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Abstract
Brain–computer interfaces (BCIs) systems traditionally use machine learning (ML) algorithms
that require extensive signal processing and feature extraction. Deep learning (DL)-based
convolutional neural networks (CNNs) recently achieved state-of-the-art electroencephalogram
(EEG) signal classification accuracy. CNN models are complex and computationally intensive,
making them difficult to port to edge devices for mobile and efficient BCI systems. For
addressing the problem, a lightweight CNN architecture for efficient EEG signal classification is
proposed. In the proposed model, a combination of a convolution layer for spatial feature
extraction from the signal and a separable convolution layer to extract spatial features from each
channel. For evaluation, the performance of the proposed model along with the other three
models from the literature referred to as EEGNet, DeepConvNet, and EffNet on two different
embedded devices, the Nvidia Jetson Xavier NX and Jetson Nano. The results of the
Multivariant 2-way ANOVA (MANOVA) show a significant difference between the accuracies
of ML and the proposed model. In a comparison of DL models, the proposed models, EEGNet,
DeepConvNet, and EffNet, achieved 92.44 ± 4.30, 90.76 ± 4.06, 92.89 ± 4.23, and
81.69 ± 4.22 average accuracy with standard deviation, respectively. In terms of inference time,
the proposed model performs better as compared to other models on both the Nvidia Jetson
Xavier NX and Jetson Nano, achieving 1.9 sec and 16.1 sec, respectively. In the case of power
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consumption, the proposed model shows significant values on MANOVA (p < 0.05) on Jetson
Nano and Xavier. Results show that the proposed model provides improved classification results
with less power consumption and inference time on embedded platforms.

Keywords: brain computer interface, deep learning, convolutional neural networks,
embedded edge devices

1. Introduction

There are millions of people all over the world who have var-
ied abilities and are frequently unable to carry out the activ-
ities of everyday life properly. Physical limitations may be
due to a specific disability, such as epilepsy, stroke, or spinal
cord injuries, as well as the result of multiple physical prob-
lems. Such limitations can include reduced ability to stand
and walk, poor balance, coordination, and difficulty in bend-
ing. According to the disability report published by WHO in
2022, there are over 1.3 billion physically disabled people in
the world that are 16% of the global population [1], out of
which around one billion are considered to have significant
difficulties in functioning. In developing nations, it is estim-
ated that up to 4% of their populations experience signific-
ant difficulties in sustaining independent living. These diffi-
culties include making choices and taking actions, commu-
nicating with others, and accessing services [2]. Moreover,
millions of individuals worldwide have been infected with
COVID-19 since 2019, and this illness does not impact every-
one similarly. During the 2019 COVID pandemic, situation of
the world has shifted. Throughout this outbreak, individuals
feel afraid of touching something. A physically impaired indi-
vidual needs help to do everyday tasks. People were scared
of helping a crippled person who offered their arms because
they might infect them with the COVID-19 virus. As a res-
ult of these fears, many disabled people are scared to accept
help from caregivers because they fear that their illness may
increase in severity due to contact with caregivers. The abil-
ity to guide a disabled person in helping them complete an
action is undoubtedly a wonderful thing, but it can be chal-
lenging during a pandemic. The advancement in the field of
brain–computer interfaces (BCIs) has enabled many people,
who are suffering from disabilities, to significantly improve
their life quality while performing everyday tasks.

BCI systems are gaining popularity in the healthcare
and rehabilitation fields. The objective of the BCI is to
encode brain activity with the help of electroencephalography
(EEG), magnetic resonance imaging, electrocorticography,
and decode it to use it as a control input for a computer [3].
The signals of EEG are more suited & accepted clinically for
monitoring the activities inside the brain activity because of
its low cost, high signal intensity and substantial fitness to the
human subject [4, 5]. Figure 1 shows the basic working of a
common BCI system, in which a link is established between
the human brain and peripheral devices that can be a com-
bination of robotic arm, computer screen, wheelchair, etc. A
BCI requires two main components: an interface that couples

electrodes to computers and algorithms capable of decoding
acquired EEG data into meaningful information.

