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The goal of this paper is twofold: firstly, to provide a novel mathematical model that
describes the kinematic chain of motion of the human fingers based on Lagrangian
mechanics with four degrees of freedom and secondly, to estimate the model parameters
using data from able-bodied individuals. In the literature there are a variety of mathematical
models that have been developed to describe the motion of the human finger. These mod-
els offer little to no information on the undetlying mechanisms or corresponding equations
of motion. Furthermore, these models do not provide information as to how they scale
with different anthropometries. The data used here is generated using an experimental
procedure that considers the free response motion of each finger segment with data cap-
tured via a motion capture system. The angular data collected are then filtered and fitted
to a linear second-order differential approximation of the equations of motion. The results
of the study show that the free response motion of the segments is underdamped across
flexion/extension and ad /abduction.
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1 | INTRODUCTION

Mathematical models ate crucial in supporting our understand-
ing of physical processes. To be effective, a mathematical model
must be able to accurately describe real-life observations and be
able to make robust and reliable predictions of yet unknown
events. Furthermore, the assumptions used in the modelling
must be cleatly indicated and accounted for in the model and
analysis. In the literature there are a wide vatiety of mathematical
models that describe the kinematics of human fingers. The most
influential models of the biomechanics of the upper extrem-
ity are presented in [1-0]. These models have been extremely
helpful in gaining an understanding of the motion of the fin-
ger segments and in providing results on the underlying forces
of the musculature from experimental procedures. However, in
these models, there is no discussion of subject-specific scaling of
the parameters that influence the motion. To allow a mathemat-
ical model that describes the motion of the human fingers to
scale with different anthropometries, an informed decision on
the geometry of the fingers is required, which allows the deter-
mination of the mass of each segment. Moreover, the finger
segments rotate about their respective joints; hence the deter-
mination of the individual masses and subsequent moments of
inertia are important factors. In the literature, there are only a

few papers that discuss the respective moments of inertia of the
finger segments [7, 8]. However, in these papers, the equations
used to obtain the moments of inertia ate not included. Fur-
thermore, the passive moment generated at each segment due
to the passing tendons, synovial fluid, surrounding tissue etc. is
assumed to be the same for everyone, and the values assigned
to the constants describing this interaction are not referenced
[4]. The goal of this paper is therefore to use existing knowl-
edge to further the development of mathematical models that
describe the motion of the human finger segments, subject to
different anthropometries, and to perform parameter estimation
to determine the constants that describe the passive moment
generated at each segment. A preliminary version of this work
was reported at the BioMedEng 22 conference [9].

2 | MODELLING

The equations of motion for human finger segments are estab-
lished as a serial linkage of three compound cylindrical rod
pendula with a density of p = 1.16 gr/cm’ [10]. Applying
Lagrangian mechanics with four degrees of freedom—three
in the flexion/extension of the metacarpophalangeal (MCP),
proximal interphalangeal (PIP), and distal interphalangeal (DIP)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

propetly cited.

© 2023 The Authors. Healthcare Technology Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

Healthe. Technol. Lett. 2023;1-15.

wileyonlinelibrary.com/iet-htl 1


https://orcid.org/0000-0002-6265-7425
mailto:Panagiotis.Tsakonas@warwick.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-htl
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fhtl2.12070&domain=pdf&date_stamp=2023-12-26

TSAKONAS ET AL.

my, I, L,

Ty my, I, L,y

my, I3, Ly

FIGURE 1
freedom in flexion/extension. 81, 6,, 83 correspond to the flexion/extension

Conceptual image of a finger showing the three degrees of

angle of the proximal, middle, and distal segments, respectively. #;, [;, L;, T;
corresponds to the mass, the moment of inertia, the length, and the overall
torque of segment i. IReproduced with permission.!!!]
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FIGURE 2  The spherical coordinate system used in the modelling,
Angles 64, 6,, 05 corresponds to the flexion angles of the MCP, PIP and DIP
joints, respectively. xy1, xJ», xy3 are the azimuthal projections of each end
point. Angle ¢ is the abduction angle of each finger.

joints, and one in the adduction/abduction of the MCP joint—
in a similar manner to the approach adopted in [1]. A spherical
coordinate system is used, with its origin attached to the MCP
joint. The elevation angle corresponds to the flexion/extension
motion of the segments, with its positive direction being pet-
pendicular to the dorsal side of the palm facing away from it
and the azimuthal direction to the ad/abduction. Figure 1 shows
the flexion/extension angles in their respective frame of refer-
ence alongside the mass, moment of inertia, segment length and
overall torque at each joint.

