hence, in this section we demonstrate the natural
extension of the analysis in the previous sections to models
of arbitrary dimension. Whether or not the system is autono-
mous, we begin with the van Kampen system-size expansion
which yields a set of S coupled and linear Langevin equa-
tions for stochastic fluctuations, &(z). We simply note that
their form naturally extends to arbitrary dimension and is
unchanged from Eq. (15), where the S X S matrix K(¢) for the
drift is given by K;;(1)=K;[X(¢)]=dA[X(?)]/ 9%}, and the sym-
metric § X S matrix for diffusion, D(¢)=D[x(z)], is calculated
from the system-size expansion.

The subsequent steps of the analysis then depend on
whether the system under consideration is autonomous or
not. For nonautonomous systems no rotation is required, and
one proceeds directly with the Langevin equation in Carte-
sian coordinates in S dimensions. If the system is autono-
mous, as in the case of the Willamowski-Rdssler model, one
first needs to rotate into the S-dimensional Frenet frame, and
then to separate off the longitudinal component, resulting in
a Langevin equation in S—1 dimensions for the transverse
components. The Frenet frame is defined in S dimensions in
Appendix B. This then specifies the rotation matrix J7
=(é;,...,€5), which is evaluated on the limit cycle so that
J(1)=J[X(?)]. The formalism is a straightforward generaliza-
tion of that described in Sec. III for the Willamowski-Rdssler
model, except that there are now (S—1) transverse directions,
rather than just two.

Thus, for both autonomous and nonautonomous systems
one eventually ends up with a Langevin equation in d dimen-
sions, where d=S-1 for the autonomous case, and d=S for
nonautonomous systems, such as the driven Brusselator. Fur-
ther steps of the calculation can hence be discussed simulta-
neously for the autonomous and nonautonomous cases. As
described in more detail in Appendix C, the solution of this
Langevin equation can be expressed in terms of any funda-
mental matrix X(z) of the corresponding homogeneous equa-

tion. Since the drift matrix K(z) [denoted by K(7) in the au-
tonomous case] is periodic, Floquet theory [22] asserts that a
canonical fundamental matrix may be written in the form
X()=P(r)Y(r), where P(r) and Y(¢) are d X d matrices. The
matrix P(z) is periodic with the same period as the drift ma-
trix while the matrix Y(¢) is given by Y(r)=edaeliirat
where the w;, i=1,...,d are the Floquet exponents of the
d X d homogeneous system.

The periodic matrix, P(r), acting on the left is, in effect, a
transformation matrix from the Floquet solutions to the co-
ordinates of the Langevin equation while its inverse makes
the reverse transformation. The matrix Y(z) is a diagonal ex-
ponential matrix with entries e, with Re u;<<0, for all i, for
a stable limit cycle. It therefore acts on different Floquet
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solutions in different ways, reducing the value of some more
quickly than others. The general solution of the Langevin
equation (C1) which we wish to analyze can be given in
terms of the matrices P(r) and Y(¢), and is given explicitly by
Eq. (C5) in Appendix C.

Given the symmetric and periodic noise matrix D(z) in the
nonautonomous case—which we generally denote by G(t)
using the notation of the autonomous case—we may calcu-
late the autocorrelation function in closed form. In the basis
corresponding to the Floquet solutions G(t) becomes the
symmetric and periodic matrix I'()=P~'(£)G(r)(P~")". These
noise contributions are then integrated over one time period
of the deterministic limit cycle, 7, but weighted by decaying
exponentials from the Y(¢) matrix, to yield another symmet-
ric and periodic matrix, A(r) [see Eq. (C7)], which gives the
various covariances of the fluctuations in the space of the
Floquet solutions. However, the focus of our interest is in the
two-time correlations of the fluctuations which are shown in
Appendix C to equal C(t+7,0)=2P(t+7nY(7)A()PT(z).
Therefore the autocorrelation function itself equals

T
C(7n) = ; f P(t+ DY(DA()PT(1)dt, (31)
0

for 7=0. The diagonal elements of C(7) turn out to be even
functions of 7, as they ought to be. Power spectra, P,(w) for
i=1,...,d, may then be calculated as the Fourier transform
of diagonal elements of C(7), as in Eq. (18).

