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On harmonic combination of univalent functions

M. Obradović∗ S. Ponnusamy†

Abstract

Let S be the class of all functions f that are analytic and univalent in the
unit disk D with the normalization f (0) = f ′(0) − 1 = 0. Let U(λ) denote
the set of all f ∈ S satisfying the condition
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< λ for z ∈ D,

and some λ ∈ (0, 1]. In this paper, among other things, we study a “harmonic
mean” of two univalent analytic functions. More precisely, we discuss the
properties of the class of functions F of the form

z

F(z)
=

1

2

(

z

f (z)
+

z

g(z)

)

,

where f , g ∈ S or f , g ∈ U(1). In particular, we determine the radius of
univalency of F, and propose two conjectures concerning the univalency of
F.

1 Introduction and Main Results

For each r > 0, we denote by Dr the open disk {z ∈ C : |z| < r} and by D the
unit disk D1. Let A be the class of all functions f that are analytic in D with the
normalization f (0) = f ′(0)− 1 = 0. Denote by S , S∗, K, and C, the subfamilies
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of A that are, respectively, univalent, starlike, convex, and close-to-convex in D

(see [2, 3] for some detailed discussion on these classes). It is well-known that a
function f ∈ S is starlike if

Re

(

z f ′(z)
f (z)

)

> 0 for all z ∈ D.

Similarly, a function f ∈ S is close-to-convex if

Re

(

z f ′(z)
g(z)

)

> 0 for all z ∈ D

for some g ∈ S∗. In [5], Mitrinović essentially investigated certain geometric
properties of the functions f of the form

f (z) =
z

φ(z)
, φ(z) = 1 +

∞

∑
n=1

bnzn. (1)

In [11], Reade et al. derived coefficient conditions that guarantee the univalence,
starlikeness, or convexity of rational functions of the form (1). These results have
been improved and generalized by the authors in [7]. In connection with a prob-
lem due to [4], several authors (eg. [12]) discussed the univalency of functions in
the set of convex linear combinations of the form

µ f (z) + (1 − µ)g(z), µ ∈ [0, 1],

when f , g belonging to suitable subsets of S . In this paper, we shall consider a
similar problem for univalent functions f of the form (1).

Let U (λ) denote the set of all f ∈ A in D satisfying the condition ([6, 8])

∣

∣

∣

∣

∣

f ′(z)
(

z

f (z)

)2

− 1

∣

∣

∣

∣

∣

< λ, for z ∈ D (2)

and some λ ∈ (0, 1]. Functions in U (1) =: U is known to be univalent in D, see
[1, 10]. Clearly, U (λ) ⊂ U for λ ∈ (0, 1] and so, functions in U (λ) are univalent in
D. Set

U2(λ) = { f ∈ U (λ) : f ′′(0) = 0}.

For convenience, we may also let U2 = U2(0). It is known (eg. [8]) that functions
in U2 are included in the class P(1/2), where

P(1/2) = { f ∈ A : Re ( f (z)/z) > 1/2 for z ∈ D} .

We remark that K ⊂ P(1/2) and there exist functions f in S such that f 6∈ U .
It is convenient to say that f belongs to U (λ) in the disk |z| < r if the inequality

in (2) holds for |z| < r instead of the whole unit disk D. For instance, if λ = 1, this
is equivalent to saying that g defined by g(z) = r−1 f (rz) belongs to U , whenever
f belongs to U in the disk |z| < r. Similar terminology will be followed for other
related classes of functions, eg., starlike functions in |z| < r.

Now, we state our main results.
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Theorem 1. Let f , g ∈ S . Suppose that
f (z)+g(z)

z 6= 0 for z ∈ D and consider the
function F defined by

F(z) =
2 f (z)g(z)

f (z) + g(z)
. (3)

Then G, defined by G(z) = r−1F(rz), belongs to U (λ) for 0 < r ≤
√

λ/(1 + λ). In

particular, F belongs to U in the disk |z| < 1/
√

2 ≈ 0.707107 (and hence, F is univalent
in D1/

√
2). In addition, r−1F(rz) belongs S∗ for

0 < r ≤ r0 =
√

1 − (2/(4 − |b1 + c1|)),

where b1 + c1 = −( f ′′(0) + g′′(0))/2 = −F′′(0).