The convention used in this present model is that when all
segments are fully extended, the elevation angle of the respective
local reference frame is zero. The set of equations describing the
system as a linkage of three rigid cylindrical rod pendula for the
midpoint of each cylinder is shown in (1). Figure 2 shows the
spherical coordinate system used in our model.

The variables in (1) are functions of time, but the time nota-
tion is omitted for convenience. Let 8;, 7, L;,¢ denote the
flexion angle, mass, length of segment 7 (/ = 1 to 3) and the
corresponding abduction angle, respectively. Then the equa-
tions describing the position of the finger segments in the given

spherical coordinate system are given by:
(

L
u = =i ©)

L
Xy = —7150: 6,)

22 - <L1 sin (61) + %Siﬂ (62)>

L
X))y = — <L1 Cos (61) + 72 Ccos (62)>
L
{3 = — <]41 sin (61) + ]42 sin (62> + fsin (63)>

A (1
xy3 = —(Lq cos(6y) + L, cos (6,) + ?KOI 63)

x1 = xy; cos (§)
o1 = 2 sin (@)
xy = x5 cos (§)
o= xypsin (@)
x3 = xy3 cos (¢)
3 = xy3sin (@)

\

In (1) g is the Cartesian representation of the projection
of each point into the elevation plane, xy; is the projection of
each point in the azimuthal plane and x;, y; are the individual
Cartesian coordinates of the xy; vector (all for /=1 to 3).

The moment of inertia, 7,;,

length Z_; and radius &;, about its midpoint and the calculation

of a uniform cylinder, of mass #;,

of the mass of each segment are shown in (2) [12]

RZ I?
%=%<T+§> )

m; = HPRZZL/
The total kinetic energy of the system is given by (3):
1 3
Kow =5 | 2@+ +3) + 1,6 + cos’8) | ()
=1

The gravitational potential energy is given by (4):

3
T/grav = Z 7835+ (4)
=1

In the literature, there are papers that include a passive
moment generated at each joint from the surrounding tissue,
tendons and synovial fluid and this has been modelled as a lin-
ear torsional spring and damper [4, 8, 13]. The torsional spring
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effect arises in the potential energy term, as shown in (5):

3
Vspring = % (Z l:]</ (9/ - Gl'q,z')z] + Kl(¢ - ¢eq)2> (5)

i=1

where K, K, 6%[-, qu are: the torsional spring constant for the
flexion/extension movement of segment 7, the torsional spring
constant for the abduction movement, the equilibrium angles
of the flexion/extension of segment 7 and ad /abduction move-
ments that correspond to the functional position of the hand,
respectively [14].

The Lagrangian is expressed as the difference between the
kinetic and potential energy of the system, that is,

L= ]qotal - (Vgrav + V;pring) . (6)
Lastly, the torsional damper effects are introduced into the
Lagrangian as a Rayleigh dissipation function [15]:

w=l(ZLbelene) o

where B, 6.2-, B,, ¢ are the torsional damper constants of the
flexion/extension and the flexion/extension angular velocity of
segment 7, and the torsional damper constant and velocity for
the ad/abduction movement respectively of segment .

Let g = {61,0,,03, ¢} denote the vector of the generalized
coordinates, then the equations of motion for each degree of
freedom are obtained via the Euler—Lagrange equations derived
using the D’Alembert principle of virtual work [10] and given
by:

d (0L oL  OR
5 )-5o+5 =7 ®
dt \0q.) 9¢; 94

Here 7; corresponds to the sum of the torques that is present
during motion. During free movement, these are the muscle
torques exerted at each degree of freedom and these are of the
form:

=Y ©

whete /7 is the muscle force production which is assumed to
be based on a Hill-muscle model formulation, and the partial
derivative corresponds to the moment arm of muscle ; that
spans the joint of segment 7, with r being the musculoten-
don length as a function of the generalized coordinates [4, 17,
18]. For the ad/abduction movement the muscles that span the
MCP joint are considered as actuators.