However, when employed in a real-world experiment, a
BCI system encounters several challenges that include low
BCI signal intensity, low signal-to-noise ratio, contamina-
tion with multiple artifacts (line noise, muscle artifacts, eye
blink components), poor signal classification, limited compu-
tational resources, and higher power consumption are some
of the most typical BCI systems issues [6]. There are sev-
eral types of research in which researchers have investigated
various techniques for analyzing EEG data for a variety of
objectives ranging from the detection of diseases to devising
control. Handcrafted feature extraction approaches are tradi-
tional procedures that have been applied in numerous EEG
data classification systems [3–8]. Although handmade fea-
ture extraction approaches are time-consuming, give highly
specialized features, are application-specific, and need prior
expertise [9]. Deep learning (DL)-based techniques, on the
other hand, extract a more general feature set that may be
used for a variety of applications [10–12]. And many more
researchers used DL in EEG data to build BCI applications
by using different embedded platforms. DL huge success with
EEG data was due to its capacity to extract significant elements
from time-varying input. However, the development of effi-
cient BCI systems is quite complicated, and one of the key
challenges is to improve the classification accuracy. As a res-
ult, additional research in the BCI system using DL is neces-
sary to achieve a decent level of accuracy.

Until now, the idea of being able to be controlling the
devices with our minds was only a fantasy. However, utilizing
electrical signals gathered from brain activity, the technology
of BCI enables people who are physically disabled and are not
able to use their bodies to control assistive equipment.

Just a few researchers have investigated DL-based BCI
systems, but they have yet to create an accurate and effi-
cient model that can perform exceptionally well in resource
constraints scenarios. All the DL models consist of convo-
lution, pooling, and fully connected layers. The complexity
of a model varies depending on the different number of con-
volution layers, feature maps, and layers. DL models need
high resources to train and infer which makes them difficult to
implement on edge-embedded devices. Thus, this study aims
to construct an efficient lightweight DL architecture to effi-
ciently identify brain signals and implement them on embed-
ded edge devices.

This paper introduces an efficient DL model specific-
ally developed for real-time BCI applications on embed-
ded devices with limited resources. The study showcases a
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Figure 1. Architecture of brain computer interfacing system using EEG signal.

noteworthy progression in the domain of EEG signal classi-
fication, featuring the subsequent pivotal advancements:

• We present a lightweight DLmodel for EEG signal classific-
ation. This innovation is driven by the need to improve BCI
accuracy and computational efficiency. Our model redefines
the model complexity-performance trade-off, a notable con-
tribution.

• In addition to accuracy, our research emphasizes model effi-
ciency. We analyze edge device power consumption and
inference time to ensure our model is suitable for real-
time BCI applications. BCI technology resource efficiency
is redefined by this approach.

• We closely compare our novel lightweight model to
EEGNet, Deep ConvNet, and EffNet on the same EEG data-
set. This comparison reveals our model’s performance and
suitability compared to benchmarks.

• We hardware-compare our model on popular embedded
platforms like the Nvidia Jetson Nano and Xavier NX to
verify its real-world applicability. This ensures that our
innovation can be deployed on common hardware platforms,
enabling real-time BCI solutions.

Our work is notable for its innovative design of a lightweight,
efficient DL model for EEG signal classification, meticulous
comparative analysis, and hardware-based evaluation. These
innovations advance BCI technology and promise real-time
BCI applications on embedded devices. The remainder of the
paper is structured as follows. Section 2 describes the review
of the literature on several existing BCI systems and their uses.
Section 3 describes the experimental setup, the dataset that
was employed, the hardware used for model evaluation, and
the proposed technique. Section 4 describes the classification
results of DLmodels and the evaluation of DLmodels on hard-
ware. Section 5 discusses the results and section 6 brings the
paper to a close.

2. Literature review

Table 1 shows the comparison of different DL techniques
used for the classification of hand motions from neural cor-
relates and the hardware implementation of the proposed
DL model for evaluation of the model in terms of power
and inference time. The studies exhibit variability in terms
of their datasets, methods of pre-processing, and selection
of classification models. In a particular case, a dataset that
was recorded by the individual themselves was employed.
Prior to analysis, the dataset underwent pre-processing, which
involved applying a filtration technique using a software
development kit (SDK) known as ABM. Subsequently, a
DeepNet classifier was applied to the dataset, yielding an
accuracy rate of 63.99%. The specific details regarding the
hardware, power consumption, and inference time for this
particular case were not provided [13]. In a separate invest-
igation, the BCI competition III and IV datasets under-
went independent component analysis (ICA) as a preliminary
procedure. A classifier that integrated spatted convolutional
neural network (CNN), discrete wavelet transform (DWT),
and long short-termmemory (LSTM)was employed, resulting
in diverse accuracies across different scenarios (D1 = 56.2%,
D2 = 89.3%, D3 = 90.2%, and D4 = 86.7%). Nevertheless,
the CNNmodel that was developed was not subjected to hard-
ware testing [14]. Furthermore, the Physionet dataset was sub-
jected to pre-processing using EEGlab and advanced artifact
removal (AAR) techniques, employing a neural network tool-
box in MATLAB® as the classifier. This process yielded an
accuracy rate of 65%. Like the preceding instances, this model
was also not subjected to hardware testing, so the assessment
of power consumption and inference times was not conducted
[15].