B. Case of two coupled Brusselator systems

In order to demonstrate the method on a concrete ex-
ample, we will study a model composed of two coupled
Brusselator systems. Two Brusselator units can be coupled in
a number of different ways and here we construct the cou-
pling in such a way as to draw parallels with the forced
Brusselator discussed earlier. Chemical species X; and X,
form a primary Brusselator through reactions (1)—(4), with
constant populations of A, B, and C. We now also introduce
species X3, X4, and C’, which follow the reactions,

A—X3+A, (32)

X;— 2, (33)

X5+ X, — X4+ X5, (34)
2X3+ X4+ C' —3X3+ C'. (35)

Given that substance A is part of both units, the secondary
Brusselator therefore has the same system size as the primary
one. The deterministic dynamics is given by

Xi=1=x;(1+b-cxix,), (36)
X =x1(b = cx1x,), (37)
X3 =1 —)C3(1 +X2 - C,.X3.X4), (38)
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FIG. 8. (Color online) Power spectra of the fluctuations about
the limit cycles of the coupled Brusselator system. Data is shown
for the three transverse directions, with black circles indicating the
normal direction, dark gray (red) squares indicating the binormal
component, and light gray (green) diamonds indicating the trinor-
mal directions. Markers show results from simulations at a system
size of 2X 10° and averaged over 2000 runs. The solid lines are
from the theory, and as seen in the figure the agreement with simu-
lations is near perfect. Vertical lines are shown at frequencies nw,
(solid), nwy+Im u (dotted), and nwy—Im w (dashed), where n is a
positive integer.

X4 =)C3(.X2 - C,)C3.X4). (39)

When b > 1+c there is a limit cycle in the primary Brussela-
tor; we will again denote its angular frequency by w,. These
oscillations of the primary Brusselator act as a periodic forc-
ing on the second, and for all parameters studied here, the
second Brusselator shows cycles at the above frequency wy,.
The two Brusselators together form a four-dimensional au-
tonomous system. Hence, we will study the fluctuations of
the large system-size discrete system which act transverse to
the limit cycle. In this example then, we discuss the normal,
€,, binormal €;, and trinormal €, directions. Once the peri-
odic drift K(r) and diffusion D(r) matrices, given by Egs.
(A8)—(A11) in Appendix A, are rotated into the Frenet frame,
we then calculate power spectra of transverse fluctuations via
Eq. (31). The results of this are presented in Fig. 8 for the
model parameters b=3.3, c=2, and ¢'=1.

We find very good agreement between theory and simu-
lation performed using the Gillespie algorithm. For these pa-
rameters, one of the nontrivial Floquet multipliers, p,, is real
and positive while the remaining two, p., take on complex-
conjugate values. However, these multipliers are not associ-
ated with any particular transverse direction, as can be seen
from the power spectra: in all three directions, €,, €5, and €,,
peaks are found at frequencies equal to a multiple of w, but
also at those associated with the imaginary parts of the com-
plex Floquet exponents, nwy+Im w.. While the general for-
malism we have developed in this section has been illus-
trated on the concrete example of the coupled Brusselator, it
should be clear that it can be applied quite generally to in-
vestigate the fluctuations about a limit cycle in S dimensions.

V. CONCLUSIONS

The phenomenon of stochastic amplification due to demo-
graphic, or intrinsic, noise has been qualitatively understood
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for fifty years but it is only recently that it has been compre-
hensively and quantitatively described. This has been due in
large part to the application of the technique of the system-
size expansion, which is able to reproduce results obtained
by numerical simulations to a remarkable precision. In fact,
although this method allows for a systematic expansion in
powers of 1/vN, there is usually no need to go beyond next-
to-leading order. In essence, application of the method means
that the use of numerical simulations to understand the
cycles induced by noise could be dispensed with entirely.

If the systems under study are subject to an external pe-
riodic driving, for example, biological systems subject to an
annual cycle, then the deterministic dynamics may have a
limit cycle as its stable state. In this paper we have investi-
gated the effect that demographic stochasticity will have on
this state. On general grounds one might expect that, if the
limit cycle was approached in an oscillatory manner, then
stochastic cycles about the limit cycle could be sustained. We
have shown that once again the system-size expansion may
be applied to gain a quantitative understanding of this phe-
nomena. The analysis is considerably more elaborate than in
the case where the deterministic dynamics approaches a fixed
point but once again the method gives excellent agreement
with numerical simulations.

The signature for the oscillatory approach to limit cycles
is that the associated Floquet multiplier should be complex.
This can occur for nonautonomous systems in two or more
dimensions, or autonomous systems in three or more dimen-
sions. Since the eigenvalues of a typical real matrix in these
dimensions will generically be complex, one might expect
complex Floquet exponents to be common. Our investiga-
tions of various models, although far from comprehensive,
suggest that they are quite common in periodically driven
systems but not so common in autonomous systems that are
generally studied. There may be a dynamical reason for this
but it is equally likely that this is due to the nonlinear sys-
tems appearing in the literature being selected for their
period-doubling transition to chaos, rather than for the struc-
ture of their limit cycles.

