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Intrinsic Noise in Game Dynamical Learning
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(Received 25 May 2009; published 6 November 2009)

Demographic noise has profound effects on evolutionary and population dynamics, as well as on

chemical reaction systems and models of epidemiology. Such noise is intrinsic and due to the discreteness

of the dynamics in finite populations. We here show that similar noise-sustained trajectories arise in game

dynamical learning, where the stochasticity has a different origin: agents sample a finite number of moves

of their opponents in between adaptation events. The limit of infinite batches results in deterministic

modified replicator equations, whereas finite sampling leads to a stochastic dynamics. The characteristics

of these fluctuations can be computed analytically using methods from statistical physics, and such noise

can affect the attractors significantly, leading to noise-sustained cycling or removing periodic orbits of the

standard replicator dynamics.

DOI: 10.1103/PhysRevLett.103.198702 PACS numbers: 02.50.Le, 02.50.Ey, 05.40.�a, 87.23.Kg

Intrinsic noise has been seen to have significant effects
on dynamical systems, and may alter their attractors sub-
stantially. Noise-sustained oscillations, generated via an
amplification mechanism, are, for example, present in
models of population dynamics [1], epidemiology [2], or
biochemical reaction systems [3]. The origin of these
fluctuations is the discreteness of the dynamics in finite
systems, deterministic descriptions are then no longer ap-
propriate. The class of systems in which intrinsic noise
cannot be neglected includes models of evolutionary dy-
namics and game theory, and much current research aims
at understanding the effects of this demographic stochas-
ticity using methods from nonequilibrium statistical me-
chanics and the theory of stochastic processes [4].

Here, we will focus on intrinsic noise resulting from a
different origin, and will consider the learning dynamics of
agents in a game theoretic setting [5]. This is complemen-
tary to more conventional approaches to game theory con-
centrating on the characterization of equilibrium points [6],
or on evolutionary processes [7]. In the learning scenario
one considers a small number of agents who interact
repeatedly in a given game, and who observe their oppo-
nents’ actions and aim to react by adapting their own
strategy profile. Such dynamical models are of particular
importance for the understanding of experiments in game
theory and behavioral economics, in which human subjects
play a given game repeatedly under controlled conditions
[8,9]. As a key result we show that stochasticity, induced
by imperfect sampling of the opponents’ strategy profiles,
can result in trajectories quite different from those of
deterministic learning, very much akin to the mechanism
by which intrinsic noise in finite populations affects the
trajectories of evolutionary systems. While the amount of
intrinsic noise in evolutionary dynamics is determined by
the number of individuals in the population, our objective
here is to characterize the fluctuations in the learning
dynamics of two fixed agents. The quantity controlling

the noise strength is the number of observations made by
the agents in between adaptation events. Furthermore, in a
deterministic setting and depending on the game, we dem-
onstrate that memory loss can promote or impede conver-
gence to a Nash equilibrium.
Consider a general symmetric two-player game, played

repeatedly by players X and Y, and assume there are p pure
strategies in this game. The payoff matrix is given by aij
where i, j 2 f1; . . . ; pg. The rounds of the repeated inter-
action will be labeled by t ¼ 1; 2; . . . in the following. In
each round player X plays one pure strategy iðtÞ 2
f1; . . . ; pg, and player Y plays jðtÞ 2 f1; . . . ; pg. The payoff
for X is then aiðtÞjðtÞ and that for Y is ajðtÞiðtÞ. If the players
play stochastically, i.e., if they resort to mixed strategies,
iðtÞ and jðtÞwill be random variables. Assuming that player
X carries a (time-dependent) mixed strategy profile xðtÞ ¼
ðx1ðtÞ; . . . ; xpðtÞÞ and similarly yðtÞ ¼ ðy1ðtÞ; . . . ; ypðtÞÞ for
player Y, a learning dynamics is then a prescription used to
update these strategy profiles between subsequent rounds
of the game. xiðtÞ here denotes the probability with which
player X plays pure strategy i 2 f1; . . . ; pg in round t, and
similarly for yjðtÞ. Normalization requires

Pp
i¼1 xiðtÞ ¼Pp

j¼1 yjðtÞ ¼ 1.