From (8), the well-known form of the equations of motion as
shown in [4] is obtained. The main difference between the two
models is that in the one presented here, an informed approx-
imation of the geometry of the finger segments is used, which
allows for a consistent determination of the moment of inertia

of each segment based on the anthropometry of the individual.
An approximation of the equations of motion for each degree
of freedom can be obtained that can be solved analytically. This
approximation is called the IBK approximation, where /denotes
the moment of inertia, B the torsional damper and K the tor-
sional spring constants respectively. In the literature, this type
of model has been utilised to determine the spring and damper
constants for different types of movements [19-21]. The linear
approximation of (8) is shown in (10) below:

Lgi + Big + Ki(q; — 4egi) = 1 (10)

where 7, B;, K; are the moment of inertia, the torsional damper
and the torsional spring constants for each degree of freedom.

Before performing model parameter estimation, a struc-
tural identifiability analysis is required to determine whether all
unknown parameters in the model can be identified uniquely
from the given model observations/measurements [22]. One
important remark to note that will be useful in the identifiability
analysis, is that the moment of inertia is uniquely determined
from the first term of (8) for each degree of freedom. By
measuring the length and radius of each finger segment, one
can obtain an analytical expression for estimating its theoreti-
cal moment of inertia. The equations that derive the theoretical
moment of inertia for the proximal (; = 1), middle (/ = 2),
and distal (/ = 3) segments and for the abduction movement
(¢ = a) are given below, respectively, as follows:

2 2
R I )
]1 = 7 _4 + _3 + ]41 (/ﬁz + /ﬁ3) (1 1)
R 12
2 2

R 12
3 -3
L= (—4 + EX > (13)

1, = I, cos® 0,) + Los® (6,) + Lcos? (05)
+1, L, (my + 2mr3) cos (61) cos (6,)
+73m3 (I cos (B;) cos (B3) + 1, cos (B,) cos (B3))

(14)

3 | STRUCTURAL IDENTIFIABILITY

Structural identifiability analysis is concerned with the ques-
tion of whether the parameters of a model can be uniquely
determined in the theoretical situation of noise-free, contin-
uous measurement/observation data [22]. Regatdless of the
complexity of a model, if it is shown that the model is unidenti-
fiable then it is not possible to determine the model parameters
uniquely or locally, that is, there is an (uncountably) infinite
set of model parameter values that can give rise to the same
input-output problem. It is therefore important to undertake

a5UBD17 SUOWIWIOD BAIIS1D) 3 |eal|dde ay Aq pausenob ale sapiie YO ‘8sn JO sani 10} Akl auluQ A8|IAA UO (SUOIHIPUOD-PUe-SWLBYWOY" A3 1M Alelq 1 pul|uo//:sdiy) SUOIIPUOD pue SWB | 8Y1 39S " [7202/T0/TT] uo ARelgiauluo AS(IM ‘1591 Aq 02021 2 /60T 0T/I0p/Wod A8 | 1M Azeiq 1 jpuluo o essa.ipl//sdny wouy papeoumoq ‘0 ‘STLEES0Z



l

TSAKONAS ET AL.

an identifiability analysis on the model of (10) as a prerequi-
site to estimating the parameters of the model and to support
the design of an appropriate experimental procedure to ensure
parameter identifiability for the given model outputs.

The free response of (10) is chosen as the model for
our parameter estimation that corresponds to the load-
ing/unloading of the torsional spring component. In real-life
this is equivalent to the following type of motion:

1. Participants keep their hands in a relaxed position with no
active movement or external force applied.

2. The researcher moves each segment to an arbitrary position
within its range of motion.

3. The segment is then released.

4. The response of the segment to its return to its natural steady
state is recorded.

The structural identifiability analysis of the free response of
(10) is determined using the Laplace transform approach [23].
Dividing by the moment of inertia in (10), its free response is
then given by:

. B, K
9+ 7o+t 7(%‘ — eg,i) = 0 (15)
7 7

The initial conditions for each generalised coordinate will
be the random initial angle within the range of motion of
each segment ¢ ; and a zero initial angular velocity. Taking the
Laplace transform of (14) with these initial conditions yields the
following Laplace transform of the response:

2 B;‘ ) qeq,ilg
A2+ =)+
q(),z( ); )

;(x2+§§+§>
1; I;

O )= (16)

From [23], each coefficient of the individual powers of s
in the numerator and denominator of (16) is uniquely deter-
mined if and only if, the coefficient of the highest power of
s in the denominator is one. From (16), the given response
function coefficients (moment invariants) that can be uniquely
determined ate as follows:

>

;&
L

a7

90,i» qeq,z'v

~

<

The model is therefore structurally unidentifiable since only
the parameter combinations K;/Z; and B;/I; are identifiable
(can be uniquely determined) and not the individual param-
eters within these combinations. A-priori knowledge of one
parameter is therefore required for all of the temaining param-
eters to be uniquely determined. Recall that the parameter /;
for the moment of inertia can be estimated from (11-14) for
each segment. Thus, if the moment of inertia /; is known,
then the remaining two parameters K; and 5; can be deter-
mined uniquely for each segment from the given input-output
relationship.

FIGURE 3  Marker set developed for determining flexion/extension and
ad/abduction angles from able-bodied participants.

4 | METHODS

The free response of each finger segment (index through lit-
tle fingers) in the four degtrees of freedom model was studied.
As mentioned previously, the free response movement corre-
sponds to the involuntary motion of each segment, which is
attributed to the loading/unloading of the torsional spring com-
ponent of the passive moment. The free response movements
of the thumb are not discussed in this paper. Participants were
instructed to hold their forearm at a 90° angle with respect
to their arm. For the flexion movement, the participant’s wrist
was in its neutral position. For the abduction movement, their
wrist was rotated to 90° of pronation. For that wrist orienta-
tion, gravitational contributions are neglected since gravity is
assumed to be perpendicular to the plane of motion. For the
abduction movement participants were asked to keep their indi-
vidual segments at full extension (all flexion angles set to zero),
because the moment of inertia of the abduction movement is
dependent on the individual segment flexion angles, as shown in
(14). Throughout the trials, participants were instructed to have
their fingers relaxed and not to apply any voluntary resistance.
Great cate was taken to reduce the movement of the proximal
segments, minimizing the contributions of the Coriolis forces
during the free response movement.

A novel marker set was developed, as shown in Figure 3 that
allows for the determination of the segment angles from motion
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captute data. Segment angles were determined using vector cal-
culus. Each segment is represented by a vector between the
proximal and distal markers for the joint. A vector between
the mid- distance of the radial and ulnar styloid processes (the
marker shown with a red arrow in Figure 3) and the distal
marker to the MCP joint of each finger (shown with yellow
and white arrows in Figure 3 is also used to determine the flex-
ion/extension angle of each proximal segment.) Ad/abduction
angles are determined between the vector defining the mid-
dle of the palm (mid-distance between ulnar and radial styloid
marker (red arrow) to the distal marker of the middle segment’s
MCP joint (white arrow)) and the vector defined by the mid
distance between the ulnar and the radial styloid marker (red
arrow) and the proximal marker on the proximal segment (green
arrows) of each finger. The L-shaped marker is used to define
the anatomical planes of the dorsal side of the palm. Each vector
is projected onto the sagittal (flexion/extension) or radioulnar
(ad/abduction) planes and the dot product between the tail of
the distal vector translated to the tail of the proximal vector, with
respect to the joint of interest, is used to determine angle [24].
Angle extraction from the motion capture data was performed
in Vicon Nexus Procalc [24].

At least 15 trials were recorded per degree of freedom per
finger. In total, each participant had at least 240 trials for the
index to the little finger segments. Before marking the par-
ticipant, the length and diameter of all their segments were
measured and these values wete used to determine the mass
and moments of inertia of each segment. Motion capture data
were recorded at 150 Hz using 12 infrared cameras in the
Motion Capture Laboratory within the School of Engineering
at the University of Warwick. A total of 23 able-bodied partic-
ipants were recruited for the study. The exclusion criteria for
the study were participants that had been diagnosed with arthri-
tis, or had a digit amputation, or who were less than 18 years
old. Written informed consent was taken before the experimen-
tal procedure. This study was granted full approval from the
Biomedical and Scientific Research Ethics Committee (BSREC)
at the University of Warwick (ref. Number: BSREC 55/21-22),
on 15/03/2022.

In Figure 4, the characteristic response of the free response
movement where the finger segment returns to its steady state
can be seen. In Figure 5, the characteristic response of the
free response movement where the finger segment returns to
its steady state can be seen. In Figure 0, the characteristic
response of the free response movement where the finger seg-
ment returns to its steady state can be seen. In Figure 7, the
characteristic response of the free response movement where
the finger segment returns to its steady state can be seen. In
Figure 8, the characteristic response of the free response move-
ment where the finger segment returns to its steady state can
be seen. The raw data of the free response of each degree of
freedom can be seen.