In the past it was said that intrinsic noise could turn os-
cillatory decay to a fixed point into sustained oscillations. It
was expected that these oscillations would have periods
Im \;, where \; were the eigenvalues of the stability matrix
for that fixed point. This is only true in a very broad sense, as
studies over the last few years have shown. In reality the
period may significantly deviate from Im \; due to other fac-
tors, and the amplitude of the fluctuations may be much
larger than might be expected due to a resonance effect.
Analogously, one might guess that intrinsic noise could turn
oscillatory decay to a limit cycle into sustained oscillations
about that cycle and that these oscillations would have peri-
ods nwy*=Im w;, where w, is the period of the limit cycle
and w; are the Floquet exponents associated with that limit
cycle. We have shown in this paper that this is indeed the
case in a broad sense but as for the case of the fixed point
there is much more to the story than this. For instance, the
expressions nwy* Im u; are again just an approximation to
the frequencies and the amplitude of the oscillations will
vary significantly depending on a number of factors, such as
the magnitude of the Floquet multipliers. Fortunately, the
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system-size expansion once again gives results which are in
excellent agreement with simulations and gives us a way of
exploring the nature of these fluctuations. We expect that the
ideas presented in this paper will have a number of applica-
tions, which we hope to explore and report on in the future.
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APPENDIX A: EXPLICIT FORMS OF MATRICES

The matrices which appear in the description of the fluc-
tuations about the deterministic trajectory are given in this
Appendix. The drift matrix K(x) and the diffusion matrix
D(x) are naturally functions of the concentration x. How-
ever, when the solutions of the deterministic dynamics, X(¢
+T)=X(z), are limit cycles, they themselves become periodic
functions of time. For the remainder of this Appendix, we
shall suppress the time dependence of X(r) for greater clarity.

1. Forced Brusselator
The matrices are given by
—[1+b(r) = 2%, X cx
ﬂﬂ=<[ (1) - 25,5 ;)’ (a1)
[b(t) — 2¢x,%,] —cXy

Dy(1) —Dz(t)> (A2)

Dm:ka) D, (1)

where

Dy(1) = %{1 PR+ b(0) + TR

1 _ __
D,(1) = 5{xl[b(t) + X%} (A3)
2. Willamowski-Rossler Model
The matrices are given by
K@ -x -Xx
Kin)=| =%, Ky 0 |,
X3 0 Ky

(A4)
where
Ky () =by - 2d\X, - X, - X3,
Ky(t) = by = 2d,%, - X,

K35(t) =X — ds, (A5)

and
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Dyi(t) Dp(t) Dys(t)
D(t) =| D5(t) Dy(1) 0 s
Dis() 0 Ds(1)

(A6)
where
1_ _
Dll(t) = E.xl(bl + d1x1 +X2 +.X3),
1__
Dl2(l)=5x1x2’
D 5(1) = 1__
13\) = 2x1x3,
1_ _
Dyy(1) = Exz(bz +dyX, + X)),
1_ _
D33(Z) = 5)63()61 +d3). (A7)

3. Coupled Brusselators
The matrices are given by
K(O-1 cx; 0 0
-K(t) - 0 0
0 -% K(n-1 ¢'x
0 5o -K0 -dn

K(1) = ., (AB)

where

K,(1) = 2cx,%, — b,

K5(1) = 2¢'53%, — X, (A9)
and
Dy(1) =Dy(n) 0 0
—D,(1) Dyt 0 0
O Dy -Dyo) |
0 0 —Dy(1) Dyt
(A10)

where in addition to Eq. (A3) we have,

1
Ds(1) = 5[1 +X3(1+ X+ ¢'X3%,) ],

1
D4(t) = 5)73(52 + C’f3)?4) . (Al 1)
APPENDIX B: FRENET FRAME

In this Appendix we will discuss the background, and
develop the formalism, relating to the comoving frame which
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we use to study the fluctuations from the limit cycles dis-
cussed in the main text. Such a frame, called a Frenet frame
[29], is a natural way to study displacements from a deter-
ministic trajectory in any number of dimensions. Here we
will denote the number of dimensions by S.

