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ABSTRACT 

Freshwater scarcity and sustainability is one of the most complicated and difficult issues 

the world is currently facing, and it has been identified as a global concern. According to 

expert studies, 80% of the world’s population is projected to live in freshwater threats due to 

a plethora of factors viz., rapid population growth, urbanization, global climate change 

resulting from spatial and temporal changes in magnitude, frequencies and intensity of 

precipitation and temperature which leads to the transformation of the hydrologic cycle. 

Recent initiatives, including sustainable development goals, have been made to address 

these problems and offer solutions. However, the quantity and quality of freshwater systems 

and resources must be objectively and comprehensively understood and assessed at the scale 

of river basins to provide sufficient mitigation and resilience planning.  

Hydrologic modelling has been one the most suitable and efficient strategies for basin-

scale assessment of freshwater dynamics to current and projected climate change and the 

focus has been on the application of traditional modelling framework which is tenable where 

data requirements are sufficient to couple hydrologic models with atmospheric data to 

account for climate change.  

The aforementioned strategy is a challenge in regions with inadequate ground-based 

observations necessary for climate and hydrologic modelling. The rarely available data in 

such regions may have repetitive gaps of missing data points with negative consequences 

including biased statistical representation of basin climatic features, ineffective model 

calibration and unreliable timing of peak flows which may amplify the uncertainties of the 

hydrologic dynamics leading to flawed depictions of watershed responses.  

Recently, integrated strategies are evolving that couple hydrologic models with climate 

data in water resource studies to account for uncertainties through the use of alternative data 
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sources of many spatial climate data products from climate research centres to overcome the 

identified challenges.  

This research developed and applied a multi-criteria approach to examine the efficacy of 

gridded climate products using different performance metrics, a machine learning-based 

approach, Boruta random forest (BRF) to assess multiple GCM datasets required for hydro-

climatic studies and an integrated BRF-SWAT technique to define the relationship between 

the hydrologic variables and improve rainfall-runoff modelling in a data-sparse and climate-

sensitive watersheds.  

The developed model was applied to assess the projected green and blue water dynamics 

and sustainability in the Yobe-Komadugu basin of the greater Lake Chad, a watershed that is 

prone to extreme events (SPEI of flood and drought hazards). The results demonstrate that 

though the performance of the gridded data varies in space and time, multi-criteria 

assessment enhances the choice of a product with reduced uncertainty for climate modelling. 

The incorporation of the BRF approach in GCM evaluation indicates a consistent spatial 

and temporal representation of the climatological features with suitable mean correlation (R2 

= 0.95),  reduced mean annual precipitation bias of 0.69 mm/year and enhanced statistical 

trend and magnitude of the SPEI drought and flood hazards relative to identified and tested 

approaches from the literature.  

The integrated framework of the rainfall-runoff modelling strategy indicated that the 

hydrologic fluxes can be simulated fairly accurately with varying degrees of acceptability, 

irrespective of the watershed morphological properties, although there are significant trade-

offs in model parameter sensitivity.  

The availability of satellite-based measurements of hydrologic fluxes and states, coupled 

with a machine learning feature selection and data refinement process has made integrated 
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water balance modelling widely seen as a viable alternative for improving watershed 

hydrologic processes in data-sparse regions within acceptable uncertainty limits.  

Furthermore, the sub-watershed assessment of the projected changes in spatial and 

temporal green and blue water sustainability status has shown that the sub-basins will be 

ecologically fragile, and the identified freshwater geographic hotspots may be beyond 

restoration without adequate long-term river basin water resources plans. The modelling 

framework developed is, however, independent of the model and data type and can be applied 

to watersheds with similar modelling challenges.  

This study has provided a pathway or methods for managing and securing water resources 

information as a decision support tool to guarantee ongoing watershed monitoring and 

assessment of water security even in the face of increasingly unpredictable future 

circumstances in data-sparse watersheds that take into account uncertainty and chat a course 

for prospective risk assessment or the possibility and understanding that a certain effect 

brought on by climate-induced hazards would prevail in watershed freshwater sustainability. 

Therefore, It is essential to comprehend the constraints associated with forecasting 

changes in the water cycle to improve the climate and hydrologic modelling process, which is 

required to create effective strategies for adapting to climate change-related water resource 

hazards. Even in the face of severe uncertainty about the future, this will be essential in 

addressing concerns related to water security and management and promoting the climatic 

resilience of ecosystems and society. 
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CHAPTER 1: INTRODUCTION 

1.1 Research background 

Worldwide, increased population and economic activity have been correlated with 

growing water scarcity (Wang et al., 2015). Water shortages have become more common in 

recent years, even in areas with abundant rainfall, little seasonal change in rainfall, and rather 

dense river networks. One of the main causes of the extended drought and water scarcity in 

recent years is the large seasonal variation of rainfall in a given year caused by global climate 

change (Diffenbaugh et al., 2015).  

According to several studies, the global spatiotemporal distribution of rainfall, including 

magnitudes (Guerreiro et al., 2018; Neelin et al., 2017), frequencies (Benestad et al., 2019; 

Fischer and Knutti, 2016), and intensities (Fowler et al., 2021; Harp and Horton, 2022; 

Konapala et al., 2017), has increased due to global warming, which has affected how the 

hydrologic cycle functions (Douville et al., 2021). 

Over the past three decades, the world has experienced rapid population and economic 

growth, which has led to high demand for water across a variety of industries. Between one to 

two billion people are already affected by water scarcity worldwide, especially for people 

who, for the most part, live in drylands, where there is the greatest global disparity between 

water supply and demand (Wang et al., 2016). 

This barrier suggests that decisions made about water management as a result of climate 

change will have a substantial impact on drylands and the inhabitants of such areas. Climate 

change projections indicate that within a few decades, more people roughly half of the 

world's population will be living in situations with increased water stress (Byers et al., 2018). 

It was suggested in previous studies that around 80% of the world's population is 

projected to face freshwater hazards due to a variety of issues, including population 

expansion and climate change (Vörösmarty et al., 2010), which have been predicted to have 
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an adverse effect on factors of production and in turn, affects agricultural and industrial 

development (Parish et al., 2012). 

When there is a concentration of people or economic activity in one area, the demand for 

water is great and frequently exceeds the supply, especially when there is little rainfall, and 

the temperature is only gradually rising. However, as a result of increased temperatures and 

rainfall brought on by global climate change, catchment hydrology and the quantity of 

freshwater resources are significantly altered. These have caused water scarcity in areas with 

high water footprints, which is problematic for developing economies like those in Africa, a 

continent that is thought to be extremely vulnerable with little capacity for adaptation. 

Additionally, a significant contributor to water scarcity is the drastically uneven spatial 

distribution of water demand. A key factor in the ecosystem's complexity is precipitation. 

Therefore, even minor changes in the climate would have a big impact on the local rainfall 

patterns, which would subsequently have an impact on the hydrological regimes that might 

lead to the extinction of species and a decrease in biodiversity (Chase et al., 2000; Rashid et 

al., 2015). 

These factors such as climate change, population growth, rapid urbanisation, and 

economic growth will continue to put pressure on the available water resources under 

hydrological uncertainty, and research achieving water security in ungauged basins in 

developing regions remains a significant developmental challenge (Flörke et al., 2018; Hirpa 

et al., 2019). 

Studies have shown that it is preferable to establish adaptation measures to reduce the 

adverse effects of climate change because there are considerable uncertainties in the 

development of water resources for the future (Sýs et al., 2021). 
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1.1.1 Water footprint concept as a tool for water security governance. 

The efficient management of the currently available water resources is of the utmost 

importance, particularly in watersheds where freshwater resources are scarce or limited, and 

rivers might potentially provide household, industrial, and agricultural water. In these areas, 

modelling the temporal fluctuations in river flow is a requirement for the efficient and long-

term management of the river basins (Esmaeili-Gisavandani et al., 2021). 

Although it is crucial for policymakers and governmental organisations to address 

specific issues related to water and food security governance, it is also crucial to understand 

the factors that have an impact on these issues. This can be done by conducting evidence-

based studies on the impact of watershed socioeconomic dynamics and climate change on 

hydrological drivers like streamflow, soil moisture, evapotranspiration, aquifer recharge etc., 

on freshwater sustainability and how these factors are spatially and temporally distributed. 

This necessitates an urgent need to develop new strategies for reliable assessment of 

historical, current and projected changes in water resources sustainability to mitigate 

hydrological hazards and enhance water management at the local basin scale. Water resource 

sustainability in this context, refers to the availability of adequate or sufficient quantity of 

water for human, industrial and agricultural use for ecosystem sustainability. 

Water footprint studies have become a technique for identifying regional and temporal 

water use patterns, which helps with global water governance and sustainable water 

management (Galli et al., 2012; Hoekstra et al., 2012; Vanham and Bidoglio, 2013).  

By coupling producer and consumer perspectives of efficient water resource allocations 

through a shift from limitations to consumptions, distribution, and ways to address the 

sustainability of the resource at local catchment and global scale, the water footprint 

assessment provides a basis to complement traditional approaches of water demand and 

supply (Galli et al., 2012; Senbel et al., 2003). This approach according to Hoekstra, (2009) 
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“…show the importance of human consumption and global dimensions in good water 

governance”. 

Furthermore, long-term model simulation of blue, green and greywater facilitates the 

identification of water security hotspots indicating both resource sustainability and quality 

that shows abrupt temporal change points and locations at sub-basins which, it is likely to 

occur using the water footprint concept (Schuol et al., 2008; Zang and Liu, 2013). 

As suggested by Rodrigues et al., (2014), that water resource managers and other 

stakeholders must identify these hotspots where surface or groundwater needs to be 

abstracted with the possibility of reducing supply without impairing the need of the 

downstream consumers where this may create inter-basin and transboundary water resource 

conflicts. 

However, in developing a strategy using hydrologic model to manage the freshwater 

resources, one of the most crucial hydrological factors supporting the sustainability of aquatic 

ecosystems, flood forecasting, and drought warnings at various basin scales is river discharge 

(Couasnon et al., 2020; McNally et al., 2017), and this important hydrological data is 

inadequate spatially where reliable and critical river basin water management decisions and 

planning are a necessity.  

This is usually the situation in developing arid/semi-arid regions of the world where 

hydrometeorological gauging stations are sparse (Krabbenhoft et al., 2022; van de Giesen et 

al., 2014), and the number and quality of data from such stations are declining (Rodríguez et 

al., 2020). 

1.1.2 Watershed modelling in ungauged basins 

The task of developing watershed hydrologic models in ungauged regions will be 

challenging and may amplify the uncertainties of the basin hydrologic dynamics leading to a 
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flawed depiction of responses and subsequently lead to inadequate water resource policy 

decisions and adaptation measures.  

Additionally, the gridded land surface hydrologic model dataset for food and water 

security monitoring would be fuelled by rainfall products that excel over data-sparse regions 

and are accessible over long historical records and near-real-time for contextualising current 

events and initialising forecasts. This dataset will be helpful for both drought monitoring and 

the hydrological science community by providing estimates of land surface states and fluxes 

that can be used (McNally et al., 2017). 

These hydro-meteorological station datasets are important components of hydrologic 

model analysis, and their spatial and temporal dynamics is essential. Unfortunately, this 

observation data is rarely available and contains missing data points due to systematic errors 

in their measurements making hydrologic studies difficult in data sparse watersheds. 

Alternatively, gridded datasets are adopted as primary inputs in hydrologic modelling 

studies. However, they are limited to the assessment of historical and current watershed 

processes and requires objective assessment of their reliability and latency using in situ 

measurements at local basin scale to properly capture the spatiotemporal variability which 

may affect water resource availability and the behaviour of the hydrologic responses at basic 

scale (Panda et al., 2022; Pang et al., 2020). 

Advancement in the use of hydrologic models and computational resources in water 

resources research has led to several large-scale modelling studies using the water footprints 

concept to further the course of intelligent allocation of the different components of 

freshwater resources at the regional and global scale that allows for the investigation of the 

role of climate change and land use in the dynamic changes of projected freshwater resources 

(Abbaspour et al., 2015; Zang and Liu, 2013).  
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However, these studies may be difficult at local watershed scales, due in part by the 

necessity to rescale general circular models by accurate downscaling, re-gridding and 

correcting the biases in the dataset necessary to condition the models to reproduce reliably of 

not just the past and present, but also the projected watershed hydrology based on anticipated 

carbon dioxide (CO2) emission scenarios within an acceptable uncertainty limit to overcome 

the limitations of the gridded datasets (Nkiaka et al., 2022; Shiru and Chung, 2021). 

1.1.3 Uncertainty management in watershed modelling  

The initial source of uncertainty for modelling the effects of climate change on hydrology 

and water resources is the choice of the control emission scenario, which stipulates the 

estimated development of the amount of greenhouse gases in the atmosphere based on the 

projection of the social and economic development of society (Holtanova et al., 2014; Sýs et 

al., 2021).  

The scale and structure of the general circulation models (GCMs) are additional sources 

of uncertainty, and choosing the GCM has a bigger impact on hydrological changes than 

choosing the emission scenarios (Velázquez et al., 2013), while Wilby and Dessai, (2010) 

argued that the capability of the downscaling of the GCM to a finer scale spatially may not 

necessarily result in a reliable prediction and is significantly limited by available 

meteorological data and their quality. 

Despite this, there is still a great deal of uncertainty, particularly about the GCM 

simulations that were used to create the hydrologic system. The baseline and future 

uncertainty of hydrological simulations can therefore be affected by the modeler's subjective 

choice of meteorological data.  

It is also crucial for all water accounting studies to comprehend how the combined 

parameter transferability concept behaves when trying to quantify the effect of input choices 

on blue and green water computation in a river basin. 
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Current assessment strategies in literature require further review and reintroduction of 

new  and objective data refinement processes and procedures to further manage and improve 

modelling to minimize inherent uncertainties especially in data-sparse regions through 

accurate parameterization before their application in model-based water resources 

assessment.  

1.2 Overview of research questions 

The challenges faced with watershed modelling at local basin scale will require an 

objective and careful understanding of the various phases of model development from data 

choice, parameterization, assimilation techniques to overcome the limitations of local 

watershed hydrologic responses. 

 These processes can be achieved by using alternative datasets, approaches like machine 

learning integrated into traditional modelling processes to improve water resource assessment 

for effective policy decisions. However, the research questions that are pertinent to achieve 

our desired goals based on identified gaps in literatures are listed below. 

1. How reliable are available gridded climate datasets and interpolation techniques to 

spatially replicate the historical basin climate in data-sparse regions? 

2. What evidence-based reliability and performance evaluation of global climate models 

using gridded datasets can reproduce and improve the climatology of a basin in data-

sparse regions to further reduce the transfer of uncertainty between the climate model 

and hydrologic modelling process? 

3. How effectively, and objectively will hydrologic modelling, integrated with machine 

learning approach efficiently simulate the target basin hydrologic fluxes within the 

acceptable uncertainty band? 
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4. Will satellite-based remote sensing data effectively improve the hydrologic modelling 

process to overcome the shortcomings of the inadequate land-based observations in 

data sparse regions? 

5. What are the impacts of climate change on projected changes of hydrologic variables 

that influence the availability of blue and green water resources at spatial and 

temporal levels? 

6. How do the dynamic changes of catchment hydrology due to climate change and 

anthropogenic activities influence the risk of water scarcity and vulnerability at the 

basin scale to influence the environmental sustainability of freshwater resources? 

1.3 Aim of the research  

This research is aimed at understanding and improving the climatological and hydrologic 

process representation in data-sparse regions by critically and objectively model water 

demand and supply within an integrated assessment framework that is homogeneous, 

internally consistent and captures the interactions and feedback with other natural and human 

systems.  

This can be incredibly helpful in accurately assessing the present and future picture of 

basic-scale water sustainability. By explicitly simulating the effects and feedback of both 

natural processes (climate model and land use model) and human systems (anthropogenic 

forcing, land use change, and socioeconomics changes).  

This integrated modelling framework will make it easier to estimate water resource 

demands and supplies on a river basin scale and improve future local water policy decision 

for adequate mitigation measures and resilience to hydrologic hazards. 

1.4 Objectives of the research 

The stated research aim can be achieved through the following outlined objectives: 
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1. To investigate the reliability and performance of various gridded climate datasets in 

data-sparse regions using a refined quality controlled observed data and multicriteria 

decision approach. 

2. To investigate and develop a new framework for effective and efficient evaluation of 

the global climate model suitable for the hydrologic modelling process to reliably 

represent historical and projected basin hydrology for accurate water resource 

assessment. 

3. To investigate the efficacy of satellite-based products to reliably represent the 

hydrologic fluxes of the integrated model framework for the assessment of blue and 

green water resources in data-sparse regions. 

4. To investigate and propose a new water footprint accounting framework for reliable 

assessment of blue water resources using model-based parameters, available water use 

information and gridded population data in data-sparse regions. 

5. To investigate the influence of climate change and anthropogenetic activities on the 

historical and projected changes of basin hydrology and their impact on temporal and 

spatial variation of green and blue water flow and storage respectively. 

6. To investigate the historical and projected changes in spatial and temporal patterns of 

basin-scale hazards to green and blue water sustainability at the local basin scale 

using the proposed framework. 

1.5 Scope of the research 

This research work was conducted to provide a holistic approach to small scale watershed 

modelling where traditional approaches may be difficult to apply due to limitations of data 

requirement. However, hydrologic information will be required to provide policy direction 

for proper river basin planning to mitigate the impacts of hazards from extreme events and 

provide adequate resilience and adaptation measures or coping mechanisms to projected 
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water sustainability concerns due to climate change and socioeconomic activities that may 

exacerbate transboundary water conflicts. The identified limitations are listed below. 

• The research conducted does not consider the effects local watershed practices 

such as irrigation scheduling and water withdrawal, reservoir regulation due to 

unavailability of data. 

• The outcome does not take account future land use and topographic (terrain and 

slopes) changes which might be significant driving factors governing the 

responses to future basin water resource sustainability dynamics. 

• A conservative estimate of monthly blue water footprint was used without 

accounting for monthly variation due to unavailability of actual sectoral water use 

information. 

• The study does not consider greywater in the modelling process due lack of 

observation data to reliably calibrate and validate the hydrologic fluxes for 

greywater quantification.     

1.6 Rationale for study area selection and research motivation 

The Lake Chad basin is one of the biggest endorheic (landlocked) hydrologic basins in 

the world, and situated in Sub-Saharan Africa, with unfavourable hydro-climatic conditions 

that may have contributed to a drop in primary production, widespread desertification, and 

land degradation (Shiferaw et al., 2014), and the well-known "Sahelian paradox," which 

describes how the extreme drought conditions in the 1970s and 1980s caused the huge Lake 

Chad to shrink, is just one example of the intricate hydrological dynamics at play (Ndehedehe 

et al., 2016). 

The high spatiotemporal variability of rainfall and soil moisture in the basin are some of 

the notable challenges that call for further understanding of the regions’ hydrological 

processes, especially with the evident impact of changes in global climate. Hydrologic 
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variability of the basin was found to be highly sensitive to rainfall fluctuation, and this has a 

direct impact on the lake level and size.  

Since the lake is closed, a decrease in precipitation events in the basin may ultimately 

result in a net decrease in inflow from the tributaries and a subsequent decrease in the lake 

level and size. This decrease may have a significant negative impact on the local population, 

whose source of livelihood depends on this natural resource. 

Furthermore, regions with similar features are common around the world and are 

typically termed “data-sparse” because of inadequate ground-based information, like 

traditional gauge measurements of hydrometeorological data are inconsistent, difficult to 

retrieve due to government bureaucracies, and high cost of logistics and the management of 

reliable in-situ stations over large heterogeneous landscapes has made traditional approaches 

to hydrologic modelling a challenge. 

The results from global or regional basin scale assessments tend to be unrealistic and 

quite uncertain for such locations with high spatiotemporal variability. The regional-based 

assessment as demonstrated by Cook, (2008), states that “….the uncertainties are likely 

overstated, as most models simulate small changes in rainfall over the Sahel and the projected 

increases are likely influenced by a few outlier models” and the flaws in the input rainfall 

data might be amplified by the nonlinearity of the hydrologic process (Maggioni and Massari, 

2018). 

Therefore, it is important to provide alternative solutions that may sufficiently describe 

the climatic and hydrologic phenomena like flood, drought, and water resource status etc., in 

terms of their propagation and characteristics such as duration, severity, onset, intensity and 

frequency with their projections at the desired watersheds levels for adequate planning and 

management. 
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1.7 Thesis Structure 

This thesis comprises eight chapters. A brief description of the individual chapters is 

given below: 

Chapter 1: This chapter is a short background that discusses the research concept, aim 

and objectives, research questions identified based on the research gap, limitations of the 

research, rational for study area adoption and motivation of the research and the overall thesis 

structure. 

Chapter 2: This chapter is a detailed background and reviewed literature supporting the 

research concept. This is detailed understanding around the concept of climate and hydrology 

research around water resource issues at global, regional and local basin scale. Climate and 

hydrologic modelling tools and strategies previously employed are discussed. 

Chapter 3: This chapter discussed summary of the research methods employed and 

study. The methods employed are related to climate modelling and simulation such as 

downscaling and bias correction strategies, machine learning approaches for data refinement 

and selection. Methods employed in surface water hydrology and alternative data selection 

and integration in hydrologic modelling, uncertainty evaluation and watershed water 

resources assessment and sustainability status for baseline and projected changes due to 

climate change and socioeconomic activities. 

Chapter 4: This chapter discusses the use of systematic approaches to justify the 

capability of gridded climate product for reliable representation of local basin features for 

applications in hydrologic impact studies. This have been published as a research paper titled 

“multi-criteria performance evaluation of gridded precipitation and temperature products in 

data-sparse regions” in 2021 (Atmosphere, MDPI). 

Chapter 5: This chapter discusses the development of a systematic methodology for 

combined GCM downscaling and performance evaluation using machine learning technique 
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for improved climate models’ parameterization to enhance its input for hydrologic models’ 

development for projected climate change impact studies. This have been published as a 

research paper titled “application of Boruta algorithms as a robust methodology for 

performance evaluation of CMIP6 general circulation models for hydro-climatic studies” in 

2023 (Theoretical and applied climatology, Springer Nature). 

Chapter 6: This chapter discusses an integrated modelling strategy/framework by 

coupling the machine learning approach from chapter 5 and the SWAT hydrologic model to 

investigate the efficacy of the modelling strategy in four sub-watershed of the study area with 

distinct morphological and climate dynamic features and also analyse the dynamic changes 

and sustainability of basin-scale projected blue and green water resources due to climate 

change and its implication for integrated water resource management in one of the sub-

watershed associated with recurring incidence of extreme flood events and intense water use 

in agricultural activities.  

This have been published as a research paper titled “Integrated framework for hydrologic 

modelling in data-sparse watersheds and climate change impact on projected green and blue 

water sustainability” in 2023 (Frontiers in Environmental Sciences). 

Chapter 7: This chapter discussed the summary of findings of the entire research and 

recommendations for improved water policy direction at local watershed scale.  

Chapter 8: This chapter discussed and summarized the inferences derived from the 

findings and future work to improved watershed modelling at data-sparse regions.    

 

 

 

 

 



Page | 14  
 

CHAPTER 2: LITERATURE REVIEW 

2.1 Climate change and the environment – Key Insights 

2.1.1 Climate Change and the hydrologic cycle 

The strength of the hydrological cycle and its fluctuations through time is very significant 

in light of the current status of the climate. Due to this phenomenon, the hydrological cycle is 

primarily made up of moisture evaporation in one location and precipitation in other 

locations. In particular, when evaporation exceeds precipitation over oceans, the atmosphere 

can transport moisture to land where precipitation exceeds evapotranspiration and the runoff 

runs into streams and rivers before discharging into the ocean to complete the cycle 

(Trenberth et al., 2011). 

Solar radiation is the main energy source driving the hydrologic cycle. There has been a 

net increase in radiation input as a result of the atmosphere's emission of greenhouse gases 

(GHGs) rising due to human activity (Fawzy et al., 2020). In comparison to pre-industrial 

times (1850 – 1900), For example, the decade (2011 – 2020), the increase in global 

temperatures is assessed to have reached the range of 0.95⁰C – 1.20⁰C and similarly, hot 

temperature extremes that occurred once in 50 years on average in a climate without human 

influence have reached +1.2⁰C and is projected to reach a warming level of 2.0⁰C, 2.7⁰C and 

5.3⁰C respectively  (Chen et al., 2021). 

Natural cycles, such as seasonal variations or recurrent changes in solar radiation, or 

unique climate occurrences, like the El Nino phenomenon, define climate variability. The 

water cycle is anticipated to intensify as a result of a warmer temperature, which will result in 

more energy in the hydro-climatic system due to an increase in evapotranspiration 

(Kundzewicz and Schellnhuber, 2004).  

Key water cycle properties including precipitation intensity, duration, and intermittency 

change as a result of global energy budget restrictions and regional moisture budgets. These 
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changes occur as a result of climate change (Döll et al., 2018; Pendergrass and Hartmann, 

2014). 

Strong evidence suggests that small- and large-scale weather patterns have already been 

impacted by the global temperature increase, which is greater over continents, in high 

latitudes, and in high mountains. As a result, the increase in global precipitation is not 

distributed evenly across the continents; in fact, many regions now frequently experience 

even less precipitation than they did previously due to long term climate variability and 

change (Coumou et al., 2015; Di Capua and Coumou, 2016). 

Precipitation, evapotranspiration, local runoff, and river discharge, infiltration, 

groundwater recharge make up the bulk of the hydrologic cycle (Figure 2.1). Any variations 

in precipitation and evapotranspiration  due to increasing GHGs in the atmosphere is 

expected to modify and have a significant impact on the terrestrial hydrological cycle and the 

accompanying water flows and storages (Prudhomme et al., 2014), and very few portion of 

precipitation makes it to ground and surface water storage, particularly in arid and semi-arid 

locations where actual evapotranspiration is approximately equal to or even higher than 

precipitation.  

Increases in atmospheric water vapour on a regular basis trigger strong amplifying 

feedback that modify the surface and atmospheric energy balance, exacerbate heavy 

precipitation events and atmospheric moisture transport, and impact variations in global 

evaporation and precipitation (Douville et al., 2021). Evapotranspiration is less sensitive to 

trends in wind speed and is partly controlled by vegetation greening (Zeng et al., 2018), and 

the increasing trend is attributed to internal variability (Zhang et al., 2016). 

Furthermore, actual evapotranspiration can be utilized as a stand-in moisture availability 

for plant in a given area and, consequently, for their productivity (Martin et al., 2020). 

Variations in evaporation, which are influenced by vegetation limits on evaporative losses 
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and are generally driven by an increase in the atmospheric evaporative demand, can affect 

future water availability (Lemordant et al., 2018; Milly and Dunne, 2016; Scheff and 

Frierson, 2014; Vicente-Serrano et al., 2020). 

Additionally, anthropogenic climate change has altered regional and local streamflow, 

although a significant trend has not been observed in the global average, however, warming 

temperatures have contributed to streamflow reductions since at least the late 20th century 

(Martin et al., 2020). 

 

Figure 2.1: Hydrologic cycle dynamics at watershed scale (Quinteiro et al., 2018a) 

Therefore, the management and protection of water supply in the future depends on an 

understanding of how anthropogenic and climatic changes will impact the basin hydrologic 

dynamics. The primary determinants of water balance dynamics are climatic trends and 

changes in land use and cover (Neupane and Kumar, 2015), and these hydrologic dynamics 

and drivers have undergone changes globally during the past few decades, and they will 

probably undergo much more changes in the ensuing decades (IPCC, 2018). 

These hydrologic drivers are usually applied in studies to investigate and understand the 

trends and changes in water resource availability (Fazeli Farsani et al., 2019; Sýs et al., 2021; 

Zhang et al., 2022), sustainability (Gesualdo et al., 2019; Keys and Falkenmark, 2018; 

Nkiaka et al., 2022), hydrologic extremes (flood and drought hazards) (Kim et al., 2023; 

Rodríguez et al., 2020) and the benefit is that they are generally monitored easily. These 
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indicators are frequently utilized as the results of hydrologic simulations of the effects of 

climate change. 

Data quality and availability, however, can differ. Furthermore, some of the indicators 

can be used to assess the effects on hydrologic cycle elements for which there is less data 

(such as recharge for renewable groundwater resources) and where it is more difficult to 

estimate the effects of climate change (such as actual evapotranspiration as an indicator for 

plant productivity) (Martin et al., 2020). 

The magnitude of the impact of climate change on these basin hydrologic drivers is tied 

to the emissions levels of GHGs in terrestrial ecosystems and efforts to quantify the effects 

are evolving through the application of computer (hydrologic) models. The assessment of the 

hydrologic effects of the alterations is complicated by the inherent uncertainties generated 

along the impact model chains (Martin et al., 2020).  

Global climate models (GCMs), greenhouse gas emissions, and the creation of 

socioeconomic scenarios are only a few examples of the sources of uncertainty in the process 

(e.g., shared socioeconomic pathways (SSPs)), downscaling techniques and type of 

watersheds models and their limitations (Gidden et al., 2019). 

2.1.2 Climate Models and climate modelling 

Climate datasets required for impact analysis varies enormously depending on the type, 

scale and purpose of study. Two essential weather variables used as inputs to watershed 

models are precipitation and air temperature. For effective modelling and prediction of 

extreme events and hydrological processes from models, an accurate depiction of the 

temporal and geographical variability of the key climate features is crucial (Duan et al., 2019; 

Laiti et al., 2018). 

Consistent monitoring of precipitation and air temperature in sufficient quantities to 

accurately depict the weather at the basin, gauge stations should ideally be connected in a 
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relatively dense network. In practice, there is frequently a lack of gauge stations, and point-

based observations, which cover a small region, are insufficient to capture the spatial and 

temporal variability of meteorological variables (Roth and Lemann, 2016). 

Several studies for example Awange et al., (2016); Gampe and Ludwig, (2017); Prein and 

Gobiet, (2017); Tan and Duan, (2017) have evaluated basin scale performance of alternative 

gridded precipitation data at the local basin scale using different single performance metrics 

such as statistical metrics, machine learning approach, trend analysis etc. because the 

accuracy of the datasets varies from one region to the other as acknowledged.  

However, the application of any chosen dataset based on its superior performance from a 

singular metric may be subjective especially when the re-parameterization process is utilized, 

which may distort some watershed representation of climatic features, and this has been 

identified as a weakness (Shiru et al., 2019b). 

Therefore, a robust approach is required involving evaluation using multiple metrics to 

establish and reach a baseline decision that allows for the choice of a climate product that will 

reliably represent the climatic features within the acceptable uncertainty limit. 

But also has the requisite scale and timestep with high spatial variability and favors its 

application in impact study. See 4.2 for specific literature that addressed this identified 

weakness and related to research question and objective number 1 respectively. 

Furthermore, the application of gridded dataset in impact study can only address the 

understanding of historical and current watershed hydrologic processes where data is 

available. However, in order to predict the potential effects of climate change and its 

significant impact more accurately on the natural environment, decision-makers and 

managers of water resources need information relating to future changes in temperature and 

hydrologic variability. These shortcomings in the use of gridded datasets can be addressed by 

the use of GCMs. 
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The atmosphere, land surface, ocean, cryosphere are the physical processes of the climate 

systems represented by GCMs, which are sophisticated numerical climate models. They are 

the sole reliable instrument available and required for modelling the manner in which the 

global climate system would react to rising GHGs concentrations (Santoso et al., 2008).  

The changes in the quantitative estimates of future climate have gained confidence 

(Tokarska et al., 2020) and the capability to simulate important basin features such as 

extreme events, El Nino-Southern Oscillation etc., has improved (Hughes et al., 2014; 

Seneviratne et al., 2021). 

Even though GCMs are thought to be the best at predicting future climate changes 

brought on by anthropogenic forcing, many impact studies find them to be too coarse (Weigel 

et al., 2010). The realism of the data is impacted by how the coarse scale GCM outputs are 

treated before being utilized as inputs to many impact evaluations and research, particularly 

downscaling techniques (Knutti et al., 2013). 

The ability to depict a realistic future climate, ease of use, and the type of climatic 

information or data needed for impact assessments are just a few of the numerous 

considerations when choosing a downscaling technique and the model differences lead to a 

range of climate sensitivities that are most likely between 2⁰C and 4.5⁰C, with a best of 3⁰C 

(Boko et al., 2007; Niang et al., 2014). 

Furthermore, guidance was provided when creating the scenarios for sensitivity 

assessments (Carter et al., 2001; van Vuuren et al., 2014), it is frequently beneficial to take 

the output of multiple models into account. Users may find it challenging to choose the best 

models, especially when there are numerous models available with a wide range of projected 

results (some models may produce inconsistent results) (Duan et al., 2019). 

Some of the criteria for the selection of climate models suggested by Smith and Hulme, 

(1998) are: 
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• Vintage: recency of the climate models, which are more likely to incorporate 

new knowledge in their construction. 

• Resolutions: the resolution of earlier versions is coarser than that of newer 

variants. More spatial information is present in finer resolutions, and important 

climate variability processes, such as ENSO episodes, are clearly represented. 

He countered, however, that improved model performance is not always a 

result of greater resolution. 

• Validity: that is how well the climate models simulate the current climate 

relative to the observation data. 

• Representativeness of results: a variety of changes in important climate 

variables in the research region can be illustrated by choosing sample GCM 

from the available data. 

Furthermore, Collins, (2007), suggested it is essential to remember that uncertainty 

cascades from broad GCM scales to local scales and ultimately to impact variables of 

interest. For this reason, it is crucial to adequately account for uncertainty at every stage of 

impact modelling.  

Whilst Knutti et al., (2017), made the case that treating all models equally is pointless and 

that the increasing number of models with unique traits and significant interdependence 

finally justifies giving up on strict model democracy. They also suggested a weighting 

scheme for multimodel climate projections that takes into account both significant variances 

in model performance and interdependencies.  

The basis for this is the massive model spread in current climatology, which means that 

biases in some models will be so great that model democracy will be hard to defend. Working 

with projected anomalies relative to today can be problematic in scenarios where processes 
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are sensitive to the base state, making scaling methods and bias correction impractical 

(Weigel et al., 2010).  

In certain instances, emergent constraints can improve projections and are relevant for 

model evaluation. Large initial-condition ensembles can be challenging to combine with 

single runs from other models. Lastly, model dependence becomes more significant as 

modelling institutions replicate more code (Knutti et al., 2013). 

Collins, (2017), however, emphasised that caution must be used to take into account 

model drifts, flaws that are present in all models, and the more difficult-to-understand 

problems with the physical realism of all models. In addition, he suggested that more work be 

done to enhance models and comprehend how to interpret their projections in order to fully 

utilise this new technique, which includes assessing robustness and sensitivity and displaying 

weighted and unweighted projections. 

Additionally, previous literatures that assess the capability of GCM applications in impact 

studies has revealed that various techniques have been used such as statistical metrics (Gu et 

al., 2015; Wu et al., 2017), evolving machine learning approaches (Ahmed et al., 2019b; Pour 

et al., 2018; Shiru et al., 2019b).  

However, several approaches used in literature may be promising but the scale of data 

(timestep) and purpose of data used in impact study have not been justified and the weighing 

scheme of GCM performance based on plausible criteria can yield contradictory results 

(Chandler, 2013; Raju et al., 2017).  

While other drawbacks alluded to machine learning approaches is data overfitting and the 

inability to capture the temporal variability such as trends and the frequency of climate 

extremes which is an important factor in model performance in the successes of impact study 

(Shiru et al., 2019b). 
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In many applications of climate modelling for simultaneous projections of several climate 

variables, the choice and selection of a simulator is sometimes the main source of uncertainty 

in such projections, despite the fact that these simulators represent our greatest understanding 

of the climate system at this moment (Hawkins and Sutton, 2009).  

Therefore, seeking improvement in quantitative climate prediction at regional and local 

basin scale that will impact economies, people, and ecosystems require a methodology in 

GCM selection that narrows the uncertainty and address the drawbacks in model (response) 

and scenario uncertainty by providing an approach that will assess the capability of GCMs 

ensembles to realistically represent spatial and temporal variability and projections that are 

consistent with local climate after parameterization to finer scales. See 5.2 for specific 

literature related to research question and objective number 2 respectively.  

2.1.3 Uncertainty in climate modelling 

Understanding and measuring climate variability, climate change, and their effects 

requires the use of climate models (Flato et al., 2013). In the process of simulating the 

regional effects of climate change, a series of computer models translate global projections of 

GHG emissions and atmospheric concentrations into effects on local water supplies, 

hydrological processes, and extreme events (such as floods and droughts). 

The process begins with the application of physically-based GCMs that are transformed 

into regional to local climate and weather simulations through downscaling to correct 

systematic errors or biases relative to observations. This transformation introduces a great 

deal of uncertainties that move from one layer to the next and are then picked up by the 

individual uncertainty of the subsequent layer, which ultimately results in a great deal of 

combined uncertainties at the bottom of the cascade (Wilby and Dessai, 2010). 

As a result, decision-makers frequently struggle to understand the consequences of 

projections of the future impacts of climate change. Such uncertainties are challenging to 
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account for. So, in order to aggregate information about uncertainty, researchers employ a 

variety of strategies to narrow their effect in impact studies (Smith et al., 2018). 

GCMs and global hydrologic models (GHMs) can also be significant causes of 

uncertainty. During application, each model group adds its own components of innate 

uncertainty. Instead of using a single model to address this situation, researchers frequently 

use ensembles of models. However, it is frequently still challenging to determine which 

model stage (i.e., GCMs or GHMs) provides the majority of the overall uncertainty in a given 

scenario (Martin et al., 2020). 

A summary of the various sources of uncertainty in the climate impact models for water 

resources, including GHG concentration pathways, GCM, and GHM, is shown in Figure 2.2, 

along with some recommendations for reducing uncertainty. 

 

Figure 2.2: General overview of the main climate modelling uncertainty sources (Martin et al., 2020) 

The interlinkages of these source of uncertainties between the GCM and GHM and the 

regional application of these models, according to Schewe et al., (2014), may vary across the 
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different part of the globe. Findings from their study (Figure 2.3), showed that GCM 

uncertainty is notably significant in tropical and northern regions, which are marked by 

substantial levels of precipitation, and GHMs account for the majority of projections 

uncertainty in relatively dry sub-tropical and arid regions.  

While (Hattermann et al., 2018), argued that uncertainty associated with GCMs is 

frequently much greater than the impact of choosing a particular GHG concentration 

scenario. However, this assertion may be significant based on the time period considered 

since the impact of scenario uncertainty makes a little difference only up to 2050s (IPCC, 

2018) 

 

Figure 2.3: Ratio of GCM variance to total variance as a measure of uncertainty. In red areas, GHM uncertainty 

predominates, Greenland has been masked (Schewe et al., 2014) 

Therefore, the potential for uncertainty reductions depends on the source of uncertainty, 

data type, expert understanding of the complexity of the model structures, parameterization 

process and exploration of evolving and effective strategies to limit uncertainty propagation 

of historical and current climate, while understanding the potential of quantifying uncertainty 

in the field of GHG emission and concentration scenario is low, due to lack of clarity 

concerning future development.   
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Climate models assessment based on historical and current basin features will have a 

profound potential in achieving uncertainty reduction and certainly both modelling process 

will benefit from an improved understanding and implementation of downscaling and bias 

correction techniques, innovative capability assessment of the choice of GCMs that are 

capable of detecting basin scale hazards such as climate extreme values (return period of 

drought and flood hazards), which are often poorly reflected by GCMs due to distortion of 

climate signals by insufficient bias correction schemes (See 5.5.3). 

However, even with an improved dataset, there will obviously still be some uncertainties 

about future development and projections. This poses difficulties for the creation of 

adaptation plans in the water-related industries and necessitates effective management 

measures.  