For all fingers, except the middle finger, the abduction-free
response movement of the whole digit was performed by mov-
ing each finger towards the middle one. This is evident from
Figure 7, where the free response movement data are inverted

Index MCP joint raw data
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FIGURE 4 Index finger MCP joint movement raw data. The

characteristic response of the free response movement where the finger
segment returns to its steady state can be seen.

Index PIP raw data
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FIGURE 5 Index finger PIP joint movement raw data. The characteristic
response of the free response movement where the finger segment returns to
its steady state can be seen.

compared to the data shown in Figure 8, where the middle
finger was moved away from the midline of the palm.

The angular data extracted from Procalc, were low-pass fil-
tered using a fourth order Butterworth filter with a cut-off
frequency of 15 Hz for the MCP and PIP joint movements and
12 Hz for the DIP joint and abduction movements. The cut-
off frequencies were determined by plotting the Hilbert—Huang
spectrum of randomly selected trials of the signal and averag-
ing the highest frequencies that had the highest instantaneous
energies, as shown in Figure 9. Instantaneous energy is propor-
tional to the amplitude of the transformed signal and has units
of (radz). Consecutively, the peaks of the data were identified,
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- Index DIP joint raw data i Middle finger abduction raw data
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FIGURE 6 Index finger DIP joint raw data. The characteristic response
of the free response movement where the finger segment returns to its steady

state can be seen.

- Index Abduction movement raw data

- -
© o -
T T
x
L
—
~
s "

Angle (degrees)
fee}

5 . . A . . L
0 2 4 6 8 10 12 14

Time (s)

FIGURE 7 Index finger abduction movement raw data. The
characteristic response of the free response movement where the finger
segment returns to its steady state can be seen.

and the model was fitted from the onset of the peak up to its
steady state, where the natural response motion of the finger
segments occurs.

Figure 10 shows the raw and filtered data alongside the fit
with the lowest root mean square error for the same trial.

The filtered data were then fitted to the analytical expressions
for the three types of motion of the free response underdamped
(18-19), critically damped (20-21), and overdamped (22-23).

5 | UNDERDAMPED MOTION

The underdamped motion of the free response is achieved when
the discriminant of the characteristic polynomial of the denom-
inator of (16) is negative. The resulting analytic expression is

FIGURE 8 Middle finger abduction movement raw data. The
characteristic response of the free response movement where the finger
segment returns to its steady state can be seen.
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FIGURE 9 Hilbert—Huang spectrum of a single trial of the proximal
segment of a ring finger from one of the participants. The colour coded lines
indicate the instantaneous energy at each point of the intrinsic mode function.
The highest frequency that also has the highest instantaneous energy is

11.35 Hz.

shown below:

-

g ) = qui + A~ (Csin (w?) + cos (w?))
_ \/4K:[;— B}

=

=3

< @ (18)

a

By fitting the analytic expression in (18) to the raw data, the
unknown model parameters can then be determined from the
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Ring finger MCP joint raw and filtered data with the best fit

Raw data
Filtered data

Fit with R%: 0.9927, RMSE: 1.2 degrees

MCP angle (degrees)
w
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N
o

-
o

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s)

FIGURE 10 Raw and filtered data of the MCP joint movement of the
ring finger of participant, alongside the best fit to the filtered data. The fit to
the filtered data has a RMSE of 1.2° and a R? value of 0.9927 suggesting an
excellent fit.

following expressions:

B, = 24,

B (19)
K=l + -

A

6 | CRITICALLY DAMPED MOTION

The critically damped motion of the free response is achieved
when the discriminant of the characteristic polynomial of the
denominator of (16) is zero. The resulting analytic expression is
shown below.

g ) = ., + A (at + 1)
B;
== 20
2 (20)

B} —4K L= 0

By fitting the analytic expression of (20) to the raw data the
unknown model parameters can then be determined from the
following expressions:

Bi = 24]1
B2 @n
A=3

7 | OVERDAMPED MOTION

The overdamped motion of the free response is achieved
when the discriminant of the characteristic polynomial of the

denominator of (106) is positive. Let 4, b be the roots of the cot-
responding characteristic polynomial with @ > 4. The resulting
analytic expression is shown below:

-

g; @)= Qeqi + Ae” +

B
!7+6Z = —7
3 ' 22
b* a =X
L
a,b <0

L

Since 4, b are the roots of a second order polynomial then the
parameters can be estimated from (22) using:

Bi=—0+a)l
K= b*a*l

(23)

A custom MATLAB code was written that performed the
above-mentioned steps. The parameters were extracted for the
fit that had the lowest root mean square error. For each seg-
ment, a mean and standard deviation for each parameter were
obtained. Any missing parameters from the tables below were
due to participants having a non-disqualifying injury at the spe-
cific segment or the number of available trials where the markers
are shown being fewer than five.

8 | RESULTS

Tables 1—4 show the mean values of the torsional spring and
damper parameter estimates as determined from the analy-
sis above for each segment for all participants, alongside the
respective moments of inertia and damping ratios.

One particulatly interesting outcome of the study, as can be
seen from the raw data in Figures 4-8, is that the free response
of the segments, for all of the degrees of freedom, oscillates
before reaching its steady state. This behaviour is characteristic
of underdamped motion. Thus, the average damping ratio was
calculated for each segment for each degree of freedom using
the following expression:

B.
§ = 24)

264 =

\\4|K

In Table 5 the mean damping ratio values are provided for all
of the trials.

9 | DISCUSSION

The torsional spring and damper constants for all the degrees
of freedom for the index through to the little finger segments
were estimated. Comparison between the values determined
here and those found in the literature can only be done for the
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TABLE 5 Mean values of the damping ratio for each segment in each
degree of freedom alongside their standard deviation (SD).

Index Middle Ring Little

damping damping damping damping
Movement ratio (SD) ratio (SD)  ratio (SD) ratio (SD)
MCP flexion 0.562 (0.07)  0.614 (0.15)  0.591 (0.21)  0.689 (0.13)
PIP flexion 0.665 (0.08)  0.688 (0.09) 0.673 (0.1) 0.625 (0.23)
DIP flexion 0.687 (0.1) 0.681 (0.15)  0.655 (0.16)  0.652 (0.21)
Abduction 0.574 (1.1) 0.63 (0.26)  0.584 (0.2) 0.649 (0.25)

TABLE 6  Mean value with standard deviation (SD) of the torsional spring
constant from all trials of the PIP flexion as shown in Table 1 and the
extension stiffness determined from the trial-to-trial study in [21].

K SD
Method (N m/rad) (N m/rad)
This study 0.0144 0.0064
[21] 0.0193 0.0022

torsional spring constant of the DIP and MCP joints for the
flexion/extension movements of the index finger. In the work
presented in [21] a mean and standard deviation for the tot-
sional spring constant for the middle segment were obtained
using a robot that flexed the DIP joint of the index finger
while the MCP joint of the same finger was held at either 0
or 60 degrees. In the experiment presented in [21] the authors
used the same wrist orientation for the flexion/extension move-
ment as presented here. From the data presented in [21] the
extension stiffness value from their trial-to-trial reproducibil-
ity study is compared to the mean value of all the torsional
spring constants of the PIP flexion of the index finger from
Table 1. The extension value given in [21] was used because
the data that were fitted to the free response equations corre-
spond to the extension of the segments returning to their steady
state.

In Table 6, the parameter values from this study and those
found in [21] can be seen. The percentage difference between
the two values is 29.08%. Even though the percentage differ-
ence is relatively high, this can be attributed to the difference
in sample size and anthropometrical variation between the two
studies. Another possible explanation for the percentage differ-
ence can be attributed to the Coriolis forces that come from
the relative movement of the proximal and distal phalanges dut-
ing the experiment. However, given the high standard deviation
from our study, the mean value from [21] is within the boundary
set by the standard deviation.

In the work presented in [25], the authors reported the pas-
sive MCP joint stiffness that was determined with two different
methods using a standard stiffness measurement device and a
soft robotic actuator. A similar wrist orientation was assumed in
their study as that used in this paper. In the following table, the
mean values together with the standard deviation (SD) for the
results from [25] and the mean of the results presented in this
paper are provided for compatison.

TABLE 7  Mean value with standard deviation (SD) of the torsional spring
constant from all trials of the MCP flexion as shown in Table 1 and the
extension stiffness determined from the data available at [25].