In order to define a specific learning dynamics, we
follow [9,10] and assume that each player keeps valuations
of each pure strategy, measuring their relative performance
in the past. More precisely, in a situation without memory
loss, the valuation qiðtÞ player X has for pure strategy i is
the total payoff X would have obtained, had he or she
always played strategy i up to time t, and given Y’s actions.
The valuation rjðtÞ player Y has for j has an analogous

meaning. Following [9,10] players then use a logit rule

xiðtÞ ¼ e�qiðtÞ
P

k e
�qkðtÞ ; yjðtÞ ¼ e�rjðtÞ

P
k e

�rkðtÞ : (1)

� � 0 here sets the scale of the score valuations, and is
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known as the response sensitivity [9]. While � ¼ 0 corre-
sponds to random response, and � ¼ 1 to deterministic
play, we will here focus on the case in which 0< �<1. It
is important to distinguish between two types of random-
ness in the actual play: as prescribed by (1), the players will
generally use mixed strategies, so that their actions can be
stochastic, even at given strategy valuations. Second, the
update of the valuations itself will contain some stochas-
ticity as we will detail next. We will here assume that
players update their scores only once every N rounds of
the game, and keep them constant in between. This is
known as batch learning in computer science [11].
Specifically, we will assume

qkðtþ NÞ ¼ ð1� �ÞqkðtÞ þ 1

N

XtþN�1

t0¼t

akjðt0Þ

rkðtþ NÞ ¼ ð1� �ÞrkðtÞ þ 1

N

XtþN�1

t0¼t

akiðt0Þ;

(2)

and qkðtþ �Þ ¼ qkðtÞ for all � ¼ 1; 2; . . . ; N � 1, and
similarly for player Y. On-line learning [11], i.e., updating
after each round, is recovered for N ¼ 1. In our model all
fqi; rjg are updated at each adaptation event. This corre-

sponds to reinforcement learning in which foregone pay-
offs are known and reinforced, equivalent to weighted
fictitious play belief learning, see Ho et al. [9]. The inter-
pretation of these update rules is understood best by first
considering the case � ¼ 0: then the increment of qk
between time-steps t and tþ N is given by
N�1

P
tþN�1
t0¼t

akjðt0Þ. This increment is recognized as the

average payoff X would have received per round had he
or she played pure strategy k in all rounds t; tþ 1; . . . ; tþ
N � 1. A nonzero value, � 2 ð0; 1�, accounts for memory
loss. We here note that other approaches can be taken to
describe memory loss, for example, one may introduce a
prefactor � in the payoff terms in Eq. (2). In this Letter we
follow the setup of [10].

The update rules are intrinsically stochastic, we will
refer to (1) and (2) as discrete-time stochastic learning
(DTSL). After a rescaling of time, and for large, but finite
batch size N we can write

qkð‘þ 1Þ ¼ ð1� �Þqkð‘Þ þ
X

j

akjyjð‘Þ þ �kð‘Þffiffiffiffi
N

p

rkð‘þ 1Þ ¼ ð1� �Þrkð‘Þ þ
X

i

akixið‘Þ þ �kð‘Þffiffiffiffi
N

p ;

(3)

where we approximate the noise variables �k, �k as
Gaussian random variables. This amounts to an expansion

in N�1=2, and within this approximation the covariances of
the �k, �k can be obtained, as we will report elsewhere
[12]. In the limit of infinite batch size, N ! 1, the dynam-
ics becomes deterministic, we will refer to this as discrete-
time deterministic learning (DTDL). Assuming � � 1 a
continuous-time limit [10] leads to the modified replicator
equations,

_xi=xi ¼ �
X

j

aijyj � �f½x; y� þ �
X

k

xk ln
xk
xi

_yj=yj ¼ �
X

i

ajixi � �f½y;x� þ �
X

k

yk ln
yk
yj

;