Furthermore, within the context of a self-recorded dataset,
the pre-processing steps encompassed the use of a bandpass
filter and a DWT. subsequently, a feedforward neural network
was employed, resulting in an accuracy rate of 90.09%. The
hardware utilized for implementation was the Raspberry Pi
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Table 1. Comparison of different techniques for the classification a of motor signals from neural correlates.

References Dataset Pre-processing Classifier Accuracy Hardware

Power
consumption
(Watt)

Inference
time
(mSec)

[13] Self-recorded Filtration using
SDK (ABM)

DeepNet 63.99% — — —

[14] BCI competition III &
IV

ICA Spatted CNN+
DWT+ LSTM

D1 = 56.2% — — —
D2 = 89.3%
D3 = 90.2%
D4 = 86.7%

[15] Physionet EEGlab +AAR
(MATLAB®

toolboxes)

Neural network
toolbox
MATLAB®

65% — — —

[16] Self-recorded Bandpass
filter + DWT

Feedforward NN 90.09% Raspberry Pi
3B

5.77 —

[17] Physionet — EEGNet 82.43% ARM cortex
M4F MCU

4.28 mJ 101

ARM cortex
M7

18.1 mJ 44

[18] — — LSTM 87.89% Mindreading
photonic
ULQ

0.2155 1500

[20] BNCI Horizon 2020
reach and grasp dataset

Bandpass
filter + CAR +
ICA

Ensembled KNN 85.13% — — —

[19] Self-recorded — CCA 93.9% ALINX
xiliax zyng
7000

8–10 —

[21] BCI competition IV a
& III a

DWT + CSP TSGL-EEGNet 81.34% — — —
88.89%

[22] Self-recorded +
scientific data dataset

Low pass +
band
rejection +
band stop filters

Hybrid model
(LSTM + CNN)

84.96%
79.7%

Emotive EPOC +
brainwear ®

— 750

[23] HGD+ BCI IV 2a — TCNet-fusion
(CNN)

94.1% — — —
83.73%

[24] BCI IV 2a + HGDa — MPEEGCBAM b 82.85% — — —
95.45%

[25] BCI competition IV CAR +
bandpass filter

LFANN c 91.58% — — —

[26] BCI competition IV 2a 3rd order butter
worth bandpass
filter

DSCNN d 85% — — —

[27] BCI competition III &
IV a

Linear adaptive
Filter

CSDA e 91.6% — — —
91.1%

a High gamma dataset.
b Multibranch EEGNet convolutional block attention module.
c Light weight feature fusion network.
d Double branch CNN.
e Competitive swarm dragonfly algorithm.

4



Meas. Sci. Technol. 35 (2024) 035703 H Sultan et al

3B, with a power consumption of 5.77 watts. However, the
specific inference time was not provided [16]. In a separate
investigation utilizing the physionet dataset, the EEGNet clas-
sifier demonstrated a level of accuracy amounting to 82.43%.
The hardware employed in this study was an ARM cortex
M4F MCU, which consumed 4.28 mJ of energy and had an
inference time of 101 milliseconds [17]. The utilization of an
ARM cortex M7 was also observed, exhibiting a power con-
sumption of 18.1 mJ and an inference time of 44 milliseconds
[17]. In an alternative methodology, a research investigation
employed a LSTM classifier without explicitly mentioning the
dataset used, resulting in an accuracy rate of 87.89%. The
hardware utilized in this study was the mindreading photonic
ULQ, which had a power consumption of 0.2155 Watts and
an inference time of 1500 milliseconds, as reported in [18].
Moreover, a dataset that was recorded by the researchers them-
selves was used in a separate study. However, specific inform-
ation regarding the pre-processing methods employed was not
disclosed. Nevertheless, the use of canonical correlation ana-
lysis (CCA) as a classifier yielded a noteworthy accuracy rate
of 93.9%. The hardware utilized in the study was the ALINX
Xiliax Zyng 7000, which had a power consumption range of
8–10 Watts. Unfortunately, the specific data regarding infer-
ence time was not provided [19]. The research conducted util-
ized the BNCI Horizon 2020 reach and grasp dataset. The pre-
processing stage involved applying a bandpass filter, common
average reference (CAR), and ICA. The classification task
employed an ensemble K-nearest neighbors (KNN) algorithm,
resulting in an accuracy rate of 85.13% [20]. In an alternative
situation, the BCI competition IV and III datasets were sub-
jected to pre-processing using the DWT and common spatial
patterns (CSP). A classifier named TSGL-EEGNet achieved
accuracies of 81.34% and 88.89% [21]. However, the two
aforementioned studies did not include an evaluation of the
performance of the developed CNN models on hardware in
terms of inference time and power consumption.