Consider the general autonomous problem which we may
describe by a system of nonlinear homogeneous first-order
equations,

ZoA®K). (B1)

Following [29], we may define the Frenet frame by applying
the Gram-Schmidt orthogonalization procedure to the time
derivatives of the solution, x(¢). So long as the time deriva-
tives are linearly independent, this gives the basis vectors,
é(r), of the frame to be

e()="""> —FEI 0 e, (B2)
éi(t):|:§8, ie{l...s). (B3)

We may now construct the matrix, which transforms from
Cartesian coordinates to the Frenet frame, to be J(¢)
=[é,(¢),....é5(t)]". The transformation is, by construction,
an orthogonal matrix O(S), and as such has the property that
JI(t)=J"'(¢) for all times.

We now wish to consider the effect of this transformation
on the equation of a linear fluctuation, &(¢), about the deter-
ministic solution, X(¢). For the time being we will neglect the

noise term and consider the homogeneous equation, &(f)
=K(t)&(r). The transformation to the Frenet frame takes the

form &1)—>q()=J()&r). Then &1)=[J())+J(t)K(1)]&(r)

and so the rotated displacement obeys the linear equation,

q(1) =K*(1)q(r), (B4)

where K*°'(#)=K'(t)+R(¢) and where

K' () =J0OK®OJ (1), RG)=J(0)J (7). (B5)

We now evaluate the elements of the first column of the
matrix K. These have an especially simple form, with
K{'=0 for i>1. This follows from the fact that, for an au-
tonomous system, X() = K(1)X(7), and so the “velocity” X(7) is
a solution of the homogeneous equation that we are consid-
, it follows that

ering. From this, and from é,(r)=X(r)/[X(r)

1 1 A =

K@) = Tei(t) -x(1). (B6)
0]

The second term in the definition of K'*Y(z),R(r), may be

written in terms of the basis vectors and, due to their or-

thogonality properties, we have
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dé(1)
dt

Rii(1) = (==& — — (B7)
for i # 1. The rate of change in the longitudinal basis vector

is given by {x(r)—é,[é,-X(r)]}/[x(r)| and so

1 .
Ry()=———&() -x(1), i+1 (B3)
[x(0)]
Adding Egs. (B6) and (B8), and noting that R;;=0, we have
1 - 2o
K§()=0 (i>1); K(r)= % )|2x(t) -X(1).  (BY)
x(7

So all of the elements of the first column of K'°Y(¢) vanish,
apart from the element which is also in the first row. The
significance of this is that the transverse displacements,
which we denote by r(z), decouple from the longitudinal dis-
placements, denoted by s(7). So writing a general displace-
ment as q(£)=[s(z),r(r)], we have

§() = K050 + K, (1) - x(0), (B10)

(1) = K(Or(1),

where the vector K,.(z) is the (S—1)-dimensional vector

(B11)

K“Y(r) and where K(r) now describes the purely transverse
drift behavior. So the Frenet frame always separates the
equation of motion for the linear fluctuations into longitudi-
nal and transverse parts, and the transverse motion is free
from any influence by the longitudinal motion.

APPENDIX C: AUTOCORRELATIONS OF PERIODIC
LANGEVIN EQUATIONS

The equations which describe small perturbations about
the limit cycle either have form (7) for nonautonomous
(forced) systems or form (B11) for autonomous (unforced)
systems. In the latter case longitudinal displacements have
been excluded but once this has been done, the analysis for
both cases is identical. So we can develop the theory for both
at the same time; we will adopt the notation of the autono-

mous case, that is, start from the equation F(0)=K@®)r(r). Tt
should then be understood that in the nonautonomous case

the replacements r(r) — &(¢) and K(#)— K(t) should be made.
The results of Floquet theory [22] tell us that, when K(

+T)=K(¢) for all ¢, one may generally find d linearly inde-
pendent solutions to the homogeneous equation ¥(z)
=K()r(z) which have the form r(t)=p,(¢t)e*’. Here w;, i
=1,...,d, are the Floquet exponents, which may in general
be complex, and the functions p;(r) are periodic with the
period, 7. From these solutions, the canonical fundamental
matrix, X(7), may be constructed. It has the special property
that the constant Floquet matrix, B=X"'(t)X(¢t+T), is diago-
nal with elements equal to the Floquet multipliers. Grimshaw
[22] appends a subscript 0 to denote the canonical choice
which results in a diagonal Floquet matrix but since we will
only deal with such a choice in this paper, we omit this
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subscript. However when carrying out numerical work, it
should be recognized that in general the solutions which are
found will be linear combinations of solutions of the form
pi(r)e*. These can be used to find a (nondiagonal) B, the
eigenvectors of which can be used to construct a similarity
transformation to a canonical form. An alternative way of
describing the canonical solutions is to define the periodic
matrix P(t)=[p,(?),...,p,(t)] and the diagonal exponential
matrix Y(r)=exp{diag(u,...uy)t}. In terms of these the ca-
nonical fundamental matrix is given by X(z)=P(2)Y (7).