(4)

where f½x; y� ¼ P
ijaijxiyj, as previously reported and

studied in [10], see also [13]. This system maintains the
normalization of probabilities, and is hence
2ðp� 1Þ dimensional. DTDL gives rise to a discrete ver-
sion of (4). For DTSL the map is supplemented by noise.
We will denote fixed points of the noiseless map by z� ¼
ðx�1; . . . ; x�p; y�1; . . . ; y�pÞ, they are identical to the fixed

points of (4). We now perform an expansion about the

fixed point in powers of N�1=2, akin to the expansion first

proposed in [14]. Writing zð‘Þ ¼ z� þ N�1=2�ð‘Þ, one
finds

� ð‘þ 1Þ ¼ J�ð‘Þ þ � ð‘Þ; (5)

with J the Jacobian at the fixed point, and where � ð‘Þ is
Gaussian white noise, with correlations among its compo-
nents, which can be worked out analytically [12]. Equa-
tion (5) is the discrete-time analogue of a linear Langevin
equation, and the starting point for the analysis of fluctua-
tions about the deterministic limit. In particular Eq. (5)
allows one to compute the stationary distributions of the
components of �, as well as their temporal correlations

and power spectra Pið!Þ ¼ hj~�ið!Þj2i, with ~�ið!Þ the
Fourier transform of �ið‘Þ [12]. This follows the lines of
[1]. Here we will illustrate the effects noise has on the
learning dynamics using the two examples of the prisoners’
dilemma, and that of the rock-paper-scissors game.
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FIG. 1 (color online). Defection rate in the prisoners’ dilemma.
(a) Dynamics at � ¼ 0:5, � ¼ 0, 0.25, 0.5, 0.75 (top to bottom).
Markers are from simulations of DTSL (N ¼ 10, averaged over
1000 runs, defection rate shown for one fixed player), lines from
DTDL; (b) Defection rate as a function of the memory-loss rate
� for � ¼ 1, 0.5, 0.1 (top to bottom); (c) Single runs of the DTSL
dynamics at N ¼ 10, parameters as in (a).
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The prisoner’s dilemma describes a problem of mutual
cooperation, where two players each face the choice
whether to cooperate (C) or to defect (D). We will here
choose the payoff matrix aCC ¼ 3, aCD ¼ 0, aDC ¼ 5,
aDD ¼ 1. The Nash equilibrium, and fixed point of the
standard replicator dynamics (� ¼ 0) is defection, and we
will in the following discuss the outcome of the batch and
online learning dynamics with and without memory loss.
As seen in Fig. 1(a), the deterministic learning dynamics
converges to a fixed point, a numerical analysis shows that
this fixed point is symmetric with respect to the exchange
of players (x� ¼ y�). The defection rate of either player
decreases with increasing memory loss [Fig. 1(b)]. The
fixed point of (4) depends only on the ratio �=�, and
the different curves in Fig. 1(b) can be collapsed. The
learning dynamics at finite batch size and � > 0 yields
noisy trajectories fluctuating about the deterministic
mean [Fig. 1(c)], averaging the noisy dynamics over inde-
pendent runs reproduces the deterministic trajectory
[Fig. 1(a)]. In Fig. 2 we address the nature of stochastic
fluctuations in more detail. While deterministic learning
converges towards a mixed strategy fixed point, learning at
finite batch sizes leads to a distribution of mixed strategy
vectors as indicated in Fig. 2(a). The width of these dis-

tributions scales as N�1=2, and can be obtained from the
theory to great accuracy. Panel 2(b) demonstrates that our
analytical approach captures spectral properties of the
fluctuations as well, and again near perfect agreement
between theory and simulations is found. These results
show that the expansion in the inverse batch size is a viable
analytical tool for the characterization of stochastic effects
in game dynamical learning, and we will proceed to apply
it to a second matrix game in the following.

The rock-paper-scissors (RPS) game has p ¼ 3 strat-
egies and cyclic dominance, as indicated by the payoff
matrix aRS ¼ aSP ¼ aPR ¼ 1, aSR ¼ aPS ¼ aRP ¼ �1,
and aRR ¼ aPP ¼ aSS ¼ 0. If the system is started from