Method K (N m/rad) SD (N m/rad)
Soft robotic actuator [25] 0.0324 0.0058
Stiffness measutement 0.0391 0.0057

device [25]
This study 0.0366 0.0127

In Table 7, the parameter values from this study and those
found in [21] can be seen. The percentage differences between
the two different methods in [25] and this study are 12.18%
for the soft robotic actuator and 6.61% for the stiffness mea-
surement device. The percentage errors for the MCP joint are
smaller compared to the PIP and this can be attributed to the
fact that the contribution of the Coriolis forces on the proximal
phalanx from the relative motion of the second metacarpal is
diminished. However, from the previous two tables, it is appat-
ent that the method presented in this paper provides results
that are in good agreement with other methods found in the
literature. This study has been shown to agree with different
experiments for estimating the torsional spring constant of the
passive moment of the fingers. The values found in Tables 1—4
have the potential to be used as a reference for the values of
the passive moment contributions. The main advantage of this
study is the reproducibility of the experimental procedure as
it does not rely on any robotic actuators compared to those
found in [21, 25]. Potential improvements to the experimental
protocol might be to include a medical clamp to fix the elbow
and wrist in place, which reduces fatigue for the participant,
and potentially the use of an anesthetic agent that can numb
the sensation on the fingers. The latter is believed to allow the
involuntary movement of the free response to be exactly that,
involuntary, without the participants having any reflex control
over the moving segment.

Another interesting outcome of the study is the observed
variation in the parameters across the recruited population.
This is in contrast to the results presented in [4] where the
authors assumed the same spring and damper constant values
for all fingers for all participants. Given the extent to which
these parameters vary, it is therefore important that appropriate
scaling functions are derived in order to allow subject specific
estimation of the passive moment parameters to be determined
based on anthropomettic data. On this basis, scaling functions
between the torsional spring and damper parameters and the
anthropomettic values obtained were also determined. Linear
fits between the estimated parameters and different anthropo-
metrical measurements were examined. These measurements
were the segment length (s/), segment radius (s7), the sum of the
palm length (p)), palm breadth (pb), palm width (pw), the prod-
uct between pl and pb as suggested in [20], the product between
the hand length (), which is the sum of the palm length and
the sum of the lengths of all the segments of the middle fin-
ger and pb. Lastly, the product of segment length and segment
radius, the sum of the individual segment lengths (55, the sum
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TABLE 8  Table with the scaling functions for the torsional spring and damper constants for all the degrees of freedom for the index through to the little finger.
Torsional spring scaling equation Torsional damper scaling equation
(N m/rad) R? (N ms/rad) R?
Index Proximal segment (mm) —0.041 + 0.0002 X hpdex prox X Sindex,prox 0.89 —0.0011 + 5.78 X 107 x Shndex,prox X 0.88
Mindex,pros
Index middle segment (mm) —0.02 + 0.00015 X 5pgex,middie X 0.79 —0.0007 + 4.72 X 107 x Shodes,middle X 0.81
$Tindex,middle $index,middle
Index distal segment (mm) —0.003 4+ 3.24 X 107> x Shndex,distal X 0.72 —0.0001 4+ 9.5% 1077 x Shdexdistal X 0.84
Mindex,distal Sindex,distal
Index Abduction (mm) —0.16 4+ 0.00036 X SLR;gex 0.74 —0.0043 +9.12x 107° x SLRqex 0.74
Middle Proximal segment (mm) —0.036 + 0.0002 X shpiddie,prox X 0.68 —0.0011 + 6.75 X 107 x Simiddleprox X 0.72
Shyiddle,prox Shniddlepros
Middle middle segment (mm) —0.026 + 0.0002 X 57piddie middie X 0.63 —0.0009 4 5.27 X 107° x Smiddle,middle X 0.8
Shniddie,middle Shhniddie,middle
Middle distal segment (mm) —0.0042 4 3.61 X 107° x Smiddledistal X 0.58 —0.0001 + 1.14 X 107 x STimiddle,distal X 0.86
Shniddle,distal Shyiddle,distal
Middle Abduction (mm) —0.285 + 2.676 X 107> X bl X hs 0.52 —0.0085 + 7.83 X 1077 X 4/ X hb 0.65
Ring Proximal segment (mm) —0.03 + 0.0015 X sing prox 0.52 —0.0012 + 5.62 X 107> x Shing prox 0.67
Ring middle segment (mm) —0.018 + 0.00014 X sing middie X 0.66 —0.00054 4 3.928 X 107 x Shing middle X 0.65
ting,middle ting,middle
Ring distal segment (mm) —0.0033 + 3.37 X 107> x Shing distal X 0.77 —0.00013 + 1.12 X 107° x Shing distal X 0.93
$Tring,distal $ing,distal
Ring Abduction (mm) —0.536 + 0.0069 X Sshing 0.67 —0.0094 + 0.00013 X Sshin, 0.62
Little Proximal segment (mm) —0.0218 + 0.0012 X %shiye prox 0.46 —0.00092 + 4.788 X 107> x e prox 0.72
Little middle segment (mm) —0.0064 4+ 7.69 X 107> x Shittle middle X 0.76 —0.00019 + 2.123 X $his1e middie X 0.83
Mittle, middle HMittle,middle
Little distal segment (mm) —0.0037 +3.70 X 107> x Shitde distal X 0.86 —7.66 X 107> +8.04 x 107° x Shigtle, distal X 0.86
Mitdle,distal Mittle,distal
Little Abduction (mm) —0.1074 + 0.0066 X S5z e 0.36 —0.0011 + 4.073%x107° SRy 0.5