Moving on to the fluctuations about the periodic solutions
of the deterministic dynamics, the linear stochastic fluctua-
tions obey a Langevin equation (15), with the noise cor-
relator given by Eq. (16), for nonautonomous (forced) sys-
tems, and a Langevin equation (29), with the noise correlator
given by Eq. (30), where G(t)=J(1)D(t)J"\(¢), for autono-
mous (unforced) systems. To separate out the latter into lon-
gitudinal and transverse components, we note that in Appen-
dix B we wrote q(r)=[s(z),r(¢)], and now we analogously
write g(¢)=[g,(?),g,(r)]. Then, since the transverse fluctua-
tions decouple from the longitudinal fluctuations, the Lange-
vin equation for purely transverse fluctuations r(z) may be
written as

£(1) = K(Or(1) + g,(1). (C1)

Noise correlator (30) can be expressed in terms of transverse
and longitudinal components by decomposing G(¢) as fol-
lows:

G G’
. =< W0 G () ) )

Gsr(t) 6(f)

Since the vector G,,(¢) is typically nonzero, the random vari-
ables, g, and g,, generally remain statistically correlated in
the rotated frame. However, this is only important if we in-
tend to evaluate simultaneous values of both g,(7) and g,(),
and we do not do this because we have already shown for the
noiseless case that the transverse displacements are indepen-
dent of longitudinal one. Therefore the only noise correlator
we require is

(g.(1) - gl(t")=2G(n)8(t~1"). (C3)

Once again we will develop the theory using the notation of
Egs. (C1) and (C3) but it applies equally to Egs. (15) and
(16).

Floquet theory may be applied to linear inhomogeneous
equations of form (C1), as well as to homogeneous equations
such as £(1)=K(r)r(r) [22]. To solve Eq. (C1), we proceed in
the standard way and add a particular solution of the equa-
tion to a general solution of the corresponding homogeneous
equation. This yields [22]

r(1) = X(1)rg + X(0) f t X~ (s)g, (s)ds, (C4)

for =1, and with the initial condition r(zy)=X(fy)r,. Since
we will not be interested in the effects of transients in this
paper, we set the initial conditions in the infinitely distant
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past, ty— —. A change in integration variable s —s'=fr—s in
solution (C4) now gives

1'(t)=P(t)foo Y(s") PN (t—5")g,(t—s")ds’, (C5)
0

where we have used the fact that, since Y(¢) is a diagonal
exponential matrix, Y(z,+1,)=Y(t;)Y(t,).

Of course, r(f) is a stochastic variable, and we will typi-
cally be interested in finding correlation functions, princi-
pally the two-time-correlation function C(t+7,1)=(r(r
+7)r!(¢)). Taking 7=0, solution (C5) gives

C(t+7,0)=2P(t+ nY(DA()P(z), (C6)
where we have introduced the symmetric and periodic matrix
integral,

Alt) = Jw Y(s)I'(t—5)Y(s)ds, (C7)
0

and, in turn, the symmetric and periodic matrix

L(s) = P (s)G(s)[P™'(9)]". (C8)

All of the functions in Eq. (C6) are deterministic and may be
evaluated given a good numerical estimate for the limit-cycle
solution X(7).
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The infinite integral for A(z) may be evaluated as a re-
summed finite integral due to the periodicity of I'(s). The
result, in terms of Floquet multipliers, p;, is then,

1 T
Al](t) = f e('LLi+'uj)XFij(t - S)ds, (Cg)

L=pip;Jo
fori,j=1,...,d. The origin of the prefactor is from an infi-

nite geometric summation, =" (p;p;)", which is convergent
when the Floquet multipliers are inside the unit circle.

Finally, although the final form is given by Eq. (31) only
for 7=0, it can be found for 7=0, from the formula C(7)
=C(-7)T. To prove this result we recall that

1 (T

Cij(T) = _J CU([ + T,t)dt, (CIO)
T,

where Cyj(t,1")=C;(t',t) [see Eq. (17), for instance]. There-

fore,

T
Cij(_ T)Z%J Cji(t’t_ T)dt (Cll)
0

Defining ¢'=¢—7 and making use of the periodicity of the
integrand we immediately see that C;(-7)=C;(7), as re-
quired.
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