These challenges can be reduced by adopting the right type of climate models that 

accurately reproduce projections that is acceptable within the scientific research community 

to improve hazard and adaptation planning at local basin scale where hydrologic modelling 

information is predicated on the accuracy of the climate data. Refer to 6.2 for additional 

literature. 

2.1.4 Climate change scenarios 

The study and assessment of climate change must include scenarios. They help us 

comprehend the long-term implications of short-term decisions by enabling researchers to 

have a sufficient grasp of the intricate connections between the climate system, ecosystems, 

and human activities. They also allow us to analyse several prospective futures in the light of 

significant future uncertainty (Moss et al., 2010).  

Most importantly, scenarios have traditionally been crucial for fostering integration 

amongst numerous research communities, for instance by providing a standard platform for 
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the assessment of mitigation strategies, impacts, alternative adaptation strategies, and changes 

to the physical earth system (Riahi et al., 2017). 

Established scenarios include the earlier one’s developed and adopted by the 

Intergovernmental Panel on Climate Change (IS92, SA90, and SRES, and RCPs) and the 

more recent is the share socioeconomic pathways (SSPs) (van Vuuren et al., 2017).  

The SSPs are a collection of five hypothetical storylines that describe potential future 

developments of the anthropogenic climate change drivers namely, greenhouse gases, 

chemically reactive gases, aerosols, and land use in a way that is consistent with 

socioeconomic developments, which are crucial to climate research (O’Neill et al., 2016). 

The forcing levels covered by the RCPs were the primary focus of the present SSPs 

mitigation scenarios development. From the standpoint of emissions mitigation, the resulting 

pairing of SSPs and RCPs is the scenario matrix's first thorough implementation (van Vuuren 

et al., 2014).  

The SSPs were created to present five clearly different scenarios for potential future 

socioeconomic changes in the absence of explicit extra policies and actions to reduce climate 

forcing or improve adaptive capacity (Riahi et al., 2017). The development comprise the five 

steps illustrated in Figure 2.4: 

1. Each SSP's core underlying logic is provided by the storytelling design, which 

focuses on those aspects of socioeconomic change that are frequently outside 

the purview of formal models. 

2. Extension of narratives in terms of "input tables" for the model, describing 

qualitatively the primary SSP characteristics and scenario assumptions. 

3. Using mathematical models to elaborate on the fundamental SSP components 

in terms of economic and demographic dynamics. 



Page | 27  
 

4. The SSP baseline scenarios' changes to the energy system, land use, and 

emissions of greenhouse gases and air pollutants are elaborated using a 

collection of Integrated Assessment Models (IAMs). 

5. IAMs' elaboration of these components in relation to SSP mitigation scenarios. 

 

Figure 2.4: Schematic diagram of the steps in developing SSPs, with narratives, socioeconomic scenario drivers, SSP 

baselines and mitigation scenarios (Riahi et al., 2017). 

The scenarios covered here are only applicable to tier 1 components, where each 

experimental design's detailed description, rationale, and key characteristics are briefly 

reviewed. Tier 1 components in this context refers to scenarios that prioritized a wide range 

of uncertainty in future forcings pathways essential to research in climate science, IAM, and 

IAV studies (O’Neill et al., 2016), that provides accurate understanding of physical climate 

system consequence and the impact of the scenarios on the society, as well as informed 
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mitigation and adaptation policy considerations. The explanation for the selection of the 

driving SSP and narratives, as well as the relevance of the forcing paths, are given. 

SSP5-8.5: The RCP8.5 route is updated in this scenario, which is meant to be used by a 

number of other CMIP6-Endorsed MIPs to help them with their scientific research. It 

represents the most advanced possible future pathways as stated in the IAM literature.  

The SSP5 scenario was chosen for this forcing path because it is the only SSP scenario 

with emissions high enough to provide an 8.5Wm2 radiative forcing in 2100 (O’Neill et al., 

2016). In this scenario, the push for economic and social development is prioritised along 

with high exploitation of abundant fossil fuel resources and the adoption of resource- and 

energy-intensive lifestyles globally. Climate mitigation challenges are high, while adaptation 

challenges are low (van Vuuren et al., 2017). 

SSP3-7.0: In terms of potential future forcing paths, this scenario reflects the middle to 

high end. It closes a particularly important gap in the CMIP5 forcing pathways by reflecting a 

level of force comparable to that in the SSP2 baseline scenario. SSP3-7.0 will play a 

significant role in LUMIP and AerChemMIP in addressing scenario-relevant queries 

regarding the sensitivity of regional climate to land use and aerosols.  

This is due to the fact that SSP3-7.0 is a scenario with significant land use change, 

specifically decreased global forest cover, and high near-term climate forcing (NTCF) 

emissions, mainly SO2 (O’Neill et al., 2016). In this scenario, countries prioritise regional to 

national energy and food security concerns over larger development aspirations, posing 

medium to high hurdles for climate mitigation and adaptation (Riahi et al., 2017). 

SSP2-4.5: This scenario updates the RCP4.5 pathway and represents the middle of the 

possible future forcing pathways. The Coordinated Regional Climate Downscaling 

Experiment (CORDEX), which will also employ SSP5-8.5 for regional downscaling, is one 
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of the CMIP6-Endorsed MIPs that will use it as a reference experiment. This product will be 

useful to the IAV community.  

SSP2 was chosen because it is a scenario that is relevant to IAM/IAV research and 

combines intermediate societal vulnerability with an intermediate forcing level, as well as 

because its land use and aerosol routes are not excessive in contrast to other SSPs (O’Neill et 

al., 2016).  

This scenario/pathway illustrates moderate obstacles to climate mitigation and adaptation 

where income growth and development occur unevenly, with some countries making 

reasonably excellent progress while others fall short of expectations in achieving sustainable 

development targets (van Vuuren et al., 2014). 

SSP1-2.6: This scenario updates the RCP2.6 pathway and is the least force-producing 

pathway that could possibly occur in the future according to IAM research. It can enable 

evaluations of this policy objective because it is predicted to result in a multi-model mean 

warming of much less than 2 ⁰C by 2100.  

SSP1 was picked because it involves a significant change in land use, and this scenario is 

very important because it has minimal vulnerability, few problems for mitigation, and little 

forcing signal (O’Neill et al., 2016).  

This narrative considers gradual shift towards sustainable and more inclusive 

development in line with perceived environmental boundaries through increased commitment 

to achieving sustainable development goals where consumptions is oriented towards lower 

resource, material growth and energy intensity (Riahi et al., 2017). 

The SSPs are designed to serve as a vital tool for tying together research on climate 

change from various disciplinary perspectives, including the physical climate system, 

hydrology and water resources planning, impacts of climate change, and solutions for 
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adaptation and mitigation. They can be utilised at several geographic scales, including global, 

regional, and local scales. 

The details of scenario model intercomparison project experiment design is given in 

Table 2.1. 

Table 2.1: Climate model intercomparison project phase six forcing emission thresholds and concentrations. 

Scenario Name Forcing threshold Forcing concentration (Wm-2) 

SSP5-8.5 High 8.5 

SSP3-7.0 High 7.0 

SSP2-4.5 Medium 4.5 

SSP1-2.6 Low 2.6 

Source: (Riahi et al., 2017) 

In this proposed research work, climate change impacts on green and blue water resource 

availability and sustainability at local basin scale and their deviation from baseline using 

scenarios SSP5-8.5 and SSP2-4.5 were tested. These two scenarios were quite necessary for 

adaptation planning at local basin scale.  

2.2 Watershed hydrology and the water balance dynamics 

2.2.1 Hydrologic dynamics and climate change 

Hydrological model simulations driven by individual and combined forcing demonstrate 

that decreasing precipitation can result in higher deficits in soil moisture, streamflow, and 

water table depth than other forcings, but they also demonstrate that these factors are not 

linearly cumulative when applied in combination (Hein et al., 2019).  

The decrease in precipitation which is largely related to climate change may alter the 

ecosystems water and energy balance, affecting the hydrologic basin dynamics thereby 

affecting water resources and current and projected ecosystem services (Martin et al., 2020). 

Precipitation is very important and serves as the watershed’s sole source of water supply 

(Zhu et al., 2022) and its combination with air temperature dynamics in the hydrologic 

process define the water balance variables characteristic such as surface runoff, soil water 
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content, subsurface runoff, evaporation, and water vapour movement realizing the hydrologic 

cycle responses. 

A number of studies, for example Eromo et al., (2016); Ranzani et al., (2018); Savelsberg 

et al., (2018); and Wagena et al., (2018) have confirmed the existence and continuous effects 

of climate change on the entire planet in the future. In particular the influence is tangible on 

hydrology, water resources and terrestrial environment, and analysis of the scope of the 

alleged impact on different component of the earth’s system has proven to be important 

(Fatahi et al., 2021). 

The response of the hydrologic dynamics is not basin-specific; for instance, the frequency 

of rainfall, the rate of soil infiltration, the vertical profile of soil moisture, and the level of the 

water table all affect highly nonlinear processes like land surface runoff and groundwater 

recharge.  

There is a nonlinear relationship between precipitation and groundwater recharge in the 

tropics, where large seasonal rainfalls linked with internal climatic variability contribute 

disproportionately to recharging (Cuthbert et al., 2019; Taylor et al., 2013).  

However, groundwater fluxes in arid areas are frequently less susceptible to climate 

change than in humid areas. This can either result in a long-lasting, first undetectable, 

hydrological response to global warming or serve to temporarily mitigate the consequences of 

climate change on water resources (Cuthbert et al., 2019). 

Furthermore, Hein et al. (2019) demonstrated that simulations of hydrological models 

driven by individual and combined forcing show that decreasing precipitation can cause 

greater deficits in soil moisture, streamflow, and water table depth than other forcings, but 

they also show that these factors are not linearly cumulative when combined. 

Therefore, model variations under the same forcing scenario, as shown by CMIP6 

models, continue to be the primary cause of uncertainty for projection of changes in regional 
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precipitation to achieve a consistent modelling (Lehner et al., 2020), and reliable hydrologic 

response dynamics due to climate change at local basin scale necessitates the benefits of 

uncertainty analysis to allow for consistent comparisons of current and projected GCM 

outputs which are important to improve hydrologic modelling decisions to increase 

confidence in impact analysis. 

 Because according to Fatichi et al., (2016), projections at local scales and finer 

resolutions are subjected to similar uncertainties as those at the global scale and this allows 

for a robust conclusions for proper mitigation and adaptation planning. 

2.2.2 Hydrologic modelling and process optimization 

2.2.2.1 Hydrologic models 

A hydrologic model is a set of computer codes that are compiled and run with a suitable 

sets of initial boundary conditions, parameters, and forcings that is capable of simulating the 

spatial and temporal evolution of hydrologic fluxes and states of a time series of hydrologic 

responses of a watershed (Ogden, 2021). 

These models are quite important in projecting or forecasting future states, hypothesize 

and design of watershed dynamics for integrated management of ecosystem services. Early 

modelling methods estimated runoff by using conceptualizations. To reduce the complexity 

of the problem to one that could be addressed arithmetically, pre-computer approaches used 

sound reasoning supported by appropriate simplifying assumptions (Cherif et al., 2023). 

Different computational hydrologic models continue to use each of these 

conceptualizations. The techniques usually tout their simplicity as a positive, despite the fact 

that these assumptions about heterogeneity, time, and dynamics can offer significant 

challenges. It is accurate to say that many hydrologic models are overparameterized or 

depend too heavily on a large number of parameters (Ogden, 2021).  
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This suggests that they might be overfit, which suggests that the user may find a lot of 

other parameter values that yield similar outcomes, a phenomenon known as equifinality 

(Beven and Cloke, 2012), and according to Kirchner et al., (2021) It is exceedingly 

challenging to impossible to prove that a hydrologic model is accurately simulating the real 

system.  

2.2.2.2 Characteristics of hydrologic models 

In order to be able to express the physical process using mathematical equations, 

hydrologic models are built on simplifying assumptions. They typically mimic the behaviours 

of processes from the water cycle, including evapotranspiration, precipitation, infiltration, 

interception, subsurface flows, etc., and their interactions (Ogden, 2021).  

They take into account the different free parameters to generate forecasts that precisely 

imitate the behaviour of the observable variables in a certain circumstance. These parameters, 

which are acquired via the calibration procedure, aid in effectively simulating the phenomena 

at the model's output (Cherif et al., 2023). Thus, the model’s feature consists of the following 

components: 

• The watershed and its characteristics (e.g., morphological features) 

• Observed variables serve as model inputs. 

• The process equations, which may include the calibrated parameters, describe 

how the modelling system behaves. 

• Model initial boundary conditions. 

• The variable outputs 

The model components are generally design differently and its processes include the 

water cycle, natural and anthropogenic phenomena which all interact at the watershed system 

to determine the model outputs based on its intended usage. However, the model also has 
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internal state variables and changes over time which generally includes reservoirs filling 

levels, such as production and routing, snow etc. 

According to Ogden, (2021), how a model integrates with other applications is described 

by its external structure. Does the model fit within a bigger system? Does the model provide 

fast interfaces for parameter estimation, assignment, and input? Is there a command-line 

interface on the model that other software programmes can use to call it? 

This is related to the kind and amount of data that are available to power the model and 

evaluate its performance. Any successfully run hydrologic model requires spatial 

discretization, which ranges in complexity from a simple lumped watershed representation to 

a hyper-resolution three-dimensional unstructured mesh. 

2.2.2.3 Hydrologic model calibration and validation 

The skills and experience of the modeller are quite important and used to create 

hydrological models. The range of variables covered by this knowledge is constrained by the 

finite number of observed data. As a result, the model's predictions for its assumptions, 

inputs, and parameters are only as trustworthy as those projections (Singh, 1995).  

The hydrological model chosen needs to be calibrated to match the characteristics of the 

watershed under study, but because reality has been simplified, some or possibly all of the 

parameters used to characterise the model can't be directly linked to field observations, 

necessitating for a gradual mathematical calibration. 

The objective function, a similarity measurement criterion, can be used to compare the 

simulated values to the observed data when model output data are available. The goal of 

calibration is to find the model parameters' numerical values that will most accurately 

represent the observed response. It is the process of choosing groups of parameters' ideal 

values and an important step in modelling because it affects reliability of the outcome (Cherif 

et al., 2023).  
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Model parameterization in hydrologic process is important to provide solutions to 

equations nonlinearity and scaling transformation between observation and modelled 

parameter process and this is done to control point data transfer in process-based models 

which helps in representing model state and behaviour. 

The process involved three parts namely a calibration approach, an objective function and 

observed data for model calibration. The objective function was described by Yapo et al., 

(1998) as a mathematical equation that links the observed and model simulated outputs and 

measures the relationship between the parameters.  

The choice of an objective function and the observation parameter must be made 

carefully to preserve the model performance in impact study. Some notable objective 

functions used in literature are Nash Sutcliff Efficiency (NSE), Correlation coefficient (R2), 

Root mean square error (RMSE), etc., (Abbaspour, 2015).  

The hydrologic model validation process verifies the effectiveness of the chosen 

parameters after the best ones have been determined. In this step, the model is tested using a 

set of data that are distinct from those used during the calibration phase and it is often the last 

stage of the modelling process. In literature, two approaches are generally used. 

• A conventional method that entails selecting a portion of the data series used to 

calibrate the model parameters at random. There must be a difference between the 

calibration and validation times. This step of internal validation examines the 

model's sensitivity to the values of the parameters that make it up. 

• The entire basin underwent a multicriteria, multiscale validation method. It 

compares the model's forecasts to data from observations (hydrographs measured 

at intermediate stations and at piezometric levels) that were not utilised to create 

the model. 
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2.2.2.4 Hydrologic model process optimization 

Gaining proximity to the optimum points is the goal of optimization, which aims to 

enhance model performance in hydrologic modelling. The pursuit of model perfection and 

the approach to an ideal point are the two components of this concept. Therefore, it's crucial 

to explicitly separate the improvement process from its endpoint or the ideal state (Cherif et 

al., 2023).  

However, when assessing optimization techniques, convergence is frequently the only 

thing that is considered, and intermediate performances are ignored. However, enhancing the 

modelling outcomes is the optimization's primary goal (Abbaspour et al., 2017; Cherif et al., 

2023). Since perfection is challenging to obtain, achieving a sufficient level of performance 

should be prioritised in all modelling processes (Simon, 1996). 

2.2.3 Uncertainty in hydrologic modelling 

The demand to consider model reliability and their capability to effectively respond to 

operational difficulties has been linked to the growing usage of hydrological modelling 

findings in decision support systems. As the models' limitations and flaws became more 

apparent, uncertainty analysis was eventually incorporated into the modelling process, (e.g., 

Abbaspour et al., 2017; Bennett et al., 2013), and this can be characterized based on their 

type and sources.  

There are two distinct types namely, epistemological (reducible) uncertainty, which are 

associated to lack of knowledge of the process, and stochastic (irreducible) uncertainty which 

are related to the natural variability of variables in the modelling process. However, this 

notable sources are uncertainties about the quality of the input data and initial boundary 

conditions of the model, uncertainty introduced in parameterization and estimation and the 

uncertainties related to model structure and limitations (Bennett et al., 2013; Cherif et al., 
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2023; Gal et al., 2014). A brief description of sources of hydrologic models’ uncertainties are 

given below. 

2.2.3.1 Data uncertainty 

These uncertainties cover both the response data, such as streamflow, and the 

uncertainties in the model input data, such as precipitation, air temperature and potential 

evapotranspiration. They are the result of measurement inaccuracies as well as how this input 

data was processed (Gal et al., 2014), and in most cases, especially in data-sparse regions 

only a few rain gauges are used to determine the average rainfall-runoff relationship over a 

watershed, data errors can also result from spatial precipitation field sampling or from the 

rating curve representing the relationship between water level and discharge. 

In order to minimize this type of uncertainties while initialising a hydrological model,  

additional spatial data are required to account for certain regional properties of the catchment 

area, such as land use, soil and geological characteristics, surface elevation, and water 

management practices (Martin et al., 2020).  

However, Arhonditsis and Brett, (2004) argued that a high degree and number of state 

variables required to build a complex hydrologic model does not guarantees a superior model 

performance and often times this processes may lead to model over-parameterization which 

results in misinterpretation and poor predictions of watershed features (Jakeman et al., 2006). 

This climate data uncertainty is too complex to be represented in numerical models due in 

part to imperfect conceptualization and discretization of the climate models and spatial 

averaging within the grid cells, and the assumptions and parameterization of the models are 

approached distinctly by the modelling centres and their projections of regional and local 

basin features differ across GCMs for the same global mean values (Weigel et al., 2010).  

The application of these models at regional and local scale will amplify the uncertainty 

levels of hydrologic models’ feedback and due diligence is required by applying evolving and 
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improved techniques to limit the propagation of data uncertainty in watershed modelling 

(Lawal et al., 2023b).  

2.2.3.2 Parameter estimation uncertainty 

A hydrological model's reaction to changes in rainfall-runoff dynamics and processes at 

the watershed scale is altered by changing its parameters. These variables give a fixed 

mathematical model whose flexibility needs to be adjusted to achieve accurate predictions in 

different watersheds (Ogden, 2021).  

Given the challenges in determining the values of parameters based on the available data, 

it is usual practise to alter the parameters to correctly replicate the observed model variables 

of interests. For example, flow at the watershed's outlet when flow rate measurements are 

available. This estimating procedure leaves the parameters uncertain. It is most frequently 

represented by getting many sets of parameters that produce reliable runoff estimation results 

(Nkiaka et al., 2022). 

Researchers have proposed a number of automated strategies that are frequently 

employed since parameter estimate is essential. By comparing a time-series of model outputs 

against observations, these techniques often produce objective error measurements that are 

used to determine a cost function (Ogden, 2021). It is crucial to choose acceptable objective 

error metrics carefully in order to select those that are most representative of the desired 

model behavior.  

A section of a record is typically used to calibrate a model, and the model's calibration is 

subsequently evaluated on the remaining piece of the record. This is split-sample testing, 

which may result in erratic findings depending on the calibration and validation data series 

selected (Arsenault et al., 2018). 
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2.2.3.3 Structural model uncertainty 

Structural (conceptual) model uncertainty is a reflection of a model's imperfect capability 

to capture the dynamics of the modelled system due to the model's oversimplified structure in 

comparison to the modelled system's complexity, the corresponding resolution, or the digital 

implementation (Cherif et al., 2023). This uncertainties are generally due to representation of 

processes within the model structure that is not consistent with the true watershed features 

(Abbaspour, 2015).  

In environmental modelling process, structural model uncertainty can be minimized for 

improved prediction by ensuring the accuracy of the input data was assessed, inadequacy of 

the data highlighted and improvements to the model structure routinely done to reflect the 

drawbacks, careful assessment and reduction of uncertainty propagation at the different stage 

of the source etc. (Martin et al., 2020). 

2.2.4 Challenges of hydrologic modelling 

Since hydrologic predictions are challenging to produce in all but the most 

straightforward situations, the model parsimony paradigm is often advised. This paradigm 

states that the simplest model with the fewest parameters should be chosen to accurately 

forecast the variable(s) of interest for a given set of relevant inputs (Ogden, 2021). 

Empiricism's pervasiveness and tenacious persistence in hydrology are evidence of how 

challenging hydrologic forecasts are; and as Kirchner, (2006) alluded, that making hydrologic 

predictions can be done in a variety of ways, but it can be challenging to get the right model 

for the right reasons.  

The majority of river basins worldwide are essentially ungauged with regard to the most 

important hydrological and water management variables, and these regions are associated 

with sparse or non-existent hydrologic gauging networks, which may lead to three peculiar 
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challenges, including data scarcity, data quality, and hydrologic non-stationarity in the 

modelling process (Visessri and Mcintyre, 2016). 

Earlier approaches from literature to deal with such challenges, is through the use of 

regionalization method which arises when modelling on a big scale (e.g., on a regional to 

continental scale), making it the only way to avoid the enormous regions with no data. Some 

make the supposition that regions with comparable physiography and climates ought to 

behave similarly (Visessri and Mcintyre, 2016).  

Some of the regionalisation concepts generally used in literature are by calibrating 

hydrological model of gauged basins and transposed the model parameter estimates to the 

ungauged basin known as spatial proximity analysis (Zhang and Chiew, 2009). 

Other methods for example, in the review by Razavi et al., (2013) considered model 

similarities based on the watershed attributes by developing a relationship between model 

optimization parameters and watershed attributes of the gauged basin to predict the watershed 

response in the ungauged watershed. 

While some considered regionalisation by homogenisation which involves identifying 

homogeneous zones by grouping basins with similar physiographic or climatic characteristics 

between the gauged and ungauged basins. The effectiveness of the homogenization approach 

according to Sivapalan, (2003) depends on the capability of the technique in identifying and 

delimiting the homogeneous zones. 

However, these techniques are quite challenging in hydrological science especially in 

data-sparse regions due to inadequate runoff data and studies on different site as posited by 

Oudin et al., (2008) produced contradictory results and concluded that this may be related to 

variation of catchment characteristics across the different cases.  
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Furthermore, coarse resolution of input climate data and base maps of certain 

morphological properties of the watershed land surface can hinder the application of 

regionalisation methods at local basin scale (Olden et al., 2012). 

It is, therefore, necessary to investigate and incorporate multi-disciplinary strategies 

between the climate and integrated assessment modelling frameworks to overcome the 

knowledge gaps identified in modelling issues in data-sparse watersheds to advance the 

understanding of water-related assessments.  

This will further strengthen the process through the inclusion of a mechanism for ongoing 

coordination and information exchange through data and information integration systems to 

coordinate and improve user support among researchers. Section 6.2 and 6.4.2 – 6.4.4 

provides specific literature and concept to address research question and objectives 3 and 4 

respectively.        

2.3 Water resources assessment 

2.3.1 Water footprint concept 

Water supplies are heavily impacted by population increase, brisk economic 

development, and rising household, industrial, and agricultural usage (Launiainen et al., 

2014). Freshwater supply and quality problems already have an effect on people's quality of 

life, economic development, and biodiversity loss in many watersheds around the world 

(Vörösmarty et al., 2010). 

Effective sustainability indicators have been a source of concern in water resource 

management and governance as water is becoming a more limited resource. As a measure to 

assess how effectively water resources are being used in relation to human consumption, the 

term "water footprint" (WF) was introduced (Hoekstra and Hung, 2002).  

WF assessment supports management of water resources by providing information on 

water consumption and pollution and is quickly rising to the top of the list of priorities for 
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water sustainability at watershed scale (Čuček et al., 2015), and is an ambitious concept for 

monitoring and assessing human appropriation of freshwater resources and encouraging 

sustainable use (Launiainen et al., 2014). 

This concept has been used to address water security at watershed scale by defining and 

apportioning water resources into green, blue and grey water (Schneider, 2013), and adjudged 

as an appropriate and effective methodology for river basin management.  

The methodology defined green water as moisture available in the soil layer for plants 

and microbes absorbed by the root zone layer, used up by plants, and release to the 

atmosphere through transpiration (Rockström et al., 2009; Rodrigues et al., 2014; Schneider, 

2013; Veettil and Mishra, 2016).  

Blue water is the water that flows through the surface and subsurface layer and generally 

stored in aquifers, and also in rivers, lakes and reservoirs for human use in various sectors 

such as domestic, industrial, irrigation agriculture etc. (Hoekstra et al., 2011; Quinteiro et al., 

2018a; Schneider, 2013; Yuan et al., 2019).  

Given the concentration and current ambient water quality regulations, the amount of 

freshwater resources needed to absorb the load of contaminants is referred to as "grey water" 

or "pollution water." (Hoekstra et al., 2011). A brief theoretical background for blue and 

green water footprint and availability considered within the scope of the research is given in 

6.4.  

This concept has been very helpful in determining how activities and products related to 

water scarcity and pollution affects human health as well as what can be done to prevent 

unsustainable use of freshwater resources, for example in a geographic perspective, will be 

water footprint within a delineated area such as province, municipality, watershed or basins. 
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An objective evaluation of the concept will be initiated by setting a goal and scope for the 

study before other phases of the assessment based on the intended purpose. The phases as 

defined by Hoekstra et al., (2011) is given in Figure 2.5. 

 

Figure 2.5: Phases in water footprint assessment (Hoekstra et al., 2011) 

 

The concept has been used in water security assessments at various watershed levels to 

show water consumption patterns in terms of space and time, and it offers knowledge and 

recommendations for water governance and sustainable water policy at a global (Galli et al., 

2012; Liu et al., 2017; Mekonnen and Hoekstra, 2012; Rodell et al., 2018), regional (Masud 

et al., 2018; Naderi and Parsa, 2022; Xie et al., 2020) and local (Aghakhani Afshar et al., 

2018; Liu et al., 2023; Mao et al., 2020; Veettil and Mishra, 2018; Zhang et al., 2022; Zhu et 

al., 2018) watershed scale.  

However, such studies at global and regional scale may not provide accurate water 

footprint accounting and estimates of local watershed hydrologic features in some parts of the 

world due to scale and resolution of data used in the assessment for effective local basin scale 

water policy decisions.  

Watersheds where studies are conducted at local scale, were possible due in part to 

availability of accurate and robust long-term records of sectoral water use information across 

various sectors. Therefore, basins with inadequate data are not adequately studied and effort 

to develop alternative strategy and framework for improved water footprint assessment is a 

necessity for adequate river basin water policy planning in the face of projected climate 

change and socioeconomic changes at local watershed scale.     
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2.3.2 Watershed water resources sustainability 

The main goal of climate policy and river basin water resource management as contained 

in the united nation’s framework on climate change convention is to avert the negative 

anthropogenic interference of the system and state of the climate (Arnell et al., 2011). One of 

the important areas where impacts will be anticipated is the availability of freshwater 

resources (Alcamo et al., 2007).  

Therefore, the reliability and accessibility of freshwater supplies from water reservoirs are 

both directly impacted by ongoing changes to our climate, which go beyond just the fields of 

climatology and hydrology, and studies on the assessment of its sustainability at local 

watershed’s scale required basic understanding of sectoral dynamics of water usage for 

domestic, agricultural and industrial purposes ensured by allowing water to accumulate in 

active storage capacity in reservoirs (Sýs et al., 2021). 

Additionally, changes in the watershed's hydrologic processes, such as the timing and 

volume of basin hydrologic drivers and events, could have an effect on other environmental 

factors like the flux of nutrients and sediment into water sources (Simonovic and Li, 2004). 

Water availability for domestic, agricultural, and industrial use has grown in importance 

as a subject of international and interdisciplinary research as a result of the significant water 

challenges that some parts of the world, particularly those in the Arid, Semi-Arid, and 

Mediterranean basins, are currently experiencing.  

Although there is enough water in theory to sustain practically everyone on the earth 

(Savenije, 2000), however, the distribution and flows of this resource spatially and 

temporally in combination with increasing demands for example, in developing nations in 

practice is faced with severe shortages or water scarcity conditions in more areas around the 

globe. 
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These problems will continue to pose a serious threat to the future sustainability of water 

resources across sectors which may further be exacerbated by an increase in population, 

anticipated future projections of climate change due to sporadic redistribution of rainfall 

intensity and volumes and earth surface temperature increase (Arnell, 2004).  

The quantification of human appropriation of the watershed freshwater resources is a 

necessity and several approaches and projects have been developed as a result of the societal 

realization of the significance of sustainable water usage (Launiainen et al., 2014). A 

minimum of two approaches can be used to define sustainability, which are: 

• Freshwater availability, implying that available i.e., renewable supplies should not 

be exceeded by sustainable usage. 

• Freshwater quality, implying that possible deterioration of water quality or 

detrimental effects on the provision of ecosystem services. 

A number of aggregate indices to gauge water sustainability have been developed since 

the turn of the 20th century in response to concerns about monitoring sustainable 

development initiatives. Additionally, there are some that are explicitly designed to assess 

water security, such as those put out by Assefa et al., (2019); Jensen and Wu, (2018); 

Shrestha et al., (2018) in urban, or (Zhou et al., 2021) in rural settings.  

The sustainability indices are quite important in watershed assessment especially when 

availability of freshwater has been seriously harmed by irresponsible management of water 

resources and rising abstraction rates.  

For instance, by 2014, the average amount of renewable freshwater available globally has 

dropped precipitously by almost 40% since the 1970s, and the issue is made worse by the 

world's uneven distribution of freshwater resources and their pronounced seasonality (de 

Castro-Pardo et al., 2022). This has resulted in conflicts especially when the management 

involves numerous jurisdictions or countries (Chellaney, 2016). 
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This additionally highlights the growing demand for a new framework and the application 

of water security indicators (WSI) in order to conduct an accurate monitoring and produce the 

data or information required to enhance water management decision-making in data-sparse 

watersheds.  

The hydrologic modelling framework developed, and water footprint sustainability 

indices adopted were applied to the Yobe-Komadugu watershed located in the west of Lake 

Chad, a transboundary and semi-arid basin that lies between northeastern, Nigeria and 

southeastern, Niger.  

The basin is characterized with high rainfall variability, inadequate streamflow 

monitoring stations and often water stressed especially in the post monsoon season as a 

decision support tool to derive water resource information in the face of climate change and 

population growth to address research questions and objectives 4, 5 and 6 See (8,9) within the 

context of the research design respectively. 

2.4 Summary and conclusion 

Appropriate application of climate data in impact studies at watersheds with sparse 

observational data is a source of concern and has limited the advancement of water resources 

studies that provides information as a decision-support tool for river basin management. In an 

effort to address this challenges, alternative data provided by various modelling centers are 

used, however, they differ in spatial and temporal resolution as acknowledged in (Gampe and 

Ludwig, 2017; Henn et al., 2018), and their application at the local basin through 

parameterization (downscaling and bias correction) requires objective critical analysis.  

This is quite necessary to provide basin-scale features that objectively represent the 

current and projected changes in climate and hydrologic dynamics in watershed modelling 

within the acceptable limit of observational uncertainty. 
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There have been efforts and frameworks to advance the requirement for an improved 

understanding of the data assimilation, parameterization and statistical approaches for the 

determination of basin-scale climatological features and the interaction between input data 

and hydrologic models appropriate for the assessment of the current and projected changes in 

water resources and hydrologic hazards especially, in trends and magnitudes spatially and 

temporally. However, there is still some weaknesses in some of the applied techniques and 

often produce contradictory outcomes as alluded in (Oudin et al., 2008; Razavi et al., 2013). 

Some of the methods deployed in the literature may have led to several assumptions that 

can only be applied to watersheds where traditional modelling approaches are plausible, for 

example earlier studies using regionalization modelling approach by Faramarzi et al., (2013); 

Schuol et al., (2008) exhibited a poor relationship between simulation and observation 

hydrologic responses and uncertainty ranges based on calibration and validation data 

statistics in  the data-sparse Lake Chad regions which might lead to unreliable watershed 

representation of water resources and security indices.  

Therefore, where water resource information is sought for at local watersheds with sparse 

data, there is limited research to establish the successful application of this technique to 

generate a coherent methodology for the modelling of basin hydrology has been identified as 

a research gap.  

At present, there are few studies that demonstrate the use of alternative datasets and 

sophisticated approaches to limit the identified uncertainty sources in modelling especially, 

the input variables and scenario uncertainty, due in part to the complexity of basin 

characteristics, data quality and non-stationarity of the modelling process (Nkiaka et al., 

2022; Visessri and Mcintyre, 2016).  

This research aims to incorporate the existing approach with machine learning technique 

to improve model selection after parameterization and investigate the viability of the 
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framework in watershed modelling in data-sparse watersheds and further advance the course 

of blue water footprint assessment at basins with limited sectoral water use information to aid 

water sustainability analysis as a decision support tool for enhanced river basin water policy. 
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CHAPTER 3: RESEARCH DESIGN FRAMEWORK 

3.1 Introduction 

This chapter discusses the summary of the research software tools and methods employed 

and how it fits the study area characteristics. The methods are outlined in a conceptual 

research design flowchart (Figure 3.1), that expressed climate modelling and simulation 

strategies, surface water hydrologic modelling framework related to data preparation as a 

solution to limit input and scenario uncertainty especially in regions where robust 

conventional modelling and water security assessment data are not adequate for objective and 

accurate model development.  

However, the description of the methodology in this chapter focuses on the brief 

conceptual research design and discussion of methods that are not captured in the subsequent 

core chapters (61, 99, and 144), and references were made to approaches in these discussions 

where necessary for clarity. The research is formulated by scholarly review of relevant 

literatures and opportunities were identified for additional inquiries related to uncertainty 

sources, data type, quality and complexity, data assimilation and parameterization techniques 

and leverage on expert understanding of hydrologic model structure and their limitations in 

watershed modelling.  

In this thesis, a quantitative research method is employed using numerical systems (Gay 

et al., 2009), to measure and analyse watershed climate (3.2 – 3.4) and hydrologic (3.5 - 3.6) 

changes through a variety of statistical models and establish the nature of their associations 

(Creswell, 2009).  In this context, established theories, refined modelling approach and the 

use of quantitative data were explored (3.6) to understand and improve rainfall-runoff model 

development, assess, and predict watershed changes to green and blue water security 

(availability and sustainability) in a data-sparse region (Lawal et al., 2023). A summary of the 

quantitative methodology flowchart used in this thesis is presented in Figure 3.1. 
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Figure 3.1: Schematic summary of research methodology flowchart   (a) consistency and reliability of  observations and gridded climate datasets using MCA  (b) assessment of efficacy of 

downscaling and bias corrections and data pruning approaches and validations for hydroclimatic studies (c) integrated framework of modelling using selected data pruning method and 

SWAT model in data sparse regions for water security assessment.  



Page | 51  
 

3.2 Reliability analysis of gridded and observation data 

The practical application of data series in climate and hydrologic modelling is necessary 

for adequate planning, research design and operation of complex water resource systems. In 

this research, 36 climate stations were identified that contained data series for both 

precipitation and temperature or one of the variables at different spans from different sources 

(See Figure 4.1).  

After careful assessment of the data length (30 years as recommended by WMO) and 

missing data points (< 40%) of the series, 12 precipitation (Table 4.2) and 15 temperature 

(Table 4.1) stations were adjudged reliable based on the guidance of Aguilera et al., (2020) 

for infilling the discontinuities without compromising prediction accuracy and increase 

confidence in climate data assessment used in impact study. 

Data imputation technique was used to fill up the missing data point in the R-software 

domain by multivariate imputation by chained equations (MICE) i.e., a sequence of iterative 

predictive models used to "fill in" (impute) missing data in a dataset (van Buuren and 

Groothuis-Oudshoorn, 2011).  

Every iteration uses the other variables in the dataset to impute each specified variable. 

The predictive model run these iterations until convergence has been reached (Luken et al., 

2021). Variable data are modelled based on their distribution, i.e., binary variables are 

modelled using logistic regression and continuous variables are modelled using linear 

regression (Azur et al., 2011).  

Generally, all missing values are replaced with the mean observed values and then 

changed back to the missing values for the first variable that will be imputed to account for 

statistical uncertainty in the imputations (De Carvalho et al., 2017; Gibson et al., 2022) (See 

250) and this was due the effectiveness of the technique to explore and provide a continuous 

two-level (i.e., variable data with repeated measured values taken across time and nested 
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within a cluster or group) data and maintain consistency (van Buuren and Groothuis-

Oudshoorn, 2011).  

The technique was quite relevant for data series with gaps in different duration, climatic 

regions and at a different season (Gyau-Boakye and Schultz, 1994). The infilled data series at 

different stations were tested for consistency and homogeneity by relative (Figure 4.2) and 

absolute homogeneity (See 250 and 251) test results.  

However, some obvious potential limitations that was not explored was the effect of the 

characteristic of the period of missingness (i.e., cooler, warmer, wetter, drier) of the climate 

data relative to average values due to naturally climate variability and this could lead to 

imputation biases. Although, the effect is likely to be insignificant due to the fact that the 

percentage of the missing data point (< 40%) was kept below the recommended threshold to 

effectively provided a reliable prediction as supported by Aguilera et al., (2020); Gibson et 

al., (2022).   

Following the careful assessment of the reliability of quality-controlled precipitation and 

temperature data series for consistency and homogeneity (Lawal et al., 2021), the gridded 

datasets adopted for the study were extracted from various sources (Table 4.3) at the 

observation station resolutions by codes developed in the R-software domain (See 251) for 

the period 1979 - 2012.  

A plethora of performance metrics such as machine learning-based filters i.e., symmetric 

uncertainty (Nashwan and Shahid, 2019), statistical performance indicators and the observed 

trend and magnitude (See 4.4) of the Spatio-temporal changes in precipitation and 

temperature at the local station points at annual and seasonal scale (Shiru et al., 2019a).  

For all the conditions considered, the gridded dataset’s derived ranking and relative 

performance make it possible to select the most suitable products by multi-criteria decision 

for a hydrologic impact study at the local basin scale.     
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The work detailed above is found in CHAPTER 4:.     

3.3 Statistical downscaling and bias correction of climate models 

Three statistical downscaling and bias correction techniques (delta change, Quantile 

mapping and Empirical Quantile mapping) were employed after 16 GCM data series were 

extracted that are essential for the accurate analysis of the historical and projected changes of 

watershed hydro-climatic features especially in a topographically complex terrain at the local 

scale.  

The GCM models (Table 5.1) were first extracted and interpolated to a 2⁰ × 2⁰ common 

grid and spatial downscaled by bilinear interpolation for smooth transformation as 

recommended by Fischer et al., (2014) and bias corrected within the domain of statistical 

downscaling of general circulation models (SD-GCM v2.0) software (See 5.4). The 

theoretical summary of the downscaling methods adopted are discussed below. 

3.3.1 Delta change method 

The approach used in this research as applied to the GCMs, delta or change factor was 

derived at each grid point and then added that onto the observation measurement. The idea is 

to generate high-resolution and bias-corrected representation of the mean climates. The 

derived delta is the variation between the long term mean (usually 30 years) of climate 

variable between future and historical period (Navarro-Racines et al., 2020). The bias-

corrected historical and future data for the grid points were calculated as follows: 

• Determine the 30-year average of present-day simulations and future period. 