Moreover, in both a self-recorded dataset and a scientific
data dataset, the pre-processing stage involved the application
of low-pass filtering, band rejection filtering, and band-stop
filtering. Additionally, a hybrid model that combined LSTM
and CNNs was employed, leading to accuracies of 84.96%
and 79.7% for the respective datasets. The hardware com-
ponents utilized in this case study consisted of the emotive
EPOC and brainwear® devices, which were found to have a
power consumption of 750 Watts. However, it is important
to note that no specific information regarding the inference
time was provided [22]. In a separate investigation utilizing
the HGD+ BCI IV 2a dataset, specific information regard-
ing pre-processing procedures was not provided. However, a
TCNet-fusion (CNN) classifier demonstrated an impressive
accuracy rate of 94.1% [23]. In an alternative scenario, the
BCI IV 2a and HGD1 datasets were employed without the
inclusion of pre-processing techniques. However, the classi-
fier MPEEGCBAM 2 demonstrated accuracies of 82.85% and
95.45% for the respective datasets [24]. In the BCI compet-
ition IV dataset, the pre-processing steps consisted of apply-
ing the CAR technique and a bandpass filter. The classifica-
tion task was performed using a linear feedforward artificial

neural network (LFANN) classifier, which achieved an accur-
acy of 91.58% [25]. The BCI competition IV 2a dataset util-
ized a 3rd-order butterworth bandpass filter as a pre-processing
technique. The classification model, DSCNN, achieved an
accuracy rate of 85% [26]. The BCI competition III and IV
studies employed a linear adaptive filter for pre-processing
purposes. Additionally, a common spatial discriminant ana-
lysis (CSDA) classifier was utilized, resulting in accuracies
of 91.6% and 91.1% [27]. However, it is important to note
that the existing studies have not conducted hardware testing
of the developed CNN models. As a result, there is a lack of
information regarding power consumption and inference time,
leaving this aspect as an unanswered inquiry. In this study,
we addressed the research question by designing a lightweight
CNN architecture. We evaluated the performance of our archi-
tecture on embedded devices, specifically the Jetson Nano and
Jetson Xavier. Additionally, we compared the accuracy, power
consumption, and inference time of our model with state-of-
the-art models commonly employed for motion classification
using neural correlates.

3. Methodology

In this section, the methods that are used in this research work
are discussed in detail. For a fair comparison, the data is clas-
sified using both machine learning (ML) and DL techniques
with a 70:30 train test split ratio. For the ML method, the
data is firstly pre-processed by using the 4th order butterworth
bandpass filter and 50 Hz. Notch filter. For further filtration
of EEG signals the technique of ICA is used which removes
the unwanted signals artifacts such as eye blink, muscle, line
noise etc.

After filtration, EOG channels are removed, and trails of
reach and grasp actions are epoch from continuous signals.
From the epoch trails, the time domain features are extracted
and used as input for ML classifiers.

For DL, data is minimally filtered and given to the DL
model as an input in the form of time points into channels.
The DL models are trained and tested on the raw signals
and finally, these pre-trained models are used for evaluat-
ing the performances of our proposed model with other DL
models on Jetson Xavier NX and Nano embedded platforms.
Figure 2 shows the proposed methodology of this research
work.