If b1 + c1 = 0, then from Theorem 1 we obtain that G defined G(z) = r−1F(rz)
belongs to U ∩ S∗ whenever 0 < r ≤ 1/

√
2. Moreover, since U ( S , it is natural

to prove an analog of Theorem 1 by replacing the assumption f , g ∈ S by f , g ∈
U . Now, we are in a position to state our next result.

Theorem 2. Let f ∈ U (λ1), g ∈ U (λ2) (0 < λ1, λ2 ≤ 1) and
f (z)+g(z)

z 6= 0 for

z ∈ D. Define F by (3) and G by G(z) = r−1F(rz). Then G belongs to U (λ) whenever

0 < r ≤

√

−K2 + K
√

K2 + 4

2
with K =

√

2λ2/(λ1 + λ2). (4)

In particular, if f , g ∈ U , then G ∈ U for 0 < r ≤
√√

5−1
2 ; that is F is univalent in the

disk |z| <
√√

5−1
2 ≈ 0.78615.

At this place, it is appropriate to present a two parameters family of analytic
functions dealing with a number of issues concerning our investigation.

Example 1. For 0 6= α ∈ [−1, 1], we consider

fα(z) =
z(1 − αz)

1 − z2
.

By a computation, we obtain that

(1 − z2) f ′α(z) =
1 + z2 − 2αz

1 − z2

and so,

Re ((1 − z2) f ′α(z)) =
(1 − |z|2)(1 + |z|2 − 2αRe z)

|1 − z2|2 > 0 for z ∈ D.

We conclude that for each α, the function fα is close-to-convex in D. Now, let
F(z) = Fα,β(z) in the unit disk D be defined by

z

F(z)
=

1

2

(

z

fα(z)
+

z

fβ(z)

)
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where α, β ∈ [−1, 1]\{0}. A computation gives

F(z) =
z(1 − αz)(1 − βz)

(1 − z2)(1 − ((α + β)/2)z)

and
z

F(z)
= 1 +

∞

∑
n=1

bnzn,

where

b1 =
α + β

2
and bn = −1

2

(

αn−2(1 − α2) + βn−2(1 − β2)
)

for n ≥ 2.

First we wish to show that

S :=
∞

∑
n=2

(n − 1)|bn|2 ≤ 1

which is a necessary condition for F to belong to S (see the well-known Area
Theorem [3, Theorem 11 on p.193 of Vol. 2]). As

4|bn|2 = α2(n−2)(1 − α2)2 + β2(n−2)(1 − β2)2 + 2(1 − α2)(1 − β2)(αβ)n−2

for n ≥ 2 and
∞

∑
n=2

(n − 1)xn−2 =
1

(1 − x)2
for |x| < 1,

it follows easily that

S =
1

4

(

1 + 1 +
2(1 − α2)(1 − β2)

(1 − αβ)2

)

≤ 1

and the equality holds if α = β. Thus, F satisfies the necessary condition for F to
belong to the class S whenever α, β ∈ [−1, 1]\{0}. On the other hand for certain
values of α, β these functions F = Fα,β belong neither to U nor to S∗.

We note that z/F(z) 6= 0 in D and, by a lengthy computation, we obtain that

(

z

F(z)

)2

F′(z)− 1 = z2 (1 − αβ)(1 − αz)(1 − βz)− (1 − z2)((α − β)2/2)

(1 − αz)2(1 − βz)2

Setting β = −α, we see that for the function Fα(z) := Fα,−α(z), we have

(

z

Fα(z)

)2

F′
α(z)− 1 = −(1 − α2)

z2(1 + α2z2)

(1 − α2z2)2
.

Therefore, we have

∣

∣

∣

∣

∣

(

z

Fα(z)

)2

F′
α(z)− 1

∣

∣

∣

∣

∣

≤ (1 − α2)
|z|2(1 + α2|z|2)
(1 − α2|z|2)2
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which is less than 1 whenever

(2α2 − 1)α2|z|4 − (1 + α2)|z|2 + 1 > 0.