• Determine the absolute variation between future and present-day period for 

temperature and proportional difference in precipitation. 

• Interpolate the anomalies by the centroid of GCM grid cells. 

• Add the interpolated anomalies and gridded climate data. 
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The technique for bias-corrected temperature (absolute difference) and precipitation (relative 

change) respectively was represented in equation (3.1) and (3.2) below. 

 ∆𝑌𝑖 = 𝑌𝑓𝑖 − 𝑌𝑐𝑖 (3.1) 

 

 
∆𝑌𝑖 =

𝑌𝑓𝑖 − 𝑌𝑐𝑖

𝑌𝑐𝑖
 (3.2) 

 

Where, ∆𝑌𝑖 defined the delta change, 𝑌𝑐𝑖 is the long-term mean (30 years) of the variable 

current climate, and 𝑌𝑓𝑖 long-term mean of the variable in the projected climate of each GCM 

considered in the 𝑖𝑡ℎ time-step. 

The projected temperature and precipitation anomalies were used to generate the future 

climate at each grid point based on equation (3.4) and (3.3) respectively. 

 

 𝑌𝐷𝐶𝑖 = 𝑌𝑜𝑏𝑠𝑖 + ∆𝑌𝑖 

 
(3.3) 

 

 𝑌𝐷𝐶𝑖 = 𝑌𝑜𝑏𝑠𝑖 ∗ (1 + ∆𝑌𝑖) 

 
(3.4) 

 

Where, 𝑌𝑜𝑏𝑠𝑖 is the current climate gridded climate observations; ∆𝑌𝑖 is the interpolated 

anomaly (delta change); and 𝑌𝐷𝐶𝑖 is the downscaled projected climate of each GCM data at 

the interpolated surface. 

3.3.2 Quantile Mapping method 

The quantile mapping method was applied to all the grid points with the aim to equate the 

cumulative distribution functions (CDFs) or probability distribution functions (PDFs)  𝐹𝑜,𝑐 and 

𝐹𝑚,𝑐  as the case may be, of the respective observed 𝑥𝑜,𝑐  and modelled 𝑥𝑚,𝑐  data (Cannon et al., 

2015). The transformation of the data series was represented by the transfer function in the 

equation below. 

 �̂�𝑚,𝑝(𝑡) = 𝐹𝑜,𝑐
−1{𝐹𝑚,𝑐[𝑥𝑚,𝑝(𝑡)]} (3.5) 
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The transfer functions are deemed to map the observations accurately if the CDFs of the 

projected bias corrected 𝑥𝑚,𝑝(𝑡) and observation 𝑥𝑚,𝑐(𝑡) data have similar distribution, and it 

was generally constructed from the information of the historical climate period exclusively. It 

was noted that the approach assumed that the postprocessing algorithms strongly relied on the 

fact that climate models’ biases corrected are stationary. 

3.3.3 Empirical quantile mapping method 

This approach was applied across the GCM grids in the basin due to its flexibility such 

that distributional assumptions made in quantile mapping are non-existent here (Holthuijzen 

et al., 2022) and to also evaluate the effectiveness of the variations of mapping the modelled 

data relative to the observation. The transfer functions used in this approach are expressed 

based on the empirical cumulative distribution functions (µ) and its inverse (µ-1). The long-

term daily transfer function calculated for a common grid is given in the equation below.  

 �̂�𝑚,𝑝(𝑡) = 𝜇𝑜,𝑐
−1{𝜇𝑚,𝑐[𝑥𝑚,𝑝(𝑡)]} 

 
(3.6) 

 

Where, �̂�𝑚,𝑝(𝑡) is the corrected model value at time t, 𝜇𝑜,𝑐
−1 and 𝜇𝑚,𝑐 is the inverse 

empirical cumulative distribution function of the observation and modelled empirical 

cumulative distribution functions respectively, and 𝑥𝑚,𝑝(𝑡) is the raw model value at the 

daily time step. The shape of the quantile-quantile map or notable statistical performance 

metrics can be used to provide an understanding of the type and magnitude of the model bias 

(Ghimire et al., 2019). 

The work detailed above is found in CHAPTER 5:. 



Page | 56  
 

3.4 Evaluation of the effectiveness of bias correction method  

Base tests on the success and applicability of the bias correction methods were developed 

on a grid-by-grid basis using Climate prediction centre (CPC) precipitation and Princeton 

university global meteorological forcings (PGF) maximum and minimum precipitation data 

for the period 1979 – 2014 and 1979 – 2012 respectively.  

The performance of the methods was evaluated based on statistical mean bias error, 

correlation coefficient and modified index of agreement to make inferences to the 

applicability of the tested approach in a basin with highly variable climatology (Lake Chad). 

As such the method that provided the best fit for the entire duration of the series were 

selected for further investigation. 

The work detailed above is found in CHAPTER 5:. 

3.5 Multi-model assessment for hydrologic application  

Model reliability is directly related to the quality and resolution of climate data, and this 

is an area that is quite important for ecological and hydrologic study at the local watershed 

scale. Providing a solution to deal with GCM evaluation and selection of an appropriate set of 

datasets to generate a multi-model ensemble that resolved the challenges in managing 

simultaneously the input and scenario uncertainty in data-sparse regions spatially and 

temporally has become a challenge.  

In this study, two random forest algorithms (See 254) were explored to investigate their 

capability of evaluating and selecting appropriate downscaled and bias-corrected GCM across 

the grids points to provide accurate basin historical and future climatology through data 

pruning (See 5.4) (Lawal et al., 2023b).  

The evaluation and selection of GCMs from the two machine learning approaches were 

adopted from the methodology presented in Ahmed et al., (2019b); Raju and Kumar, (2016) 

by information aggregation i.e., a payoff matrix was formulated for the 16 GCMs and their 
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associated performance metrics (attribute importance score (IS) for BRF and similarity 

coefficients (SC) for SU approach), for each grid point across the basin. 

The group decision making approach was followed in ranking the GCMs performance 

across the 54 grid points of the basin as given below: 

• Each GCM was ranked 1 to 16 based on their performance and assigned a weight 

as the reciprocal of the rank (weight = 1/rank) at each grid point. 

• The number of grid points where a GCM attained a common rank was computed 

as the payoff matrix to signify the frequency of occurrence. 

• The frequency of the GCM ranks was multiplied by the corresponding weights at 

each grid point. 

• The total weight of a GCM was calculated as the sum of weight across the 54 grid 

points for precipitation, maximum and minimum temperatures. 

• The overall performance of the GCMs was determined and ranked based on 

spatial mean value of IS for BRF and SC for SU multiplied by the overall weights. 

(Note: the value of zero was assigned to a GCM at any grid point where its 

important score is less than the shadow attributes in BRF simulation). 

• Four GCMs making up the top 75th Percentile of the ranked GCMs was adopted to 

generate the multimodel ensemble mean appropriate for further validation. 

The multi-model ensemble generated from these techniques were further examined for 

the representation of spatial and temporal pattern of annual precipitation and temperature 

across the four climatic zones relative to observations along with the traditional approach of 

multi-model mean of all the GCMs referred in this research as all model ensemble (AME) for 

clarity.  

The approaches were further used to examine the influence of the ensemble mean 

precipitation, maximum and minimum temperature on the severity, trend and magnitude of 
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extremes related to return period of drought and flood events across the four climatic zones as 

this can have a disproportionate effect on models spatially at the local watershed scale 

(Lanzante et al., 2021).  

This further validation is necessary to investigate the viability of the techniques 

generating multi-model ensemble members capable of reducing significant distortions of 

climate signals, exaggerate or underestimate extreme events trends and magnitudes which is 

the cause additional source of uncertainty in bias-corrected GCMs (Maraun et al., 2017; Tani 

and Gobiet, 2019) and may amplify the effects in hydrologic models due to non-linearity of 

the process. 

The work detailed above is found in CHAPTER 5:. 

3.6 Watershed modelling and water security assessment under uncertainty 

Traditional approaches in empirical watershed modelling in data-sparse regions like 

regionalisation (spatial proximity or homogenisation) method has proven to be difficult to 

apply in basins with complex morphology and insufficient runoff data (Oudin et al., 2008). 

Here, A modelling framework was proposed by incorporating data pruning using BRF 

(Lawal et al., 2023b), to SWAT hydrologic model process to investigate the efficacy of 

simulating ET at four sub-basins with varied soil and land use features at a wider spatial scale 

aggregated with 59 observation points as recommended in Abbaspour et al., (2019). 

The detailed methodology related to conceptualization, data parameterization and 

assimilation, basin discretization, model development with respect to HRU definition, 

simulation, calibration and validation, sensitivity and uncertainty analysis has been discussed 

in section 6.4.  

The modelling results has been compared to notable studies that relied on regionalisation 

methods in the basin (Faramarzi et al., 2013; Schuol et al., 2008). Although, expert 
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assumptions were made in the model development where conventional model data is 

inadequate without compromising model parsimony paradigm (Abbaspour et al., 2017). 

The model outputs were further used to analyse basin scale changes in green and blue 

water availability and sustainability for the period 2021 – 2050 and 2051 – 2080 in response 

to projected climate change related shared socioeconomic pathways SSP2-4.5 and SSP5-8.5. 

This two selected SSPs in this study were quite necessary and accurately depict level of 

vulnerability and socioeconomic dynamics of the basin and the need for efficient adaptation 

planning and may help to facilitate actions on the consequences for poverty and the most 

susceptible areas for immediate policy decisions, as well as help determine the scope and 

spatial patterns of predicted hazards and exposure to different water resource threats in 

developing economies for sustainable development (Gidden et al., 2019; van Vuuren et al., 

2017). 

However, inadequate or lack thereof basin wide sectoral water uses information, the 

analysis was restricted to Yobe-Komadugu watershed. Additionally, model geometry, 

projected population data, conservative per capita water use information were exploited to 

develop analytical blue water footprint accounting that objectively ensured sustainability 

assessment. 

The water footprint methodology adopted here is necessary because it measures the 

different water needs for various sectors in a given geographic area and is crucial for 

estimating how much human activity will affect sustainable production (Pellicer-Martínez 

and Martínez-Paz, 2016), unlike the traditional method of water security assessment that 

depends on demand-supply approach that relied on streamflow data for modelling to examine 

low flows, high flows, hydrograph analysis etc. for water security assessment (Pushpalatha et 

al., 2012). 
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Other advantages of the methodology are that it is adaptable and can guide a wide range 

of strategic initiatives and policies from the viewpoints of the environment, society, and 

economy to ensure proper governance of water security.  

This will assists water resource managers and policymakers in making decisions on the 

distribution and management of sustainable water resources on a local, national, or regional 

level and establish sector-specific water consumption and pollution benchmarks (Hoekstra et 

al., 2011; Quinteiro et al., 2018b). Finally, It increases awareness of concerns that pertain to 

water sustainability and the dynamics of water consumption. 

The work detailed above is found in CHAPTER 6:.   
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CHAPTER 4: MULTI-CRITERIA PERFORMANCE EVALUATION OF GRIDDED 

PRECIPITATION AND TEMPERATURE PRODUCTS IN DATA SPARSE 

REGION. 

Preamble 

This chapter aims to evaluate the use of systematic approaches to justify the capability of 

gridded climate product for reliable representation of local basin features for applications in 

hydrologic impact studies and in addressing this aim, the challenges of observational climate 

data usage at local basin studies is reviewed.  

This limits the prospects of their robust application due to limited gauging stations and 

the data were marred with gaps (incomplete records) that tends to affect objective assessment 

and monitoring of the condition of watershed hydrology. However, the identified challenges 

can be ameliorated by available climate products in the form of model generated products or 

satellite observations, but objective validation is a requirement before their application. 

A multi-criteria approach was applied to investigate  and justified their capability with a 

focus on the understanding and localisation of these multiple climate dataset to replicate the 

spatial and temporal dynamics of the station and to a large extent the watershed climatology 

using multiple performance metrics.  

Multi-criteria approach used in this study, offers an organised and methodical approach to 

assist in making complex decisions following preset standards and goals of the assessment of 

the climate data. When used to evaluate gridded climate data, it may yield the best 

information about how various performance measures will affect the choice of the dataset 

that most accurately replicates the temporal and spatial basin climatic feature.  

The Paper following was published in Atmosphere (MDPI) titled “Multi-criteria 

performance evaluation of gridded precipitation and temperature products in data-sparse 

regions  (2021) https://doi.org/10.3390/atmos12121597. 

https://doi.org/10.3390/atmos12121597
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4.1 Abstract of paper 

Inadequate climate data stations often make hydrological modelling a rather challenging 

task in data-sparse regions. Gridded climate data can be used as an alternative; however, their 

accuracy in replicating the climatology of the region of interest with low levels of uncertainty 

is important to water resource planning. This study utilised several performance metrics and 

multi-criteria decision-making to assess the performance of the widely used gridded 

precipitation and temperature data against quality-controlled observed station records in the 

Lake Chad basin. The study’s findings reveal that the products differ in their quality across 

the selected performance metrics, although they are especially promising with regard to 

temperature. However, there are some inherent weaknesses in replicating the observed station 

data. Princeton University Global Meteorological Forcing precipitation showed the worst 

performance, with Kling–Gupta efficiency of 0.13–0.50, a mean modified index of agreement 

of 0.68, and a similarity coefficient SU = 0.365, relative to other products with satisfactory 

performance across all stations. There were varying degrees of mismatch in unidirectional 

precipitation and temperature trends, although they were satisfactory in replicating the hydro-

climatic information with an acceptable level of uncertainty. Assessment based on multi-

criteria decision-making revealed that the Climate Research Unit, Global Precipitation 

Climatology Centre, and Climate Prediction Centre precipitation data and the Climate 

Research Unit and Princeton University Global Meteorological Forcing temperature data 

exhibit acceptable performance in terms of similarity, and are recommended for application 

in hydrological impact studies—especially in the quantification of projected climate hazards 

and vulnerabilities for improved water policy decision making in the Lake Chad basin.     

Keywords: gridded climate data, performance metrics, regional modelling, climate, Lake 

Chad Basin. 
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4.2 Introduction 

Accurate climate data are critical to the success of modelling processes in order to reduce 

uncertainty and achieve accurate prediction in hydrological impact studies. Unfortunately, 

reliable and long-term observed meteorological datasets are sparse and unavailable in some 

regions especially sub-Saharan Africa and the Mediterranean making hydrological studies a 

challenging task (Flato et al., 2013; Hassan et al., 2020). Alternatively, high-resolution 

gridded data have been developed to address these shortcomings. However, an understanding 

of their limitations in terms of observational uncertainties and reliability is important to 

address the twin issues of choice of dataset and suitability.  

Some climate data products are more appropriate than others in their applications for 

climate change impact studies across different regions; therefore, careful and adequate 

assessment of their strengths and limitations is required in order to provide guidance for 

future climate and hydrological studies, especially in data-sparse basins. An accurate hydro-

climatic impact study requires climate data at high temporal and spatial resolutions.  

The most accurate measurement devices are rain gauges, and although these are often 

situated on land and in populated areas for ease of measurement (Ouallouche et al., 2018),  

there are a limited number of ground-based rain gauge stations in most parts of the world for 

effective and efficient hydro-climatic studies with reduced uncertainty in spatial climate 

prediction.  

However, weather station records are typically site-specific, while most hydrological 

studies in environmental sciences research require areal observations of climate data in order 

to achieve accurate modelling processes with minimal uncertainty in impact studies (Berndt 

and Haberlandt, 2018).  

Climate data have been seen to be an important component of hydrologic cycle analysis 

over time and space. The knowledge and understanding of their spatiotemporal dynamics are 
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essential, and provide useful information for their practical applications in the field of 

agriculture, aquaculture, water resource and river basin management, and hazard and flood 

disaster warnings and management (Beck et al., 2019; Sehad et al., 2017). 

Climate and hydrologic studies require complete and reliable rainfall and temperature 

records with good spatial and temporal resolutions (Aieb et al., 2019). Unfortunately, climate 

records from various databases contain gaps or missing data points due to systematic errors 

which are prevalent in the Mediterranean and Sub-Saharan African countries and makes 

hydrologic studies difficult (Aieb et al., 2019; Gyau-Boakye and Schultz, 1994; Shiru et al., 

2019c).  

Several gridded climate data developed by various modelling centres are used as an 

alternative owing to their reliability and generated from the observed climate station data 

after quality control, enhanced reliability analysis and long-term temporal and spatial 

coverage. (Shiru et al., 2019b). 

In a hydro-climatic study, the choice of gridded data for the process of bias correction of 

general circulation models in the data-sparse region indicates an essential procedure for 

climate change impact assessment studies (Gampe et al., 2019).  

However, the choice of reference dataset that is available in either station data or gridded 

products derived from observations (Isotta et al., 2014; Schamm et al., 2014), reanalysis data 

(Bosilovich et al., 2016; Landelius et al., 2016; Poli et al., 2016), or from remote sensing data 

(Ashouri et al., 2015; Kummerow et al., 1998), is critical in the overall uncertainty associated 

in projected climate change impact studies. 

These datasets form the primary input in hydrologic modelling studies and climate change 

for the accurate assessment of hydrologic variables such as streamflow, runoff, soil moisture, 

evapotranspiration etc., in order to manage hydropower operations, irrigation scheduling and 
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early warning systems for landslides and changes in future water availability due to climate 

change and basin hydrologic cycle assessment (Tapiador et al., 2012).  

A study conducted over Africa has shown varying degrees of spatial mismatch between 

observed weather stations and reanalysis data (Zhang et al., 2013). The techniques and efforts 

in the analysis vary based on temporal coverage, climate variables involved and region of 

interest (Salih et al., 2018).  

However, gridded and reanalysis data are being updated due to advances in the improved 

understanding of the knowledge climate science over time, and detailed evaluation of their 

performance at catchment scale in Africa is rarely found in literature, although this may be 

attributed to limited availability of reliable long term climate records, expertise and ease of 

access to data (Brunet and Jones, 2011; Washington et al., 2006).  

Studies have shown that high resolution gridded data have been developed to provide 

valuable information on disaster management, initialization and validation of numerical 

models and resolving the diurnal global cycle of precipitation (Hijmans et al., 2005; Joyce et 

al., 2004).  

There are many gridded data products available at different timescale (hourly, daily and 

monthly) with a finer resolution of 0.5˚ × 0.5˚, which can provide insight that relates but not 

limited to a model forecast of hydrologic cycles, climate change such as trend analysis, 

climate downscaling etc. (Beharry et al., 2014; Chen et al., 2002; Faiz et al., 2018; Feng et 

al., 2011; Marengo et al., 2008; Nashwan et al., 2019; Pour et al., 2018; Schamm et al., 2014; 

Shirvani and Landman, 2016; Xie et al., 2007).  

The downside in the use of gridded and reanalysis climate data lies in the fact that gridded 

climate data are a combination of observed station data and quality controlled statistical 

interpolation that could result in the attenuation of local climate signals, while reanalysis data 

is model-based forecasts that requires parameterization of the model,  good assimilation 
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technique and the quality of the observation (Salih et al., 2018; Schoof and Pryor, 2003; 

Szczypta et al., 2011). 

Gridded climate products are known to differ in their source, spatial and temporal 

resolutions, domain size (Global Coverage), available timescales and also exhibit different 

error bands due to interpolation procedures and considerable differences in general 

climatology, which are well known and acknowledged, (Gampe and Ludwig, 2017; Henn et 

al., 2018; Isotta et al., 2014; Palazzi et al., 2013).  

The choice and selection of reference datasets at the catchment scale should be based on 

observational uncertainty and purpose through critical analysis of the gridded data products. 

The development and application of gridded climate data is growing rapidly, especially due 

to the advances and knowledge of their spatiotemporal resolution, latency and reliability. 

However, the uncertainty associated with their application across local and regional 

catchments is still a cause for concern that led to some studies related to the ability of the 

gridded data to replicate or mimic reliable but sparse ground-based data across the globe 

(Eum et al., 2014; Kyselý and Plavcová, 2010; Manatsa et al., 2008; Nashwan and Shahid, 

2019; Prakash et al., 2015b, 2015a; Prein and Gobiet, 2017; Sylla et al., 2013).  

Furthermore, the performance of the gridded data is predicated on using individual or a 

combination of statistical metrics to replicate some particular characteristics of the observed 

data and often times exhibit contradictory results and makes the decision making difficult 

(Ahmed et al., 2019; Beck et al., 2019; Salman et al., 2019).  

It has been posited that some gridded data has shown to be appropriate compared to 

others in specific applications in certain regions around the world (Tanarhte et al., 2012), and 

a single statistical metric cannot justify the performance or suitability of a particular gridded 

data. Therefore, it is important to use various metrics to obtain an ideal solution, based on 
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optimal performance across all the metrics especially in the data-sparse region for prediction 

efficiency (Salman et al., 2019; Xu et al., 2015).  

The objective of this study was to employ multi-criteria decision making to assess the 

performance of five widely used and recently updated gridded precipitation datasets and four 

temperature datasets in replicating the total and average monthly precipitation and 

temperature of available gauge-based records in the Lake Chad hydrological basin.  

This study was necessary to provide guidance on the choice of reference dataset(s) to be 

adopted for future research in the basin, depending on performance and purpose in hydro-

climatic studies, in order to reduce uncertainty in predictions as well as computational time 

and resource costs.  

Furthermore, the choice of the gridded dataset in previous climate studies found in 

literature in the basin for example (Adeyeri et al., 2017; Mahmood and Jia, 2019a; Nkiaka et 

al., 2018b; Pattnayak et al., 2019), has been based on their successful applications in other 

basins, without a proper justification of their suitability compared to other available products 

for improving the reliability of predictions and reducing model biases to provide an accurate 

representation of basin-scale hydrological features.  

Additionally, some of the products are only available in monthly time steps, which may 

not be suitable for downscaling of GCMs with daily time steps as input requirements in some 

hydrological models and climate change impact studies.   

The study will employ entropy-based symmetric uncertainty (William et al., 1996), a 

machine learning approach that has been found to be an efficient tool for the assessment of 

agreement in data that measure the shapes and patterns of data sequences via the concept of 

mutual information theory, by comparing the similarity between two long time-series climate 

datasets, and has found its application in various fields (Saleem A. Salman et al., 2018; Shiru 

et al., 2019b).  
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The benefit of this method is that it does not depend on the data distribution, unlike the 

statistical metrics used in other studies (Nashwan and Shahid, 2019; Pour et al., 2018; Saleem 

A. Salman et al., 2018). Four statistical metrics were used in this study—namely, Taylor 

diagrams, modified index of agreement (md), Kling–Gupta efficiency (KGE), and normalised 

root-mean-square error (NRMSE)—and then finally trend analysis of the precipitation and 

temperature data at the annual and seasonal scales of the gridded and observed station records 

was compared for mean variability and temporal homogeneity across the basin. 

4.3 Study Area and data 

4.3.1 Study area 

The Lake Chad Basin is one of the largest endorheic basins in the world and occupies an 

estimated area of ~2,500,000 km2, approximately 8% of Africa (Coe and Foley, 2001; Gao et 

al., 2011).  The basin cuts across the whole or part of Algeria, Cameroon, Central Africa 

Republic, Chad, Libya, Niger, Nigeria and Sudan in Central Africa. The basin is 

geographically located at latitudes of 5.2⁰ - 25.3⁰ N and longitudes 6.9⁰ - 24.5⁰ E, right at the 

transition zone of the Sahara region and the tropics of Sudano-Sahelian region of West Africa 

(Ndehedehe et al., 2018), (Figure 4.1).   

The basin is characterised to have a vast and shallow freshwater lake located at the centre, 

with inflows from Chari-Logone rivers (~ 90 - 95%) from the southern pool, Yobe-

Komadugu rivers (~2.5 - 5%) in the western region and enters the lake through the northern 

pool (Coe and Birkett, 2004; Magrin, 2016; Sarch and Birkett, 2000), and other minor rivers 

such as Gubio, Ngadda, Yesderam and Elbeid, which supplied only (~ 1 – 2%) inflow to the 

lake through the southwestern part of the basin between 1961 - 2013 (Mahmood and Jia, 

2019b).  The basin serves as the main source of fresh water that supports livelihood across 

pastoral land, agricultural land and fish farming (Buma et al., 2016), with irrigation 
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agriculture as the major user of the resource that supports a majority (~60%) of the 

population (UNEP, 2006).  

The basin is divided into several climatic zones, namely the Saharan zone located in the 

north of the basin, the Sahelo-Saharan zone located in the central part of the basin, which 

covers the North of Diffa, Niger and Lake Chad; the Sudano-Sahelian zone, which covers 

Ndjamena in the Chad Republic and the northern part of Cameroon and Nigeria and the 

Sudano-Guinean zone located in the south, which covers the south of Chad and the Central 

African Republic, with annual precipitation of, < 100 mm,  between 100 - 400 mm, 400 - 600 

mm and 600 - 1500 mm, respectively.  

The average annual temperature in the basin ranges from 35℃ to 40℃ in the northern 

part of the basin to as low as 26.5℃ in the southern part (Nkiaka et al., 2018b) characterised 

by hot and dry, wet and dry and cool weather during March to June, June to October and 

November to February respectively (Mahmood et al., 2019). 

The basin is located in a region that is characterised to have little relief, no surface outlet 

and a spatial extent that is quite sensitive to climatic variability and the elevation of the basin 

ranges from – 330 m to 3446 m (Figure 4.1). However, according to (Coz et al., 2009; 

Nkiaka et al., 2018a), the basin is a relatively flat area with an average slope of < 1.3%, 

except for some local hills, plateau and mountains in southern and northern parts of the basin.  
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Figure 4.1: Map of Lake Chad Basin showing Elevation, Lake, Climate Stations, major river networks and Sub-basins. 
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4.3.2 Observation data and sources 

The observed climate data used in this study were acquired from a number of sources; for 

example, 12 average monthly observed temperature data were obtained from the global 

historical climatology network monthly temperature dataset version 4 (Table 4.1) 

http://www.ncdc.noaa.gov/ghcnm/v4.php accessed on 2 March 2020 (Menne et al., 2018), 

while 11 total monthly observed precipitation data were obtained from Lake Chad Basin 

Commission and can be found as supplementary dataset online in Mahmood and Jia, (2019a). 

We also used 2 Station records from Nigerian Meteorological Agency (NIMET) and the 

NOAA Global Historical Climatology Network Daily (GHCN-D) version 3.23 

(http://www.ncdc.noaa.gov/pub/data/ghcn/daily) (Table 4.2).  

The observed station data considered in this study were carefully selected based on the 

condition of having fewer missing records and an acceptable temporal span for hydro-

climatic analysis in order to achieve effective and reliable predictions. The observed missing 

climate data records were filled using multivariate imputation by chained equations (MICE) 

package (See 250), due to its ability to impute continuous two-level data and maintain 

consistency between imputations while employing passive imputation (van Buuren and 

Groothuis-Oudshoorn, 2011).  

The data was checked for 100% completeness after imputation and assessed for 

comparison using a double mass curve approach for subjective evaluation of non-

homogeneity in the datasets (Kohler, 1949), and finally subjected to absolute homogeneity 

tests namely standard normal homogeneity test (SNHT), Pettitt and Von Neumann ratio test 

(See 250 and 251) (Wijngaard et al., 2003; Yozgatligil and Yazici, 2016).  

The double mass curve showed an almost straight line at all stations without breakpoints 

(Figure 4.2), and absolute homogeneity test results were all less than the critical values.  The 

null hypothesis that all the station climate data tested were homogenous at a 95% level of 

http://www.ncdc.noaa.gov/ghcnm/v4.php
http://www.ncdc.noaa.gov/pub/data/ghcn/daily
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confidence cannot be rejected; and therefore, the quality-controlled data for precipitation and 

temperature are suitable for performance evaluation of the gridded climate data. 

Table 4.1: List of reliable Observed temperature stations. location and temporal span in Chad Basin 

S/No Station Name Data Range Missing Data (%) 

1 Bilma 1950–2019 8.2 

2 Bossangoa 1954–2016 35.0 

3 Bouar 1951–2019 34.7 

4 Geneina 1951–2019 11.5 

5 Maiduguri 1910–2012 14.0 

6 Maina sorda 1951–2019 11.5 

7 Moundou 1951–2016 34.3 

8 N’Djamena 1951–2019 26.3 

9 Ngaoundere 1951–2019 35.2 

10 Nguigni 1953–2019 5.8 

11 Sahr 1941–2018 39.3 

12 Zinder 1923–2019 3.5 

     Source: (Menne et al., 2018)http://www.ncdc.noaa.gov/ghcnm/v4.php . 

 

Table 4.2: List of Reliable Observed Precipitation station, location and temporal span in Chad Basin 

S/No Station Name Data Range Missing Data (%) 

1 Abeche 1985–2015 0.0 

2 Banda 1950–2013 0.0 

3 Bongor 1950–2013 0.0 

4 Bossangoa 1950–2013 0.0 

5 Doba 1950–2013 0.0 

6 Maiduguri 1979–2010 0.0 

7 Moundou 1985–2015 0.0 

8 N’Djamena 1985–2013 0.0 

9 Nguigni 1968–2020 15.3 

10 Potiskum 1980–2010 0.0 

11 Sahr 1950–2013 0.0 

12 Samry-I 1950–2013 0.0 

13 Sategui Deressia 1950–2013 0.0 

14 Tsanaga 1950–2013 0.0 

15 Zinder 1906–2020 17.1 

Source: ((LCBC) (Mahmood and Jia, 2019a), NIMET, GHCN-D (http://www.ncdc.noaa.gov/pub/data/ghcn/daily)) 

 

 

http://www.ncdc.noaa.gov/ghcnm/v4.php
http://www.ncdc.noaa.gov/pub/data/ghcn/daily)
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(a) 

 

 

(b) 

Figure 4.2: Double-mass curves for Lake Chad basin. (a): Cumulative annual precipitation at all stations against base 

station. (b): Cumulative annual temperature at all stations against base station. 

4.3.3 Gridded data and sources 

This study analysed five gridded precipitation and four temperature products, namely the 

University of East Anglia, Climate Research Unit CRU TS V4.04, German weather service 

Global Precipitation Climatology Centre, GPCC v.2018 (precipitation only), US Climate 
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Prediction Centre CPC, Princeton University Global Meteorological Forcing PGF v.2 and 

University of Delaware UDel V5.01. Table 4.3 summarises the climatic variables, temporal 

and spatial resolution, temporal span and sources of the gridded data.  

Table 4.3: Summary of gridded dataset considered in this study. 

Data 

Product 

Variable Temporal 

Resolution 

Data Span Spatial 

Resolution 

Source 

CPC P,Tmax, Tmin Daily 1979 - 2020 0.5⁰ Precipitation 

https://www.esrl.noaa.gov/psd/data/gridded/dat

a.cpc.globalprecip.html)and temperature 

https://www.esrl.noaa.gov/psd/data/gridded/dat

a.cpc.globaltemp.html 

CRU TS 

v.4.04 

P,Tmax, Tmin Monthly 1901 - 2016 0.5⁰ https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.

04 

 

PGF v.2 P,Tmax, Tmin Daily 1901 - 2012 0.5⁰ http://hydrology.princeton.edu/data.pgf.php 

GPCC 

v.2018 

P Monthly 

 

1901 - 2016 

 

0.5⁰ 

 

http://www.esrl.noaa.gov/psd/data/gridded/data

.gpcc.html 

 

UDel 

V5.01 

P Tave Monthly 1900 - 2017 0.5⁰ https://psl.noaa.gov/data/gridded/data.UDel_Ai

rT_Precip.html 

 

The gridded datasets were developed from different modelling centres using different 

interpolation techniques, for example CPC gridded data was developed by optimal 

interpolation of station or gauged based records of GTS (Xie et al., 2007), CRU data were 

developed via angular distance weighing of monthly observed station data from World 

Meteorological Organisation, National Oceanic and Atmospheric Administration (NOAA) 

database, and Climate Records from National Meteorological Agencies across the globe 

(New et al., 2000),  PGF dataset was developed based on forcings from NCEP-NCAR 

reanalysis and other global data via bilinear interpolation from their native gridded scale 

(Sheffield et al., 2006), GPCC datasets were developed by the combination of monthly 

gauged and quality controlled records from 7000 stations around the world, along with GTS 

synoptic weather reports, interpolated to regular grid using ordinary point kriging method  

(Schamm et al., 2014) and UDel precipitation and temperature data are interpolated using 

shepherd algorithms to grid based data from various sources such as GHCN2, NCAR, 

GHCN-Daily dataset, GHCN-monthly version 3, and records from national meteorological 

agencies (Lawrimore et al., 2011; Menne et al., 2012). 

https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04
http://hydrology.princeton.edu/data.pgf.php
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
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4.4 Research Methodology 

The performance of the gauged based gridded precipitation and temperature data was 

evaluated by multiple approaches including, machine learning filter-based symmetric 

uncertainty, statistical metrics (Index of agreement, Kling Gupta Efficiency and Normalized 

Root Mean Square Error and Taylors Diagram) and time series analysis of trends exhibited at 

an annual and seasonal timescale in order to assess the gridded data in terms of their 

reliability in mimicking the observed data across all the stations in the study area for the 

period 1979-2012. The gridded datasets were sourced from the websites of the providers as 

shown in Table 4.3, extracted by Raster and ncdf4 R packages (See 251) and interpolated to 

the observed data station resolution using inverse distance weighting method. The detailed 

methodology of the study is outlined below.  

4.4.1 Symmetric Uncertainty 

Symmetric Uncertainty is an entropy-based machine learning algorithm (Filter Method) 

used in assessing the pair-wise agreement between long time-series data. The method utilises 

information entropy through the concept of mutual information (MI), which measures the 

commonality between two variables. For example, if 𝑝(𝑥) and 𝑝(𝑦) are considered 

probability density functions of observed variable (𝑥) and the gridded variable (𝑦), and 

𝑝(𝑥, 𝑦) is the mutual probability distribution functions of 𝑥 and 𝑦, and therefore, mutual 

information can be evaluated as follows: 

 
𝑀𝐼(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) log

𝑝(𝑥, 𝑦)

𝑝(𝑥). 𝑝(𝑦)
 (4.1) 

      
 

       The mutual information shown in Equation (4.1) can also be evaluated as the difference 

between the mutual entropy of two-time series variables, and in this case, taking the observed 

data as 𝐻(𝑥), the gridded data as 𝐻(𝑦) and the mutual entropy of the observed and gridded 

data time series as 𝐻(𝑦, 𝑥), MI can be written as: 
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 𝑀𝐼(𝑥, 𝑦) = 𝐻(𝑦) − 𝐻(𝑦, 𝑥)  (4.2) 

 

Thus, 𝐻(𝑦) and 𝐻(𝑦, 𝑥) indicates the amount of uncertainty inherent in the gridded and 

the joint gridded and observed probability density functions of precipitation and temperature 

time series data. The two independent variables in Equation (4.2) can be expressed as: 

 
𝐻(𝑦, 𝑥) =  ∑𝑝(𝑥, 𝑦) log

𝑝(𝑥, 𝑦)

𝑝(𝑥) × 𝑝(𝑦)

𝑛

𝑖=1

 (4.3) 

 

 
𝐻(𝑦) =  − ∫𝑝(𝑦) log(𝑝(𝑦))𝑑𝑥 (4.4) 

 

The entropy estimated in Equation (4.3), implies the extent of mutual information 

between the gridded and observed precipitation/temperature data. The mutual information 

tends to be zero in the absence of common information and has a value of unity when the 

model data series can depict the complete information associated with the observed data 

series. However, biases are inherent when using time series with larger values if there are less 

similar values between the two variables (Yu and Liu, 2003); This drawback has been 

addressed through the concept of Symmetric Uncertainty by dividing the value of mutual 

information gain and the sum of entropies of  𝑦 and 𝑥 as shown in Equation (4.5):  

 

  

𝑆𝑈(𝑥, 𝑦) = 2 ×
𝑀𝐼(𝑥, 𝑦)

𝐻(𝑥) + 𝐻(𝑦)
 

 

(4.5) 

          

The value of Symmetric Uncertainty ranges from 0 to 1, where 0 indicates poor similarity 

and 1 indicate high similarity between the gridded and observed precipitation/temperature 

time-series data (Shreem et al., 2016). This study utilized the Fselector package of R software 

(Romanski and Lars, 2018), to assess the similarity between the monthly gridded and 
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observed precipitation/temperature data (Table 4.4). Figure 4.3 shows the distribution of 

gridded precipitation and temperature data of all available stations within the study area. 

4.4.2 Statistical Metrics 

In this study, four statistical metrics were used to evaluate the ability of the selected 

monthly gridded precipitation and temperature datasets to replicate the observed station time 

series. Further details of the metrics are outlined below.  

4.4.2.1 Kling Gupta Efficiency (KGE) 

This is a metric that highlight three components namely correlation, bias and ratio of 

variances between gridded and observed time series data as proposed by Gupta et al., (2009); 

the values of KGE varies between 0 and 1 which indicates no agreement and perfect 

agreement between gridded (𝑥g) and observed (𝑥obs) data respectively. The coefficient can be 

computed as given in Equation (4.6): 

 
𝐾𝐺𝐸 = 1 − √(𝛾 − 1)2 + (1 −

𝜇𝑔

𝜇𝑜𝑏𝑠
)
2

+ (
𝜎𝑔 𝜇𝑔⁄

𝜎𝑜𝑏𝑠 𝜇𝑜𝑏𝑠⁄
)
2

  (4.6) 

 

4.4.2.2 Modified Index of Agreement 

This is a statistical metric that evaluates the standardized measure of the degree of model 

prediction error. This metric was modified from its original form proposed in Willmott, 

(1981), which has shown to be less sensitive to extreme values. it is defined as the ratio of 

mean square error and potential error and can detect additive and proportional differences in 

two long time series data. It has a value that varies between 0 and 1 indicating no agreement 

and perfect agreement between gridded (𝑥g) and observed (𝑥obs) data respectively. The 

coefficient can be computed as given in Equation (4.7): 

 
𝑚𝑑 = 1 − 

∑ (𝑥𝑜𝑏𝑠,𝑖−𝑥𝑔,𝑖)
𝑖𝑛

𝑖=1

∑ (│𝑥𝑔,𝑖−𝑥𝑜𝑏𝑠⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑│+│𝑥𝑜𝑏𝑠,𝑖−𝑥𝑜𝑏𝑠⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑│)
𝑖𝑛

𝑖=1

   (4.7) 
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4.4.2.3 Normalized Root Mean Square Error 

This is a statistical metric that facilitates and summarises the magnitude of errors between 

a model (𝑥g)  and observed (𝑥obs)  data with different scales and is defined by the ratio of root 

mean square error and standard deviation of the data. This metric is considered to be a great 

measure of precision, and the predictive ability of the model is considered to be accurate with 

values closer to zero (Chen and Liu, 2012; Willmott, 1982). The value of NRMSE ranges 

between − ∞ and 1. The optimal value is 1 and can be computed by equation (4.8): 

 

 

𝑁𝑅𝑀𝑆𝐸 = 
[
1

𝑛
∑ (𝑥𝑔,𝑖−𝑥𝑜𝑏𝑠,𝑖)

2𝑛
𝑖=1 ]

1/2

1

𝑛
∑ 𝑥𝑔,𝑖

𝑛
𝑖=1

  (4.8) 

 

4.4.2.4 Taylor Diagram 

These are a graphical representation that summarise proximity or similarity between 

model and observed long time series data. The similarity is quantified based on their 

correlation, centred root means square difference, and the amplitude of variations (Standard 

deviations). The models are quite useful in gauging the relative performance of models as 

compared to the observed data (Taylor, 2005, 2001). In this study, the Taylor diagram was 

used to examine the relative capability of gridded precipitation and temperature data at 

annual, pre-monsoon and monsoon seasons relative to the station observation data for the 

period 1979 – 2012.  