3.1. Dataset description

In this research, the dataset used is BNCI Horizon 2020
reach and grasp action decoding from Gel-based EEG
electrodes [28]. Institute of Neural Engineering, Graz
University of Technology, recorded the public dataset and
G.tec USBamp/ladybird system gel-based EEG was used for
recording data [28]. 15 people—5 women and 10 men—
collected data. Each participant was 15–30 and right-handed.

EOG electrodes recorded eye movement, and EEG elec-
trodes were carefully placed on a 5% grid. For data prepro-
cessing 0.01–100 Hz 8th-order chebyshev filter was used.
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Figure 2. A flowchart of brain–computer interfacing classification of reach and grasp actions using machine learning and deep learning
methods and implementation of dl models on embedded platforms.

Figure 3. Timeline of each trial. The subject gazed at an object for 2 s, then performed the motion of reach & grasp. Grasp the object for
1–2 s. Finally returned the hand to starting position and take a rest of 4 s & start the next trail.

Sampling frequency: 256 Hz, 50 Hz notch filter applied
[29]. Movement onset and grasping time recorded using
FSR sensors [30]. Same experimental format as [31]: sub-
jects seated, right hand on sensorized table. Objects used:
jar with spoon (lateral grasp), empty jar (palmar grasp) [30].
Subjects gaze at object, perform self-initiated reach and grasp
action [30] as shown in figure 3. Data recorded for 80 trials
per condition in 4 runs [30]. Rest data recorded for 3 min
at start of 1st run, after 2nd run, and at end of 4th run
[29]. 6 EOG channels used for eye movement recordings
[31].

3.2. Hardware

Edge devices are utilized to evaluate the performance of the
suggested approach. This research employs the Nvidia Jetson
Nano andNvidia Jetson Xavier NX devices. The Nvidia Jetson
Nano works on two power modes that are 5 W and 10 W with
4GB RAM. While on the other side, Jetson Xavier NX is a
smaller size module as compared to Nano and it is also an
energy-efficient AI platform. It operates on 3 power modes
that are 10 W, 15 W, and 20 WWI5H 8 GB RAM, making it a
more efficient embedded platform for developing remote BCI
systems.

In this research, both hardware is used for evaluating the
performance of our DL models in the form of inference time

and power consumption. Table 2 shows the specification of
both Jetson Nano and Jetson Xavier NX modules.

3.3. Proposed model

This study proposes a DL CNNmodel that classifies the reach
and grasp motion from neural correlates. Figure 4 illustrates
the general layout of the new model that has been proposed.
The model consists of 2D convolutional layers along with
average pooling layers, and separable convolutional layers,
followed by the fully connected layer. Firstly, the input layer is
used in the model in which the input shape used for the model
is time series data in the form of channels x time points. After
the first layer, first 2D convolutional block which is the 2D
convolutional layer along with the batch normalization (BN)
layer is used. It consists of 8 filters of size (1, 64) which moves
along the time axis for extracting the feature values the feature
map of the first block serves as input for the second block.
The second block consists of a separable convolutional block,
utilizing a 2D separable convolutional layer with 32 filters of
size (1, 64). This layer performs depth and point-wise con-
volutions, extracting time features in the process. Following
the separable 2D convolutional layer is a BN layer, accom-
panied by the activation function ‘ELU’. After the BN layer,
an average pooling layer is applied with a filter size of (1, 8).
This layer reduces the complexity of the feature map then a
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Table 2. Specifications of Nvidia Jetson Nano and Xavier specifications.

NVIDIA Jetson Nano NVIDIA Jetson Xavier

GPU 128-CORE NVIDIA
MAXWELL™
ARCHITECTURE-
BASED GPU

NVIDIA VOLTA
ARCHITECTURE
WITH 384 NVIDIA
CUDA® CORES AND
48 TENSOR CORES

CPU QUAD-CORE ARM® A57 6-CORE NVIDIA
CARMEL ARM®V8.2
64-BIT CPU 6 MB
L2 + 4 MB L3

Memory 4 GB 64-BIT LPDDR4;
25.6
GIGABYTES/SECOND

8 GB 128-BIT
LPDDR4X @
51.2GB/S

OS supported LINUX FOR TEGRA® LINUX FOR TEGRA®

Module size 70 MM × 45 MM 103 MM× 90.5 MM×
34.66 MM

Power 5 W & 10 W 10 W, 15 W & 20 W

Figure 4. The architecture of the proposed CNN model.

dropout layer is applied with a 0.2 dropout value. 3rd block
is again a separable convolutional block in which a 2D separ-
able convolutional layer with 16 filters of size (1, 16) is used
and then again apply BN layer with activation function ‘ELU’.
Then again average pooling layer is applied for reducing the
complexity of the feature map. The next layer is a flattened
layer (FL) that combines the output of block 3 into a vec-
tor & the layer after FL is a fully connected layer. Lastly,
the ‘Sigmoid’ layer is added in the model that predicts the
probability distribution of output classes i.e., reach & grasp
actions.