symmetric initial conditions, ðxR; xP; xSÞ ¼ ðyR; yP; ySÞ,
the continuous-time replicator dynamics, Eqs. (4) at � ¼
0 reduces to a one-population dynamics, and these have
one neutrally stable fixed point at x�R ¼ x�P ¼ x�S ¼ 1=3,
and with closed periodic orbits surrounding it [15]. The
quantityH ¼ � lnðxRxPxSÞ � 3 ln3 is a constant of motion
[15], which vanishes at the neutrally stable fixed point, and
indicates a measure of distance from this fixed point. The
symmetry between the two players can be broken as dis-
cussed in [10], giving rise to the possibility of limit cycles
and chaotic motion, which we do not discuss here. We first
investigate the case without memory loss in Fig. 3. The
discrete-time learning dynamics at infinite and at finite
batch sizes does not proceed along the cycles of the
continuous-time replicator dynamics, but instead it drifts
towards the edges of the strategy simplex. Figure 3 shows
the distance H from the center. This distance increases
monotonically, so that the learning dynamics operates
mostly at the borders of the strategy simplex after some
transient time. In the deterministic case this effect is due to
the discreteness in time of the learning process, the relevant
eigenvalues of map at the central fixed point are given by

1� �� i�=
ffiffiffi
3

p
, so that the fixed point is unstable for � <

�cð�Þ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2=3

p
, and stable for � > �c. In the

unstable regime fluctuations due to finite batch sizes en-
hance the outwards drift.
The differences between the noise-free learning process

and online adaptation for the case � > �c is studied in
Fig. 4. Here the fixed point of the DTDL dynamics is
stable. The eigenvalues of the Jacobian J at the fixed point
are complex, and hence a resonant amplification of fluctu-
ations is possible similar to the enhanced demographic
fluctuations reported in [1]. Indeed, Fig. 4 shows that the
stochastic learning dynamics at finite batch size sustains
coherent stochastic oscillations about the deterministic
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FIG. 2 (color online). Defectors in the prisoners’ dilemma.
(a) Distribution of defection rates at � ¼ � ¼ 0:5, N ¼ 1000,
100, 10 from top to bottom at the peak. (b) Spectrum of fluc-
tuations of defection rate. Symbols from simulations in both
panels, solid lines from theory.
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FIG. 3 (color online). Rock-paper-scissors game without
memory loss (� ¼ 0, � ¼ 0:1). Main panel shows the distance
H from the center of the simplex versus time. Solid line is the
DTDL dynamics, markers from DTSL at finite batch size (aver-
ages over 1000 runs). The inset shows the frequency of one of
the pure strategies versus time for DTDL and for one run of
DTSL, and illustrates the drift towards the edges of the strategy
simplex.
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fixed point. Their power spectrum can be computed based
on an analysis of Eq. (5). Results are compared with
simulations in Fig. 4(d), and as seen the agreement is
excellent, provided the batch size is large enough to justify

the expansion in N�1=2. Figure 4 shows that this is the case
even for small batch sizes, for other games this will most
likely depend on the number of strategies available to the
players. These phenomena are dynamically similar to those
in evolutionary systems, where a linear scaling of extinc-
tion times in the system size have been reported for neu-
trally stable dynamics [4]. In the learning system there is
no extinction, but escape times from a region around the
fixed point can be measured [12], and a similar linear
scaling in the batch size is found for the neutrally stable
case � ¼ �c. In the stable phase escape is subextensive, in
the unstable regime escape times grow faster than linearly
in N, very akin to what is reported in [4].

Fluctuations in finite populations have profound conse-
quences in evolutionary game theory, and we have here
shown that similar stochastic effects can be seen in a
learning-theoretic scenario. The source of noise is different
from that in evolutionary systems, and the analogue of
finite populations are finite batches of observations which
players make in between adaptation events. Our analysis
demonstrates that memory loss can lead the system away
from Nash equilibria and bring about cooperation in social
dilemmas. In cyclic games such as RPS convergence is
only possible with sufficient memory loss, the center of the
strategy simplex then becomes a stable fixed point for
deterministic learning. The stochasticity and discreteness
in the adaptation dynamics can affect the asymptotic at-
tractors considerably, and noise-sustained oscillations can
be observed. These oscillations are induced by an amplifi-
cation mechanism similar to that observed in population

dynamics [1] and in other biological systems, and may
have significant amplitudes impeding the convergence to
the Nash equilibrium. We expect this to be the case for a
variety of different games and learning algorithms [12],
with compelling consequences for the learnability of
games and their Nash equilibria. Deterministic learning
of asymmetric games is known to lead to chaotic motion
[10], and we expect that a dynamics with imperfect sam-
pling would make it even less likely that the players
collectively retrieve a Nash equilibrium.
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