4.4.3 Trend Analysis 

In this study, trend analysis was carried out using the nonparametric Mann-Kendall and 

modified Mann-Kendall test (Henry, 1945; Kendall, 1948), where significant autocorrelation 

was observed in the time series data, trend free pre-whitening was applied to correct the 

anomaly (Yue et al., 2002), and Sen’s slope estimator was used calculate the statistically 

significantly increasing or decreasing trends and magnitude of the trends respectively, at 5% 
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level of significance for the period 1979 – 2012 (See 253). The Mann-Kendall statistics are 

given as: 

 

 

𝑆 =  ∑ ∑ sgn(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 (4.9) 

 

Where 𝑥𝑗 and 𝑥𝑘 are sequential data values for n number of time series. The sgn of the 

series is defined as: 

 

sgn(𝑥𝑗 − 𝑥𝑘) =  {

1 𝑖𝑓 𝑥𝑗 > 𝑥𝑘

0 𝑖𝑓 𝑥𝑗 = 𝑥𝑘

−1 𝑖𝑓 𝑥𝑗 < 𝑥𝑘

  (4.10) 

                

The mean E(S), Variance V(S) and the Z statistics can be computed as: 

 𝐸(𝑆) = 0  (4.11) 

 

 

𝑉(𝑆) =  
1

18
{𝑛(𝑛 − 1)(2𝑛 + 5) − ∑𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)

𝑝

𝑖=1

} 

  

(4.12) 

 

 

 

 
𝑍 = 

{
 
 

 
 

𝑆 − 1

√𝑉(𝑆)
 𝑓𝑜𝑟 𝑆 > 0

0    𝑓𝑜𝑟 𝑆 = 0              
𝑆 + 1

√𝑉(𝑆)
 𝑓𝑜𝑟 𝑆 < 0  

 
(4.13) 

In the equation above, p represents the number of tied groups in the series and each of the 

tied groups was indicated by 𝑡𝑖 . all positive and negative values of the Z statistics represent 

statistically increasing and decreasing trends in the time series data. 
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The magnitude of the detected trends in the time series data was computed by the 

nonparametric Sen’s slope estimator because the method is robust against outliers in time 

series analysis and given below: 

 

 

𝑆𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛 [
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
]    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑗 

 

(4.14) 

Where 𝑥𝑖 represent the value of the data at a time step 𝑖 and  𝑥𝑗 for time step 𝑗.  

4.5 Results 

4.5.1 Assessment of gridded data using symmetric uncertainty 

The performance of the gridded monthly total precipitation and average temperature data 

for the period 1979 – 2012 was individually assessed at each station location downloaded at 

the station resolutions. The symmetric uncertainty (SU) score obtained at the Zinder stations 

located at Latitude 13.8˚ N, Longitude 8.9˚ E is given in Table 4.4. The result from the table 

showed that CRU and PGF were found to have the highest estimated similarity score of 

precipitation and temperature across the station.  

However, there are inconsistencies in the skill of the gridded data at different stations in 

replicating the observed data. The CRU, GPCC and PGF dataset showed an effective skill in 

53.3%, 33.3% and 13.3% and CRU, PGF and UDel also showed an improved skill at 41.7%, 

33.3 and 25.0% of the precipitation and temperature stations in the study area respectively.  

Observed precipitation stations located in the Sudano-Guinean zone of the basin, for 

example, Bossangoa, Samry-I, Sategui, Tsanaga, Doha and Moundou (SU ≥ 0.478) has 

shown to have an improved similarity coefficient compared to stations located in the Sahelo-

Saharan zone i.e., Nguigni, Zinder (SU ≤ 0.395) etc. However, the temperature stations 

located in the Saharan and Sahelo-Saharan zone (Bilma, Maina-Sorda, Nguigni and Zinder) 

has shown an efficient skill in simulating the observed temperature (SU ≥ 0.692) and worst 

skill in the Sudano-Guinean zone (SU ≤ 0.483) in the study area respectively. The 
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consistency in the precipitation data in the Sudano-Guinean zone may be attributed to more 

and accurate station records in the southern zone of the basin and reduction and abandonment 

of ground-based gauged data and errors in taking records resulting in systematic errors in the 

northern part of the basin due to migration, political instability etc. 

The mean similarity coefficient of the gridded precipitation across the stations in the 

basin for the CPC, CRU, GPCC, PGF and UDel dataset was 0.448, 0.504, 0.512, 0.472 and 

0.480 and temperature for CPC, CRU, PGF and UDel was 0.482, 0.532, 0.523 and 0.519 

respectively. The results showed that there is a slight variation in the skill across the gridded 

dataset assessed in this study. Figure 4.3 showed the distribution of the similarity coefficient 

of the dataset across the stations considered.     

Table 4.4: Similarity score of gridded precipitation and temperature against observed datasets estimated by Symmetric 

Uncertainty 

Rank Precipitation Dataset SU Temperature Dataset SU 

        1st CRU 0.395 PGF 0.765 

2nd GPCC 0.387 CRU 0.725 

3rd UDel 0.369 UDel 0.722 

4th CPC 0.367 CPC 0.709 

5th PGF 0.365   

 

 

 

(a)                                                                      (b) 

Figure 4.3: Boxplot of distribution of the similarity coefficients across the Lake Chad basin (a): variation of similarity 

coefficient of gridded precipitation against observed station data. (b) variation of similarity coefficient of gridded 

temperature against observed station data. 

4.5.2 Statistical metric efficiency 

The results of the statistical metrics of gridded precipitation and temperature data for the 

period 1979 – 2012 considered in this study, showed that there is a good agreement between 

the gridded precipitation dataset and observed data across the station within the basin with 
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mean Kling Gupta Efficiency (KGE) and Index of Agreement (md) coefficient in the range of 

⁓ 0.7 and above (Table 4.5) for CRU, GPCC, CPC and UDel except for PGF data that 

performed the least across the stations with a mean Kling Gupta Efficiency and Index of 

Agreement coefficient of 0.33 and 0.68 respectively.  

The results from the Normalized Root Mean Square Error (NRMSE) are consistent with 

all the gridded dataset but has a higher value in PGF data with a mean value 1.07. However, 

the results for the temperature products showed an improved performance or mean similarity 

coefficient of all the gridded data products with values generally above 0.85 for both KGE 

and md (Table 4.6) and exhibit almost similar NRMSE across the stations in the study area.
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Table 4.5: Summary of performance of statistical metrics of gridded monthly precipitation data against observed data in Chad Basin 

         TOTAL MONTHLY PRECIPITATION 

 

STATION 

 

KGE 

 

 

INDEX OF AGREEMENT NRMSE 

CPC CRU GPCC PGF UDEL CPC CRU GPCC PGF UDEL CPC CRU GPCC PGF UDEL 

Abeche 
0.64 0.63 0.52 0.24 0.71 0.89 0.87 0.85 0.62 0.91 1.058 1.272 1.237 1.308 1.093 

Banda 
0.84 0.84 0.80 0.44 0.87 0.93 0.96 0.93 0.73 0.95 0.615 0.455 0.639 0.926 0.508 

Bongor 
0.71 0.83 0.78 0.32 0.81 0.89 0.95 0.96 0.67 0.95 0.706 0.527 0.468 1.073 0.505 

Bossangoa 
0.80 0.94 0.87 0.38 0.89 0.94 0.98 0.97 0.69 0.97 0.409 0.244 0.312 0.818 0.298 

Doba 
0.75 0.77 0.76 0.31 0.78 0.94 0.96 0.96 0.70 0.96 0.481 0.405 0.394 0.911 0.401 

Maiduguri 
0.70 0.83 0.85 0.37 0.44 0.84 0.93 0.93 0.66 0.90 0.949 0.668 0.701 1.188 0.888 

Moundou 
0.86 0.91 0.94 0.41 0.94 0.95 0.96 0.97 0.71 0.97 0.513 0.443 0.403 0.979 0.392 

Ndjamena 
0.72 0.66 0.61 0.27 0.73 0.90 0.86 0.86 0.62 0.90 0.827 0.928 0.91 1.273 0.79 

Nguigni 
0.48 0.45 0.43 0.13 0.47 0.82 0.84 0.82 0.57 0.81 1.097 1.034 1.066 1.421 1.095 

Potiskum 
0.84 0.67 0.62 0.26 0.69 0.75 0.90 0.88 0.62 0.91 1.045 0.728 0.795 1.209 0.711 

Sahr 
0.58 0.65 0.53 0.23 0.60 0.83 0.86 0.80 0.65 0.83 0.826 0.711 0.901 0.965 0.802 

Samry-I 
0.74 0.68 0.78 0.50 0.72 0.89 0.95 0.96 0.81 0.96 0.908 0.706 0.601 0.944 0.617 

Sategui 

Deressia 

0.70 0.60 0.64 0.49 0.51 0.91 0.90 0.91 0.86 0.89 0.777 0.893 0.81 0.706 0.975 

Tsanaga 
0.81 0.87 0.90 0.40 0.67 0.91 0.96 0.99 0.70 0.96 0.704 0.503 0.293 1.069 0.549 

Zinder 
0.64 0.63 0.52 0.24 0.71 0.89 0.87 0.85 0.62 0.91 0.837 0.899 0.918 1.248 0.772 

Mean Value 
0.72 0.73 0.70 0.33 0.70 0.89 0.92 0.91 0.68 0.92 0.78 0.69 0.70 1.07 0.69 

Note: Bold values indicate stations where gridded datasets have an improved skill. 
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Table 4.6: Summary of performance of statistical metrics of gridded temperature data against observed data in Chad Basin 

AVERAGE MONTHLY TEMPERATURE 

 

STATION 

 

KGE 

 

 

INDEX OF AGREEMENT 

 

NRMSE 

CPC CRU PGF UDEL CPC CRU PGF UDEL CPC CRU PGF UDEL 

Bilma 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.038 0.041 0.042 0.038 

Bossangoa 0.81 0.80 0.83 0.86 0.90 0.91 0.92 0.91 0.037 0.035 0.033 0.038 

Bouar 0.77 0.73 0.74 0.85 0.83 0.71 0.67 0.89 0.054 0.08 0.091 0.043 

Geneina 0.81 0.82 0.84 0.93 0.88 0.93 0.93 0.97 0.076 0.06 0.057 0.043 

Maiduguri 0.77 0.76 0.75 0.49 0.92 0.93 0.92 0.68 0.064 0.059 0.063 0.12 

Maina Sorda 0.97 0.97 0.96 0.97 0.99 0.99 0.99 0.99 0.033 0.026 0.026 0.026 

Moundou 0.83 0.85 0.84 0.78 0.90 0.92 0.90 0.84 0.052 0.046 0.054 0.074 

Ndjamena 0.92 0.94 0.94 0.93 0.96 0.97 0.96       0.97 0.047 0.04 0.045 0.042 

Ngaoundere 0.70 0.75 0.73 0.73 0.84 0.85 0.81       0.84 0.052 0.051 0.061 0.053 

Nguigni 0.98 0.95 0.96 0.98 0.99 0.99       0.99       0.99 0.031 0.024 0.025 0.024 

Sahr 0.87 0.90 0.89 0.86 0.91 0.95  0.93       0.92 0.046 0.031 0.039 0.045 

Zinder 0.99 0.99 0.99 0.98 1.00 1.00       1.00       0.99 0.019 0.017 0.018 0.022 

Mean value   0.87   0.87   0.87       0.86 0.93 0.93       0.92       0.92 0.046 0.043 0.046 0.047 

Note: Bold values indicate stations where the gridded dataset has an improved skill.
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The results from Table 4.5 and Table 4.6 revealed that CPC, CRU, GPCC and UDel 

gridded precipitation products has exhibited an improved skill in about 20%, 20%, 26.7% and 

40% in terms of KGE and 13.3%, 40%, 46.7% and 46.7% in terms IA in all the stations 

respectively.  

The temperature data has shown a more suited similarity with the observed station data 

with CPC, CRU, PGF, and UDel recorded an acceptable skill in 33.3%, 50%, 25% and 50% 

in terms of KGE and 33.3%, 75%, 41.7% and 50% in terms of md respectively.  

The metrics used in this study are presented using box plots in Figure 4.4 and revealed a 

consistent variation in their skill to replicate the observed precipitation and temperature data 

except for PGF gridded precipitation that may pose a large uncertainty in climate variable 

prediction.  This may be due to, but not limited to interpolation technique, source and quality 

of observed data used in its development covering the entire Chad basin. 

 
(a)                                                                         (b) 

Figure 4.4: Boxplot of statistical metrics in the Lake Chad basin (a): KGE and md of gridded precipitation against observed 

station data. (b): KGE and md of gridded temperature against observed station data. 

The similarity or agreement between gridded precipitation/temperature dataset and 

observed data for the period 1979 – 2012 at an annual, pre-monsoon and monsoon scale was 
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evaluated using Taylor diagram (Figure 4.5). The result indicates that the polar plots lie in 

the first quadrant which revealed that all correlation values are positive.  

The results revealed a notable variability in normalized standard deviation in the gridded 

precipitation products in the three timescales. Although GPCC and CPC datasets recorded the 

best performance with a Pearson correlation coefficient greater than 0.5 and PGF has the least 

performance due to wider variability and lower Pearson correlation coefficient across the 

annual and seasonal timescales.  

However, PGF data showed an effective performance in the temperature products with 

normalized standard deviation (Variability) ⁓ 1.0 in the annual and monsoon season and an 

acceptable correlation to the observed data.  

Although the gridded temperature products in general exhibit a more suitable skill with 

low observational uncertainty in replicating the observed data at annual timescale relatively 

well compared to monsoon and pre-monsoon season. The differences in their performance 

were apparent but seemingly a quite similar root mean square difference was observed in the 

precipitation products at all time scale. 

 

 

(a)                                                                                     (b) 
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(c)                                                                                           (d) 

 
(e)          (f) 

Figure 4.5: Taylor diagrams for time series data (1979 – 2012). (a): Annual precipitation of gridded and observed station 

data (b): Annual temperature of gridded against observed station data. (c): Monsoon precipitation of gridded against 

observed station data. (d): Monsoon temperature of gridded against observed station data. (e): Premonsoon precipitation of 

gridded against observed station data. (f): Premonsoon temperature of gridded against observed station data. Blue line is 

Normalized station deviation, Green line is Pearson correlation coefficient and Red line is Normalized root mean square 

error. 

4.5.3 Trend Analysis of gridded data  

The trend of precipitation and temperature were evaluated at annual and monsoon seasons 

for the gridded dataset and observed station records for the period 1979 – 2012. For the sake 
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of clarity, the performance of the datasets was assessed based on statistically increasing 

trends, decreasing trends or no trends respectively, arising due to limited station records to 

ease the complexity of analysis.  

The Z-statistic value, (Table 4.7 - Table 4.10) showed the unidirectional trend of 

precipitation and temperature at the Annual and Monsoon season respectively. The results 

revealed that 20% and 26.7% of the observed station data showed a statistically decreasing 

trend of precipitation at annual and monsoon season, while 8.3% and 33.3% of the observed 

station data showed a statistically decreasing trend of temperature at annual and monsoon 

season respectively.  

The stations where the analysis recorded a declining precipitation trend, for example, 

Maiduguri, Nguigni and Bongor are situated in the Semi-arid and Sudano zone. Declining 

temperature trend was observed at Sahr, Moundou, Ndjamena, Zinder are in the Sahelo-

Sudan and Guinean zone, while other stations indicate statistically increasing unidirectional 

trends in the study area consistent with the findings in (Conway et al., 2009; Nkiaka et al., 

2017; Sarr, 2012).  

However, the result revealed some varying degree of mismatch between the gridded and 

observed station records across the basin, for example, CPC, CRU, GPCC, PGF and UDel 

data showed 66.67%, 73.33%, 60.0%, 66.67% and 73.33% agreement in unidirectional trend 

at annual time scale and 73.33%, 73.33%, 46.67%, 66.67% and 66.67% agreement in 

unidirectional trend in monsoon season against the observed data respectively.  

The evaluated trend indicated that the CRU and CPC datasets have the ability to replicate 

the observed station records with a higher percentage agreement compared to other products. 

The temperature products showed a higher degree of agreement of unidirectional trend 

against the station records with fairly similar results - for example, CRU, PGF and UDel 

showed an improved performance in annual (91.67%) and monsoon (66.67%) seasons. 
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Although the CRU gridded datasets showed strong increasing trends and may tend to 

overestimate the temperature of the basin.  

Therefore, the choice of the dataset adopted for hydro-climatic studies is critical for 

accurate assessment in order to reduce uncertainty in the prediction of hydrologic variables in 

modelling studies to achieve good policy planning in water resource management.  

Table 4.7: Mann Kendall Z-Statistics values of linear trend of Annual  gridded and observed precipitation for Chad Basin 

(1979-2012) 

Stations 

 

Precipitation Trend 

 OBSERVED CPC         CRU          GPCC        PGF      UDEL 

Abeche -1.60 -0.85 2.59 1.96 2.23 2.43 

Banda 2.02          0.15 1.07 2.05 0.00 1.10 

Bongor -0.71 -1.63 1.17 0.15 1.42 1.63 

Bossangoa 0.33 -0.82 0.60 -0.53 0.44 -0.53 

Doba 0.16 -1.01 0.21 0.59 0.50 0.33 

Maiduguri -2.19          0.79 2.25 2.16 2.45 -1.90 

Moundou 0.69          0.26 1.21 0.18 1.01 0.34 

Ndjamena 0.67          2.29 2.02 0.29 1.42 2.54 

Nguigni -0.20          0.71 2.31 0.92 2.02 2.31 

Potiskum 1.82          1.51 2.51 0.19 1.96 1.28 

Sahr 0.06          0.98 1.19 2.58 1.81 2.11 

Samry-I 1.91 -1.57 1.16 0.15 1.63 1.63 

Sategui D. 0.74         0.77 1.10 0.36 1.41 1.30 

Tsanaga 1.13         0.27 1.39 1.75 1.69 1.39 

Zinder 1.60         1.07 2.13 0.65 2.16 2.16 

% Agreement - 66.67 73.33 60.00 66.67 73.33 

   Note: Highlighted bold values indicate significant trends 
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Table 4.8: Mann Kendall Z-Statistics values of linear trend of Monsoon gridded and observed precipitation for Chad Basin 

(1979-2012). 

Stations 

 

Precipitation Trend 

 OBSERVED          CPC CRU GPCC PGF UDEL 

Abeche -1.24 -0.38 0.24 1.68 2.39 2.07 

Banda            1.07 1.17 0.50 1.07        -0.24 -0.27 

Bongor -0.74 -0.95 1.51 -0.09 1.42 1.50 

Bossangoa      0.01 -0.47 0.53 -0.92 0.12 -0.83 

Doba  0.46 0.83 0.24 -0.06 0.71 0.53 

Maiduguri -1.99 1.18 2.38 2.25 2.94 -1.80 

Moundou          0.38 1.44 1.32 -0.14 1.24 0.34 

Ndjamena          0.75 2.46 1.88 -0.08 1.51 2.42 

Nguigni         -0.47 0.53 2.16 0.62 1.96 2.25 

Potiskum  1.40 1.70 2.69 0.54 2.22 1.28 

Sahr  0.95 1.84 0.67 1.60 1.60 0.39 

Samry-I   2.11 -0.95 1.51 -0.09 1.43 1.50 

Sategui D.   0.36 1.33 1.90 0.24 2.16 0.85 

Tsanaga   0.98 0.53 1.71 1.33 1.90 1.07 

Zinder   1.10 1.39 2.08 0.62 2.11 1.96 

% 

Agreement 
- 73.33 73.33 46.67 66.67 66.67 

Note: Highlighted bold values indicate significant trends 

 

Table 4.9: Mann Kendall Z-Statistics values of linear trend of Annual gridded and observed temperature for Chad Basin 

(1979-2012). 

Stations 

 

Temperature Trend 

      OBSERVED CPC CRU PGF UDEL 

Bilma 3.21 3.18 4.28 3.33 3.39 

Bossangoa 1.36 2.53 3.75 3.30 2.25 

Bouar 0.50 2.58 3.43 2.65 1.90 

Geneina 2.80 -1.79 2.46 3.21 2.00 

Maiduguri 0.37 2.55 3.85 3.07 3.03 

Maina S. 3.35 3.67 3.61 3.11 1.60 

Moundou -0.37 2.65 3.49 3.30 3.86 

Ndjamena 2.37 5.19 3.33 2.93 1.75 

Ngaoundere 1.60 -0.02 3.64 3.05 3.83 

Nguigni 2.99 2.96 3.42 2.95 2.03 

Sahr 0.50 3.25 3.08 3.92 3.41 

Zinder 2.76 2.92 3.73 3.14 3.83 

% Agreement - 75.00 91.67 91.67 91.67 

Note: Highlighted bold values indicate significant trends 
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Table 4.10: Mann Kendall Z-Statistics values of linear trend of Monsoon gridded and observed temperature for Chad Basin 

(1979-2012). 

Stations 

 

Temperature Trend 

 OBS CPC CRU PGF UDEL 

Bilma 2.90 2.77 2.71 3.28 2.71 

Bossangoa 1.46 1.29 3.33 3.46 1.45 

Bouar 0.79 1.13 3.31 2.15 1.11 

Geneina 1.41 -2.62 1.69 3.38 1.72 

Maiduguri 1.59 0.78 2.57 1.45 2.21 

Maina S. 1.60 1.53 1.89 0.92 0.47 

Moundou -1.29 1.07 2.90 3.04 2.98 

Ndjamena -0.45 3.27 2.61 2.02 0.62 

Ngaoundere 0.50 -0.82 2.66 1.98 3.33 

Nguigni 2.15 1.76 2.15 1.42 0.52 

Sahr -0.82 0.77 3.25 3.31 1.66 

Zinder -0.33 -0.50 1.41 0.62 2.17 

% Agreement - 58.33 66.67 66.67 66.67 

Note: Highlighted bold values indicate significant trends 

 

The results of Sen’s slope of the trend analysis of annual and monsoon season at 95% 

level of confidence revealed that there are mismatches or difficulty of gridded precipitation 

and temperature dataset in reproducing a similar magnitude of trend relative to the station 

records (Figure 4.6 - Figure 4.9).  

For example, the gridded datasets over-estimated and under-estimated the annual and 

monsoon precipitation and temperature in most of the stations. However, the mismatch has 

been acknowledged as one of the sources of uncertainty in modelling processes.  

Although, in this assessment, the median magnitude of precipitation trend for CPC 

(1.200) and GPCC (1.000), and temperature trend of CRU (0.0185) and CPC/UDel (0.0075) 

has shown to be more effective relative to other datasets relative to the observed station data 

at annual and monsoon season across the basin. 
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Figure 4.6: Magnitude of linear trend of Annual gridded and observed precipitation for Chad Basin (1979-2012) 

 

 

 

 
Figure 4.7: Magnitude of linear trend of Monsoon gridded and observed precipitation for Chad Basin (1979-2012) 
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Figure 4.8: Magnitude of linear trend of Annual gridded and observed Temperature for Chad Basin (1979-2012) 

 

 

Figure 4.9: Magnitude of linear trend of Monsoon gridded and Observed Temperature for Chad Basin (1979 – 2012) 

4.6 Discussion 

The performance of widely used, updated and recently available high resolutions gridded 

precipitations and temperature datasets were assessed over the available, quality controlled 

and reliable 15 observed precipitations and 12 temperature station records over the Lake 

Chad basin. The study temporal span was set to be 1979 – 2012 for consistency across all the 

datasets and met the requirement for a hydrologic impact study.  
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The study adopted a 0.5˚ resolution dataset and finally extracted and interpolated the 

gridded dataset to station resolution using the inverse distance weighting method for 

consistency and adequate for regional studies.  

In summary, the evaluated gridded climate products have shown to differ in their skills 

across the selected metrics, although the skill or performance exhibited across all the gridded 

climate products are promising especially with regards to temperature because climate 

models simulate the variable effectively relative to precipitation as acknowledged in Barron 

and Moore, (1994). However, these notable differences observed in the performance of the 

gridded dataset may be misleading in the selection or choice of a dataset based on evaluation 

using a single metric.  

Therefore, a good, gridded dataset should have the ability to accurately replicate the 

climate pattern and amplitude of spatial and temporal variability across different performance 

metrics which is important and critical for the thorough and accurate hydro-climatic 

application. This however has been acknowledged in Gampe and Ludwig, (2017), stating that 

a single performance metric cannot adequately be relied upon for the selection of gridded 

datasets for application globally. The merit of this methodology was predicated on the fact 

that the combination of multiple metrics for selection; reduces the chance of underperforming 

models indicating a reliable performance for the wrong reasons (Flato et al., 2013). 

Table 4.11: Summary of the best two (or three when the metrics have the same performance) gridded precipitation and 

temperature dataset across the performance metrics considered in this study. 

Performance Metrics Precipitation Temperature 

 CPC CRU GPCC PGF UDEL CPC CRU PGF UDEL 

Symmetric Uncertainty - √ √ - - - √ √ - 

Kling-Gupta Efficiency √ √ - - - √ √ √ - 

Index of Agreement - √ √ - √ √ √ - - 

NRMSE - √ - - √ √ √ √ - 

Taylor’s Diagrams √ - √ - - - - √ - 

Trend Analysis √ √ - - - - √ √ √ 

Metrics Agreement (%) 50 83.3 50 0 33.3 50 83.3 83.3 16.7 
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The gridded dataset has been shown to exhibit some inherent weaknesses across the 

performance metrics, especially in simulating the trend and magnitude of precipitation and 

temperature across the annual and monsoon season, for example, the CRU data has shown to 

be efficient in replicating the observed station data relative to the other dataset but over-

estimate the temperature trend across annual and monsoon season.  

However, the skills across the performance metrics considered in this study revealed that 

CRU data is more reliable relative to observation data in 5 out of 6 (83.3%) performance 

metrics considered for both precipitation and temperature, while CPC and GPCC have a 

relatively effective performance, with 3 out of 6 (50%) for precipitation and PGF had 5 out of 

6 (83%) skill for temperature in terms of the performance metrics respectively.  

The superiority of the CRU data may point to the fact of its development employing a 

large of station data than other gridded data products do. However, the products were able to 

exhibit a satisfactory performance and represent the variability reasonably well and indicate 

that they possessed the ability to provide reliable hydro-climatic information with a lower 

level of uncertainty in their prediction.  

The findings of this study, using multi-criteria decisions based on the assessment of the 

dataset by several performance metrics revealed that CRU, GPCC and CPC precipitation 

dataset and CRU and PGF temperature dataset showed an optimum performance and were 

recommended for application for hydro-climatic studies in the Lake Chad basin to enhance 

prediction and achieve a low level of uncertainty in terms of similarity to the observation 

station precipitation and temperature data respectively.  

Furthermore, this finding has been the first study to evaluate the performance and 

uncertainty associated with gridded precipitation and temperature dataset in Lake Chad 

hydrologic basin and could not be compared to previous studies. However, findings from 

other studies in the regions with similar climatology have shown to be consistent with the 
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present findings. For example, a study in the arid region of Pakistan, indicates that GPCC was 

found to have an acceptable agreement with the observed dataset (Ahmed et al., 2019), CRU 

dataset was also found to have effectively reproduce the climatology of the Niger Delta 

region of Nigeria (Ibrahim Hassan et al., 2020) and also GPCC, CRU and CPC was 

consistent with the observed climate data in the mountainous region of South Africa 

(Manatsa et al., 2008).    

4.7 Conclusion 

This paper evaluated the performance of long-time series of high-resolution gridded 

precipitation and temperature datasets and their suitability for hydro-climatic studies in the 

data-sparse Lake Chad basin. The emphasis in this assessment was to employ multiple 

performance metrics to evaluate the skill exhibited of the selected dataset to replicate the 

quality-controlled observed meteorological station records available and provide guidance 

and methodology based on the multi-criteria decision on the choice of reference dataset 

suitable for climate and hydrologic impact studies in a data-sparse region. 

The results of the analysis revealed that all the gridded precipitation datasets have the 

ability to replicate the observed climate record with varying levels of uncertainty, except the 

PGF dataset that exhibits unsatisfactory performance in terms of KGE, md and NRMSE. 

However, all the temperature datasets showed a strong agreement that was consistent with the 

observed data.  

The result from the Taylor diagram indicates a notable variability in normalized standard 

deviation across the annual, pre-monsoon and monsoon season but have an acceptable 

Pearson correlation coefficient relative to the observed data record. 

The trend analysis results have shown that the temperature dataset exhibits a suitable skill 

in replicating the trend over precipitation data i.e., the measure of the overall accuracy of the 

forecast, i.e., the degree of variability of the gridded dataset from the observation data across 
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all metrics of the assessment adopted is suitably represented by the temperature dataset. This 

may be related to the mechanism and representation of temperature in development of the 

dataset is simple while the precipitation is variable in its real state and very difficult to predict 

or model accurately. 

Although there is a varying degree of mismatches in the magnitude of the trend across the 

stations, the CRU data exhibited a strong increasing temperature trend across all the stations 

at annual and monsoon season and tend to over-estimate the temperature of the basin relative 

to the observed gauged data.  

However, the multi-criteria decision-making approach applied based on the skill 

exhibited across the performance metrics in this study, revealed that the CRU, GPCC and 

CPC datasets are appropriate for precipitation and CRU and PGF dataset for temperature 

respectively, to accurately replicate the basin climatology with an acceptable and low level of 

uncertainty in the prediction of climate and hydrologic variables for improved policy 

planning and water resource management. 

Furthermore, the results from this study highlighted that the choice of gridded data is 

critical for fair representation of historical and presumably reduces the propagation and 

transfer of uncertainty to projected future climate as acknowledged in (Flato et al., 2013). 

Therefore, due to differences in temporal resolution of gridded datasets, the daily CPC 

precipitation and PGF temperature and monthly CRU precipitation/temperature dataset is 

recommended for the downscaling and bias correction of global climate models in hydrologic 

modelling processes depending on the input data requirements of hydrologic models in Lake 

Chad Basin and the need for improvement in climate models development to effectively 

reproduce satisfactory temporal and spatial variability in climate indices and limits 

uncertainties and improve prediction accuracy in the quantification of projected climate 

hazards for efficient water policy decision making.  
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4.8 Afterward 

The findings from this study can only address the uncertainties related to the historical 

and current climate and watershed assessment of basin-scale features in hydrologic 

modelling. It is worth noting that insufficient dense network of station observations and 

information may impede the appropriateness of the gridded dataset’s ability to reproduce the 

observed trends because the limited available station data may not be representative of the 

wider basin. 

Perhaps extending the study to examine the appropriateness of the gridded datasets to 

reproduce extremes e.g., SPEI drought and flood hazards will add value to the reliability 

assessment because the different gridded datasets used may have been generated using 

different source gauges at different times and may not necessarily be expected to reliably 

reflect trends and magnitude of change of the basin climate. 

However, in order to investigate and understand the potential for the reduction of input 

and scenario uncertainty in hydrologic modelling concerning future developments, the 

recommendations from this study were applied afterwards in the next phase of the research to 

investigate and understand effectively the implementation of downscaling and bias correction 

techniques and innovative capability assessment of GCM models by data pruning for reliable 

application in hydrologic model development at local basin-scale.  
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CHAPTER 5: APPLICATIONS OF BORUTA ALGORITHMS AS A ROBUST 

METHODOLOGY FOR PERFORMANCE EVALUATION OF CMIP6 

GENERAL CIRCULATION MODELS FOR HYDRO-CLIMATIC STUDIES 

Preamble 

This chapter outline key issues related to the application of CMIP6 climate data in 

hydrologic impact study and proffer solution to improve their evaluation framework 

objectively at regional and local basin-scale. This is a source of concern in watershed with 

sparse observational data to validate the alternative and improve key climatological basin 

features.  

Recent research on the application general circulation models at regional and local basin 

using advanced methodology tend to overlook the data scale and timestep necessary for 

hydrologic modelling and the after effect of multi-model ensemble performance to prevent 

inclusion of models that compromise accuracy and increase uncertainty in watershed 

modelling.  

This anomaly may be introduced by inadequate internal parameterization through 

downscaling and bias correction to finer resolution of the climate model structure causing 

distortions in watershed hydrologic dynamics such as trend and magnitude of SPEI drought 

and flood hazards and flawed depiction of the basin hydrology.  

In an effort to address this shortcoming, a methodology was proposed to reduce climate 

data uncertainty in numerical modelling process and provide an objective evaluation 

framework that is independent of assumptions and parameterization methods of GCM model 

development. 

The methodology was objectively applied to analyse models distinctly from the different 

modelling centres and their successful applications at regional and local watersheds 

especially in data-sparse regions where the uncertainty levels can be amplified in hydrologic 
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models with average confidence in the validation process. It is worth noting that, the 

assessment was limited to 16 GCM models based on two criteria.  

(1). Models that possess data at daily step necessary for hydrologic modelling.  

(2). Models that possess all climate change scenario (SSPs) data relevant for 

hydroclimatic impact study. 

Fitting quantitative correlations between large-scale GCM and local (Observations) 

climate variables may provide several avenues for additional improvements in multimodel 

ensembles. The main benefit of using machine learning methodologies in climate model 

simulations is that they can take advantage of significant investments already made in sizable 

ensembles of climate models with various boundary conditions and the non-linear nature of 

the climatic data series of the prediction process.  

They also offer opportunities for training and testing the models, to reduce the complexity 

of the model data, minimises over-fitting by choosing the best features, and iteratively 

eliminates features that are statistically less relevant in order to improve predictions due to 

non-stationarity and large spatiotemporal scale of the climate data. This will facilitate the 

comprehension of various structural uncertainties that could impact the precision of the 

multimodel ensemble produced for hydrologic modelling. 

Similarly, the evaluation of the efficacy of the methodology was validated by assessing 

the severity, trend and magnitude of drought and flood hazards across the four climatic zone 

of the basin using standardized precipitation evapotranspiration index (SPEI) relative to 

observation.  

The SPEI drought monitoring index was adopted in favour of other indicators because of 

its ability to identify various drought types and impacts in the context of climate change, 

thanks to its multi-scalar properties and its ability to take the effect of ET on drought severity 

especially in water resource assessment.  
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Finally, “trend envelope” as used in the assessment of drought and flood event in this 

chapter entails the scale of change in the severity of drought and flood indicators at basin 

scale. 

The Paper following was published in “Theoretical and applied climatology” titled 

“Application of Boruta algorithms as a robust methodology for performance evaluation of 

CMIP6 general circulation models for hydro-climatic studies  (2023) 

https://doi.org/10.1007/s00704-023-04466-5.   

5.1 Abstract of paper 

Regional climate models are essential for climate change projections and hydrologic 

modelling studies, especially in watersheds that are overly sensitive to changes in climate. 

Accurate hydrologic model development is a daunting task in data-sparse regions where 

climate change’s impact on hydrologic and water quality processes is necessary for a well-

informed policy decision on adaptation and hazard mitigation strategies.  

Novel approaches have been evolving that evaluated GCMs with the objective of 

improved parameterization to limit uncertainty and improve hydrologic model development. 

However, conclusions drawn should be purpose-driven based on intended usage.  

This study provides an overview of the state-of-the-art Boruta random forest as a robust 

methodology in the performance evaluation of GCMs models for hydroclimatic study. 

Highlights from the assessment indicate that: (1) there is consistency in replicating the three 

observed climate variables of daily precipitation, maximum and minimum temperature 

respectively, (2) improved temporal correlation (R2 = 0.95) in annual precipitation with a 

mean bias of 0.638mm/yr.; when compared to symmetrical uncertainty (SU) (R2 = 0.82), and 

all models ensembles (AME) (R2 = 0.88) with associated biases of 68.19mm/yr. and 

10.57mm/yr. respectively.  

https://doi.org/10.1007/s00704-023-04466-5
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Evaluation of the multi-year climate extreme indices, trends and magnitude reveal that 

there is a fair representation of basin-scale observed climate extreme events. However, the 

Boruta random forest approach exhibited an accurate statistical trend and magnitude of the 

extreme event in the basin. The findings of the study revealed that Boruta random forest, 

enhanced GCM dataset evaluation can present a simple and efficient methodology to examine 

the limitations associated with selected GCM ensemble for impact study in hydrology.     

Keywords: CMIP6 models, climatology, performance metrics, model uncertainty, regional 

modelling, Lake Chad Basin. 

5.2 Introduction 

To reduce observational uncertainty and the impact of projected changes in climate and 

catchment hydrologic variables on the availability of water resources for an accurate 

assessment of sustainability concerns at local, regional, and global scales, a successful hydro-

climatic study requires accurate data with high temporal and spatial resolution. Therefore, 

future variations of global surface air temperature and precipitation are deemed important for 

climate change policy formulation, and hazard assessment which may affect the human 

livelihood and regional economy, especially in developing economies (Akhter et al., 2017) 

and ensure proper mitigation and adaptation strategies are adopted for integrated water 

resources management (Ahmed et al., 2019a). 

Global energy balance has undergone periodic changes due to increased emission of 

atmospheric greenhouse gas owing to widespread fossil fuels usage and industrial activities 

across the globe (Chu et al., 2010; Huang et al., 2011; Salman et al., 2018). The rise in the 

concentration of greenhouse gases has been noted to increase the Earth’s temperature at a rate 

of 0.15 ℃/decade (Flato et al., 2013), and has potentially a severe effect on the earth’s 

ecosystem and most notably in the tropical regions (Khan et al., 2019; Mohsenipour et al., 

2018; Wang et al., 2014).  
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Mishra and Liu, (2014) observed that the impact of the variations of rainfall-induced by 

projected climate change would be more intense in the tropical regions of the world. This 

phenomenon has become a significant socio-economic and political issue (Alamgir et al., 

2019). 

General circulation models are the main tool for predicting future changes in the global 

climate (Maraun et al., 2010), because they possessed the potential in replicating historical 

climatic changes as well as future changes considering the greenhouse gas concentration 

(Goyal et al., 2012), and other shared socio-economic pathways integrated into the recently 

developed coupled model inter-comparison project phase six models.  

Evaluating the performance of general circulation models (GCM) outputs is instrumental 

for simulating the historical and future basin scale hydrologic cycles using hydrological 

models. The accuracy of the precipitation and temperature outputs from GCMs, when used as 

an input data for hydrological modelling, affects the reliability of hydrologic variables 

prediction.  

Therefore the spatial and temporal performances, as well as their seasonal variations, 

need to be evaluated arising from natural and climate-induced radiative forcing in a multi-

model context (Eyring et al., 2016; Gusain et al., 2020; Wang et al., 2021) to reduce 

uncertainties and enhance prediction accuracy for reliable policy planning of basin scale 

hydrology.  

GCMs are developed to produce projections at a coarse spatial scale and could not resolve 

finer scale features such as clouds, land use change etc. Studies at the regional scale require 

that the output be downscaled to finer a resolution. The mismatch between the hydro-climatic 

information required and the GCM output is a major cause for concern or obstacle in 

hydrologic impact studies (Willems and Vrac, 2011).  
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Careful assessment of various downscaling techniques is important to enable accurate 

prediction and a solution to the mismatch between regional hydro-climatic information and 

GCM outputs at a spatial scale of between 5 – 50 km (Yang and Delsole, 2012). However, 

McSweeney et al., (2015) argued that downscaling the complete ensemble may not be 

desirable or necessary to produce a meaningful range of future climate conditions relevant to 

evaluate hazards associated with future climate change because high resolution downscaling 

is labour and computing resource intensive. 

Therefore, various strategies need to be explored to sample from the available CMIP6 

GCMs and their shared socio-economic pathways (SSPs) scenarios to generate projections 

relevant for water policies at catchment scale. The assessment process is to identify the 

challenges and opportunity to exclude models deemed unsatisfactory in the representation of 

key climate features. 

These models have been utilized to simulate the historical and projected changes in 

climate at global (Sachindra et al., 2014; Wright et al., 2015), regional (Abbasian et al., 2019; 

Ahmed et al., 2019a; Salman et al., 2018) and local basin scale (Akhter et al., 2017; Hassan et 

al., 2020).  