4. Results

This section describes the results of the proposed DL model, a
comparison of classification accuracies of our proposed model
with previously used lightweight DL models along with ML
techniques that are commonly used for the EEG signals classi-
fication, and finally the results of the evaluation of DL models
on hardware based on power consumption and inference time.

For comparison purposes, the typically used ML models
for EEG classification are also used for the classification of

reach and grasp action. For the ML classification, the data is
firstly filtered using Butterworth 4th order bandpass filter with
cutoff frequencies 0.1–35 Hz, then CAR filter is applied, and
after that for removing the eye blink, line noise, muscle, heart
artifacts ICA. The trails of reach and grasp actions are epoch
using [−2 3] sec window of interest and after that time domain
features are extracted from epoch trails. The hand-crafted fea-
ture matrix is then used as an input for LDA, SVM, and KNN
classifiers.

4.1. Classification

After extracting the features, ML classifiers are applied to
them one by one for each subject. LDA, SVM, and K-NN
models are used in this research. With 70:30 split ratios,
all features are extracted from the preprocessed data sub-
ject of each subject. The test and training accuracies of all
15 participants on LDA, SVM, and K-NN classifiers are
shown in table 3. The findings reveal that the K-NN clas-
sifier has the highest overall classification accuracy using
hand-crafted features when compared to the LDA and SVM
classifiers. Table 3 shows a comparison of accuracies of ML
classifiers.
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Table 3. Classification accuracies of 15 subjects using, LDA, SVM, and K-NN machine learning models.

Classifiers/subjects

Linear discriminant
analysis classification (%)

Support vector machine
classification (%)

K-nearest neighbour
classification (%)

Training Test Training Test Training Test

G01 65.2 63.7 67.8 66 79.8 77.6
G02 63.4 60.8 68 67.8 77.4 76.0
G03 64.2 60.8 66.4 65.2 84.4 81.4
G04 71.2 69.1 69.6 68.8 80.2 79.1
G05 63.4 60.3 67.4 68.3 81.3 79.6
G06 65.3 64.9 70.2 69.1 81.4 80.7
G07 60.6 56.2 67.4 67.2 76.9 75.8
G08 55.2 53.8 62.9 61.0 78.5 83.8
G09 64.5 62.8 70.6 68.4 74.4 74.6
G10 60.2 60.1 65.4 62.9 72.6 76.3
G11 60.2 61.6 68.5 66.5 77.4 82.8
G12 58 55.7 66.6 68.0 76.3 80.9
G13 66.2 60.7 73.5 72.1 81.4 82.2
G14 62.7 58.6 67.7 67.1 81.7 84.2
G15 66.2 62.4 65.3 62.6 79.8 82.2
Average 63.1± 3.86 60.77 ± 3.80 67.82 ± 2.53 66.73 ± 2.86 78.9 ± 3.11 79.81 ± 3.11

Table 4. Comparison of CNN model sizes and no of parameters.

Model name Size (KB) No. of parameters

Proposed model 319 20 833
EEGNet 107 2753
DeepConvNet 2210 184 726
EffNet 4760 399 073

For theDLmodel, rawEEGdata is usedwhich isminimally
pre-processed by applying a 4th-order butterworth bandpass
filter with cutoff frequencies of 0.1–35 Hz. After that, the DL
CNN model uses segmented data in the form of timepoint x
channels with a 70:30 training/test split ratio.

This dataset is also tested on EEGNet [32], EffNet [33],
and DeepConvNet [34] CNN models that are lightweight,
and EffNet is specially designed for edge device perspect-
ive. Table 4 compares the size of the proposed models along
with the other 3 DL models in KB’s and a total number
of parameters. EffNet model which is specially designed for
edge device perspective shows a larger size as compared to
EEGNet that is normally used for the classification of EEG
signals and our proposed model also the total number of para-
meters of EEGNet is very small as compared to EffNet and
DeepConvNet models and the number of parameters of our
proposed model is very close to EEGNet model.