Solving the last inequality gives the condition |z|2 < r2
U , where

rU =

√

2

1 + α2 +
√

(1 − α2)(7α2 + 1)
.

The above discussion shows that
∣

∣

∣

∣

∣

(

z

Fα(z)

)2

F′
α(z)− 1

∣

∣

∣

∣

∣

< 1 for |z| < rU .

Also, for z = r, where rU ≤ r < 1, we have that
∣

∣

∣

∣

∣

(

z

Fα(z)

)2

F′
α(z)− 1

∣

∣

∣

∣

∣

= (1 − α2)
r2(1 + α2r2)

(1 − α2r2)2
≥ 1,

showing that the function Fα is in the class U in the disk |z| < rU (so Fα is univalent
in this disk) but not in any larger disk. That is, r−1Fα(rz) belongs to U for 0 < r ≤
rU , but not for a larger value of r.

Next, we show that for certain values of α, β, the functions F = Fα,β are not
starlike in the unit disk D. A straightforward computation shows that

F′(z) =
M(z)

(1 − z2)2(1 − ((α + β)/2)z)2
,

where

M(z) = 1 − 2(α + β)z + (1 + 3αβ + (α + β)2/2)z2

− (α + β)(1 + αβ)z3 + ((α2 + β2)/2)z4.

If β = −α with |α| > 1/9 then in this case M(z) takes the form

M(z) = α2[z2 + A][z2 + A], A =
1 − 3α2 + i

√

(9α2 − 1)(1 − α2)

2α2

and we see that |A| ≥ 1 showing that F′
α(z) 6= 0 in D.

Also, if |α| ≤ 1/9, then we see that

M(z) = α2[z2 + B+][z
2 + B−]

where

B± =
1 − 3α2 ±

√

(1 − 9α2)(1 − α2)

2α2
≥ 1.

Again, we see that F′
α(z) 6= 0 in D. Thus, Fα is locally univalent in D.

On the other hand, it follows easily that

zF′
α(z)

Fα(z)
=

1 + (1 − 3α2)z2 + α2z4

(1 − α2z2)(1 − z2)
.
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A straightforward computation shows that for 0 < θ < π,

Re

(

eiθF′
α(e

iθ)

Fα(eiθ)

)

=
A(θ)

|1 − α2e2iθ |2 |1 − e2iθ |2 ,

where
A(θ) = 4α2(α2 − cos 2θ)(1 − cos 2θ).

Therefore, A(θ) < 0 if 0 < α2
< cos 2θ < 1, i.e. |θ| < (1/2) arccos(α2) <

π/4. This observation shows that for each α ∈ (−1, 1)\{0}, the function Fα is not
starlike in D although Fα is locally univalent in D.

The above example motivates the following conjectures

Conjecture 1. (a) The function F defined by (3) is not necessarily univalent in D

whenever f , g ∈ S such that (( f (z) + g(z))/z) 6= 0 in D.

(b) The function F defined by (3) is univalent in D whenever f , g ∈ C such that
(( f (z) + g(z))/z) 6= 0 in D.

Theorem 1 may be generalized in the following form.

Theorem 3. Let fk ∈ S for k = 1, . . . , m and ∑
m
k=1

z
fk(z)

6= 0 for z ∈ D. Define F by

z

F(z)
=

1

m

m

∑
k=1

z

fk(z)
. (5)

Then we have

(a) G defined by G(z) = r−1F(rz) belongs to U (λ) for 0 < r ≤
√

λ/(1 + λ). In

particular, F is univalent in the disk |z| < 1/
√

2.

(b) G belongs to S∗ for 0 < r ≤
√

λ/(1 + λ), with

λ = 1 − 1

m

∣

∣

∣

∣

∣

m

∑
k=1

f ′′k (0)

2

∣

∣

∣

∣

∣

.

In particular, F is starlike (univalent) in the disk |z| < 1/
√

2 whenever f ′′k (0) = 0
for each k = 1, . . . , m.

The idea of the proof of Theorem 2 can be used to prove the following general
result.