However, over the years, six phases of the Coupled Model Inter-comparison Projects 

(CMIPs) have been developed by various modelling centres for climate change studies. 

Previous studies utilizing the fifth phase (CMIP5) GCMs indicated some significant 

improvements in simulated climate variables relative to the latter generation (CMIP3) models 

(L. Wang et al., 2016), due to improved knowledge of climate science. 

Studies that utilized CMIP5 GCMs have identified the Sahel region, tropical West Africa 

and Southern part of Africa as hotspot for severe impact of regional climate change 

(Diffenbaugh and Giorgi, 2012; Niang et al., 2014). Although studies are evolving utilizing 
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CMIP6 models recently to understand their ability in replicating historical and future climate 

at the regional and global scale.  

There are notable differences between the CMIP6 GCMs and the earlier phases which 

integrate new specification for greenhouse gas concentration and emission scenarios, as well 

as land use scenarios (Gidden et al., 2019). 

A limited number of studies utilizing the CMIP6 GCMs indicated improvement and its 

robustness over earlier phases in some regions, for example Australia (Grose et al., 2020); 

Africa (Almazroui et al., 2020; Ayugi et al., 2021; Sian et al., 2021); Nigeria (Shiru and 

Chung, 2021); South Korea (Song et al., 2020).  

The performances may vary from one region to another and therefore, necessitate the 

evaluation of their performance at any region of interest, especially in data sparse catchments 

before adoption for proper representation of the climatic feature to avoid projections with 

large uncertainty range which may result to over confidence and poor adaptation 

(McSweeney et al., 2015). 

Several techniques have been used to assess the performance of climate models such as 

ensemble averaging (Giorgi and Mearns, 2002), combined statistical measures like root mean 

square error, mean bias error, mean absolute error, correlation coefficient into one 

performance index (Gu et al., 2015; Wu et al., 2017), Relative entropy (Shukla et al., 2006), 

Probability Density Functions (PDF) (Perkins et al., 2007), Bayesian regression (Chandler, 

2013), Clustering (Knutti et al., 2013), Correlation (Li et al., 2016; Xuan et al., 2017), and 

Symmetrical uncertainty (Salman et al., 2018).  

Nevertheless, often times the methods are quite cumbersome or produce inconsistent 

performance across climate variables that will require a multi-criteria decision tool for 

selection of appropriate GCMs for hydrologic impact studies. 
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However, based on previous studies; no consensus was made regarding the choice of 

GCM selection approach and McMahon et al., (2015) posited that no single criterion is 

accepted universally for GCM performance, although assessment at multiple time scales and 

the ability of a GCM capturing the spatial structure of a catchment's key climate feature may 

give crucial information for water resource management accurately, especially at basins with 

high climate variability (Ahmed et al., 2019; Gleckler et al., 2008).  

The downside of the statistical metric is that they only assessed certain features of the 

time series data when compared to the observed data (McSweeney et al., 2015; Weigel et al., 

2010), and often provide contradictory results across different metrics (Nashwan and Shahid, 

2019; Raju et al., 2017). 

Studies on GCM selection are grouped into the past performance method (Biemans et al., 

2013), where the models are selected based on their capability to replicate the historical 

climate and the envelope method (Warszawski et al., 2014) where the ensemble of GCMs are 

selected based on the ability to encompass the whole range of future projections.  

However, both of these approaches have weaknesses; for example, the former method 

neglects agreement between GCMs to simulate projected future climate, while the latter 

method ignores the ability of GCMs to replicate the historical observed climate (Ahmed et 

al., 2019b). 

Machine learning algorithms are gaining a lot of attention, especially filters and wrappers 

such as Clustering (Knutti et al., 2013; Raju and Kumar, 2016), Bayesian weighing (Min and 

Hense, 2006), Weighted skill score (Maxino et al., 2008; Perkins et al., 2007) etc. 

Furthermore, these techniques are used to evaluate and select the GCMs using a single 

performance index (Ahmadalipour et al., 2017; Fu et al., 2013; Raju and Kumar, 2016; 

Wójcik et al., 2014).  
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However, the techniques are found to have some inherent weaknesses such as the 

inability to capture the temporal variability of climate, and, the variation of frequency of 

climate extreme which is found to be an important factor in the assessment of model 

performance (Salman et al., 2018). 

The major advantages of machine learning techniques are that, in feature selection where 

the dependent variables are analysed and ranked based on their importance or impact on the 

independent variable, and where features that are likely to decrease the efficiency of a model 

are screened out to reduce uncertainty in model development.  

It is important in machine learning application to have the observed data well represented 

and the information within the data series possessed the ability to be learnable for the 

modelling process, as this is critical for the final performance (Kursa, 2016). 

In GCM selection for hydro-climatic study, the information entropy based filter referred 

to as symmetrical uncertainty (SU) (Witten et al., 2005), has gained the attention of 

researchers due to its ability to select variable without bias and reliably.  

The technique was used to rank GCMs according to their degree of similarity or 

otherwise with the observations for the entire time series data and it has the advantage of 

giving a universal metric for the relationship between dependent and independent features 

irrespective of the shape of the underlying distributions (Wu and Zhang, 2004) and has been 

used in various studies (Ahmed et al., 2019b; Nashwan and Shahid, 2019; Pour et al., 2018; 

Salman et al., 2018). 

The technique has shown to be promising and possessed a similar or more improved skill 

for performance evaluation and selection of appropriate GCM dataset for hydro-climatic 

study as compared to other available methods such as compromise programming, wavelet-

based skill score (WSS), statistical metrics which sometimes exhibits contradictory results 

and makes decisions on performance and selection difficult (Ahmed et al., 2019b).  
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Although most filter based classifiers are known to use single algorithms to integrate 

variable selection and modelling and often evaluate univariate or very simple interactions 

between attributes and decisions, which affects the outcomes or performances of features 

(Kursa, 2016). 

However, machine learning approaches are evolving, For example, the wrapper-based 

Boruta algorithms for feature selection in model building and has been applied in other 

disciplines such as, Kursa, (2016) showed the relative skill or effectiveness of the 

methodology in feature selection of random ferns classifier, Ahmed et al., (2021) applied the 

technique for soil moisture estimation under global warming scenarios.  

Advancement in computational capabilities has ensured that machine and deep learning 

techniques are useful for accurate variable prediction due to their ability to extract, process 

and handle relatively large amount of complex data with high degree of variable mapping 

skills and efficiency (Gong et al., 2019). 

Numerous studies have successfully implemented different feature selection algorithms 

such as Information entropy (Shukla et al., 2006), Bayesian weighting (Min and Hense, 

2006), Elastic net and ridge regression (Hammami et al., 2012), Artificial Neural Networks 

(Hajnayeb et al., 2011), Support Vector Machine (Maldonado and Weber, 2009), Random 

forest (Genuer et al., 2010), Neighbourhood component analysis for regression (Ghimire et 

al., 2019), iterative input selection algorithm (Prasad et al., 2017) for hydro-climatic study. 

Among the techniques, Symmetrical Uncertainty (SU), that is based on information 

entropy (William et al., 1996) is widely used and has gain the attention of researchers 

(Ahmed et al., 2019b; Kannan and Ramaraj, 2010; Nashwan and Shahid, 2019; Sa’adi et al., 

2020).  

However, there are identified shortcomings of the various method such as, inter-

dependencies among the models are ignored for a known feature which may result in the 
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selection of inappropriate GCMs due to overfitting and Some performance indices are based 

on the state of the climate as a whole and temporal variability is not considered which is 

critical in model performance assessment (Ahmed et al., 2019b; Reichler and Kim, 2008). 

This study employed and pilot the use of Boruta-random forest algorithms (BRF) 

developed by Kursa et al., (2010) for performance evaluation and selection of appropriate 

CMIP6 GCM models to examined their individual capability to accurately simulate observed 

daily historical climate variables in the basins due to its high sensitivity to climate change.  

In this case, Lake Chad basin was adopted to examine the robustness of the methodology 

due in part to its highly skilled variable mapping as a requirement for input parameters 

required in hydrologic study, uniqueness and high climate variability across the basin of 

interest and this technique has been used and recommended based on previous study. 

For example, Prasad et al., (2019) utilised BRF to predict soil moisture, Christ et al., 

(2016) applied BRF for industrial big data application in distributed and parallel time series 

feature extraction, Leutner et al., (2012) predict forest biodiversity and Lyu et al., (2017) 

applied the concept to forecast air quality, where these algorithms was used to define 

significant input parameters by comparing the real features or variables to those of random 

probes and all the studies has suggested a convincing outcome of model accuracy. 

However, the authors acknowledged that, this is first attempt to have applied the proposed 

technique for GCM evaluation and selection and to validate the methodology, an information 

aggregation approach was adopted to combine the ranks of the GCMs across the grid points 

in the entire basin to identify the best ensemble of the CMIP6 GCM for simulation of the 

above variables. the result of this approach will be compared with the well-established 

symmetrical uncertainty technique to understand the efficacy, applicability and the inherent 

uncertainties of the model evaluation and selection approach. 



Page | 110  
 

Furthermore, earlier studies that utilized simulation based studies to investigate the 

impact of climate change on freshwater hydrology required data in the form of daily 

precipitation and temperature series to drive various hydrological watershed models; 

however, the performance of the model is dependent upon the driving general circulation 

models, internal parameterizations and model domain configuration (Déqué, 2007). 

Therefore, it is important to note that; conclusions drawn from studies that evaluated and 

select GCM performance at monthly time scale (Abbasian et al., 2019; Ahmed et al., 2019b; 

Salman et al., 2018) may well not be relied upon for  studies that requires climate data at 

daily time step for hydrologic modelling processes, in order to reduce biases and 

observational uncertainties for realistic predictions of climate change impact, adaptation and 

resilience in hazard assessment. The performance of GCMs from BRF, SU and an all-

ensemble average approach adopted in this study will be evaluated for a realistic assessment 

of basin scale features and climate variable dynamics.  

Finally, this study intends to propose and provide a robust approach that enhance and 

preserve climate signals’ internal parameterization exerted by re-gridding, downscaling and 

bias correction to realistically utilize the optimal amount of GCM dataset capable of 

assessing the complex interactions within the earth system (hydrologic) models.  

This is essential for accurate understanding and forecasting of long-term changes of basin 

hydrology resulting from external forcing which are not adequately addressed in previous 

research especially in data-sparse regions within an acceptable level of uncertainty.   

5.3 Case Study Area and Data 

5.3.1 Case study area 

The Lake Chad Basin is one of the world's largest endorheic basins, with an estimated 

area of ~2,500,000 km2, (Coe and Foley, 2001; Gao et al., 2011). It is situated at latitudes of 
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5.2⁰ - 25.3⁰ N and longitudes of 6.9⁰ - 24.5⁰ E, in the transition zone between the Sahara and 

the Sudano-Sahelian regions of West Africa (Ndehedehe et al., 2018), (Figure 5.1).  

The basin provides the primary source of freshwater for livestock grazing, agricultural 

production, and fish farming (Buma et al., 2016). The basin is divided into four climatic 

zones namely: the Saharan, Sahelo-Saharan, Sahelo-Sudanian, and the Sudano-Guinean zone, 

with an annual precipitation range of, < 100 - 1500 mm respectively.  

The basin’s average annual temperature is between 35℃ to 40℃ in the northern part to as 

low as 26.5℃ in the southern part of the basin (Nkiaka et al., 2018b) characterised by hot, 

wet and dry weather condition from March to June, from June to October, and from 

November to February, respectively (Mahmood et al., 2019).  

The basin is situated in an area with minimal relief, no surface outflow, and a spatial 

extent that is highly vulnerable to climate change, with elevations ranging from –330 m to 

3446 m (Figure 5.1), However, according to (Coz et al., 2009; Nkiaka et al., 2018a), With 

the exception of few isolated hills, plateaus, and mountains in the southern and northern 

regions, the basin is generally flat ground with an average slope of < 1.3%. 
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Figure 5.1: Lake Chad basin showing elevation, climate stations and climatic zones for the proposed study. 

5.3.2 Gridded data and sources 

Several gridded climate data sources were explored and analysed for suitable application 

in climate studies in the Chad Basin due to inadequate gauged based meteorological data in 

most part of the world Sub-Saharan Africa and the Mediterranean, in particular.  

This study utilized the daily gridded precipitation data of the US Climate Prediction 

Centre (CPC), optimal interpolation of station or gauged based records of GTS (Xie et al., 

2007) and daily maximum and minimum temperature data of the Princeton University Global 

Meteorological Forcing PGF v.2 from forcing’s of NCEP-NCAR reanalysis and other global 

data by bilinear interpolation (Sheffield et al., 2006), from 1979 – 2012 and available at 

https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html and 

http://hydrology.princeton.edu/data.pgf.php respectively, as recommended by Lawal et al., 

(2021) to represent adequately the true climatic features of the selected basin. 

https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
http://hydrology.princeton.edu/data.pgf.php
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5.3.3 General circulation model data and sources 

In this study 16 coupled inter-comparison project phase 6 (CMIP6) general circulation 

models at daily time resolution were considered.  These are available at https://esgf-

node.llnl.gov/projects/esgf-llnl/CMIP6 for the period 1979 – 2012 and consistent with the 

gridded data time scale for realistic performance evaluation. Details of the GCMs name, 

spatial resolutions, models’ development centres and country of origin are provided in Table 

5.1., below.  

The first ensemble members of the GCM were adopted for fair assessment. The models 

were chosen because they have the requisite historical and future climate change emissions 

scenario data (SSP1 – SSP5) at a daily timestep as an important requirement for a hydrologic 

modelling study.  

This is essential for understanding watershed projected hazards due to climate change and 

provide valuable information to policy makers for informed decision on integrated water 

resource management. 

https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6
https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6
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Table 5.1: Summary of CMIP6 models considered in this study. 

Country Modelling Centre Model Name Resolution in arc 

Deg. (Lon × Lat) 

Model Number 

Australia Commonwealth Scientific and Industrial Research Organisation; ARCCSS (Australian Research 

Council Centre of Excellence for Climate System Science) 

ACCESS CM2 1.875×1.25 M1 

Australia 

 

 

Commonwealth Scientific and Industrial Research Organisation; ARCCSS (Australian Research 

Council Centre of Excellence for Climate System Science) 

 

ACCESS 

ESM1-5 

 

 

1.875×1.25 

 

 

M2 

China Beijing Climate Centre BCC CSM2-MR 1.10×1.10 M3 

Canada 

 

Canadian Centre for Climate Modelling and Analysis 

 

CanESM5 

 

2.81×2.81 

 

M4 

Sweden EC-Earth consortium EC-Earth3 0.70×0.70 M5 

Sweden 

 

 

EC-Earth consortium EC-Earth3-Veg 

 

 

0.70×0.70 

 

 

M6 

China 

 

Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics 

(LASG) modelling (Chinese Academy of Sciences) 

F-Goals-g3 

 

2.81×2.78 

 

M7 

China Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics 

(LASG) modelling (Chinese Academy of Sciences) 

GFDL-ESM4 1.25×1.00 M8 

Russia Institute of Numerical Mathematics of the Russian Academy of Sciences INM-CM4.8 1.12×1.12 M9 

Russia Institute of Numerical Mathematics of the Russian Academy of Sciences INM-CM5.0 1.87×1.25 M10 

France Institut Pierre-Simon Laplace IPSL-CM6A-LR 2.50×1.27 M11 

Japan 

 

 

Centre for Climate System Research; Japan Agency for Marine-Earth Science and Technology; 

National Institute for Environmental Studies 

 

MIROC6 

 

 

1.40×1.40 

 

 

M12 

Germany Max-Planck-Institut für Meteorologie MPI-ESM1.2-

LR 

1.875×1.875 M13 

Japan 

 

Meteorological Research Institute (MRI) 

 

MRI-ESM2.0 

 

1.125×1.125 

 

M14 

Norway 

 

Norwegian Climate Consortium 

 

NorESM2-LM 

 

2.50×1.875 

 

M15 

Norway Norwegian Climate Consortium NorESM2-MM 1.25×0.9375 M16 

(Source: https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6 ) 

 

https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6
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5.4 Research Methodology 

5.4.1 Methodology flow chart 

The general procedure used for the evaluation of GCMs using gridded CPC and PGF 

climate data as surrogate for observed, selection, and further analysis of GCM ensemble is 

outlined in the methodology flow chart as shown in Figure 5.2. 

 

 

Figure 5.2: GCM evaluation and selection for hydro-climatic study. 

5.4.2 Statistical downscaling and bias correction of GCM 

A multi-point statistical downscaling and bias correction approach was considered. The 

CMIP6 daily precipitation, maximum temperature and minimum temperature GCM models 

were interpolated to a common 2˚ × 2˚ grid and spatially downscaled using bilinear 

interpolation approach for smooth transformation of coarse to fine resolution as 

recommended by Fischer et al., (2014), resulting into 54 grid point (Figure 5.1), that covered 

the entire study area.  
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The deviation of the interpolated climate data was corrected to improve the GCM models 

agreement with the observed data (CPC precipitation and PGF temperature), and to provide 

enhancement in model output because direct GCM output cannot be relied upon for accurate 

assessment of watershed climate features at local and regional scale required for impact 

studies due to their coarse resolution.  

This is achieved by combining features of local observation and simulations resulting in 

insignificant biases and higher resolution climate projections using three well known bias 

correction approaches and the detailed methodologies can be found in the cited references 

namely delta change (Navarro-Racines et al., 2020), Quantile mapping (Cannon et al., 2015), 

and Empirical quantile mapping technique (Ghimire et al., 2019). 

The grid based bias correction performance was evaluated using three statistical metrics 

e.g. correlation coefficient, mean bias error and index of agreement to understand the 

limitations of the various techniques to prevent misuse in selecting the best suited output 

relative to other method for further analysis and their detailed methodology can be found in 

(Taylor, 1997; Willmott, 1981; Willmott and Matsuura, 2005). 

5.4.3 Performance evaluation and selection of appropriate GCM output by Machine 

learning technique 

The daily bias corrected CMIP6 GCM outputs adopted were evaluated by two machine 

learning approaches to discover the significant features of the GCMs relative to the 

observation data. This section gives a brief overview of the machine learning based 

symmetric uncertainty and Boruta random forest algorithms for performance assessment and 

ensemble projections. 
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5.4.3.1 Symmetric Uncertainty (SU) 

Symmetric uncertainty was developed by William et al., (1996), and an entropy based 

filter that assess pair-wise similarity between dependent and independent attribute 

irrespective of their probability distribution and interdependency (Wu and Zhang, 2004). It 

measures the information gain of the response random variable relative to the predictor and 

the lesser the entropy the greater the association of the data.  

The bias in the measurement is corrected by dividing the information gain with the sum 

of entropies of the random features of the observation and GCMs precipitation, maximum 

and minimum temperature respectively. The SU was estimated according to Equation (5.1). 

Detailed methodology of the approach can be found in (Ahmed et al., 2019b; Lawal et al., 

2021) (See 254). 

  

𝑆𝑈(𝑥, 𝑦) = 2 ×
𝑀𝐼(𝑥, 𝑦)

𝐻(𝑥) + 𝐻(𝑦)
 

  

(5.1) 

                

In Equation (5.1), 𝑀𝐼(𝑥, 𝑦)  is the mutual information gain, 𝐻(𝑥) and 𝐻(𝑦) represent the 

entropies of the GCM and observation respectively. Symmetric uncertainty values range from 

0 to 1 indicating no similarity to perfect similarity respectively. 

5.4.3.2 Boruta random forest algorithm (BRF) 

Boruta feature selection was developed based on random forest algorithm (Breiman, 

2001). The approach was introduced by Stoppiglia et al., (2003) to identify significant input 

parameters from a host of many dependent features to match the attributes of an independent 

feature.  

The algorithm computes the Z-score of all input predictors and the distribution determines 

the shadow features as well as the important variables of the predictors based on the Z-score 

metrics (Kursa and Rudnicki, 2010). First, the 16 GCM (predictors) and observation (target) 
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variables were divided into 70% and 30% as training and test datasets. This is necessary 

because the accuracy of the prediction depends on multiple runs for convergence. Also, there 

are situations where unimportant attributes may achieve a higher Z score than the shadow 

attributes. Therefore, multiple random forest runs were executed to arrive at a significant 

decision. 

The methodology adopted are shown below and the source code is available in 254.  

• A duplicate or shadow random variable, 𝑞′
𝑡
 for a particular vector, 𝑞𝑡 to increase 

randomness and correlation between predictors and target variable (𝑃𝑡), for all 

group of discrete inputs (𝑞𝑡  ∈  𝑅𝑛), T and target variables (𝑃𝑡  ∈ 𝑅) for all inputs 

(n) and 𝑡 = 1, 2, 3, …………𝑇. The target variable is evaluated for association 

using the shadow variable 𝑞′
𝑡
 and actual variable 𝑞𝑡. 

• The variable importance measures or scores (mean decrease accuracy) for each 

predictor 𝑞𝑡 and shadow 𝑞′
𝑡
 attributes were computed for 500 iterations based on 

equation (5.2)., to achieve accurate predictions (Hur et al., 2017). 

  

𝑉𝐼𝑀 =  
1

𝑚𝑡𝑟𝑒𝑒
∑

∑ 𝐼(𝑃𝑡 = 𝑓(𝑞𝑡)) 𝑡∈𝑂𝑂𝐵 − ∑ 𝐼 (𝑃𝑡 = 𝑓(𝑞𝑛
𝑡
)) 𝑡∈𝑂𝑂𝐵  

|𝑂𝑂𝐵|

𝑚𝑡𝑟𝑒𝑒

𝑚=1

 

  

(5.2) 

I(•) is an indication function, OOB is out-of-bag predicted error in the training 

samples; 𝑃𝑡 = 𝑓(𝑞𝑡) and 𝑃𝑡 = 𝑓(𝑞𝑛
𝑡
) are predicted values before and after 

permutation. 

• The standard score (Z-score) of the predictor and shadow attributes relative to the 

observation are computed as: 

  

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑉𝐼𝑀

σ
 

  

(5.3) 
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Where, 𝜎 is the measured standard deviation of accuracy losses, the minimum, median 

and maximum Z-score of the shadow features is computed and analysed relative to the 

predictor variable importance distribution of all dependent features. When all input 

features are confirmed to be important, or the iteration limit is achieved, the algorithm 

ends. 

• The attribute is deemed important for a set iteration, if its variable importance score 

is higher than the maximum importance score of the shadow attributes. 

To check the efficacy of the feature selection approach, a cross-validation procedure was 

run on the remaining (30%) test data to obtain a classification error and a repeat BRF 

procedure was run on the selected attributes from the group ranking approach.  

The OOB error and model accuracy for the two procedure was 0.231 and 0.130 and 

0.7692 and 0.88 respectively. This implied that consecutive reduction of features that are 

weakly important can eliminate noise and increase prediction accuracy. 

5.4.4 Performance evaluation of selected GCM ensemble mean. 

The weight or performance score of the two machine learning technique was used to rank 

the bias corrected precipitation, maximum and minimum temperature at individual grid point 

and the ranking were aggregated based on multi-criteria rating metrics using numerical 

averaging as recommended by Raju and Kumar, (2016) for the entire study area. 

Multi-model ensemble mean of the GCMs was developed by selecting four best GCM 

relative to the observation based on the two machine learning approaches (BRF and SU) and 

that of the 16 GCMs here referred as all model ensembles mean (AME) to further evaluate 

spatial and temporal changes in annual precipitation, maximum and minimum temperature 

changes, and extreme conditions of the basin climate.  

Analysis of individual model bias as seen in other studies may not necessarily translate to 

accurate performance. Here, the study focused on the ensemble mean of the GCM to 
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effectively understand the uncertainty (spread) of the combined model ensemble mean 

features, which is important and sensitive in their usage for hydrologic impact studies and 

reliable future projections of water resources. 

5.4.5 Validation of evaluation approach based on SPEI drought and flood hazard 

assessment. 

The evaluation approaches considered i.e., BRF, SU and AME were further validated by 

examining the influence of the ensemble mean GCM precipitation, maximum and minimum 

temperature on the severity of drought relative to observation across the four climatic zone of 

the basin by estimating the 12-monthly standardized precipitation evapotranspiration index 

(SPEI) for the period of observation (1979 – 2012). The estimated SPEI time series were 

further used to assess the temporal pattern in the trend and their significance by Mann 

Kendall trend test and Sen’s slope estimator at 95% level of confidence. 

5.4.6 Standardized precipitation evapotranspiration index 

Standardized precipitation evapotranspiration index is a phenomenon that depicts water 

surplus or deficit within long climatic time scale that the difference between precipitation and 

potential evapotranspiration is calculated and then fitted with probability density function to 

estimate the severity and frequency of flood or droughts in a catchment.  

The severity was classified as SPEI ≥ 2.0, 1.5 to 1.99, 1.0 to 1.49, 0.99 to ‒ 0.99, ‒1.0 to 

‒1.49, ‒ 1.5 to ‒ 1.99 and SPEI ≤ ‒ 2.0 to indicate extremely wet, severely wet, moderately 

wet, normal, moderate drought, severe drought, and extreme drought event respectively 

(Shekhar and Shapiro, 2019).  

Validation by SPEI captures the impact of temperature increase on water demand and 

natural variability of climate and its influence on climate change studies. Further evaluation 

to observe the trend and its significance was based on the methodology by Henry, (1945); 

Kendall, (1948) and Sen, (1968) given in the equations below. 
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The Mann-Kendall statistics is: 

  

𝑆 =  ∑ ∑ sgn(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 
(5.4) 

 

For a n number of time series, 𝑥𝑗 and 𝑥𝑘 are consecutive data values. The series sgn is as 

follows: 

 

sgn(𝑥𝑗 − 𝑥𝑘) =  {

1 𝑖𝑓 𝑥𝑗 > 𝑥𝑘

0 𝑖𝑓 𝑥𝑗 = 𝑥𝑘

−1 𝑖𝑓 𝑥𝑗 < 𝑥𝑘

  (5.5) 

 

The mean E(S), Variance V(S) and the Z statistics is evaluated as: 

 𝐸(𝑆) = 0 (5.6) 

 

 

𝑉(𝑆) =  
1

18
{𝑛(𝑛 − 1)(2𝑛 + 5) − ∑𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)

𝑝

𝑖=1

} 

  

(5.7) 

 

 

 

 

𝑍 = 

{
 
 

 
 

𝑆 − 1

√𝑉(𝑆)
 𝑓𝑜𝑟 𝑆 > 0

0    𝑓𝑜𝑟 𝑆 = 0              
𝑆 + 1

√𝑉(𝑆)
 𝑓𝑜𝑟 𝑆 < 0  

 

 

(5.8) 

 

Because the nonparametric Sen's slope estimator is resilient against outliers in time series 

analysis, it was used to calculate the size of the discovered trends in the time series data: 

 

 

𝑆𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛 [
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
]    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 < 𝑗 

 

(5.9) 
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Where 𝑥𝑖 represents the data value at a time step 𝑖 and  𝑥𝑗 represents the data value at time 

step 𝑗. 

5.5 Results and Discussion 

5.5.1 Spatial and temporal downscaling and bias correction of CMIP6 GCMs 

Figure 5.3 shows the example of post-corrected precipitation and maximum and 

minimum temperature data of GCM output ACCESS CM2 relative to the observations at grid 

point 1 (15.95⁰, 6.31⁰); for 1979-2014 and 1979-2012 respectively, using delta change, 

quantile mapping and empirical quantile mapping technique. 

 

 

             (a) 

 

       (b) 
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      (c) 

Figure 5.3: Plot of bias-corrected GCMs and observed climate data using delta change, quantile mapping and empirical 

quantile mapping method in the Lake Chad basin. (a): variation of GCM precipitation relative to observed CPC data. (b): 

Variation of GCM maximum temperature relative to PGF data. (c) Variation of GCM minimum temperature relative to 

observed PGF data.  

The evaluation results across the 54 grid point that covers the study area of the 

downscaled and the daily bias corrected GCM outputs of precipitation, maximum and 

minimum temperature indicated that delta change and empirical quantile mapping method is 

the most suitable for daily precipitation and maximum and minimum temperature with a 

recorded mean bias error, MBE = 0, mean correlation coefficient R2 = 0.8 and modified index 

of agreement, md = 0.86 at 94% and a MBE range of -0.01 – 0, mean correlation coefficient 

R2 = 0.92, and modified index of agreement md = 0.96 respectively, relative to other 

evaluation method across all the grid points.  

However, the results according to Figure 5.3c, there are difficulties of downscaling 

models to capture peak values of minimum temperature across all evaluation methods, 

especially in the Sahelo-Saharan zone but this might be attributed to scale gap between GCM 

outputs and observations, and such variations cannot be accounted for by the GCM outputs as 

corroborated in (Sachindra et al., 2014).  

Hence, GCM outputs from this evaluation technique were adopted for the next phase of 

analysis. The evaluation was limited to statistical downscaling because it was considered to 
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be more flexible than dynamical technique and its projections can be downscaled to point 

specific locations as corroborated in Martinez-García et al., (2021).  

The merit of this approach is to provide a reference for evaluating the accuracy of 

precipitation and temperature, which are the two critical hydrologic model input parameters, 

to improve the predictions of future river basin hydrologic cycles. The bias correction 

technique performed efficiently in simulating the observation in the Guinean-Sudanian zone, 

with a cluster of grid points with almost perfect correlation relative to the observation. 

However, Saharan zone exhibit some inadequacies in replicating the observed climate 

features which may be due in part to poor climate signals of sparse precipitation events. 

In general, the result indicates some improvements of the CMIP6 GCM in capturing the 

observation signals of the climate variables and has proven to restore the inter-station 

dependencies. The multi-site approach illustrated the capability in addressing the inequities of 

transitioning and interpolation of GCMs from coarse to finer resolution and vice versa to 

accurately reproduce observed multiple statistical properties of climate variable for improved 

hydrological climate change impact studies.  

5.5.2 Performance evaluation and selection of CMIP6 GCMs  

The individual models were coded M1, M2, …...M16 to represent ACCESS CM2, 

ACCESS ESM1-5, …… NorESM2-MM respectively, as appeared in table 5.1., for ease of 

identification. The performance of the model across individual grid point was analysed based 

on the two machine learning approaches SU and BRF to investigate their significance in 

replicating the basin climatic features of precipitation and maximum and minimum 

temperature for the period 1979 – 2014 and 1979 – 2012 respectively, which was a 

compromise and limitations between CPC, PGF and historical CMIP6 GCM based on world 

meteorological organisation climatological standard normal period of data range and 

availability. 
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The GCMs were ranked based on their symmetric uncertainty (SU) coefficient (5.5.2.1) 

and variable importance score (5.5.2.2) at each grid point for all the climate variable to 

understand the degree of association or relative skill (importance) of the models with 

insignificant bias across the basin respectively. However, in BRF analysis, a zero score was 

recorded for GCMs whose variable importance score is less than that of the shadow attributes 

at any grid before aggregation and ranking for consistency. 

5.5.2.1 Evaluation based on symmetric uncertainty. 

The result of symmetric uncertainty for all the climate variables were aggregated across 

the 54 grid points considered, which was a fair representation of the basin as shown in Table 

5.2. The rankings based on the coefficients indicated that GFDL-ESM4, MIROC6, INM-

CM4.8, ACCESS ESM1-5, and MRI-ESM2.0 exhibit an improved skill for precipitation with 

coefficient in the range of 0.94 – 0.81, while MPI-ESM1.2-LR, INM-CM4.8, EC-Earth3-

Veg, and EC-Earth3 are relatively effectively in simulating maximum temperature with 

coefficient in the range of 0.98 – 0.92 and finally, MPI-ESM1.2-LR, MIROC6, NorESM2-

MM and CanESM5 are relatively suitable in simulating minimum temperature with a 

recorded coefficients in the range of 0.84 – 0.85. However, all the CMIP6 GCMs exhibit an 

above average skill except for F-Goals-g3 which was quite poor for precipitation. 

Varied level of GCM performance were noticed which further complicates evaluation and 

has been acknowledged by McMahon et al., (2015), that GCMs have strength and 

weaknesses in simulating different climate variables.  

Simulation result of CMIP6 GCM by symmetric uncertainty exhibit some improvement 

in contrast to earlier phase as in Ahmed et al., (2019b), which may be attributed to 

differences in timescale and timesteps of the chosen GCMs, improvement in model 

parameterizations and development and quality of observation data. This is corroborated in 

studies by (Ayugi et al., 2021; Grose et al., 2020; Wang et al., 2021). 
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Table 5.2: Summary of GCM SU coefficients of precipitation, maximum and minimum temperature relative to observation 

data 

SYMMETRIC UNCERTAINTY 

Precipitation Maximum Temperature Minimum Temperature 

Model SC Model SC Model SC 

M8 0.94 M13 0.98 M13 0.85 

M12 0.88 M9 0.94 M12 0.85 

M9 0.81 M6 0.93 M16 0.84 

M2 0.81 M5 0.92 M4 0.84 

M14 0.81 M11 0.90 M6 0.83 

M16 0.74 M16 0.90 M8 0.82 

M13 0.72 M2 0.90 M5 0.81 

M4 0.72 M12 0.89 M11 0.80 

M3 0.71 M8 0.85 M9 0.80 

M15 0.71 M4 0.83 M2 0.79 

M11 0.65 M10 0.79 M15 0.77 

M1 0.65 M14 0.78 M1 0.76 

M10 0.65 M1 0.78 M14 0.75 

M6 0.65 M15 0.76 M10 0.74 

M5 0.62 M7 0.72 M7 0.73 

M7 0.34 M3 0.70 M3 0.72 

 

5.5.2.2 Evaluation based on Boruta random forest algorithm. 

The performance of the GCM models were assessed based on its ability to iteratively 

identify the importance of the original attributes (CMIP6 GCMs) with their randomised sets 

(shadow attributes) to truly replicate the observation data. The simulation and importance 

measure were generated, and the variables were ranked as shown in Figure 5.4 for grid 1.  

The ranking indicates that model M9, M13, M10, M14, M4, M11 and M7 are quite 

important in simulating GCM daily precipitation with variable importance score in the range 

of 4 – 22, while others whose important score are below that of the maximum importance 

score of the shadow attributes are considered poor in simulating the observed (CPC) daily 

precipitation. However, all GCMs exhibit a good skill in simulating maximum and minimum 

temperature with a significant difference in variable importance score in the range of 18.0 

54.2 and 19.1 – 44.6 respectively. 

The procedure was repeated across all grid points and attributes were filtered or rejected 

with a performance score below the shadow attributes. The variable importance score was 
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aggregated across all points and were ranked based on descending order of mean importance 

score for all the variables as shown in Table 5.3.   

The evaluation of the climate variables by the novel Boruta random forest revealed a 

consistent performance of the GCMs across the grid points which makes the technique quite 

efficient in the ranking process and necessary for holistic assessment where the minimal 

optimal set of GCMs might be more useful rather than the application of the entire set of 

available models which may be computationally intensive, require more resources and time 

and decrease model proficiency.  

Table 5.3: Summary of GCM importance score of precipitation, maximum and minimum temperature relative to observation 

data 

BORUTA ALGORITHMS 

Precipitation Maximum Temperature Minimum Temperature 

Model IS Model IS Model IS 

M9 4.68 M9 41.07 M10 32.03 

M14 3.20 M13 39.44 M9 28.96 

M10 2.88 M10 36.81 M13 28.86 

M7 2.82 M12 34.10 M14 27.32 

M4 2.68 M14 33.43 M16 27.18 

M8 2.53 M2 32.25 M5 26.57 

M13 2.12 M11 32.25 M7 26.50 

M6 1.81 M7 31.36 M15 26.24 

M12 1.33 M6 30.93 M6 26.17 

M5 1.29 M16 30.87 M2 25.82 

M1 1.20 M1 30.79 M1 25.52 

M2 0.96 M3 29.89 M4 25.00 

M11 0.75 M8 29.66 M11 24.92 

M3 0.72 M5 29.62 M12 24.79 

M16 0.31 M4 29.59 M8 24.53 

M15 0.10 M15 27.56 M3 24.18 

  

The rankings based on Boruta algorithm indicated the difficulty of a single GCM to 

reliably simulate the daily observed precipitation across all grid points satisfactorily, although 

some GCM have a relatively improved performance and are quite consistent across the grid 

points for maximum and minimum temperature. 

 Figure 5.5a-c showed the spatial spread of the GCM performance and the aggregated 

importance score in Table 5.3, indicated that INM-CM4.8, MRI-ESM2.0, INM-CM5.0 and 
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F-Goals-g3 exhibit a relatively suitable skill in replicating observed precipitation, while INM-

CM4.8, MPI-ESM1.2-LR, INM-CM5.0 and MIROC6 for maximum temperature and INM-

CM5.0, INM-CM4.8, MPI-ESM1.2-LR and MRI-ESM2.0 for minimum temperature 

respectively. 

GCM Models evaluated across the grid points indicated that a few are quite consistent in 

replicating the observation of the three climate variables; for example, INM-CM4.8 and 

INM-CM5.0 have shown to exhibit a statistically significant skill in simulating the observed 

daily precipitation at 24.1% and 18.52% of the grid points, while INM-CM4.8 and MPI-

ESM1.2-LR at 35.19% and 16.67% for daily maximum temperature and finally INM-CM5.0 

and MPI-ESM1.2-LR at 53.70% and 25.93% for daily minimum temperature respectively. 

 

      (a) 
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      (b) 

 
      (c) 
Figure 5.4: Box plot of variable importance score of GCMs relative to observed climate data using BRF. (a): relative 

importance of GCM precipitation to observed CPC data. (b): relative importance of GCM maximum temperature to 

observed PGF data. (c): relative importance of GCM minimum temperature to observed PGF data.   
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(a) 

 

(b) 
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Figure 5.5: Spatial spread of GCMs performance relative to observed climate data using BRF. (a): ranking of spatial 

spread GCM precipitation relative to observed CPC data. (b): ranking of spatial spread GCM maximum temperature 

relative to observed PGF data. (c): ranking of spatial spread GCM minimum temperature relative to observed PGF data.  

 

5.5.3 Identification and evaluation of multi-model ensemble mean of GCMs. 

The GCMs evaluated by the approaches considered were a precursor in understanding 

their skills necessary to match observations. However previous studies, for example Kim et 

al., (2016) have shown that uncertainties in climate projection can be reduced by identifying 

and adopting GCMs with improved performance for impact assessment studies.  

Earlier literature such as Weigel et al., (2010) and Miao et al., (2012) recommended the 

use of a collection of GCMs ensemble mean to optimize reliability in prediction and 

minimize uncertainty in climate variable assessment.  
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In this study, four best GCM were selected after re-aggregation (Table 5.4), due in part to 

the significant  difference observed in the aggregate importance score value between model 

M14 and M12 in Boruta random forest evaluation to form the multi-model ensemble mean 

herein referred to as SU and BRF and a combination of the 16 GCM model referred as AME 

and were further analysed and validated for spatial pattern of precipitation and temperature 

and SPEI drought and flood hazard for the study period and their implication for hydrologic 

modelling. 

Table 5.4: Summary of GCM overall ranking based on aggregated SU and IS of climate variables relative to observation 

data. 

SYMMETRIC UNCERTAINTY BORUTA ALGORITHMS 

Model SC Model AIS 

M13 0.89 M9 60.22 

M12 0.87 M10 45.13 

M9 0.85 M13 29.54 

M16 0.83 M14 15.11 

M6 0.80 M12 10.43 

M8 0.80 M16 8.54 

M4 0.80 M7 8.49 

M5 0.78 M2 8.14 

M11 0.78 M5 6.75 

M2 0.78 M6 6.52 

M14 0.78 M11 6.49 

M15 0.75 M1 5.18 

M1 0.73 M15 5.15 

M10 0.73 M4 4.52 

M3 0.71 M8 4.36 

M7 0.60 M3 3.97 

     

The result of the overall ranking indicated that MPI-ESM1.2-LR, MIROC6, INM-CM4.8 

and NorESM2-MM are quite suitable from symmetric uncertainty approach, while INM-

CM4.8, INM-CM5.0, MPI-ESM1.2-LR and MRI-ESM2.0 for Boruta random forest approach 

and are limited to four GCMs to others, due in part to the significant difference in their skills 

from the rating metrics scores in Table 5.4. 
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5.5.3.1 Spatial and temporal pattern of precipitation and temperature of GCM 

ensemble mean.   