Table 5 represents the classification accuracies along with
the F1 score, precision, and recall of our proposed DL
model on all 15 subjects (subject-wise). Results show that
our model shows maximum accuracy of 97.83% on subject
15 and minimum accuracy of 84.37 on subject 6. Table 6
shows the classification accuracies of the same subjects using
EEGNet, EffNet, and DeepConvNet models. The average
accuracies achieved on the proposed model, EEGNet, EffNet,
and DeepConvNet models are 92.44, 90.76, 81.69, and 92.89

respectively. Results show that our model achieves the best
accuracy with a smaller number of parameters than all 4 DL
models.

For comparison previously proposed DL models for the
classification of motor signals from neural correlates are also
evaluated on the same dataset the models used are EEGNet
[32], DeepConvNet [34] and EffNet [33].

One-way ANOVA is applied to the accuracies of all DL
models and results show that there is a significant difference
between accuracies (p< 0.001). For finding the multiple com-
parisons between different groups Tukey honestly significant
difference (HSD) test is applied which shows that (95% CI
[−2.785:6.139], [−4.1985:4.0038], p = 0.752, .993)

there is no significant difference between the accuracies
of the proposed model and EEGNet and between the pro-
posed model and DeepConvNet model results. In the results
of EffNet and the proposed model (95% CI [6.288:15.21],
p < 0.01) there is a significant difference between the clas-
sification accuracies. The overall proposed model performs
better than the EEGNet and EffNet but there is a very small
significant difference between classification results with the
DeepConvNet model.

4.2. Hardware implementation

The DL models are then evaluated on the Nvidia Jetson Nano
and Nvidia Jetson Xavier NX embedded platforms. Both the
development boards are operated on maximum power mode,
and the power consumption and inference time are calcu-
lated for all the subjects on the proposed and remaining 3 DL
models.

4.2.1. Power consumption. Table 7 shows the power con-
sumption results of 15 subjects when the models are tested on
Jetson Nano and Jetson Xavier NX on maximum power mode.

8
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Table 5. Classification accuracies of all the 15 subjects on the proposed DL CNN model.

Subjects Accuracy Precision Recall F1-score

G01 94.73 95 95 95
G02 96.67 96 96 96
G03 93.75 93 92 92
G04 91.18 90 90 90
G05 88.12 79 78 78
G06 84.37 84 84 84
G07 93.55 93 92 92
G08 97.56 96 96 96
G09 90.42 91 90 90
G10 95.81 96 96 96
G11 89.06 91 91 91
G12 95.83 96 96 96
G13 85.11 85 85 85
G14 92.56 92 91 91
G15 97.83 98 98 98

Table 6. Comparison of classification accuracies of the proposed model, EEGNet, DeepConvNet and EffNet.

Subjects Proposed model EEGNet DeepConvNet EffNet

G01 94.73 92 95.31 89.06
G02 96.67 90 95 80.88
G03 93.75 90.62 90.62 89.06
G04 91.18 88.36 98.36 77.05
G05 88.12 93.75 90.62 75
G06 84.37 92.19 84.32 79.69
G07 93.55 90.32 98.89 85.48
G08 97.56 98.44 87.5 88.74
G09 90.42 80 86.83 84.132
G10 95.81 93.55 93.55 84.84
G11 89.06 92.19 92.19 84.38
G12 95.83 91.88 95.13 82.19
G13 85.11 88.44 93.68 79.37
G14 92.56 92.86 94.64 69.64
G15 97.83 86.77 96.77 75.8
Average 92.44 ± 4.30 90.76 ± 4.06 92.89± 4.23 81.69± 4.22

The results of one-way ANOVA show that there is a sig-
nificant difference (p < 0.001) in power consumption on
Jetson Nano. The multiple comparisons Tukey HSD test
shows that there is no significant difference between the
proposed model and EEGNet (95% CI [−4.91.61:340.14],
p = 0.963) power consumption results on the Jetson Nano,
while there is a significant difference of power consumption
shows between the proposed model and EEGNet (95% CI
[342.09:750.85], p < 0.001) on Jetson Xavier platform. For
DeepConvNet and EffNet with the proposed model (95% CI
[−952.74:−120.99], [−2220:−1389], p= 0.06,<0.001) there
is a significant difference between the results of EffNet and the
proposed model but the value of p for DeepConvNet is also
less for Jetson Nano. For Jetson Xavier, the power consump-
tion results of EffNet and DeepConvNet with the proposed
model (95% CI [−1195:−786], [−75.58:333.18], p < 0.001,
p = 0.350) shows that EffNet shows a significant difference
but the DeepConvNet shows no significant difference. The
average power consumption on Jetson Nano and Jetson Xavier

of the proposed model, EEGNet, DeepConvNet, and EffNet
are 5600.2 mW, 5770.4 mW, 5675.93 mW, 5223.93 mW,
6137.07 mW, 5641.6 mW, and 7405.2 mW, 6761.4 mW
respectively.