Theorem 4. Let fk ∈ U (λk) (0 < λk ≤ 1) for k = 1, . . . , m, ∑
m
k=1

z
fk(z)

6= 0 for z ∈ D

and F be defined by (5). Then G defined by G(z) = r−1F(rz) belongs to U (λ) whenever

0 < r ≤

√

−K2 + K
√

K2 + 4

2
with K =

√

mλ2

∑
m
k=1 λk

. (6)

In particular, if fk ∈ U for k = 1, . . . , m, then G ∈ U for 0 < r ≤
√√

5−1
2 ; that is F is

univalent in the disk |z| <
√√

5−1
2 .

The proof of Theorems 1, 2, 3, and 4 are presented in Section 3.
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2 Preliminary Lemmas

For the proofs of our results, we need the following lemmas.

Lemma 1. Let φ(z) = 1 + ∑
∞
n=1 bnzn be a non-vanishing analytic function on D and

let f be of the form (1). Then, we have the following:

(a) If ∑
∞
n=2(n − 1)|bn| ≤ λ, then f ∈ U (λ).

(b) If ∑
∞
n=2(n − 1)|bn| ≤ 1 − |b1|, then f ∈ S∗.

(c) If f ∈ U (λ), then ∑
∞
n=2(n − 1)2|bn|2 ≤ λ2.

The conclusion (a) in Lemma 1 is from [6, 7] whereas the (b) is due to Reade
et al. [11, Theorem 1]. Finally, as f ∈ U (λ), we have

∣

∣

∣

∣

∣

f ′(z)
(

z

f (z)

)2

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−z

(

z

f (z)

)′
+

z

f (z)
− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞

∑
n=2

(n − 1)bnzn

∣

∣

∣

∣

∣

≤ λ

and so (c) follows from Prawitz’ theorem which is an immediate consequence of
Gronwall’s area theorem. This may be also obtained as a consequence of Parse-
val’s relation.

Next we recall the following result due to Obradović and Ponnusamy [9].

Lemma 2. Let f ∈ A have the form

z

f (z)
= 1 + b1z + b2z2 + · · · with bn ≥ 0 for all n ≥ 2 (7)

and for all z in a neighborhood of z = 0. Then the following conditions are equivalent.

(a) f ∈ S ,

(b)
f (z) f ′(z)

z
6= 0 for z ∈ D,

(c)

∞

∑
n=2

(n − 1)bn ≤ 1,

(d) f ∈ U .

This lemma helps to compare the relation between results here and the earlier
work of the authors in [9], in particular.

3 Proofs

Proof of Theorem 1. Let f , g ∈ S . Then f and g can be written in the form

z

f (z)
= 1 + b1z + b2z2 + · · · and

z

g(z)
= 1 + c1z + c2z2 + · · · . (8)
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Further, as f , g ∈ S , the well-known Gronwall’s Area Theorem [3, Theorem 11 on
p.193 of Vol. 2] gives

∞

∑
n=2

(n − 1)|bn|2 ≤ 1 and
∞

∑
n=2

(n − 1)|cn|2 ≤ 1. (9)

From (3), we may rewrite F in the form

z

F(z)
=

1

2

(

z

f (z)
+

z

g(z)

)

= 1 +
∞

∑
n=1

bn + cn

2
zn.

For 0 < r ≤ 1, we define G by G(z) = r−1F(rz) so that

z

G(z)
=

z

r−1F(rz)
= 1 +

∞

∑
n=1

bn + cn

2
rnzn.

In order to prove that F is univalent in |z| < 1/
√

2, it suffices to show that G ∈ U
for 0 < r ≤ 1/

√
2. According to Lemma 1(a) (compare with Lemma 2(c)), it

suffices to show that

S :=
∞

∑
n=2

(n − 1)

∣

∣

∣

∣

bn + cn

2

∣

∣

∣

∣

rn ≤ 1 (10)

for 0 < r ≤ 1/
√

2. By (9) and the Cauchy-Schwarz inequality, we have

∞

∑
n=2

(n − 1)|bn|rn ≤
(

∞

∑
n=2

(n − 1)|bn|2
)

1
2
(

∞

∑
n=2

(n − 1)r2n

)
1
2

≤ r2

1 − r2
.

and similarly, we obtain that

∞

∑
n=2

(n − 1)|cn|rn ≤ r2

1 − r2
.