of the individual radii (§57), and the sum of the individual prod-
ucts of segment lengths and radii (SLR) were calculated (the last
three were considered for the abduction movement only). For
example, the SLR, S5/, and Ss7 for the index finger are given by,
respectively:

3
Z J‘/index,z' X Slindex,i
i=
3
9 Ss /indcx = Z ‘f[index,z' (25)

=1

SL. Rindex =

3
Ss Nindex — Z Sindex,i
=1

The normalized inverse of the standard deviation of the
parameters was used as a weighting factor in the fitting process.
Parameters with a low standard deviation had a higher weighting
value than those with a high standard deviation. Fits that had the
highest R? value were chosen. The scaling functions can be seen
alongside the R? value below. The anthropometric parameters
are given in, mm and the torsional spring and damper constants
are in N m/rad and N ms/rad, tespectively. In Table 8, the fit-
ting coefficients with their associated R? value, alongside the
equations used for scaling the parameters, can be found.

With the equations shown in Table 8 the torsional spring and
damper parameters of the passive moment can be determined
for any individual.

As mentioned, a particularly interesting finding of this study
was that the free response of the finger segments is under-
damped for all degrees of freedom. This is evident from the
mean damping ratio values as shown in Table 5. This char-
acteristic movement of the segments has not been reported
previously in the literature. From the type of experiment per-
formed, it is evident that these values are characteristic of the
underlying structure of the human finger segments. Since this is
an involuntary movement, it provides a glimpse of the passive
structure and a quantification of the passive moment gener-
ated at each joint. An underdamped motion is characterized
by lower force/torque production on a system compared to
other types of free response, hence the characteristic oscilla-
tion about its steady state. However, since this has seemingly
not been reported elsewhere in the literature, the conclusion
is drawn here that, during voluntary motion of the finger
segments, the passive moment increases and becomes either
critically damped or overdamped. Potentially, this means that
the passive moment components are dynamic in nature rather
than static scalar parameters as considered previously in the
literature.
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10 | CONCLUSION

In this paper, a novel mathematical description of the equa-
tions of motion of human finger segments based on Lagrangian
mechanics and cylindrical approximations of the segments of
human digits has been derived. A linear second-order differ-
ential equation approximation to the underlying equations of
motion for each degree of freedom is established, and parame-
ter estimation has been performed using this model for the free
response movement. An experiment has been designed that cor-
responds to the free response movement, and a novel marker set
has also been applied to obtain corresponding angular data. It
has been shown that the free response of the finger segments
is underdamped for all the degrees of freedom and scaling
functions between the torsional spring and damper parameters
and subject anthropometry have been derived. The intention is
that this model will be used to support parameter estimation
during voluntary movement which can be controlled by a mus-
culoskeletal model with surface electromyography (sSEMG) as its
actuator. This has the potential to further our understanding of
how passive moments change, if at all, during voluntary move-
ment controlled by the central nervous system. Moreover, the
model has the potential to be used in the design of a neuropros-
thesis as a means to incorporate feedback control for joint state
estimation from sEMG data and haptic feedback mechanisms
for both partial and complete hand amputees.
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