The spatial correlation and pattern of the GCM ensemble mean annual precipitation and 

temperature was used to validate and measure uncertainty range of the three different 

approaches relative to the observation as in Figure 5.6a-b and Figure 5.7a-b for the period 

1979 – 2012.   

The result of the spatial correlation between the mean annual precipitation and 

temperature indicated that BRF is consistent with the observation having a correlation value 

in the range of 0.641 – 0.9995 (0.9991) and 0.4423 – 0.8345 (0.7136) respectively. 

Evaluation from SU and AME are quite satisfactory, however, there are mismatches or 

poor correlation observed, especially in the Sahelo-Sudanian zone with a recorded spatial 

correlation as low as 0.15 and 0.19 for SU and 0.01 and 0.36 for AME relative to the 

observations for annual mean precipitation and temperature respectively.  

 

 

      (a) 
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     (b) 

Figure 5.6: Comparison of spatial correlation of GCM ensemble mean performance relative to observed climate data (a) 

Annual precipitation (b) Annual temperature.
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Figure 5.7: Comparison of the spatial pattern of GCM ensemble performance relative to observed climate data (a) Annual precipitation (b) Annual temperature.
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The results obtained in the temporal assessment of the evaluated approaches have shown 

that the correlation between the ensemble mean temperature are similar and quite skilful with 

R2 = 0.984 and a mean bias of 0.49℃, 0.49℃ and 0.50℃ for BRF, SU and AME 

respectively.  

However, the BRF approach indicated an effectively significant temporal correlation of 

0.95 and an annual mean bias of 0.638mm/year as compared to SU and AME with spatial 

correlation of 0.82 and 0.88 and annual mean bias precipitation of 68.19mm/year and 

10.57mm/year respectively.  

The biases are found to be significant and visible in the south-western part of the basin as 

seen in the grid-based analysis of the annual precipitation in Figure 5.8 shown below, where 

significant deviations are noticed between grid point 1 to 10 for SU and 1 to 26 for AME, 

while BRF showed almost a perfect match relative to the observation across the grid points. 

 

 

Figure 5.8: Variation of the temporal pattern of mean annual precipitation across grid points for 1979 – 2012. 

5.5.3.2 Assessment of climate extremes (SPEI drought and flood hazard) events of GCM 

ensemble mean. 

The temporal analysis of climate extreme indices was assessed at 12-month time step by 

the BRF, SU and AME and compared to the observation at the four climatic zone of the basin 
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to understand the relative skills in predicting the pattern and frequency of extreme event 

(SPEI drought and flood hazard) and shift in trend within the study period in the four climatic 

zones.  

The result indicates an inherent shift (Figure 5.9a.), relatively in wet climate (1980 – 

1998) to a transition from moderate to extreme droughts (1999 – 2012) in the Saharan zone 

with the frequency of SPEI values of the BRF, SU and AME approach consistent with the 

observation at 53.3%, 45.5% and 48.9% of the time respectively.  

Results of the SPEI values of the approaches relative to the observation Figure 5.9b – d, 

in the Sahelo-Saharan zone is 48.99%, 53.28% and 47.22%, Sahelo-Sudanian zone is 45.2%, 

45.96%, and 43.43% and Sudano-Guinean zones is 48.23%, 50.25% and 39.14% 

respectively.  

However, the statistical trends based on multi-year SPEI indices for the period 1980 – 

2012 in the four climatic zones of the basin indicated that the BRF approach captured the 

extreme event direction quite accurately relative to the observation as seen in the z-statistic 

values within the same trend envelope (Table 5.5). 

Although all the approaches showed a satisfactory result in predicting the trend direction 

but there is under-estimation in the magnitude of the extreme event by the SU (− 0.0013) and 

AME (− 0.0033) approach in the Saharan zone which indicate an insignificant shift from wet 

to drought events (drying trend) as against the trend magnitude exhibited by the observation 

(− 0.0057) which is consistent with the BRF (− 0.0058) approach.  

The approaches showed difficulty in predicting magnitude of the trend in the Sahelo-

Sudanian zone which indicated an over-estimation relative to the observation with 

statistically significant wetting trend and the magnitude in the order of 0.0031, 0.0038 and 

0.0057 for BRF, SU and AME respectively, as against observation (0.001).  
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However, the deviation is more pronounce in the AME approach and it is observed that 

there is a frequent and consistent shift in trend from wetting to drying period across the 

climatic zone and is consistently captured by the BRF approach relative to the observation. 

Bold values in Table 5.5., indicate consistent agreement between simulated GCM ensemble 

mean and observation that efficiently represent the basin climatic features and the outcome 

will be suited to limit the magnitude of uncertainties and accurate hydroclimatic hazard 

representation in impact studies.   

Table 5.5: Mann Kendall Z-statistic of linear trend of extreme event for the period 1980 - 2012 

Climatic Zones SPEI Trend 

 Observation BRF SU AME 

Saharan  −2.44* −2.25* −1.04 −1.33 

Sahelo-Saharan 1.39 1.04 3.25* 5.78* 

Sahelo-Sudano 0.38 2.27* 3.07* 4.94* 

Sudano-Guinean 0.69 0.74 2.28* 2.28* 

     Note: * indicates statistically significant trend at 0.05 level of significance and bold values a match of similar trend 

envelop. 

 

      (a) 
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      (b) 

 

      (c) 



Page | 140  
 

 

(d) 

Figure 5.9: Temporal variations climate extreme event of GCMs ensemble mean performance of relative to observation 

using BRF, SU and AME approach in the Lake Chad basin. (a): Saharan zone (b): Sahelo-Saharan zone (c): Sahelo-

Sudanian zone (d): Sudano-Guinean zone. 

A trade off was created in the evaluation process to justify the selected model 

performance using the two techniques irrespective of climate variable of interest and a varied 

level of performance was noticed from one grid point to another.  

The ensemble mean approach was quite essential because it led to reduced biases and 

their combinations emphasizing on few models with good performance are required and this 

is particularly important in watersheds with sparse observed climate data and high climate 

variability. 

The BRF approach has shown to be promising in the evaluation with a recorded lower 

bias in the temperature and precipitation and a more accurate representation of the magnitude, 

pattern, and trends of extreme event. Overestimation or considerable bias were observed by 

the SU and AME approaches in the southwestern part of the basin.  

The associated uncertainties can be evaluated further by considering the sensitivities of 

ensemble with alternative metrics or combination of approaches. However, the BRF approach 
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has shown to be quite robust in evaluating the integrity of the regionalisation of GCMs over 

different timescale that exhibit good performance during the baseline period and their 

combination may likely be valid to represent the future period under climate change scenarios 

with certainty. The weighing scheme developed in this study is an exploratory framework 

that can be tested in various watersheds of interest for improved water policy planning.     

5.6 Conclusion 

General circulation models are important and provides a pathway for simulation and 

assessment of the perceived impact of climate change on local, regional, and global 

hydrology. However, the choice of GCM input data, interpolation and downscaling method, 

timescale and timesteps are essential and critical for effective and accurate representation of 

the past, present, and future basin hydrologic process for fair and equitable river basin 

management and policy planning for sustainability. 

Earlier studies suggest that most evaluations ignored the inter-dependencies among 

models of a known variable and could create over-fitting problems. This study is based on an 

ensemble of 16 CMIP6 GCMs at daily timestep evaluating the efficacy and robustness of the 

state-of-the-art Boruta random forest algorithm technique has shown this to be a viable tool 

for selection of relevant models to reduce redundancy, complexity and over-fitting problems 

associated with climate models to ensure sufficient overlap of chosen models’ ensemble 

mean with observations.  

This seeks to limit the drawbacks encountered from existing techniques such as but not 

limited to inability to analyse complicated inputs, stochastic aspects, and climatic and 

hydrologic properties that are intricately interrelated, reduce the transfer of uncertainties into 

hydrologic processes and address critical temporal and spatial behaviour of the climate 

variables as a precursor for reliable and accurate predictions.  
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Highlights from the study revealed that there are inherent weaknesses associated temporal 

and spatial downscaling techniques and multiple techniques should be tried and examined to 

limit uncertainty range and inadequacies of GCMs, because exploring different multi-site 

downscaling techniques is very important in increasing the effectiveness of GCMs 

performance.  

Therefore, combination of appropriate GCMs can enhance spatial and temporal 

variability to accurately reproduce observed multiple statistical properties of climate variables 

for improved output and reduced uncertainty in hydrologic modelling at regional and local 

basin scale.  

The selected models from Boruta random forest technique adequately have the capability 

in reducing biases in precipitation compared to the other approaches, although similar 

performances were observed in terms temperature and can capture the trends, patterns, and 

magnitude of extreme events within the accepted confidence limit. 

The findings associated with this study are generally not meant to be a process to identify 

viable GCM dataset suitable for hydroclimatic study, but also to present a simple and 

efficient methodology to examine the limitations associated with the selected GCM ensemble 

for impact study. Therefore, the methodology proposed is not unique and therefore be 

explored to other basins for reliable representation of catchment climatology, representing a 

key step forward in GCM ensemble impact research. 

5.7 Afterward 

The successful implementation of the data pruning approach using BRF algorithms for 

GCMs models from this study has shown that efforts in building hydrologic models for water 

security assessment require exploring multi-disciplinary framework to improve the science of 

watershed representation and reduction in the propagation of the various sources of 

uncertainty in modelling.  
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The strategy developed in this study was infused in the workflow of SWAT modelling 

process in the next phase of the research to form an integrated framework. The framework 

was further used to investigate the efficacy of simulating ET within the context of the 

research objective for effective hydrologic modelling in four sub-watershed of data-sparse 

Lake Chad basin.  

The output of the modelling process was also used to investigate the impact of climate 

change on projected green and blue water availability and sustainability at sub-watershed 

scale. 

This exploratory approach is necessary especially in data-sparse watersheds and this has 

been applied in the next phase of the research to provide a solution for reliable water 

resources assessment in the context of climate change, rather than relying on outputs from 

regionalization concepts by spatial proximity or homogenization, i.e. the process of 

transferring model parameter values from neighboring gauged catchment to the ungauged 

catchments, the only rationale being that they share similar behavior because the climate and 

catchment conditions vary evenly across the basins. 

 This have been reported by Oudin et al., (2008) to produce unsatisfactory results and its 

application may be unreliable and capable of generating misleading water resource 

information that hinders adequate policy planning at local basin scale. 
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CHAPTER 6: INTEGRATED FRAMEWORK FOR HYDROLOGIC MODELLING 

IN DATA-SPARSE WATERSHEDS AND CLIMATE CHANGE IMPACT ON 

PROJECTED GREEN AND BLUE WATER SUSTAINABILITY. 

Preamble 

This chapter intends to proffer solution to modelling concerns in data-sparse watersheds 

by providing an assessment framework that can be relied upon especially in the management 

and protection of water resources in the future at the local watershed scale and understand 

how anthropogenic climate changes will impact the basin’s water balance dynamics. This is 

important for assessing projected water resource availability and sustainability for watershed 

planning and water policy decisions.  

Hydrologic modelling has been the key tool for understanding watershed response to 

projected climate change and its impact on water resource hazards. However, the 

development of such models requires ground observations for reliable predictions and the 

lack of observation data in most regional and local basins across the world especially sub-

tropical and arid regions necessitates the use of alternative satellite-based measurements and 

their interlinkages with hydrologic models is a major source of uncertainty in regional 

applications.  

Earlier approaches in the literature to deal with such challenges in data-sparse regions 

through regionalization is quite challenging and produced contradictory results as 

demonstrated by Oudin et al., (2008), where the  modelling results of three regionalization 

approaches on 913 catchments in France produces varied performance efficiencies due to 

variations and effects in catchment gauge network quality, density and lack of key physical 

characteristics (Visessri and Mcintyre, 2016).  

This challenge was addressed by incorporating machine learning and the traditional 

SWAT model as an integrated framework to develop a prediction model that can deliver 
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actionable hydrologic information within an acceptable uncertainty in data-sparse regions for 

accurate water security assessment in response to climate change.  

The CPC precipitation and PGF maximum and minimum temperature data at daily time 

step was adopted and used for preprocessing (i.e., downscaling and bias correction) of the 

GCM data because they are considered to reproduce the basin climatologic features fairly and 

accurately.  

Similarly, the four GCM models were selected based on the superior performance of the 

multimodel ensemble average in representing the basin observational biases of annual 

precipitation and average temperature, trend and magnitude of return period of drought and 

flood hazards which is essential in hydroclimatic impact study.      

However, it is worth noting that the study considered four sub-watersheds due to the 

variations in their morphological characteristics to investigate and understand the 

performance of the modelling strategy and finally lack of sectoral water resource information 

in some of the sub-watershed constrained the application of research objectives 5 and 6 to the 

Yobe-Komadugu watershed.  

The Paper following was published in “Frontiers in Environmental Sciences” titled 

“Integrated framework for hydrologic modelling in data-sparse watersheds and climate 

change impact on projected green and blue water sustainability” (2023). 

https://doi.org/10.3389/fenvs.2023.1233216.    

6.1 Abstract of paper 

Climate and hydrologic hazards threaten the distribution of watersheds’ water resources 

in time and space, necessitating planning for sustainable resilience and adaptation. 

Hydrologic modelling has emerged as a potential solution for understanding watershed 

responses to projected climate change and a prediction model that can deliver actionable 

information is necessary, although it requires basin-scale observations to calibrate the model 

https://doi.org/10.1007/s00704-023-04466-5
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to reliably predict basin-scale water resources hazards. Such luxury is not always tenable in 

watersheds with inadequate ground-based observation.  

However,  satellite-based ET data coupled with a machine learning feature selection as a 

data refinement process has made integrated water balance modelling widely regarded as a 

viable alternative for improving the capability of watershed modelling processes in data-

sparse regions. 

This study developed a convincing hydrologic model framework to calibrate sufficiently 

and provide accurate behavioural solutions for all model responses. The framework was 

applied to four sub-watersheds that form the larger Lake Chad basin. The model results were 

applied to assess the dynamic changes in projected blue and green water resource 

sustainability in response to climate change in one of the subbasins.  

Study findings indicate that hydrologic fluxes can be simulated accurately with varying 

degrees of acceptability with R2 and NSE values in the range of 0.69 – 0.88 and 0.45 – 0.77 

for calibration and 0.69 – 0.79 and 0.34 – 0.63 for validation respectively, and captured 

within a satisfactory uncertainty range of P-factor and R-factor values of 0.68 – 0.93 and 0.73 

– 1.31 in 83%, 67%, 85.7% and 81.3% of the sub-watersheds based on multi-site simulation 

in spite of distinct watershed morphology although there are significant trade-offs in 

parameter sensitivity.  

Whilst green water is the dominant freshwater component across the basin relative to blue 

water, climate change may be a significant factor in changes in projected green water 

sustainability status, the combination of socioeconomic drivers (only considered for blue 

water sustainability assessment) and climate change may significantly impact the projected 

blue water sustainability status across the basin.  

Projected changes in green and blue water sustainability status have shown that more than 

50% of the sub-watershed will be ecologically fragile and identified freshwater geographic 
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sustainability hotspots may be beyond restoration without adequate long-term river basin 

water resources plans. 

 Keywords: Data uncertainty, Feature selection, integrated modelling, ungauged watershed, 

Climate change, Water footprint, Freshwater sustainability.  

6.2 Introduction 

Water resources planning must find a solution to the issue of achieving efficient and 

equitable water usage, particularly in light of the growing population, climate change, and 

depleting water supplies (Novoa et al., 2019). Water is the cornerstone of community 

development since it provides such a wide range of ecological functions. This allows for its 

effective, equitable, and sustainable allocation in order to reduce poverty, foster economic 

growth, and safeguard the environment (Hu et al., 2016). 

The rate and amount of time that water spends in various storage reservoirs, including 

surface and groundwater, seas, atmosphere, snow, and ice, has been altered due to human use 

(Keys et al., 2016). Consequently, it is a part of the world's greatest difficulties in attaining 

water sustainability, which is defined as meeting everyone's present water needs without 

compromising the supply in the future while advancing societal goals and preserving the 

environment (Chouchane et al., 2018; Hu et al., 2016).  

As a result, many administrative authorities have made the management of water 

resources sustainably a top priority to ensure that all residents and economic sectors have 

access to water sufficiently in the right quality and quantity (Martinsen et al., 2019; Tortajada 

et al., 2019). 

The sustainability of water in a basin can only be achieved if it is possible to sustain 

ecosystems' hydrological, ecological, biological, and chemical processes while providing an 

equitable and effective water supply over time (Pfister et al., 2009; Wang et al., 2016). The 

water footprint (WF) concept addresses these needs by providing an assessment of water 
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resources that accounts for natural variability and demands that compete for their use (Hejazi 

et al., 2014). 

A multi-dimensional indicator called the Water Footprint (WF) reveals characteristics of 

anthropogenic stresses on water supplies. From the perspective of river basin water 

accounting, WF is defined as freshwater consumed and contaminated by production activities 

of various economic sectors present in the river basin (Muratoglu et al., 2022; Xie et al., 

2020).  

This offers insights into water-related challenges and aids in understanding present 

patterns of water allocation across different river basin sectors (Muratoglu et al., 2022), and 

enables decision-makers to take advantage of the substantial data on water use supplied by 

the WF technique by improving water management, hotspot identification, and the 

development of appropriate responses to changes (Pellicer-Martínez and Martínez-Paz, 

2018). The approach is excellent for comparing water resources across different 

administrative boundaries in terms of quantity and quality (Li et al., 2018). 

Blue and green water are the two categories into which the freshwater cycle can be 

separated based on the hydrological processes and types of storage involved. Greenwater is 

the portion of precipitation that seeps into the ground and changes into soil moisture, or 

momentarily sits on top of the ground or vegetation, and subsequently evaporates and 

transpires back into the atmosphere. Bluewater is the term for precipitation that accumulates 

in aquifers, lakes, and reservoirs and flows through or below the land surface (Rockström et 

al., 2009; Rodrigues et al., 2014). 

The consumption of both blue and green water by human activities is included in the 

water footprint concept, per Hoekstra et al., (2011), The result is that the green water 

footprint (GWF) represents the estimated amount of green water that is consumed by 

agricultural land (i.e., evapotranspiration from crop and pastureland), which is frequently 



Page | 149  
 

referred to as productive vapour flows), as opposed to the blue water footprint (BWF), which 

represents the consumptive use of blue water resources (surface water and groundwater). 

Geographic hydrologic models created at various time resolutions and spatial scales have 

started to become more complicated as a result of the use of WF as a sustainability indicator 

in order to determine environmental water consumption restrictions (Shrestha et al., 2017). 

This indicator is particularly helpful in regions susceptible to water variabilities, such as 

basins in Mediterranean and tropical climates, where the demand for water for irrigation rises 

during decreased precipitation, limiting runoff and downstream flows (Novoa et al., 2019). 

Previous studies have demonstrated that, in addition to its effects on precipitation, soil 

moisture, evapotranspiration, and runoff, climate change has an impact on the distribution of 

water resources both spatially and temporally (Montaldo and Oren, 2018; Sun et al., 2018). 

Extreme hydrological events are rising in frequency and importance due to the deepening of 

global climate change, creating new problems for managing water resources and the regional 

water cycle (Tabari, 2020; Vicente-Serrano et al., 2017). 

Global attention has been drawn to climate change and its possible effects on water 

resources. However, there are many uncertainties in future climate change estimates (such as 

those for temperature and precipitation), making it difficult for planners to decide on 

appropriate adaptation measures (Dessai and Hulme, 2007; Gosling and Arnell, 2016).  

The main sources of these uncertainties are changes in the initializations and 

parameterizations used in climate models to explain physical processes as well as 

downscaling methods (Zhuang et al., 2016).  

It has been discovered that water resources are vulnerable to these uncertainties and 

challenging to anticipate with precision in a changing environment. Therefore, it is essential 

to develop water management plans in times of global change within a complex and uncertain 

environment (Wang et al., 2016). 
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Multiple climate models were used in an evaluation framework to find effective water 

resource management plans under the effects of climate change; the results showed that these 

plans are extremely vulnerable to climatic changes.  

Some conclusions drawn from other studies revealed that water resources in various 

regions are sensitive to climate change, and the relative influence varies significantly around 

the world, according to the evidence, the sources and type of uncertainty affect how adaption 

strategies are chosen (Arnell et al., 2011; Cai et al., 2015; Dessai and Hulme, 2007; 

Refsgaard et al., 2013; Sun et al., 2017; Tzabiras et al., 2016). 

Identification of effective corporate strategies and policy actions requires uncertainty 

analysis (For example, climate adaptation, resilience and mitigation measures). Researchers, 

decision-makers, and stakeholders have more transparency and confidence in scientific 

analyses when they are informed about the locations, types, and nature of uncertainty 

(Gabbert et al., 2010; Kirchner et al., 2021). Uncertainty analysis is typically necessary for 

the scientific publishing of model-based quantitative assessments and is regarded as excellent 

modeling practice (Troost et al., 2015). 

Observational data are the foundation of our understanding of environmental systems, but 

their scarcity and unpredictability, limit study and their practical applications. The accuracy 

of atmospheric data is crucial for the validity of hydro-meteorological and climatological 

investigations, among other things (Zandler et al., 2019).  

The flaws in the input rainfall data utilised might be reduced or amplified by the 

nonlinearity of hydrological processes, which can lead to a good or bad depiction of the 

hydrological responses and consequently lead to inadequate water resource policy and 

adaptation measures (Maggioni and Massari, 2018). 

In order to improve the spatiotemporal process representation, distributed observational 

datasets must be used to inform and assess distributed hydrological models, which have been 
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developed to enable large-scale forecasts (Baroni et al., 2019; Ocio et al., 2019). In this 

context, determining if meteorological data are adequate and coherent to accurately reproduce 

hydrological processes is a requirement before choosing data for managing water resources 

(Laiti et al., 2018). 

Integrated modelling is useful in many areas of study on global climate change. Here, we 

define integrated modelling as an interdisciplinary system of connected empirical data and 

mathematical models that are based on disciplinary concepts in order to provide a more 

complete and accurate picture of interactions between people and their environment (Laniak 

et al., 2013; Moss et al., 2010). 

Uncertainty can manifest and build up across an integrated modelling framework, which 

makes it a significant problem for integrated modelling. Uncertainty is mostly dealt with in 

two ways by existing integrated modelling frameworks: First, quantifying the uncertainty of 

future developments through scenarios, for example, description of alternatives of internally 

consistent possible future (Mitter et al., 2019; Reilly and Willenbockel, 2010). Secondly, 

contributions from research teams, systematic model comparisons across the scientific 

community, and other techniques are utilised to address uncertainty due to various data 

sources and model designs (Elliott et al., 2014; Folberth et al., 2019).  

The full identification and tracking of uncertainties in integrated modelling i.e., the 

manner in which uncertainty spreads among climate models as applied to hydrologic 

modelling in data-sparse regions has received very little attention (Holzkämper et al., 2015; 

Karner et al., 2019; Mitter and Schmid, 2019). Such analysis was previously acknowledged 

as a serious research gap in the early phases of integrated modelling, particularly for the 

propagation of uncertainty from land use optimisation models to the construction of 

hydrologic models. 
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In connection with this effort, numerous modelling studies have been conducted, that 

provides a unique opportunity to define the various hydrological processes and the 

relationships between the various hydrological variables (Bierkens et al., 2015). However, it 

has also been emphasised that one of the major scientific difficulties is continually refining 

the depiction of hydrological processes in the model design (Clark et al., 2015). 

The hydrologic community has agreed on the necessity for additional datasets in addition 

to observed streamflow and associated signature measurements to enhance the portrayal of 

the key physical processes (Clark et al., 2016). The fact that climate models still struggle to 

accurately replicate important climate processes, is of greater concern.  

While precipitation estimates are widely variable, temperature projections are more 

similar across all climate models as they can still vary. Future hydro-meteorological 

conditions can be uncertainly predicted because of the significant degree of variability in 

GCM outputs. 

In order to create an integrated modelling framework, it is often necessary to work on 

individual model modifications, model connections that are improved, and the application of 

the integrated modelling framework to particular research issues, whose outcome can be 

relied upon for basin-scale assessment of water security, sustainability, and other related 

applications to achieve effective water policy decision in response to projected climate 

change. 

For a meaningful comprehension of basin weather patterns and their future trends based 

on feature extraction by training the historical dataset using artificial intelligence to track 

water resource indicators, a prediction model that can deliver actionable information is 

necessary (Ali et al., 2020; Kratzert et al., 2018). 

In this study, we created a convincing framework or strategy to deal with the difficulties 

of modelling in areas with little or sparse data, appropriate ways to use alternative research 



Page | 153  
 

data to evaluate models, and considerations for data uncertainty and the incompatibility 

between models and measurements. The framework integrates a machine learning technique, 

Boruta random forest (BRF) optimizer and process-based hydrologic model referred to as soil 

and water assessment tool (SWAT) to refine the data input process mechanism for the 

development of a reliable hydrologic model for basin water resources assessment. The 

methodology will be applied to four sub-watersheds that encompass the Chad hydrologic 

basin with variable morphological properties, in Sub-Saharan Africa.  

The objective is to provide a novel pathway to increase transparency and improve 

uncertainty communication of long-term water balance models in an easily understood way 

without compromising scientific accuracy in data-sparse watersheds which have not been 

adequately studied.  

This concept aims to be generic and flexible enough within the acceptable uncertainty 

band to allow for its application in other basins with similar modelling issues. Finally, the 

integrated model framework will provide a crucial link between hydrology and human 

activities at local watershed levels to assess the implications and dynamic changes from 

baseline, the projected blue and green water resources and sustainability in response to 

climate change at annual and monthly timescale in Yobe-Komadugu sub-watershed.    

6.3 Case Study area and data 

6.3.1 Case study Area 

The Lake Chad Basin, with an estimated area of over 2,500,000 km2, is one of the largest 

endorheic basins in the world (Coe and Foley, 2001; Gao et al., 2011). It is located between 

the Sahara and the Sudano-Sahelian areas of West Africa, between latitudes of 5.2⁰ - 25.3⁰ N 

and longitudes of 6.9⁰ - 24.5⁰ E (Figure 6.1).  

The basin receives the majority of its annual rainfall between July and September. The 

basin is known for being extremely vulnerable to the effects of climate variability, which 
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typically leads to significant drought and water shortage conditions (Ndehedehe et al., 2018), 

and the lake is the primary source of fresh water for livestock grazing, fish farming and other 

socioeconomic activities (Buma et al., 2016).  

The major contributors of discharge to the lake are Chari River (~ 90%) with annual 

streamflow of 860 m3/s between 1960 – 2013 and Yobe River (~ 2 – 5%) with annual 

streamflow of 18 m3/s between 1961 – 2013 (Lemoalle, 2014). Other rivers that contribute 

supplies of between 1 – 2% are Gubio, Yesderam, Ngadda, and El-beid.  

However, there are a few rivers like the Batha River and others situated in the Saharan 

zone that does not have an outlet to Lake Chad (Figure 6.1). The precipitation in the basin 

varies geographically and seasonally between < 100 – 1500 mm/yr. (Nkiaka et al., 2018b). 
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Figure 6.1: Lake Chad Basin showing sub-basins, lake, major river networks and MODIS Evapotranspiration (ET) data 

points. 

6.3.2 Dataset Description 

6.3.2.1 MODIS actual evapotranspiration data 

The state of observed streamflow data is quite poor and inadequate with many missing 

data points, which undermines the confidence in the output of hydrologic modelling results 

temporally and spatially in the entire basin. Alternatively, the availability of high spatial 

variability of satellite-derived land surface MODIS-NASA Evapotranspiration (ET) data at 



Page | 156  
 

monthly timescale was extracted by overlaying the 1.0 × 1.0 AET grids with the subbasin 

map of the ArcSWAT project and 100 observation points (Figure 6.1.) was generated and 

reaggregated to develop 59 simulation sub-basin points across the entire watershed. 

This is achieved by overlaying the MODIS-AET regular grids that was extracted on the 

sub-basin map and the AET grids inside each sub-basin was averaged into a single grid point 

to represent the AET of the sub-basin as recommended by Abbaspour et al., (2019) and the 

data was divided into 1983 – 1998 for calibration and 1999 – 2006 for validation of the 

models. 

A more accurate hydrologic model simulation may be obtained by taking into account the 

geographical distribution of the actual ground surface ET throughout the watershed. The 

Penman-Monteith equation is used by the MODIS-NASA ET technique, which also takes 

into account things like plant transpiration and the evaporation of soil moisture. The quality 

control parameters have been confirmed using global evaporation flux tower data (Autovino 

et al., 2016). 

6.3.2.2 Digital Elevation Model, Soil, Land Use and Land cover data 

The watershed was delineated using the ArcSWAT programme in the ArcMap 10.8 

environment using the topography information from the basin that was collected from the 

Aster global digital elevation model version 3 with a spatial resolution of 30 m. The software 

extension can be found in (https://swat.tamu.edu/software/arcswat/). 

The soil data were obtained from Harmonized World Soil Database (HWSD), with a 1 

km resolution founded by the Food and Agricultural Organisation (FAO) and notable 

research centres (Abbaspour et al., 2019). 

Land use and land cover (LULC) data was obtained from European Space Agency, which 

was an initiative that developed global composite land cover maps using observations from 

the 300 m MERIS sensor onboard the ENVISAT satellite mission. The GlobeCover map 

https://swat.tamu.edu/software/arcswat/
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contains 23 land cover types (Bontemps et al., 2011). The description, resolution and data 

source are shown in Table 6.1. 

Table 6.1: Input data required for hydrologic model development. 

Data Used Description Resolution Source 

Topography Digital Elevation Model 30m × 30m https://search.earthdata.nasa.gov/search/granules 

ASTER Global Digital Elevation Model V003 

 

Land Use Data GlobeCover land use Map 5⁰ × 5⁰ http://due.esrin.esa.int/page_globcover.php 

(GlobeCover) 

Soil Data Digital Soil Map 1 km http://webarchive.iiasa.ac.at/Research/LUC/Exter

nal-World-soil-database 

(HWSD v1.12) 

Meteorological 

Data 

Precipitation,  

Maximum Temperature 

Minimum Temperature 

1⁰ × 1⁰ 

Daily  

https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6 

 

ET Data Actual Evapotranspiration 1⁰ × 1⁰ 

mm/month 

http://files.ntsg.umt.edu/data/ET_global_monthly   

MODIS-NASA Data 

 

6.3.2.3 Climate Data 

The gridded precipitation data of the US Climate Prediction Centre (CPC) and maximum 

and minimum temperature data of the Princeton University Global Meteorological Forcing 

(PGF v.2) as recommended from a previous study by Lawal et al., (2021), at daily time step 

between 1979 – 2011 was adopted in this study. 

The data was extracted at 1˚ × 1˚ grid resolution and used for pre-processing of CMIP6 

general circulation models for baseline (1979 – 2011) and projected (2021 – 2080) climate 

change scenario data considering two shared socioeconomic pathways based on carbon 

dioxide emission scenarios SSP2(4.5) and SSP5(8.5), supported by Inter-Sectoral Impact 

Model Intercomparison Project (ISI-MIP6), and the data is available and can be extracted 

from the source provided in Table 6.1. 

6.4 Research Methodology 

6.4.1 Pre-processing of input data 

The dataset required for the integrated model framework needs to be checked and 

prepared to fit the model specifications for efficient and accurate output of the model 

https://search.earthdata.nasa.gov/search/granules
http://due.esrin.esa.int/page_globcover.php
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database
https://esgf-node.llnl.gov/projects/esgf-llnl/CMIP6
http://files.ntsg.umt.edu/data/ET_global_monthly
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hydrologic variables. The primary input data required are pre-processed to depict the status of 

the watershed land management and vegetation properties.  

6.4.1.1 Climate models, downscaling and bias correction. 

The general circulation models (GCMs) are the primary source of information for the 

assessment of climate change impacts at the global and regional scales. The ensemble of four 

(INM-CM4.8, INM-CM5.0, MPI-ESM1.2-LR and MRI-ESM2.0) coupled model 

intercomparison project phase 6 (CMIP6), models were extracted at 210 data points (Figure 

6.2a) of daily precipitation, the maximum and minimum temperature for the 

baseline/historical (1979 – 2011) and projected climate change scenarios (2021 – 2080) for 

two shared socioeconomic pathways (SSP4.5 and SSP8.5) corresponding to total radiative 

forcings of 4.5 and 8.5 W/m2 (approximately equal to mean CO2 emission concentrations of 

650 and 1370 ppm), respectively in 2100.  

Before predicting the future climate, it was necessary to correct the anomalies in the 

climate model's outputs, because they contain biases using bias correction techniques. The 

delta and quantile mapping techniques were used to correct the identified biases for 

precipitation and temperature respectively, based on a previous study conducted in the basin 

using CPC and PGF gridded data in line with study requirements Lawal et al., (2023).  

The methods are non-parametric and corrected the predicted climate data based on point-

wise empirical cumulative distribution functions. The downscaling strategies using bilinear 

interpolation were found to significantly improve the forms of the linked frequency 

distributions and minimise systematic biases and derived indices of extremes by around one 

order of magnitude (Themeßl et al., 2012). 

6.4.1.2 Land Use, Soil and DEM Data 

The soil characteristics for the entire watershed were extracted from the world HWSD 

dataset and include two soil profiles (0–30 cm and 30–100 cm depths), the available water 
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capacity, and the bulk density, along with the majority of the soil information needed for the 

SWAT model. Clay, loam, sand, clay-loam, sandy-clay, loamy-sand, sandy-loam, sandy-

clay-loam, and rock make up the majority of the primary soil classifications that make up the 

watershed (Figure 6.2b). 

The watershed's land use and land cover data were extracted, re-gridded to match the 

spatial resolution of the meteorological forcing data, and categorised into six different land 

uses that work with the SWAT model (Figure 6.2c), including artificial area (URMD) 

0.013%, barren land (BARR) 52.873%, agricultural land (AGRL) 3.743%, forest land 

(FRST) 15.636%, vegetation (PAST) 27.842%, and water bodies (WATR) 0.166%. 

In order to extract the topographic features of the terrain, which are a necessity for 

hydrological research, basin elevation information is crucial. The 30 m spatial resolution 

DEM was extracted from ASTER global digital elevation model version 3 (Figure 6.2a) and 

transformed into a Universal Transverse Mercator (UTM) coordinate system to aid the 

delineation of the watershed boundary. 
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Figure 6.2: Description of morphological data in the study (a) digital elevation model and meteorological points, (b) soil 

types (c) land use and cover data. 

6.4.2 Integrated modelling framework 

We combined a statistical machine learning optimizer (BRF) and soil and water 

assessment tool (SWAT) model to refine the input process of predicted baseline and 

projected climate data to reduce uncertainties in model quantities such as input data and 

parameters (i.e., technical uncertainties), to enhance the simulation process and improve the 

confidence on the modelling output for the reliable assessment of basin-scale hydrologic 

features.  

This approach is necessary to further lower the danger of misinterpreting climate signals 

and improve adaptation assessments. Our goal is to create an integrated modelling framework 

(IMF) that satisfies these criteria for evaluating the effects of anticipated regional water 

balance changes brought on by climate change scenarios on the sustainability of green and 

blue water resources in data-sparse regions under uncertainty. The two integrated processes 
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are described briefly in the following sub-section and the schematic overview is shown below 

(Figure 6.3). 

 

Figure 6.3: Schematic overview of the integrated SWAT and BRF modelling framework (IMF) for reliable water balance 

modelling in data-sparse regions.   

6.4.2.1 Boruta Random Forest Optimizer 

The Boruta Feature selection method was created as a wrapper for the random forest 

algorithm, which is used to identify important features of the predictors. Every input 

predictor's Z-score distribution relative to the shadow property is calculated. The distribution 

of the Z-score metrics establishes the key components of the predictors (Kursa and Rudnicki, 

2010).  

It involves developing a stepwise model using a minimal-optimal feature selection 

technique, that rates the salient important model features and the residual based on the 

Boruta-determined factors (Kursa, 2016). It is an effective feature selection technique that 

makes it easier to categorize high-dimensional data. Information gain is used to gauge each 
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feature's contribution and establish its association using a novel extension of balanced 

information gain. When analyzing a vast amount of data to get high generalization accuracy, 

this is very significant. 

The methodology of the optimization process of the input dataset is discussed in Lawal et 

al., (2023). The proposed strategy is required to address potential shortcomings of the 

conventional modelling approach, such as their inability to analyze stochastic features, 

complex variable inputs features, and highly interconnected climatic and hydrological 

properties that limit their ability to address critical temporal behaviour (Adamowski et al., 

2012). 

This has been demonstrated in Lawal et al., (2023), that the BRF feature selection 

technique has proven to retain the climatic signals by filtering out the redundant downscaled 

GCMs that may create a dip in the capability of selected ensembles developed to accurately 

represent basin scales hydrologic features like extreme events (return period of flood and 

drought), their trends and magnitudes.  

Thus, integrating the feature extraction algorithms with SWAT modelling may provide an 

improved output of calibrated and validated water balance models for a reliable and accurate 

prediction of baseline and projected hydrologic features in data-sparse watersheds for water 

security assessment.   

6.4.2.2 SWAT Hydrologic Model 

The US Department of Agriculture (USDA) created the physically-based, semi-

distributed and continuous time-step hydrological model known as the SWAT. The model is 

utilized to study water quality (sediment load and nutrient flow), water quantity (streamflow, 

evapotranspiration, water yield, aquifer recharge etc) and crop growth processes in different 

landscape and management practices (Gesualdo et al., 2019; Veettil and Mishra, 2018). 
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Surface runoff in the model is generated by the use of the SCS curve number method 

(Abbaspour et al., 2015; Veettil and Mishra, 2018), and ET is estimated by various 

approaches based on the source of data and basin conditions such as Priestley-Taylor, 

Penman-Monteith, or Hargreaves methods.  

Subsurface flow components including lateral flow, groundwater flow, and percolation 

are evaluated using the mass balance of the subsurface system (Swain et al., 2020). The water 

balance equation conceptualises SWAT's simulation of the hydrological processes as: 

 𝑆𝑊𝑡 = 𝑆𝑊𝑜 + ∑(𝑃𝑖 − 𝑄𝑖 − 𝐸𝑇𝑖 − 𝐺𝑖 − 𝑅𝑖)

𝑡

𝑖=0

 (6.1) 

 

Where 𝑆𝑊𝑡 is the residual water content in the soil (mm), 𝑆𝑊𝑜, initial soil water content, 

𝑡, time in days, 𝑃𝑖, precipitation, 𝑄𝑖, surface runoff, 𝐸𝑇𝑖, evapotranspiration, 𝐺𝑖, subsurface 

flow from the soil profile, 𝑅𝑖, return flow on 𝑖𝑡ℎ day all in (mm) respectively. 

SWAT primarily analyses the water balance components of each Hydrological Response 

Unit (HRU), which is a different group of soil and vegetation types in the sub-basin, to 

estimate the water availability at each sub-main basin's channel for a particular time phase. 

To regulate the flow of water, the water is subsequently channelled to the basin exit via 

the river and subsurface systems. SWAT's calibration, validation, sensitivity analysis, and 

uncertainty analysis are often performed using SWAT-CUP, or calibration and uncertainty 

programmes (Abbaspour, 2015). 