As |bn + cn| ≤ |bn|+ |cn|, the last two inequalities gives that

S ≤ r2

1 − r2
.

Thus, S ≤ 1 whenever r2 ≤ 1− r2, i.e. if r ≤ 1/
√

2. Thus, G ∈ U and we complete
the proof of the first part. The proof of the second part is a consequence of Lemma
1(a) and solving the inequality r2 ≤ λ(1 − r2). The final part, namely, G ∈ S∗,
follows by setting λ = 1− |b1 + c1|/2 and applying Lemma 1(b). In other words,

F(|z| < r0) is a starlike domain, where r0 =
√

λ/(1 + λ) with λ = 1− |b1 + c1|/2.
A computation gives

r0 =
√

1 − (2/(4 − |b1 + c1|)).

Proof of Theorem 2. Let f ∈ U (λ1) and g ∈ U (λ2), and have the form (8). By
Lemma 1(c), we have

∞

∑
n=2

(n − 1)2|bn|2 ≤ λ2
1 and

∞

∑
n=2

(n − 1)2|cn|2 ≤ λ2
2. (11)
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As in the proof of Theorem 1, for G belonging to U (λ), it suffices to show by
Lemma 1(a) that

T =
∞

∑
n=2

(n − 1)

∣

∣

∣

∣

bn + cn

2

∣

∣

∣

∣

rn ≤ λ

under the condition (4). Now, by (11) and the Cauchy-Schwarz inequality, we
have

∞

∑
n=2

(n − 1)|bn|rn ≤
(

∞

∑
n=2

(n − 1)2|bn|2
)

1
2
(

∞

∑
n=2

r2n

)
1
2

≤ λ1r2

√
1 − r2

,

and similarly, we obtain that

∞

∑
n=2

(n − 1)|cn|rn ≤ λ2r2

√
1 − r2

.

In view of the last two inequalities, it follows that

T ≤
(

λ1 + λ2

2

)

r2

√
1 − r2

.

It can be easily seen that the last expression is less than or equal to λ if and only
if r satisfies the inequality (4). This means that the function G ∈ U (λ) under the
condition (4), which is equivalent to saying that F ∈ U (and hence univalent) in
the disk

|z| <

√

−K2 + K
√

K2 + 4

2
, K =

√

2λ2

λ1 + λ2
.

The proof of the main part is complete. Setting λ1 = λ2 = λ = 1, it follows that

if f , g ∈ U , then G ∈ U for 0 < r ≤
√√

5−1
2 . In particular, we obtain that F is

univalent in the disk |z| <
√√

5−1
2 ≈ 0.78615.

Proof of Theorem 3. Let fk ∈ S for k = 1, . . . , m. Then we may represent z/ fk(z)
in power series form

z

fk(z)
= 1 +

∞

∑
n=1

b
(k)
n zn (12)

so that
z

F(z)
= 1 +

∞

∑
n=1

B
(m)
n zn, B

(m)
n =

1

m

m

∑
k=1

b
(k)
n . (13)

Now, we consider the function G defined by

z

G(z)
=

z

r−1F(rz)
= 1 +

∞

∑
n=1

B
(m)
n rnzn.

Moreover, as in the proof of Theorem 1, it follows that

∞

∑
n=2

(n − 1)
∣

∣

∣
b
(k)
n

∣

∣

∣

2
≤ 1
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and
∞

∑
n=2

(n − 1)
∣

∣

∣
b
(k)
n

∣

∣

∣
rn ≤ r2

1 − r2
(14)

for k = 1, . . . , m. According to Lemma 1(a), G belongs to U (λ) if

Sm :=
∞

∑
n=2

(n − 1)
∣

∣

∣
B
(m)
n

∣

∣

∣
rn ≤ λ

for 0 < r ≤
√

λ/(1 + λ). By the definition of B
(m)
n , (14) and the triangle inequal-

ity, we find that

Sm ≤ 1

m

m

∑
k=1

(

∞

∑
n=2

(n − 1)
∣

∣

∣
b
(k)
n

∣

∣

∣
rn

)

≤ r2

1 − r2
.

Thus, Sm ≤ λ whenever r2 ≤ λ(1− r2). This gives the condition r ≤
√

λ/(1 + λ)
and we complete the proof of the first part.

For the proof of part (b), the role of λ = 1− |b1 + c1|/2 in the proof of Theorem
1 will be replaced by

λ = 1 − 1

m

∣

∣

∣

∣

∣

m

∑
k=1

f ′′k (0)

2

∣

∣

∣

∣

∣

.

Proof of Theorem 4. We simply follow the method of proof of Theorem 2 with
required modifications. Assume the hypotheses that fk ∈ U (λk) (k = 1, . . . , m)
and F is defined by (5), where fk and F have the power series form given by (12)
and (13), respectively.

By Lemma 1(c), we have

∞

∑
n=2

(n − 1)2
∣

∣

∣
b
(k)
n

∣

∣

∣

2
≤ λ2

k , k = 1, . . . , m. (15)

As in the proof of Theorem 3, for G(z) = r−1F(rz) belonging to U (λ), it suffices
to show by Lemma 1(a) that

Tm =
∞

∑
n=2

(n − 1)
∣

∣

∣
B
(m)
n

∣

∣

∣
rn ≤ λ

under the condition (6). Now, by (15) and the arguments used in the proof of
Theorem 2, we have

∞

∑
n=2

(n − 1)
∣

∣

∣
b
(k)
n

∣

∣

∣
rn ≤ λkr2

√
1 − r2

for each k = 1, . . . , m. Using this and the triangle inequality, it follows that

Tm ≤ 1

m

m

∑
k=1

(

∞

∑
n=2

(n − 1)
∣

∣

∣
b
(k)
n

∣

∣

∣
rn

)

≤ r2

√
1 − r2

(

1

m

m

∑
k=1

λk

)

.

It can be easily seen that the last expression is less than or equal to λ if and only
if r satisfies the inequality (6). This means that the function G ∈ U (λ) under the
condition (6) and the rest of the conclusions follow easily from this observation.
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4 Discussion

In Theorem 4, it is possible to remove the hypothesis that ∑
m
k=1

z
fk(z)

6= 0 for z ∈ D.

For example, if fk ∈ U (λk) with f ′′k (0) = 0 for k = 1, . . . , m, then it is known that
[7, 8]

Re

(

fk(z)

z

)

>
1

1 + λk
≥ 1

2
for z ∈ D.

In particular, we obtain that Re ( fk(z)/z) > 0 in D and for each k = 1, . . . , m.
Thus, Re (z/ fk(z)) > 0 in D and for each k = 1, . . . , m so that the assumption
that ∑

m
k=1

z
fk(z)

6= 0 obviously holds for z ∈ D. In this case, this observation gives

that F defined by (5) is univalent and starlike in the disk |z| <
√√

5−1
2 whenever

fk ∈ U with f ′′k (0) = 0 for k = 1, . . . , m. Moreover, in some special situations, one
can improve Theorem 1. For instance, we have

Theorem 5. Let f , g ∈ S have the form (7) with bn ≥ 0 and cn ≥ 0 for all n ≥ 2. Then
the function F defined by (3) belongs to S . In particular, if b1 + c1 = 0, then F is also
starlike in D.

Proof. By Lemma 2, we have f , g ∈ U and

∞

∑
n=2

(n − 1)bn ≤ 1 and
∞

∑
n=2

(n − 1)cn ≤ 1.

The last two coefficient conditions imply that

∞

∑
n=2

(n − 1)
bn + cn

2
≤ 1

and therefore, F defined by (3) is univalent in D.
If b1 + c1 = 0, then according to Lemma 1(b) the function F defined by (3) is

starlike in D.

Using Theorem 5, one may state a general result as in Theorems 3 and 4. Also,
it is an open problem to determine the exact radii in Theorems 1 and 2.
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