The sequential uncertainty fitting tool version 2 (SUFI-2), an optimization algorithm 

based on stochastic procedures within the SWAT-CUP interface was utilized for adjusting 

independent parameter sets by Latin Hypercube Sampling (LHS). The interface used global 

or One-factor-At-a-time sensitivity analysis during calibration and validation.  

The model performance is evaluated by several statistical metrics such as coefficient of 

determination (R2), Nash-Sutcliffe efficiency coefficient (NSE), etc. However, this project 



Page | 164  
 

will utilize the R2 and NSE for calibration and validation of model results whose equations 

are given below. 

 𝑅2 =
[∑ (𝑥 − 𝑥)(𝑦𝑖 − 𝑦)𝑛

𝑖=1 ]2

∑ (𝑥𝑖 − �̅�)2 ∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

𝑛
𝑖=1

 (6.2) 

 

 𝑁𝑆𝐸 =
∑ (𝑥𝑖 − 𝑥)2𝑛

𝑖=1 − ∑ (𝑦𝑖 − 𝑥𝑖)
2𝑛

𝑖=1

∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1

 (6.3) 

 

Where 𝑥 is the observed mean values, 𝑥𝑖 is the value of the 𝑖𝑡ℎ observation, 𝑦𝑖 is the 

modelled value of the 𝑖𝑡ℎ observation, 𝑦 is the mean of the simulated model values and n is 

the total number of samples sets of the observation. 

6.4.3 Integrated model set-up, calibration, validation and uncertainty analysis. 

6.4.3.1 Integrated model simulation 

The model was set up by importing the DEM to the ArcSWAT interface and the 

watershed and sub-watershed boundary were delineated. However, the basin was divided into 

four major watersheds based on the climatic zones namely, Yobe-Komadugu, Magay-

Ngadda, Chari-Logone and Bodou-Dillia sub-basins (Figure 6.1.).  

The main river networks and tributaries were generated based on threshold drainage area 

of 3000 km2 and all connected to Lake Chad. The HRUs’ adjusted threshold of soil type, land 

use and the slope were set at 15% respectively to fairly retained the characteristic of the land 

use features and slope classes of 0 – 2%, 2 – 8%, 8 – 15% and > 15% respectively. The 

catchment was discretized into 315 sub-basins, with a sub-division of 1702 HRUs’ in Table 

6.2. 

Table 6.2: SWAT model basin delineation 

Basin Area (km2) No of Sub-basin No of HRU 

Yobe-Komadugu 145908.9 30 160 

Magay-Ngadda 84793.1 27 171 

Chari-Logone 739129.4 91 572 

Bodou-Dillia 1327055 167 799 

Total 2296886 315 1702 
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The Boruta random forest filter was integrated to optimize the climate dataset used in this 

study. Initially, 16 GCMs’ datasets at daily time step in Table 5.1  were parsed through the 

algorithms by utilizing the observed gridded and GCM dataset as the target and dependent 

features respectively, at the 210 grid points considered, to screen and extract the significant 

input features (GCMs). The optimization process (i.e., inputs and target) features are 

considered to be statistically independent if the lagged values delay them. 

The algorithm computes the Z-score of all input predictors and the distribution determines 

the shadow features generated from the target variable. At each grid point, an input feature is 

deemed important, if and only if the feature importance score (Z-score) is greater than the 

shadow attributes generated from the target feature after 500 iterations.  

The ensemble of the four best GCMs at each grid point was formed for both baseline 

1979 – 2011 and the projected climate change scenarios SSP2(4.5) and SSP5(8.5) at two-time 

slices of 2021 – 2050 and 2051 – 2080 and integrated into the hydrologic model. The 

optimization process is important to screen through antecedent lagged memories within the 

datasets (GCMs inputs) after the application of the algorithms could result in a potential 

correlation in time series arising from hydro-meteorological factors without necessarily 

misrepresenting the basin climate features. 

The unavailability of observed wind speed, relative humidity, solar radiation and 

reservoir operation data, default model values were maintained, and the influence of the 

reservoir was neglected respectively. Hargreaves temperature-based approach was set up 

within the model in the simulation of evapotranspiration variable to prevent the influence of 

the aforementioned weather data in ET simulation. 

6.4.3.2 Model Calibration, Validation and Uncertainty Analysis 

The four watersheds were calibrated and validated using SUFI-2 optimization algorithms 

against the observed ET data extracted at 100 points and reaggregated to form 59 test points 
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based on the delineated watershed boundaries and with a balanced spatial distribution that 

covers the entire basin to increase confidence in the model output.  

The primary objective was to identify sensitive model parameters in the watershed that 

controls the basin hydrology. Preselection of sensitive parameters was undertaken through a 

literature review (Abbaspour et al., 2017; Jiang et al., 2020; López et al., 2017), and one 

parameter at a time sensitive analysis using 5 simulation runs was conducted.  

The observed ET data were sub-divided for calibration and validation at a point having a 

homogenous representation of ET characteristics capturing both wet, moderate and dry years 

across the available data period. The sensitivity analysis was used to assess the statistical 

significance of the model parameters estimated based on t-stat and p-value. 

The uncertainty in the simulation was narrowed by identifying the range of parameters 

that reduced the effects in the model variable output. The model output was estimated by 

95% prediction uncertainty (95PPU) determined at 97.5% and 2.5% levels of confidence. The 

performance of the integrated model was evaluated by the goodness of fit criteria as shown in 

Eqn. (6.2) and (6.3)., and uncertainty range with P-factor and R-factor.  

The P-factor is the percentage of observed data enclosed within the 95PPU band and R-

factor is the ratio of the average thickness of the 95PPU band to the standard deviation of 

observed and simulated data. The optimum value of 1 and 0 respectively, indicated a perfect 

model. 

The overall period used for analysis was (1979 – 1999) for calibration (the first three 

years were used as a warm-up period to prevent the effects of the unknown initial condition 

and (2000 – 2006) for validation. The model results of the calibrated and validated ET and 

the most sensitive parameter for each watershed are presented and explained in 6.5.1. 
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6.4.4 Assessment of water footprint environmental sustainability 

The output of the hydrologic model was used to evaluate the impact of climate change on 

spatial and temporal variation of green and blue water footprint environmental sustainability 

of the Yobe-Komadugu watershed. The watershed is dominated by agricultural land and 

situated within the two-climate extreme of the basin.  

Geographic hotspots that lead to water resource conflict was identified by defining the 

environmental sustainability of blue and green water at the basin size in relation to freshwater 

provision levels (threshold available water for human use). 

To evaluate the environmental sustainability, we used a sustainability index (SI), which 

compared specific sub-basin WF to its corresponding water availability (WA) based on the 

equation below: 

 𝑆𝐼𝑏𝑙𝑢𝑒
𝑖,𝑗

= 1 − 
𝑊𝐹𝑏𝑙𝑢𝑒

𝑖,𝑗

𝑊𝐴𝑏𝑙𝑢𝑒
𝑖,𝑗

 (6.4) 

  

 𝑆𝐼𝑔𝑟𝑒𝑒𝑛
𝑖,𝑗

= 1 − 
𝑊𝐹𝑔𝑟𝑒𝑒𝑛

𝑖,𝑗

𝑊𝐴𝑔𝑟𝑒𝑒𝑛
𝑖,𝑗

 (6.5) 

 

Here, 𝑆𝐼𝑏𝑙𝑢𝑒
𝑖,𝑗

 and 𝑆𝐼𝑔𝑟𝑒𝑒𝑛
𝑖,𝑗

 represents the indices that defines watershed blue and green 

water environmental sustainability in sub-basins 𝑖 at time 𝑗; 𝑊𝐹𝑏𝑙𝑢𝑒, 𝑊𝐹𝑔𝑟𝑒𝑒𝑛, 𝑊𝐴𝑏𝑙𝑢𝑒 and 

𝑊𝐴𝑔𝑟𝑒𝑒𝑛 represents blue and green water footprint and availability respectively. When the 

blue and green water footprints exceed the availability, i.e., (𝑆𝐼𝑏𝑙𝑢𝑒
𝑖,𝑗

< 0) and (𝑆𝐼𝑔𝑟𝑒𝑒𝑛
𝑖,𝑗

< 0), 

then water footprint is environmentally unsustainable because human water use violates 

environmental flow requirements and ecosystem needs respectively (Hoekstra et al., 2011). 

Here, we categorize the green and blue water sustainability threshold into extremely (ES), 

(0.75 ≤ 𝑆𝐼 ≤ 1), highly (HS), (0.5 ≤ 𝑆𝐼 < 0.75), and moderately (MS), (0.0 ≤ 𝑆𝐼 < 0.5) 

sustainable indices, referred to as viable water security points and extremely (EU), (𝑆𝐼 <
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−1), highly (HU), (−1 ≤ 𝑆𝐼 < −0.5) and moderately (MU), (−0.5 ≤ 𝑆𝐼 < 0.0)  

unsustainable indices, which are referred and identified as high, medium and low-risk 

geographic water security hotspots respectively. 

6.4.4.1 Blue water footprint and availability assessment 

The blue water is determined from the output of the modelling framework (Figure 6.3). 

The blue water was estimated by combining groundwater storage and water yield (WYLD) 

referred to as blue water flow (BWF). The water yield (WYLD) defines the threshold amount 

of water that leaves the HRU and enters the main channel and groundwater storage is the 

difference between aquifer recharge (GW_RCHG) and the main channel flow (GW-Q) 

(Rodrigues et al., 2014). 

The basin blue water security evaluated by the sustainability indicators is in terms of blue 

water footprint or water abstractions restriction based on satisfying absolute environmental 

demand i.e., the concept of both abstraction (demand) and consumption (withdrawal minus 

return flow).  

The blue water footprints were referred to as water appropriated or consumed by different 

sectors at the river basin scale and the spatial distribution of water uses was determined by 

sectoral water demand information (Table 6.3), 1 km gridded world population densities 

(CIESIN) data for baseline and projected future period consistent with the shared 

socioeconomic pathways of CO2 emission scenarios related to the middle of the road (SSP2) 

and fossil-fuelled development (SSP5) available at http://sedac.ciesin.columbia.edu/gpw 

(Balk et al., 2006; Jones and O’Neill, 2016). 

A conservative value of 92 L/capita/day was used to quantify absolute basic water 

consumption for domestic blue water footprint to meet minimum target during stringent water 

restrictions (Crouch et al., 2021). This concept was adopted here and can be applied to basins 

http://sedac.ciesin.columbia.edu/gpw
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where actual sectoral water demand information cannot be established or is inadequate for 

long-term water security assessment at the basin scale. 

Table 6.3: Sectoral Water Use Information in Chad and Nigeria 

Sector Chad Nigeria 

Domestic Use 21% 58% 

Industrial Use 0 4% 

Agricultural Use 79% 39% 

Source: (GWP, 2013) 

The basin’s annual blue water footprint was determined based on the equation below.                        

 𝑊𝐹𝑏𝑙𝑢𝑒
𝑖,𝑗

= ∑365𝐶𝑖𝐴𝑏𝑃𝑑𝑄𝑤 × 1.15741 × 10−8

𝑛

𝑖=1

 (𝑚3 𝑠)⁄  (6.6) 

 

Where: 𝐶𝑖 proportion of sectoral water use, 𝐴𝑏 area of sub-basin (km2), 𝑃𝑑 long term 

means population density per square km, 𝑄𝑤 per capita water use (L/capita/day), n number of 

sectors utilizing the freshwater resources. However, due to inadequate data, the annual water 

withdrawal figures were divided equally over twelve months without accounting for possible 

monthly variations for the assessment of blue water sustainability at a monthly scale. 

The blue water availability was estimated by the methodology proposed by Hoekstra et 

al., (2011), where 𝑊𝐴𝑏𝑙𝑢𝑒 was determined by considering the proportion of safe natural 

runoff (streamflow) that is available for consumptive use at each sub-basin as shown in Eqn. 

(6.7). 

 𝑊𝐴𝑏𝑙𝑢𝑒
𝑖,𝑗

= 𝑄𝑖,𝑗 − 𝐸𝐹𝑅𝑖,𝑗 (6.7) 

 

Where Q represents the long-term sub-basin natural runoff (streamflow) (m3/s) and EFR 

is the environmental flow requirement to maintain healthy river ecosystems. In this case, EFR 

was estimated using the presumed standard method developed by Richter et al., (2012) that 
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20% of the long-term mean monthly natural runoff can be made available and considered 

appropriate for withdrawal. 

 𝐸𝐹𝑅𝑖,𝑗 = 0.8𝑄𝑚𝑒𝑎𝑛(𝑖,𝑗) (6.8) 

 

6.4.4.2 Greenwater Footprint and Availability Assessment 

Green water has two components defined as green water flow (withdrawal) and green 

water storage (Availability). For evaporation, transpiration, or absorption, plants use the 

green water withdrawal that is held in the soil’s root zone. According to the HRU output of 

the SWAT model, the green water withdrawal represents actual evapotranspiration and is 

defined as the green water footprint (Rodrigues et al., 2014; Veettil and Mishra, 2016). 

The amount of soil moisture that can support crop development and soil 

evapotranspiration, which represents the original soil water content (SW) is referred to as 

"green water availability." It was acquired from the output of the SWAT model and applied 

to the water sustainability assessment (Abbaspour et al., 2015; Veettil and Mishra, 2018). 

6.5 Results and discussions 

6.5.1 Calibration and Validation of the integrated model 

The model calibration and validation process are challenging and to a certain extent 

subjective in complex hydrology, especially in a region with inadequate multi-variable 

observed data. We, therefore, aim to produce a model whose simulation reflects the natural 

conditions of the watershed. As a first step, we integrated the Boruta random forest feature 

selection approach as an interface to assess and filter out redundant downscaled GCM data 

across the 210 selected grid points of the entire watershed.  

According to Lawal et al., (2023), this procedure was required to improve and preserve 

the internal variability of climate data signals that may be affected by reparameterization to 

utilise the right number of GCM ensembles capable of evaluating the complex interactions 

within hydrologic models and ensure all uncertainties (conceptual model, input data, and 
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parameters) ranges are mapped onto and bracketed by most of the observed data within the 

95% prediction uncertainty range (Abbaspour et al., 2017), for an accurate understanding of 

long-term changes in baseline and projected watershed hydrology, especially in data-sparse 

and climate-sensitive regions which are not adequately studied. 

The one-at-a-time-sensitive analysis adopted for the preselection of sensitive model 

parameters was relied on here, due in part to the use of different observed data for calibration 

and validations process from previous hydrologic studies from watersheds with similar 

features around the world (Abbaspour et al., 2017; Jiang et al., 2020; López et al., 2017), 

variations in watershed features and homogeneous representation of the evapotranspiration 

characteristics capturing both wet, moderated and dry years across the available data period. 

The built-in sensitivity analysis tool utilized (SUFI-2) algorithms in SWAT-CUP 

identified 19 parameters in the four sub-watersheds analysed, with different levels of 

sensitivities outlined in Table 6.4 below, and this may have alluded to the variations of land 

use and land cover, terrain and slope features across the watershed. 

The result of the model global sensitivity analysis of the calibration process across the 

four sub-watersheds analysed indicated that the combination of the parameters rendered some 

less sensitive in the simulation run. Thus, we categorized the level of parameter sensitivity 

based on the p-value of the model run as (p-value = 0) highly sensitive (**), (0 ˂ p-value ≤ 

10-5) moderately sensitive (*), and (p-value ˃ 10-5) less sensitive respectively.  

The sensitivity threshold applied indicated that SCS runoff curve number for average 

moisture condition (CN2.mgt), moist bulk density (SOL_BD().sol), saturated hydraulic 

conductivity (SOL_K().sol), and soil evaporation compensation factor (ESCO.hru) are the 

most important modelling parameters in the entire watershed as shown in Table 6.4.  
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Table 6.4: Model sensitive parameters, ranges and best-fitted values at sub-watersheds 

Parameter Name Sub-basin Fitted Parameter values. 

 

Parameter 

range 

Yobe-Komadugu Magay-Ngadda Chari-Logone Bodou-Dillia 

r__CN2.mgt -0.01** 0.01** -0.15* -0.02** - 0.2 - 0.2 

v__GW_DELAY.gw 88.66** 182.56 63.28 88.66** 0.0 - 500.0 

v__ALPHA_BF.gw 0.84* 0.50 0.71 0.84* 0.0 - 1.0 

r__GWQMN.gw -1.37 0.04 -0.38 -1.37 0.0 - 5000 

v__GW_REVAP.gw 0.19 0.10 0.05 0.12 0.02 - 0.2 

v__REVAPMN.gw 199.36 - - - 0.0 - 500 

r__RCHRG_DP.gw 0.80 - - - 0.0 – 1.0 

r__SOL_Z().sol -0.03 - - - 0.0 - 3500 

v__SOL_BD().sol 1.08** 0.60** 1.12** 1.08** 0.9 - 2.50 

v__SOL_AWC().sol 0.58 0.58 0.42 0.39 0.0 - 1.0 

v__SOL_K().sol 285.93** 4.36* 1435.35** 285.93** 0.0 – 2000 

v__CH_N2.rte 0.22 0.18 0.27* 0.17 - 0.01 - 0.3 

v__CH_K2.rte 367.65* 260.33 387.82 367.65* - 0.01 – 500 

v__ALPHA_BNK.rte 0.86 0.32 0.32 0.86 0.0 - 1.0 

r__SLSUBBSN.hru 0.21* -0.01 0.09** 0.21* 10.0 – 150 

v__OV_N.hru 0.05 0.05** 0.02 0.05 0.01 - 1.0 

v__ESCO.hru 0.92** 0.27** 0.52** 0.92** 0.0 - 1.0 

v__EPCO.hru 0.24 0.14** 0.22** 0.24 0.0 - 1.0 

r__HRU_SLP.hru 0.05 0.05 0.27** -0.02** 0.0 - 1.0 

Note: ‘’v__’’ denotes that the existing parameter value was replaced by a given value and ‘’ r__’’ is a relative 

change and implied that the existing parameter value is multiplied by (1 + given value).   

 

Other important sensitive parameters to note based on the sub-watershed modelling 

process are groundwater delay (GW_DELAY.gw), baseflow alpha factor (ALPHA_BF.gw), 

effective hydraulic conductivity in main channel alluvium (CH_K2.rte), average slope length 

(SLSUBBSN.hru) in Yobe-Komadugu, manning’s roughness coefficient for overland flow 

(OV_N.hru) and plant uptake compensation factor (EPCO.hru) in Magay-Ngadda, average 

slope steepness (HRU_SLP.hru), baseflow alpha factor (ALPHA_BF.gw), average slope 

length (SLSUBBSN.hru), plant uptake compensation factor (EPCO.hru), manning’s 

roughness for main channels (CH_N2.rte) in Chari-Logone, and baseflow alpha factor 

(ALPHA_BF.gw), effective hydraulic conductivity in main channel alluvium (CH_K2.rte), 

average slope steepness (HRU_SLP.hru), groundwater delay (GW_DELAY.gw) in Bodou-

Dillia watershed respectively.  

However, the optimized watershed's sensitive parameter ranges were varied, and this lack 

of uniqueness is characteristic of the calibration of hydrologic models. This assertion was 
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supported by Abbaspour et al., (2009), that there will be numerous such models with various 

parameter ranges if a model exists that fits the measurements.  

The sub-watershed performance for calibration and validation respectively is shown in 

Figure 6.4a-d, calculated based on the observed and the “best” simulated monthly actual 

evapotranspiration value of the objective function across the 59 measured points spatially 

distributed across the basin.  

The calibrated and validated model results depicted by correlation coefficient (R2) and 

Nash-Sutcliffe efficiency criteria (NSE) were in the range of R2 = 0.69 - 0.88, NSE = 0.45 - 

0.77 and R2 = 0.62 - 0.79, NSE = 0.34 - 0.63 across all the watersheds respectively. 

Moreover, a large number of the achieved model results fell within a satisfactory uncertainty 

range with P-factor and R-factor values in the range of 0.68 – 0.93 and 0.73 – 1.31 in 83%, 

67%, 85.7% and 81.3% of the sub-watershed respectively.  

 

      (a) 
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      (b) 

 

      (c) 
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      (d) 

Figure 6.4: Plot of comparison of the observed and simulated results (95% prediction uncertainty band) of actual 

evapotranspiration against time between 1983 – 2006) in the Lake Chad basin. (a): Yobe-Komadugu Watershed (b): Magay-

Ngadda Watershed (c): Chari-Logone Watershed (d): Bodou-Dillia. 

There are a few sub-basins with poor simulated output whose R2 and NSE values are as 

low as 0.25 and 0.14 respectively, although has exhibited a good representation of data 

uncertainty band with encouraging P-factor and R-factor values in the range of 0.53 – 0.78 

and 1.21 - 1.95 respectively.  

Even the region with acceptable objective functions is faced with the difficulty simulating 

and matching the peak values of the observed evapotranspiration values and this may be 

alluded to simplification of the model by reaggregation of the land use features, inadequate 

data that accounts for some of the important basin-scale processes like lack of sufficient 

information such as reservoir operations, dams, water transfers, irrigation process etc.  

This is generally classed as technical modelling uncertainties and natural heterogeneity in 

the hydrologic modelling process and has been corroborated in (Abbaspour et al., 2015; 
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Schuol et al., 2008). However, our results are generally quite realistic for basin-scale 

assessment of water-related hazards. 

The obvious reason for the large variability in NSE estimates, across the four basins or 

model results, could be related to the “actual evapotranspiration only” calibrations. The 

modelling issue can be significantly “improved” by incorporating additional observation 

dataset in the distributed calibration modelling schemes (Kunnath-Poovakka et al., 2016; 

Rajib et al., 2016) where reliable data are made available. However, Koppa et al., (2019), 

argued that the ability of a model to simultaneously reproduce the included water balance 

components is not assessed by any limits of acceptability or error thresholds in multivariate 

calibration.     

The result presented here, is a step forward and improvement to earlier studies by 

Faramarzi et al., (2013), and Schuol et al., (2008), using a stand-alone SWAT model with 

direct use of climate data, where the results from the studies indicate poor watershed 

representation of the portion of Lake Chad basin, which depicted large uncertainty range.  

This may be attributed to the use of climate data with coarse resolution and distorted 

signals of watershed features where the complex orographic and land-sea distribution was not 

accounted for and may lead to local variation in basin water balance outputs and affects 

projected climate change assessment studies. However, there are differences in model 

variables and parameters adopted for calibration and these studies are on a wider scale. 

Interestingly, the optimization approach used here by incorporating machine learning in 

the integrated modelling strategy could reduce large model uncertainty propagation and 

provide a new direction to modelling issues in data-sparse regions with variable 

morphological features by providing high-valued water resource information at the local 

basin scale to drive sustainable water policy decisions. 
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6.5.2 Assessment of climate change impact on projected green and blue water resources. 

The assessment of climate change’s impact on the spatial and temporal distribution of 

blue and green water resources will be of great significance at the sub-watershed level to 

provide the necessary information for decision support for water authorities.  

The confidence in the output of the model results was reinforced by investigating 

variations in the projected mean changes in the near future (2021 – 2050) and far future (2051 

– 2080) annual precipitation and average temperature from baseline (1982 – 2011) of the 

ensemble GCM refined by Boruta random forest feature selection approach of the Yobe-

Komadugu watershed.  

The results of the projected changes in annual precipitation and temperature for the two 

scenarios based on shared socioeconomic pathways are shown in Table 6.5. 

Table 6.5: Median of the projected changes in annual precipitation and temperature in the Yobe-Komadugu Watershed 

Variable Precipitation (%) Temperature (⁰C) 

Scenarios SSP2(4.5) SSP5(8.5) SSP2(4.5) SSP5(8.5) 

2021 - 2050 7.10 7.40 0.69 0.89 

2051 - 2080 13.25 27.68 1.17 1.78 

 

The results of the projected changes in precipitation indicated an increasing trend with an 

annual shift of 7.1 and 7.40% in the near future to 13.25 and 27.68% in the far future, with 

associated increased warming scenario of average temperature in the range of 0.69 ± 0.15⁰C 

and 0.89 ± 0.11⁰C between 2021 – 2050 and 1.17 ± 0.22⁰C and 1.78 ± 0.24⁰C between 2051 – 

2080 for SSP2(4.5) and SSP5(8.5) respectively. 

The range of projection here, is similar and consistent with reported findings of previous 

studies (Almazroui et al., 2020; Sylla et al., 2016; Vizy et al., 2013), and the projected 

changes may be linked to variability and changes in West African Monsoon features, like 

changes in intensity and localisation of the African Easterly Waves and Jets, monsoon flows 
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as well as integrated moisture flux divergence and moist static energy (Mariotti et al., 2014; 

Sylla et al., 2015; Teichmann et al., 2013). 

The result of the changes in spatial and temporal distribution from baseline of projected 

green water flow, green water storage and blue water flow under two climate change 

emission scenarios SSP2(4.5) and SSP5(8.5) for the near future (2021 – 2050) and far future 

(2051 – 2080) of Yobe-Komadugu watershed is displayed in Figure 6.6 – Figure 6.11, 

respectively.  

The watershed was chosen because it is characterized by incidences of climate extremes, 

the most recent and notable event was the reported heavy windstorm in April 2022, and 

downpour in May 2022 that affected about 180 communities and resulted in the loss of lives, 

food, buildings, livestock, farmlands etc. (SEMA, 2022), and it is an important agriculture 

production regions. The delineated watershed boundary and the sub-basins are shown in 

Figure 6.5. 

 

 

Figure 6.5: Delineated Yobe Komadugu Watershed with sub-basin locations 
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6.5.2.1 Spatial and temporal variation of green water flow under different climate 

change scenarios 

The hydrological cycle is expected to intensify due to increased rainfall and a warmer 

atmosphere, as evidenced by the projected increase in atmospheric temperature as a result of 

CO2 emissions, which indicates a greater evaporative demand and increases GWF and this is 

consistent with the findings of Ogutu et al., (2021); Pham-Duc et al., (2020); and Todzo et al., 

(2020).  

It is projected to increase at different levels based on the emission scenario and time 

slices. For example, the baseline period (1982 – 2011) depicted a mean annual GWF of 

393.55 mm for the entire basin in Figure 6.6a. However, there is a marked increase in the 

spatial variations in GWF from 417.02 mm to 425.03 mm for SSP2(4.5) in Figure 6.6b and 

d, and from 418.75 mm to 457.86 mm in Figure 6.6c and e, for SSP5(8.5) emission scenario 

accounting for 6.0% and 8.0% in basin GWF for SSP2(4.5) and 6.4% and 16.34% increased 

basin GWF for SSP5(8.5) in near and far future time slices respectively.  

Few exceptions were noted with contrasting GWF hydrologic features where declining 

GWF were predicted especially in the downstream (sub-basin 20, 21, 25 – 30) of the 

watershed. These changes are consistent with the studies indicating a general increase in 

evaporative demand due to increase air temperature in most part of the world ((Scheff and 

Frierson, 2014; Vicente-Serrano et al., 2020). 

Analysis of the distribution and changes in the mean monthly variation of GWF of the 

near and far future relative to the baseline period, depicted in Figure 6.7, showed a consistent 

projected increase between spring and summer months in the range of 12.95 – 33.54% and 

5.93 – 31.02% (Figure 6.7a),  between 2021 – 2050 and 23.25 – 65.76% and 26.39 – 87.43% 

in Figure 6.7b, between 2051 – 2080 for SSP2(4.5) and SSP5(8.5) respectively.  
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However, there is a generally sharp decline in autumn and winter season across the basin 

projected to be around 53.38% and 54.10% in 2021 – 2050 and 54.72% and 36.0% based on 

the two emission scenarios within the time slices. The reason for the enhanced projected 

GWF may be related to the increased temperature in the tropical regions between April 

through September due to an increase in CO2 emission concentration.  

The projected increase in precipitation events also enhances vegetation cover and the 

activity of plant actual transpiration. The variation in GWF across the seasons is generally 

more pronounced in regions with high atmospheric evaporative demands that give rise to a 

pattern of seasonally variable regimes consistent with the findings of Konapala et al., (2020). 

 

Figure 6.6:Variations in (mm) of spatial distribution of annual green water flow in the Yobe-Komadugu Watershed. 
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      (a) 

 

 

      (b) 

Figure 6.7:Variations (mm) in the temporal distribution of mean monthly green water flow (a) 2021 – 2050 (b) 2051 – 2080 

in Yobe-Komadugu Watershed. 
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6.5.2.2 Spatial and temporal variation of green water storage under different climate 

change scenarios 

The result of the mean annual GWS, represented by the soil moisture conditions, which 

changes over time and could be affected by the initial soil water content indicated a 

substantial projected decline in all sub-basins of the watershed from the baseline period with 

an annual average value of 341.89 mm (Figure 6.8a), to 324.79 mm and 302.43 mm for 

SSP2(4.5) in Figure 6.8b and d, and 299.45 mm and 293.45 mm for SSP5(8.5) in Figure 

6.8c and e. This accounts for the projected decline of 4.99% and 11.54% in basin GWS for 

SSP2(4.5) and 12.41% and 14.17%  for SSP5(8.5) in the near and far future period 

respectively.  

This decline may not be unconnected to the huge over-exploitation of groundwater 

resources for irrigation practices, by further lowering the water table level in the basin and 

possibly increasing surface air temperature could also affect soil water flow regimes thereby 

increasing the groundwater evaporative demands.  

The variations and decline of soil moisture may be attributed to the likely increase in 

drought occurrences in regions that are currently drought prone areas and is projected to 

decrease soil moisture conditions in high emission scenarios as alluded by Cook et al., 

(2020). 

Analysis of the distribution and changes in the mean monthly variation of GWS of the 

near and far future relative to the baseline scenario, depicted in Figure 6.9, showed a 

consistent projected decline in most months in the range of 2.75 – 44.11% at a mean rate of 

6.95 mm/month and 24.97 – 69.99% at a mean rate of 15.65 mm/month (Figure 6.9a),  in 

2021 – 2050 and 5.47 – 54.45% at a mean rate of 6.28 mm/month and 26.47 – 70.59% at a 

mean rate of 15.85 mm/month (Figure 6.9b), in 2051 – 2080 for SSP2(4.5) and SSP5(8.5) 

respectively.  
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However, there is an exception in the monsoon (May – September) season across the 

basin, with a projected increase of GWS of around 53.28% (18.58 mm/month) and 60.02% 

(20.71 mm/month) in 2021 – 2050 and (June - September) at 15.87% (5.72 mm/month) and 

56.83% (23.91 mm/month) in 2051 – 2080 based on the two emission scenarios respectively. 

The projected increase in the monsoon season is generally significant between the month 

of July – September which is associated with high rainfall intensities and interannual seasonal 

variability as corroborated by Almazroui et al., (2020). 

 

Figure 6.8:Variations in (mm) of spatial distribution of green water storage in the Yobe-Komadugu Watershed. 
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      (a) 

 

      (b) 

Figure 6.9: Variations (mm) in the temporal distribution of mean monthly green water storage (a) 2021 – 2050 (b) 2051 – 

2080 in Yobe-Komadugu Watershed. 
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6.5.2.3 Spatial and temporal variation of blue water flow under different climate change 

scenarios 

The climate change impact on spatial and temporal variation of blue water flow was 

quantified at the sub-basin level in the watershed. BWF showed high variability, and the 

dynamics are quite distinct in the upstream and downstream parts of the watershed.  

For example, BWF is projected to decline at a mean annual rate of 38.9 mm/year and 

37.25 mm/year at the sub-basin (1 – 13, 15, 18, and 22) upstream, while an associated 

projected increase of 54.66 mm/year and 55.27 mm/year at sub-basin (14, 16, 17, 19 – 21, 

and 23 – 30) downstream, in 2021 – 2050 shown in Figure 6.10b and c, for SSP2(4.5) and 

SSP5(8.5) respectively, from the baseline period (1982 – 2011) depicted a mean annual BWF 

of 37.83 mm for the entire basin in Figure 6.10a.  

Similarly, the dynamics are the same for the far future but with a reduced magnitude of 

decline from the baseline of 25.98 mm/year and 29.69 mm/year upstream and increase the 

magnitude of 77.23 mm/year and 98.97 mm/year downstream in 2051 – 2080 shown in 

Figure 6.10d and e, for SSP2(4.5) and SSP5(8.5) emission scenarios respectively.  

However, analysis of changes in BWF in the entire watershed depicted a projected 

increase from the baseline period of 2.85 mm/year and 4.76 mm/year in 2021 – 2050 and 

20.21 mm/year and 52.01 mm/year in 2051 – 2080 for the respective CO2 emissions 

scenarios. 

Analysis of the distribution and changes in the mean monthly variation of BWF of the 

near and far future relative to the baseline scenario, depicted in Figure 6.11, showed that the 

projected decline is prevalent between months in the winter and spring season shown in 

Figure 6.11a and b, where precipitation events are non-existent or sub-optimal (i.e. below 

long term basin average) in the tropical regions.  
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However, the summer and autumn months showed a projected increase in BWF relative 

to the baseline period which may be associated with increased monsoon rainfall events and 

intensities thereby intensification of wet extremes and dry spell lengths by shortening the 

Sahel rainy seasons as predicted in previous studies (Almazroui et al., 2020; Sarr, 2012; Sylla 

et al., 2016). 

The projected decline of BWF is in the range of 0.17 – 4.88 mm/month and 0.17 – 6.42 

mm/month in Figure 6.11a, between 2021 – 2050 and 0.13 – 6.0 mm/month and 0.07 – 5.49 

mm/month in Figure 6.11b, between 2051 – 2080 for SSP2(4.5) and SSP5(8.5) respectively. 

However, there is a generally sharp increase in BWF in monsoon season across the basin 

especially in August, with a projection of up to 4.76 and 4.96 mm/month between 2021 – 

2050 and 11.66 and 23.8 mm/month between 2051 - 2080 based on the two emission 

scenarios.  

These sharp changes in BWF across the months validate the changes seen in recent trends 

in significant increase in heavy rainfall events and changes in seasonality that exacerbated 

incidences of frequent weather extremes i.e., flooding and droughts in the Sahel (Boko et al., 

2007; Niang et al., 2014). 
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Figure 6.10: Variations (mm) in the spatial distribution of blue water flow in the Yobe-Komadugu watershed 

 

 

      (a) 



Page | 188  
 

 

      (b) 

Figure 6.11:Variations (mm) in the temporal distribution of mean monthly blue water flow (a) 2021 – 2050 (b) 2051 – 2080 

in Yobe-Komadugu Watershed. 

6.5.3 Climate change impact and socioeconomic drivers on spatial variation of projected 

green and blue water sustainability. 

The green and blue water sustainability was determined at the sub-basin scale for baseline 

(1982 – 2011) and projected changes in the near (2021 – 2050) and far (2051 – 2080) future 

based on the two CO2 emission scenarios using the sustainability indices as shown by the 

spatial maps in Figure 6.12 and Figure 6.13 respectively. 

The baseline period showed that green water is moderate to extremely sustainable (ES), in 

7 sub-basins accounting for 16.50% of the watershed area with sustainability indices (SI) 

ranging from 0.19 to 0.3, 0.5 – 0.71 and 0.81 – 1.0 in sub-basin (10 and 27), (7 and 26) and 

(1, 2, and 8) in Figure 6.12a. The remainder of the watershed was characterized with a low 

level of green water sustainability, except sub-basin 3, 20 and 24 which are high-risk 

geographic hotspots.  

The favourable sustainability indices of the sub-basins located upstream of the watershed 

may be due to land use and land cover features which is a mixture of scanty vegetation and 
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bare land with associated low green water footprint as a result of little to non-existent rainfed 

agricultural practices.  

Similarly, plant water use efficiency due to climate change may be a significant influence 

in the differences of freshwater sustainability status between the upstream and downstream 

part of the watershed, which may have limit or counteract the rising projected 

evapotranspiration in high emission scenarios as corroborated in (Lemordant et al., 2018; 

Milly and Dunne, 2016). 

Analysis of the projected green water sustainability indicated that there is a one-to-two-

fold shift in sustainability threshold across the basin with a steady to sharp decline from a 

favourably basin green water sustainability status from the baseline of 16.50% to 15.9% for 

SSP2(4.5) (Figure 6.12b), and 0% for SSP5(8.5) in 2021 – 2050 (Figure 6.12c), and the far 

future also indicated a decline of watershed green water sustainability threshold of 1.86% for 

SSP2(4.5) (Figure 6.12d) and 0% for SSP5(8.5) (Figure 6.12e) in 2051 – 2080 of the 

watershed area respectively.  

The geographic hotspots (𝑆𝐼 < −0.5) are generally situated upstream of the watershed in 

all scenarios and are an indication that climate change may have a more profound effect on 

the high to extremely unsustainable green water status which is evident in the continuous 

increase in green water flow and decreased green water storage.  

This phenomenon may have been the cause of increased humidity, affecting the timing, 

spatial pattern and intensity of rainfall in a basin as suggested by Du et al., (2018), and as 

CO2 emissions rise, the efficiency of the photosynthetic process' utilisation of water 

increases, resulting in CO2 fertilisation (Donohue et al., 2017). 



Page | 190  
 

 

Figure 6.12: Spatial hazards map of changes of baseline and projected green water environmental sustainability in Yobe-

Komadugu Watershed. 

The changes in blue water sustainability in the watershed for the baseline period in 

Figure 6.13a were assessed to be 15.61% HS, 5.4% MS, 15.65% MU and 63.34% HU – EU 

(potential blue water geographic hotspots) of the watershed area respectively.  

The high level of blue water sustainability is predominant upstream of the watershed, 

however, sub-basins 1, 2, and 6 are shown to be highly unsustainable which may be related to 

the absence of viable stream channels and high rate of evaporative demands which 

characterized the basin as semi-arid with severe droughts events and high interannual rainfall 

variability due to the effect of Inter-Tropical Convergence Zone (ITCZ) migration 

(Thompson and Polet, 2000). 
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Figure 6.13: Spatial hazards map of changes of baseline and projected blue water environmental sustainability in Yobe-

Komadugu Watershed. 

Analysis of the influence of climate change and changes in socio-economic activities on 

projected blue water sustainability indicated a further increase in blue water geographic 

hotspots across the watershed area of 71.53% and 75.38% in Figure 6.13b and c between 

2021 – 2050, and 73.51% and 76.35% in Figure 6.13d and e between 2051 – 2080 for 

SSP2(4.5) and SSP5(8.5) respectively.  

Our model results showed that the blue water security hotspots regions have negative SI 

in the range of – 0.5 up to as high as – 16.58 for both SSP2(4.5) and SSP5(8.5) respectively. 

The blue water's continued unviability may be caused by major river systems drying up and 

reduced flows brought on by the overuse of groundwater and surface water resources as a 

result of intensive irrigation practices.  
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These consistent patterns could be scaled with the SSPs emissions scenarios, which have 

shown a strong correlation between anthropogenic GHG emissions and potential 

environmental impacts as corroborated by Adeyeri et al., (2019).  

Some of the viable blue water sustainable sub-basins are characterised by interconnected 

large streams that form the Komadugu Yobe and Komadugu Gana river sub-systems that 

support different ecological processes and socioeconomic activities such as fish production,  

pastoralism, forest regeneration etc., with a population of over 20 million people depending 

on this activity in the basin.  

The continued decline in sustainable blue water may be worrisome to local and national 

strategic freshwater management plans and a threat to diplomatic relationships among 

countries that shared the basins.   

6.5.4 Climate change impact and socioeconomic drivers on the temporal variability of 

projected changes of green and blue water sustainability. 

The green and blue water sustainability assessment at the local basin scale will require an 

understanding of the temporal pattern of freshwater circulation at a monthly timescale to 

improve and stabilize the basin ecosystems. Figure 6.14a – e, showed a heat map of the 

severity of the baseline and projected monthly changes in green water sustainability across 

the 30 sub-basins of the watershed.  

The results indicated that green water is more sustainable in the pre-monsoon and post-

monsoon months with indices between 0.15 – 0.95 in Figure 6.14a, although there is a 

consistent projected change of sustainability status from moderately unsustainable to highly 

and extremely unsustainable green water in the monsoon months between April – June 

indicating a transition to potential geographic water sustainability hotspots across all the 

climate change scenario shown in Figure 6.14b - e.   
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Figure 6.14: Heat Map showing temporal changes of mean monthly baseline and projected green water environmental 

sustainability in Yobe-Komadugu Watershed 

However, a gradual change in favourable green water sustainability status is emerging in 

the month of July – August in 23% (Figure 6.14b) and 80% (Figure 6.14c) in the near future 

and 16.7% (Figure 6.14d) and 70% (Figure 6.14e) in far future for SSP2(4.5) and SSP5(8.5) 

emission scenarios respectively across the entire watershed, and this may be connected to the 

sudden projected increase in rainfall events and totals in the semi-arid climate.  

Assessment of baseline blue water sustainability status in Figure 6.15a indicated that sub-

basins 1 – 19 (upstream) showed a moderate to high blue water sustainability in the monsoon 

months of May – September with indices that ranged from 0.47 – 0.98, conversely, sub-

basins 20 - 30 (downstream) are generally exhibiting the potential for geographic blue water 
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sustainability hotspots indicating highly to extremely unsustainable status in 92.2% of the 

time during the monsoon period with indices of – 0.78 to – 4.2.  

However, our analysis of monthly blue water availability indicated that environmental 

flow requirement cannot be met at 60.3% of the months in the baseline period to maintain a 

healthy aquatic ecosystem and have been generally identified during low flow periods 

between the months of  November – March and should have been classed as “No abstraction 

period” and streams should be protected across the basin.   

 

Figure 6.15: Heat Map showing temporal changes of mean monthly baseline and projected blue water environmental 

sustainability in Yobe-Komadugu Watershed. 

The unsustainable blue water status may be closely related to the mass exploitation of 

groundwater and surface water for domestic and agricultural (irrigation) practices, high rate 

of surface water evaporation and plant transpiration due to increase surface air temperature 
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that triggered declining runoff contribution and shrinkage to the major Lake Chad which is 

consistent with the findings of Lemoalle et al., (2012); and Zhu et al., (2017).  

The assessment of the model output for blue water sustainability status showed a 

projected increase of “No abstraction period” to 74.4% (Figure 6.15b) and 65% (Figure 

6.15c) for the near future and 66.11% (Figure 6.15d) and 65.3% (Figure 6.15e) in the far 

future for CO2 emissions scenarios SSP2(4.5) and SSP5(8.5) respectively. 

The projections here indicate that the gradual increase in precipitations may have a direct 

impact on the sustainability of green water resources, where the monsoon months of July – 

August experienced a projected change in green water sustainability status from MU to MS 

as seen in Figure 6.14c and e.  

However, blue water sustainability status tends to be degraded relative to the baseline in 

all emissions scenarios considered and a favourable blue water status may only be achieved 

through enforcing regulations to protect intense groundwater withdrawal, especially during 

low flow periods and exploring innovative river basin water conservation strategies. 

According to the anticipated changes in the sustainability of green and blue water, more 

than half of the watershed will be ecologically fragile. Without prompt action by water 

authorities to improve ecological resilience and adaptation to reduce the shrinkage of 

wetlands and the larger Lake Chad in the face of changing climate and socioeconomic 

activities, some regions' freshwater geographic sustainability hotspots status may be beyond 

the tipping points, which will make restoration quite difficult. 

Although improved data assimilation resulting from this framework that identifies the 

relevant pathway of the GCMs ensembles process which is capable of producing the best 

information, to strengthen monitoring and serve as an efficient information exchange can 

help to reduce uncertainties in climate change projections to a particular degree.  
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However, it does not imply that the projections are certain, and climate and hydrologic 

modellers or end-users may still consider the need for a worst-case output of future 

hydrological response in water policy decisions. 

This is because significant uncertainties and risks will remain, and they are multifaceted 

due to the combination of climate change and other related socioeconomic drivers in water 

security assessment is expected to increase uncertainty (Martin et al., 2020). 

Notwithstanding, the implementation of suitable measures, like integrating professional 

opinions, acquiring and refining novel data sources, and process comprehension of model 

structures and management strategies in water policy decisions, has the potential to augment 

and mitigate the effects of uncertainty in climate change impact modelling.    

6.6 Conclusions and future work 

In this study, we developed a framework by integrating machine learning-based Boruta 

random feature selection as an input data refining process with process-based SWAT 

hydrologic models to optimize calibration process.  

This framework was used to test whether models can simultaneously enhance baseline 

and future climate projections and accurately simulate water balance components by 

accepting or rejecting parameter solutions based on a defined error threshold when alternative 

satellite-based measurements of hydrologic fluxes are used in data-sparse watersheds where 

local observations are insufficient and are required for successful and reliable hydrologic 

modelling at the local scale. 

In addition, the calibration and validation of the models with AET data is essential in 

basins where there is lack of or inadequate ground observation monitoring (streamflow) data 

in sufficient quantity and quality to drive hydrologic models. This is the main limitation of 

hydrologic modelling in data-sparse watersheds.  
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This also helps to estimate the components of infiltrated water such as aquifer recharge, 

soil moisture content and actual evapotranspiration with high degree of confidence, which are 

the main hydrologic variables and drivers essential for water footprint and sustainability 

assessment studies at basin scale. 

Applying the framework to four sub-watersheds that form the larger Lake Chad basin 

defined by distinct morphological properties, we found that, the model simulates the 

hydrologic fluxes of ET with varying degree of acceptability. While ET can be simulated 

accurately, there are significant trade-offs in parameter sensitivity ranges in the calibration 

process across the sub-watersheds. Some of the key findings and conclusions in the research 

are summarized below. 

The integrated hydrologic modelling process in this study can reliably represent the 

spatiotemporal distribution of the watershed hydrology irrespective of the different 

morphological characteristics of the four sub-watersheds, and reduce uncertainty from the 

input data (e.g., precipitation and temperature), which are the main drivers of water balance 

models.  

The feature selection mechanism could reduce uncertainty propagation within acceptable 

thresholds in the data input process and provide ensembles whose projections can be relied 

upon and consistent with previous studies for water security assessment. 

Green water is the dominant freshwater component across the basin relative to blue water, 

and climate change may be a significant factor in the spatial and temporal changes of 

projected green water sustainability status. However, the combination of socioeconomic 

drivers (i.e., only considered for blue water sustainability assessment) and climate change 

may have a significant impact on the projected blue water sustainability status across the 

basin.   
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High GWF, temperature and the flat terrain in the Yobe Komadugu watershed may affect 

the spatial distribution of projected natural runoff distribution and thus, the projected blue 

water footprint exceeds the blue water availability, and human water use can only be met by 

using up the environmental flows, resulting in degradation of rivers and groundwater 

potential.  

Additionally, given the WF hotspots found in this study, new appropriate water 

abstraction targets should be quantified as part of future research, as well as its impact on 

blue water, which has a higher opportunity cost due to its potential as an input in many 

supply chains for emerging industries other than agriculture to help improve water 

management efforts at local river basin scale. 

We should also point out that the results and conclusions reported in this study are based 

on certain configurations of the model parameters, input dataset, reference data, and 

hydrologic model. The established modelling framework, however, is independent of model 

and data type and may be used to assess the effectiveness of hydrologic state variables and 

fluxes at small-scale watershed levels.  

Nevertheless, some obvious limitations are that the study does not consider the effects of 

some watershed management practices like irrigation withdrawals, reservoir regulations due 

to unavailability of data and future topographic changes in terrain and slope which will be 

significant driving factors governing the hydrologic response to land use and land cover 

changes. 

This research focuses on blue and green water sustainability, however, efforts are 

required to extend the current work to grey water assessment by developing innovative ways 

and building observation datasets to further extend the model calibration and validation 

efforts to increase the confidence of hydrologic variable outputs required to reliably measure 
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and quantify grey water footprint and sustainability for managing wastewater discharge, 

consumption of fertilizer and pesticides for control of water pollution. 

The water sustainability indices and status could be useful in the development of effective 

local river basin policies and regulations. Future work should involve addressing some of the 

limitations identified by extending the current study through the incorporation of more water 

balance components into the calibration process and analysing their effects on the overall 

trade-offs in the accuracy of modelling output.  

6.7 Afterward 

This work has shown that by investigating and integrating transdisciplinary novel 

concepts to enhance current knowledge of climate change models and evaluation, effective 

predictive hydrologic modelling may be produced in data-sparse regions and give important 

water resource information at a local watershed scale.  

The quality and resolution of gridded and GCM climate data and their interactions 

through downscaling and bias corrections scheme, which was a key aspect of the strategy 

explored in this research to improve on the theoretical underpinnings of process-based 

hydrologic models, regardless of their complexity and intended purpose, is largely dependent 

on the appropriate extreme (SPEI drought and flood hazard) event representation, improved 

understanding of key watershed climate processes (Lawal et al., 2023b) and synthesis of a 

watershed process of building a reliable model while acknowledging data limitations and 

uncertainty.  

The goal is to assess and recommend an alternative hydrologic modelling concept that 

places a focus on process optimization and offers flexibility to define multiple representations 

of spatial variability and hydrologic connectivity through careful refinement of data structure, 

complexity, and reliability as demonstrated in chapters 4 and 5 without overextending model 
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parameter sensitivities to ensure robust predictions of watershed water resources dynamics 

under uncertainty, accurately on a wider spatial scale exhibited in this chapter.  

The objectives of the research have been achieved and to encourage further inspection 

and adoption, this exploratory approach might be expanded to watersheds with abundant 

requisite modelling data. Future work activity recommendation is detailed in CHAPTER 8:. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 201  
 

CHAPTER 7: SUMMARY OF FINDINGS AND DISCUSSIONS 

7.1 Assessment of quality-controlled observation data for consistency 

The improvement in the development and availability of gridded climate datasets has led 

to the continual growth of the range of diverse users especially in watersheds where ground-

based observations are inadequate and the quality requirements for their application in 

hydroclimatic study have evolved accordingly.  

Basic understanding of the spatial and temporal variability or dynamics of this climate 

data is important in watershed modelling especially at daily timescale and this has become a 

challenge due to likely uncertainties associated with their development. 

The efficacy and reliability of gridded data were validated relative to the observation 

station measurements. However, the missing data points of the station data were gap-filled by 

multivariate imputation by chained equations for both precipitation and temperature using 

MICE package in R software (See 250), due to its ability to impute effectively a continuous 

two-level data and maintain consistency (van Buuren and Groothuis-Oudshoorn, 2011). 

The filled data points were checked for 100% completeness and subjected to a 

consistency and homogeneity test at individual station observations. The homogeneity test 

results using double mass curve, and absolute homogeneity tests by standard normal 

homogeneity (SNHT), Pettitt, and Von Neumann ratio test indicate that a straight-line plot 

without a breakpoint (Figure 4.2) for double mass curve and the estimated homogeneity test 

values were less than the critical value for precipitation and temperature respectively.  

The application of several test here, was to provide a robust result preventing 

overestimation and correction of false inhomogeneities that leads to unreliable climate 

analysis. Therefore, the gauge measurement of the station records is reliable and can be used 

for validation. 
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7.2 Reliability of gridded climate data using multi-criteria approach 

Some of the notable findings of the multi-criteria performance evaluation of the 

behaviour of the gridded climate data are summarized below: 

The relative and absolute homogeneity test results are consistent and homogeneous across 

the stations. Some of the factors that may affect the true climatic conditions of the 

observation data series and consequently, the outcome of its application in further analysis 

due to the existence of bias such as gradual changes in instrumentation i.e., maintenance and 

calibration problems of the equipment, urbanisation resulting in changes of equipment 

locations and expertise of the personnel taking records are controlled. 

This factors has been corroborated by Yozgatligil and Yazici, (2016), and is crucial to 

achieving an understanding of the climate system and its associated changes especially in 

data-sparse regions where data series quality is in question. 

The result of the quality-controlled data series used to assess the capability of the gridded 

datasets to replicate the observation quite varied across the watershed and inconsistent across 

the different performance metrics. However, this may be attributed to the varied level of 

systematic errors in the gauged station measurements.  

Additionally, the choice of interpolation technique, source and quality and quantity of the 

observation data used in the development of gridded data products may affect their ability to 

capture the spatiotemporal internal variability as acknowledged in (Faiz et al., 2018). 

Analysis results of the agreement of gridded dataset relative to observation across the 

stations for precipitation and temperature in Table 4.5 – Table 4.6 using statistical 

coefficients KGE, md, and NRMSE are quite satisfactory, except for PGF whose KGE values 

are quite low (0.33), while SC from symmetric uncertainty technique for precipitation are 

also low for all products shown in Table 4.4.  
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The result showed that temperature data series are less likely to be inconsistent and 

portrayed low NRMSE values indicating low level of uncertainty relative to the observation.  

Further analyses were explored such as precipitation and temperature trend at annual and 

monsoon season. The result of the unidirectional trends of precipitation and temperature are 

adequate relative to the observation data. The analysis indicates a varying degree of mismatch 

between the gridded dataset relative to the observation data across the stations.  

The agreement in precipitation data as displayed in Table 4.7 – Table 4.10 based on Z – 

statistics values at annual, and the monsoon season for CPC, CRU, GPCC, PGF and UDel 

relative to the observation station data respectively. While the temperature data were 

consistent especially the CRU, PGF, and UDel with observed unidirectional trend agreement 

at annual and monsoon season respectively.  

The annual precipitation and temperature exhibit a statistically declining trend in the 

Sahelo-Sudanian and Sudano-Guinean zone respectively, while increasing trend were noticed 

in all other stations and this consistent with notable findings from earlier studies (Conway et 

al., 2009; Nkiaka et al., 2017; Sarr, 2012). 

It was also noted that some of the gridded data (Table 4.7 – Table 4.10) over and 

underestimate the unidirectional trends of precipitation and temperature by 1 to 2.5 order of 

magnitude relative to the observations in some stations. This mismatch has been 

acknowledged as one of the sources of uncertainty in hydrologic modelling process and 

caution should be applied while selecting alternative data for watershed representation.         

Therefore, a single metric adopted for assessment may be misleading and a robust 

approach that minimize the variation of the means and standard deviation in Figure 4.5a-f is 

critical and multicriteria decision approach that combines a plethora of techniques and 

showed the strength and weaknesses across metrics and ranked the products by 

intercomparisons based on performance to reflect their order of suitability (Table 4.11) for 
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climate model assessment into the appropriate context will increase confidence and accurate 

watershed assessment. Therefore, the gridded dataset recommended are robust and can fairly 

represent basin climatologic feature for reliable application in impact study. 

This is essential especially in data-sparse watershed where modelling output information 

and their projections are within acceptable uncertainty limits are required as a decision 

support tool for accurate and adequate water resource management. 

7.3 Data pruning as an effective approach for GCM uncertainty reduction in modelling 

Appropriate watershed planning to deal with projected water resources sustainability can 

be carried out with GCMs taking into account environmental changes such as urbanization, 

population growth, climate change etc., which are some of the limitations of the gridded 

dataset. However, they are essential in downscaling of the GCMs from coarse to finer 

resolutions suitable for application at the regional and local basin scale. 

Some of the gaps identified from the literature are that the time scale and resolutions of 

the GCMs datasets and these are often ignored in the assessment of their efficacy for 

hydrologic impact studies and conclusions drawn from previous studies may not be relied on 

for realistic projections at local basin scale.   

Questions arising are that the approach of ensemble averaging of a lot of GCMs for 

application may be cumbersome and time-consuming, while other drawbacks are as stated by 

Cook, (2008) that the uncertainties are likely overstated, and models tend to simulate small 

changes in rainfall and the projected increase are likely influenced by a few outlier models 

and this flaws in the input rainfall data, if not limited might be amplified by the non-linearity 

of hydrologic models. 

These concerns thought-provoked the second research objective to reassess GCMs 

critically and objectively by providing a robust pathway that captures accurately the 
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watershed’s temporal and spatial variability such as trends and magnitude of climate 

extremes and generate projections of the climatology of a region. 

 These watershed climate and hydrologic variabilities should be consistent with best 

practices and recommendations of the intergovernmental panel on climate change (IPCC) by 

the selected appropriate GCM multi-model ensemble climate variable outputs that enhances 

and preserve the internal variability after reparameterization exerted by re-gridding, 

downscaling and bias correction which is an important factor that ensures the successes of 

hydrologic model performance especially in regions where data quality is essential. 

Machine learning based algorithms Symmetric uncertainty (SU) and Boruta random 

forest (BRF) (See 254) were developed and applied for the evaluation of 16 GCMs that meets 

the essential requirements for hydrologic study. Multi-point downscaling and bias corrections 

were applied at 54 grid point in Lake Chad basin. 

The downscaling and bias correction scheme indicated that the simulated output of daily 

precipitation distribution from the delta change method was far superior performance, and 

correlate well with the gridded data, while the empirical quantile mapping effectively 

captures the daily temperature distribution relative to the other methods across all stations 

respectively. 

Whilst the metric of evaluation showed a promising result in temperature distribution, 

there are observed difficulties of the downscaled models to capture the peak values of 

minimum temperature (Figure 5.3c) across all stations, but notably more pronounced in the 

Sahelo-Saharan zone and this has been attributed to scale gap between the GCMs and gridded 

data and the variations are insignificant and cannot be accounted for by the output as 

corroborated by Sachindra et al., (2014) in a basin with similar climatology.  

A more efficient performance was observed in Sudano-Guinean zone, with a cluster of 

grid points with almost perfect correlation relative to the gridded data, while Saharan zone 
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exhibit some inadequacies in simulating the climate features which may be related to the low 

precipitation events.  

Assessment of the GCMs capability to capture the climatic features of the gridded data 

used as surrogate showed a varied level of association. However, the similarity coefficient 

(SC) from the assessment exhibits an improved performance relative to the latter phases of 

GCMs and the estimated range of SC (Table 5.2) for daily precipitation, maximum and 

minimum temperature respectively.  

The varied level of association may be attributed to the effect of downscaling on initial 

resolutions, improvement in parameterization techniques and quality of observation data in 

model development and it has been acknowledge in studies by Ayugi et al., (2021); Grose et 

al., (2020); and Wang et al., (2021).  

The evaluation using BRF revealed that the GCMs showed a varied level of performance 

to capture the significant antecedent feature of the observation of daily precipitation (Figure 

5.4a) and this is common across the test grid points. Although the temperature data are quite 

well correlated with the observations as seen in Figure 5.4b and c for maximum and 

minimum temperature respectively. The important score was reaggregated across the basin 

and ranked in descending order of importance in Table 5.3. 

The different results in simulating the precipitation and temperature observations in 

different parts of the basin (Figure 5.5a – c) implied that post-bias correction reassessment 

using filters like BRF as an important data pruning (i.e., process of GCM data elimination or 

isolating sub-optimal tuples that are non-critical or redundant to reduce noise and improve 

MME representation of basin climatic trend, magnitude and pattern of variability at spatial 

and temporal scale)  methodology to limit the number of GCMs might reduce residual biases 

and uncertainties if present, that are likely to aggregate and yield errors in the further 
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application of the data in hydrologic modelling, particularly when dealing with the estimation 

of high and low flows conditions.  

7.4 Spatial and temporal assessment of GCM ensembles for hydrologic modelling 

Further reassessment of the machine learning approaches was conducted by developing 

multi-model ensemble of the four best performing GCMs after reaggregation by multi-criteria 

ranking across variables shown in Table 5.4 and compared with the traditional approach of 

using all the GCMs identified here in referred as AME to evaluate the spatial and temporal 

correlation and mean annual precipitation and temperature biases across the entire grid points 

and validated by assessing the trend and magnitude of the return period of flood and drought 

hazards across the four climatic zones of the basin. 

The result of the spatial correlation and pattern of the annual precipitation and 

temperature (Figure 5.7a and b) has shown that the BRF approach is consistence in 

simulating the observation and effectively correlate well with the observations (Figure 5.6a 

and b) across the basin respectively. However, the result of SU and AME ensemble approach 

are satisfactory, but poor correlation value were observed, especially in Sahelo-Saharan and 

Saharan zone for AME relative to the observations respectively. 

Temporal assessment of the time series data across the basin indicates consistent and 

quite similar results for the ensemble mean temperature for all the approaches i.e., BRF, SU 

and AME respectively.  

The assessed ensemble however, showed that multimodel ensemble formed using BRF 

data pruning approach effectively captured the annual precipitation spatially with  reduced 

the annual mean precipitation bias (Figure 5.8) and correlates well with the observations 

relative to the tested approaches respectively. The biases or deviations are significant at grid 

points situated in the Saharan and Sahelo-Saharan zone of the basin. 
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The output from the three approaches was validated by examining the basin scale 

dynamics and relative skills in predicting the pattern, trend and magnitude of return period of 

drought and flood hazards across the four climatic zones. The result showed a satisfactory 

depiction of trend shift (Figure 5.9a), from wet extreme (1980 – 1998) to a gradual transition 

to a moderate to extreme droughts (1999 – 2012) in the Saharan zone.  

While seemingly the performance of the three approaches in capturing the trends shift 

may be similar by visual graphical representation in Figure 5.9b – d across the climatic zone 

relative to the observation, the statistical trend based on the multi-year SPEI indices for the 

study period across all the climatic zones indicated that the BRF approach reliably captured 

the extreme event indices and direction quite accurately relative to the observation. 

 This is evident based on the trend indices displayed in Table 5.5, with z-statistic values 

of BRF approach within the same trend envelop with the observation and this is crucial in the 

accurate depiction of basin hydrology by limiting input uncertainties in modelling studies. 

Further assessment of projected mean changes in precipitation and temperature in the 

Yobe-Komadugu watershed in the near and far future base on SSP2-4.5 and SSP5-8.5 

scenarios relative to the baseline periods, has shown that the BRF methodology is robust and 

consistent with reported findings from studies within the watershed in Almazroui et al., 

(2020); Sylla et al., (2016); and Vizy et al., (2013).  

7.5 Modelling evapotranspiration using integrated SWAT-BRF framework. 

This approach was integrated to the traditional modelling framework using SWAT model 

and tested on a typical case study area of four sub-watershed of Lake Chad basin with quite 

distinct morphological characteristic and climatological dynamics, where hydrologic long 

term streamflow data are sparse and unreliable.  

Rather than resorting to regionalisation approach of modelling whose output is not 

convincing, we set out to investigation the application of the integrated framework to model 
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actual evapotranspiration across the four sub-watershed using remote sensing MODIS 

evapotranspiration data with a far-reaching spatial dimension to increase confidence in the 

modelling output at local basin scale. 

The model calibration process results across the watersheds indicate variation in model 

parameter values and sensitivities (Table 6.4), however, all the parameter values are well 

within the acceptable absolute parameter ranges. The variations may be influenced by the 

combination of HRU regionalisation, soil, and land use conditions of each calibration point 

across the watershed which may aid lack of uniqueness in the calibration process.  

The objective functions and algorithms used provided a range of values across the 

watershed that are satisfactory and well within acceptable uncertainty range (Figure 6.4) with 

a wider spatial areal extent as discussed in 6.5.1.  

The simulated results showed that the objective functions across the calibrated and 

validated points are in very good ranges (R2 > 0.62, NSE > 0.34) and uncertainty ranges of P-

factor and R-factor values of 0.68 – 0.93 and 0.73 – 1.31 respectively in 83%, 67%, 85.7% 

and 81.3% of the measured point across the sub-watershed.  

While the optimized models are quite good, there are few simulated points with low 

objective function with correlation and Nash-Sutcliffe efficiency values as low as 0.25 and 

0.14 respectively. However, they exhibited a good representation of data uncertainty range 

with satisfactory P-factor and R-factor values which are associated with difficulty in 

matching peak points especially in Figure 6.4d.  

This anomaly in depiction may be related to limitations in modelling process such as 

simplification of the model structure like reaggregation of land use features, soil conditions, 

inadequate data that accounts for some of the essential basin scale water management 

processes for example sufficient information on reservoir and dam operations, water transfer 

and irrigation processes. This phenomena is discussed in Abbaspour, (2015); Schuol et al., 
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(2008) and classed as technical modelling uncertainties and modifying the natural 

heterogeneity of the watershed conditions will generally affect model performance.   

The modelling output has shown that the framework developed with the application of 

remote sensing data can objectively provide an opportunity to improve watershed 

representation of hydrologic process in data-sparse regions and differs from the previous 

studies using the regionalisation approach in Faramarzi et al., 2013; and Schuol et al., (2008) 

with associated poor watershed representation and large uncertainty range in the Lake Chad 

region.  

7.6  Impact of climate change on projected green and blue water resources 

The model output variables from the modelling approach were applied to Yobe-

Komadugu watershed to analyse the dynamics of projected green and blue water footprint, 

availability and sustainability in response to climate change based on SSP2-4.5 and SSP5-8.5 

emission scenarios.  

This study was necessary to understand was resources status at local basin scale. 

However, the lack of comprehensive and long-term sectoral water use information in these 

regions (Data-sparse) and previous research could not assessed green and blue water 

sustainability status and identify water resource hotspots and their projection.  

This study attempts to address that by developing a theoretical framework to estimate 

conservative blue water footprint at annual and monthly scale using model-based parameters, 

limited water uses information available and gridded population data (See Eqn. (6.6). this was 

used to address research objective 4, 5, and 6 at local basin scale. The findings are 

summarized below. 

A general marked increase in the spatial changes in projected mean annual GWF from the 

baseline period (Figure 6.6a-e) for all the emission scenarios across the time slices, while 
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analysis of monthly distribution and changes in Figure 6.7a – b, depicted a consistent 

projected increase between spring and summer months.  

However, a sharp decline in autumn and winter months projected in all scenarios. This 

phenomenon may be related to the continuous warming caused by increase in average air 

temperature in the tropical regions especially between the month of April and September. 

Analysis of basin changes in annual soil moisture conditions represented as GWS shown 

in Figure 6.8a – e has indicated a substantial projected decline across the watershed from 

baseline condition (1982 – 2011). While the decline is consistent in the monthly variation 

(Figure 6.9a – b) in all scenarios.  

This decline may be related to the huge exploitation of groundwater resources for 

irrigation practices that further lowers the soil water table level and possibly the increase in 

surface air temperature affecting soil water flow regimes thereby increasing groundwater 

evaporative demand.  

The general decline in soil moisture conditions experienced in the basin may be related to 

a general increase in evaporative demand that has been projected in over most part of the 

world in high emission scenarios mostly related to and as a consequence of increased vapour 

pressure deficit consistent with expert findings in (Scheff and Frierson, 2014; Vicente-

Serrano et al., 2020)  

However, exception is observed in the monsoon season with a projected increase in the 

near and far future based on the SSP2-4.5 and SSP5-8.5 emission scenarios. The projected 

increase in the GWS in the monsoon season is generally significant between the month of 

July – September and generally associated with high rainfall intensities and interannual 

seasonal variability as corroborated by Almazroui et al., (2020).  

The impact on spatial and temporal variation of blue water flow dynamics was quite 

distinct in the upstream and downstream parts of the watershed. A general projected decline 
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in the upstream, while an associated increase was observed at the downstream of the 

watershed (Figure 6.10b and e) for SSP2-4.5 and SSP5-8.5 respectively. The results are also 

consistent with the far future time slice although at a different rate. However, mean annual 

changes across the entire watershed depicted a projected increase from the baseline period 

across all the emission scenarios. 

The monthly variation of the BWF (Figure 6.11a and b) for near (2021 – 2050) and far 

future (2051 – 2080) scenarios showed a projected decline prevalent between the winter and 

spring season and this is quite expected because the months are characterized with sub-

optimal precipitation (i.e. below long term basin average) totals in the tropics. 

 This is generally attributed to the likely increase in drought occurrences in this regions 

under the high emission scenarios (Cook et al., 2020), while the projected increase in the 

summer and autumn is associated with increase in monsoon rainfall events and intensities 

that characterizes the intensification of wet extremes that causes frequent flood events in the 

watershed supported by studies reported in Niang et al., (2014) and increased dry spell 

lengths especially in winter and autumn by shortening the Sahel rainy season as reported in 

numerous studies (Almazroui et al., 2020; Sylla et al., 2016). 

Therefore, increased amount and intensity of precipitation as projected by the high 

emissions scenarios may not always correspond to increased green and blue water resource 

availability since temperature-induced increases in evapotranspiration can offset precipitation 

as alluded by Vicente-Serrano et al., (2020). 

7.7 Impact of climate change on projected green and blue water sustainability 

The assessed annual green water sustainability status of the watershed in this study has 

shown that most of the sub-basins will experience a steady decline in annual green water 

sustainability status from the baseline period across the watershed area for SSP2-4.5 (Figure 
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6.12b and c) and for SSP5-8.5 (Figure 6.12d and e) in the near and far future time slices 

respectively.  

These changes are usually from the moderately to extremely sustainable status to 

moderately and extremely unsustainable status based on the hazards map. Some of the sub-

basin are already projected and classed green water geographic hotspots in all scenarios 

indicating that climate change may have a profound effects on the dynamic changes on the 

green water sustainability status which may have a ripple effect on the timing, spatial pattern 

and intensity of rainfall as suggested by Du et al., (2018). 

The dynamic changes in annual blue water sustainability status are quite pronounced in 

the upstream where some of the sub-basins were projected to experience a rapid change 

moderately to highly sustainable to highly and extremely unsustainable status.  

These dynamic shifts are related to the absence of viable streams channels and year-round 

freshwater infrastructure where the vast population depends on groundwater as an alternative 

water source. Even the sub-basins with major river systems will experience reduced flow and 

these consistent patterns will be scaled up with the SSPs emission scenario and these may be 

worrisome to local and national strategic freshwater management plans and could cause a 

threat to transboundary diplomatic ties on freshwater exploitation. 

The sustainability heat map (Figure 6.14 – Figure 6.15) of the dynamic changes in 

monthly sustainability status implied that green water is projected to be sustainable in winter 

months while blue water is mostly during the summer months due to excessive rainfall 

events. However, the pattern has shown to be shrinking considering the two emission 

scenarios due to increase dry spell length triggered by global climate change.  

The assessment has shown that some of the sub-basins water resource will be violated as 

available freshwater in the stream is significantly less than the environmental flow 

requirement and this is a threat to aquatic biodiversity. 
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According to the projected changes in the sustainability of green and blue water, more 

than half of the watershed will be ecologically fragile. Without prompt action by water 

authorities, some regions' freshwater geographic sustainability hotspots status may be past the 

recovery points, making restoration very challenging.  

This is especially true if there is no improvement in ecological resilience and adaptation 

to lessen the shrinkage of wetlands and the larger Lake Chad in the face of changing climate 

and socioeconomic activities. 

Therefore, the projected future population growth in conjunction with climate change 

may considerably raise the demand on the local basin-scale available blue water resources 

and in effects its sustainability. It is anticipated that climate change will have a major effect 

and worsen the watershed's projected green water resource and sustainability. 

7.8 Overview of integrated framework for water security modelling 

The purpose of the research was to provide a viable alternative solution to hydrologic 

modelling in data-sparse regions where traditional framework required is not feasible and 

handy to assess water security status. The objective has been addressed and achieved by 

successfully testing the approach in a typical case study area of Lake Chad basin.  

The combination of an integrated framework of SWAT and BRF GCM data pruning 

methodology produces a coherent and workable hydrologic modelling process that effectively 

simulate actual evapotranspiration to limit input data uncertainty spatially on a wider scale.  

Finally, a theoretical blue water footprint accounting framework was developed using 

alternative data sources, model output information to cater for inadequate long term sectoral 

blue water use information, which is shown to be effective  that furthers the understanding of 

green and blue water sustainability studies in response to climate change at the local basin 

scale. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

8.1 Conclusions 

This thesis highlights challenges faced in watershed modelling in data-sparse regions and 

some of the novel initiatives taken to address the literature gaps identified which ranges from 

data choice and quality, parameterization, model conceptualization and data assimilation 

approach to improve water security studies are explored.  

The inferences and conclusion drawn from the studies are summarized below. 

• Gridded climate data can fairly represent the chosen watershed climatology of 

interest both spatially and temporally, although their performance varies 

considerably and the choice of data to maintain a high degree of accuracy and 

low level of uncertainty especially in data-sparse regions is dependent on the 

method of valuation and specific application.  

• A comprehensive assessment using a plethora of performance metrics and a 

robust multi-criteria decision that considers three broad aspects viz.: time scale, 

resolutions, trend and magnitude of data series can effectively showcase the 

strength and weaknesses across metrics and the suitability of a data product 

based on intercomparison will increase confidence in the assessment of 

watershed climatology.  

• The choice of reference dataset and data pruning process using the BRF 

approach can strongly influence the accurate depiction of future projections of 

precipitation and temperature and effectively accounts for the inadequacies of 

bias correction schemes to constrain observational uncertainties of downscaled 

GCM ensemble simulations for hydrologic impact studies at the local basin 

scale.  
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• The data pruning approach using BRF  algorithms of the GCM ensembles has 

been shown to maintain and captures the trend and magnitude of spatial and 

temporal pattern of the return period of flood and drought extremes across the 

different climatic zones of the basin accurately. 

• GCMs evaluation using BRF data pruning algorithms is found to be extremely 

effective, although the knowledge and science of the underlying process are 

limited. However, the process when integrated into the hydrologic modelling 

framework is capable of reducing the propagation of uncertainties originating 

from the GCM ensembles and scenarios from SSPs input data in impact 

assessment modelling studies. 

• The developed modelling framework can effectively simulate watershed 

hydrologic fluxes of actual evapotranspiration satisfactorily with a varied degree 

of model performance. However, there are significant trade-offs in parameter 

sensitivity due to the distinct watershed morphological features across the sub-

watersheds. 

• Assessment of green and blue water availability and sustainability suggested that 

green water is projected to be the dominant freshwater component relative to 

blue water resources and climate change may be a significant factor in the spatial 

and temporal changes of projected green water sustainability status. However, 

the combination of socioeconomic drivers and climate change may have a 

significant impact on the projected blue water sustainability status across the 

basin.   

• The identified geographic water footprint hotspots based on sustainability indices 

can be improved by reviewing freshwater abstraction targets by easing up 
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environmental flows to prevent watershed degradation of rivers and groundwater 

potential to enhance river basin water management efforts. 

8.2 Recommendations to current practice  

The use of caution when addressing issues related to uncertainties associated with input 

data parameterization and choice to prevent error magnification is crucial for practitioners in 

the field of watershed modelling to understand, especially when applied to projected climate 

change impact and adaptation studies.  

These errors and their sources, if not properly controlled, can have a negative impact on 

the range and distribution of water balance dynamics in a modelling scheme. The data-

pruning framework presented in this study should be tested beyond data-sparse regions, 

because it can enable modellers to derive an accurate quantification of hydrologic model’s 

output uncertainty and prevent its propagation without the hassle of compensating the effects 

of recalibrated parameters. 

Assumptions and parameterizations of important climate features in model development, 

as well as creative and reliable ideas to manage and communicate uncertainties in impact 

studies, should be discussed in a collaborative forum open to practitioners, policymakers, and 

climate modelling centres.  

In particular in developing economies where water management options are insufficient, 

this will be a significant step towards improving watershed representation by practitioners 

and providing accurate water resource information to be used as a decision support tool for 

adequate river basin water management and reducing transboundary water conflicts. 

8.3 Recommendations for future research 

Some few recommendations are suggested to further the cause of research in data-sparse 

regions are itemized below. 
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• The effects of water management practices like irrigation withdrawal, reservoir 

regulations, when data are available, should be incorporated, analysed and 

compare the model performance findings with the results presented in this 

research. 

• The effects of dynamic changes in grey water footprint and sustainability should 

be explored when data required is available to effectively calibrate models and to 

reliably simulate the grey water component to complete the cycle of water 

footprint assessment. 

• The efficacy of the data pruning approach tested here can be extended to other 

hydrologic models with varying complexity to encourage scrutiny and widespread 

adoption of the framework to expand and improve scientific rigour. This should 

be expanded to examine the impact of the model structure and parameter sets on 

the data-pruned ensemble GCMs’ behaviour on the hydrologic output and 

performance.   

• Efforts in building hydrologic models for water security assessment need to move 

beyond traditional strategies to a multi-disciplinary framework required to 

improve the science of watershed representation that reduces various forms and 

sources of uncertainty and the general applicability in the hydrologic modelling 

process. This can be achieved by strengthening the linkages between theories, 

algorithms, data assimilation and observations to further improve model 

simplifications with little impact on fidelity of model simulations and increase 

confidence in model predictions of watershed resource dynamics. 

• Risk and vulnerability assessments will serve as a basis for well-thought-out 

planning of climate resilience measures and strategies, and ultimately enhance 

future climate adaptation efforts in the water sector. These assessments entail 
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making appropriate use of current climate projections and carefully considering 

climate-related and socio-economic hazards. Therefore, access to basin water 

vulnerability information will provide a pathway for potential projected green and 

blue water vulnerability and risk assessment at basin scale.    
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APPENDICES 

Appendix 1: Multivariate Imputation and Chained Equation (MICE) missing data script. 

 
 

Appendix 2: Homogeneity test results of station data 

Appendix 2a: absolute homogeneity test results of precipitation station data 

Station Pettitt’s Test SNHT Test Von Neumann’s Test 

 Critical T-Stat Critical T-Stat Critical T-Stat 

Abeche 0.05 0.032 0.05 0.036 0.05 0.016 

Banda 0.05 0.044 0.05 0.047 0.05 0.046 

Bongor 0.05 0.045 0.05 0.013 0.05 0.028 

Bossangoa 0.05 0.034 0.05 0.035 0.05 0.015 

Doba 0.05 0.064 0.05 0.045 0.05 0.035 

Maiduguri 0.05 0.050 0.05 0.011 0.05 0.034 

Moundou 0.05 0.013 0.05 0.019 0.05 0.011 

N’Djamena 0.05 0.016 0.05 0.002 0.05 0.035 

Nguigni 0.05 0.036 0.05 0.034 0.05 0.067 

Potiskum 0.05 0.046 0.05 0.065 0.05 0.035 

Sahr 0.05 0.029 0.05 0.029 0.05 0.039 

Samry-I 0.05 0.039 0.05 0.036 0.05 0.037 

Sategui D 0.05 0.027 0.05 0.028 0.05 0.029 

Tsanaga 0.05 0.029 0.05 0.029 0.05 0.027 

Zinder 0.05 0.026 0.05 0.028 0.05 0.029 
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Appendix 2b: absolute homogeneity test results of temperature station data 

Station Pettitt’s Test SNHT Test Von Neumann’s Test 

 Critical T-Stat Critical T-Stat Critical T-Stat 

Bilma 0.05 0.001 0.05 0.009 0.05 0.008 

Bossangoa 0.05 0.01 0.05 0.006 0.05 0.02 

Bouar 0.05 0.02 0.05 0.02 0.05 0.019 

Geneina 0.05 < 0.0001 0.05 < 0.0001 0.05 < 0.0001 

Maiduguri 0.05 0.021 0.05 0.025 0.05 0.027 

Maina S. 0.05 0.017 0.05 0.004 0.05 0.014 

Moundou 0.05 0.025 0.05 0.027 0.05 0.034 

N’Djamena 0.05 0.029 0.05 0.036 0.05 0.008 

Ngaoundere 0.05 0.018 0.05 0.026 0.05 0.021 

Nguigni 0.05 0.001 0.05 0.001 0.05 0.006 

Sahr 0.05 0.036 0.05 0.023 0.05 0.022 

Zinder 0.05 0.020 0.05 0.014 0.05 0.036 

 

Appendix 3: Climate data extraction R-script 

Appendix 3a: precipitation data extraction R-script 
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Appendix 3b: Temperature data extraction R-script 
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Appendix 4: Mann-Kendall trend analysis R-script 
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Appendix 5: Random forest algorithms for data pruning R-script 

 

 

 