4.2.2. Inference time. Table 8 shows the inference time
of the proposed model along with DeepConvNet, EffNet,
and EEGNet. The DL models use less time of inference
on Jetson Xavier as compared to Nano because of the high
RAM and the multiple numbers of processors. The result of
one-way ANOVA shows that there is a significant difference
(p < 0.001) in inference time for Jetson Nano. The multiple
comparisons Tukey HSD test shows that (95% CI [−7.34:
3.07], [−11.07: −66], p = 0.7, .021) there is no signific-
ant difference between the inference time of our proposed
model with EEGNet and DeepConvNet on Jetson Nano plat-
form while there is a significant difference between (95% CI
[−16.14:−5.73], p < 0.001) the proposed model and EffNet

9
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Table 7. Power consumption of Nvidia Jetson Nano and Nvidia Jetson Xavier NX on max power mode of proposed CNN model along with
EEGNet, DeepConvNet, and EffNet.

Subjects

Proposed model EEGNet DeepConvNet EffNet

NVIDIA
JETSON
NANO
(mW)

NVIDIA
JETSON
XAVIER NX
(mW)

NVIDIA
JETSON NANO
(mW)

NVIDIA
JETSON
XAVIER NX
(mW)

NVIDIA
JETSON
NANO
(mW)

NVIDIA
JETSON
XAVIER NX
(mW)

NVIDIA
JETSON
NANO
(mW)

NVIDIA
JETSON
XAVIER NX
(mW)

G01 5980 5843 5906 5802 6724 6021 7251 6640
G02 5388 5657 5888 5381 6299 5739 7440 6675
G03 5680 5779 4729 5259 5218 5861 7228 6675
G04 5475 5890 4654 5614 5633 5779 7022 6715
G05 5955 5064 5662 5292 6219 5739 7280 6716
G06 5802 5239 6047 5639 5590 5503 7440 6795
G07 5599 4779 6047 5055 5846 5732 7371 6832
G08 5477 5073 6067 5762 6279 5290 7652 6675
G09 5721 4570 5437 5139 6178 5503 7262 6759
G10 5955 5739 5952 5055 6914 5342 7747 6836
G11 4816 5687 5824 5055 5833 5983 7560 6878
G12 5876 5698 5558 5055 6097 5422 7291 6756
G13 5874 5799 5864 5883 6026 5299 7587 6793
G14 6222 5698 5864 5136 6138 5580 7400 6838
G15 4183 5666 5640 4932 7062 5831 7547 6838
Average 5600.2 5478.0 5675.9 5337.3 6137.1 5641.6 7405.2 6761.4

Table 8. Inference time of Nvidia Jetson Nano and Nvidia Jetson Xavier NX on max power mode of proposed CNN model along with
EEGNet, DeepConvNet, and EffNet.

Subjects

Proposed model EEGNet DeepConvNet EffNet

NVIDIA
JETSON
NANO
(sec)

NVIDIA
JETSON
XAVIER NX
(sec)

NVIDIA
JETSON
NANO
(sec)

NVIDIA
JETSON
XAVIER NX
(sec)

NVIDIA
JETSON
NANO
(sec)

NVIDIA
JETSON
XAVIER NX
(sec)

NVIDIA
JETSON
NANO
(sec)

NVIDIA
JETSON
XAVIER NX
(sec)

G01 16 2 18 2 24 4 30 6
G02 19 2 20 2 21 4 21 5
G03 19 2 19 2 21 4 36 6
G04 16 2 18 2 40 4 32 5
G05 13 2 15 4 20 4 31 5
G06 14 2 13 2 22 4 19 5
G07 16 2 19 2 40 4 23 5
G08 15 2 18 2 18 4 20 5
G09 16 2 12 2 16 4 20 5
G10 16 2 15 3 16 4 28 5
G11 16 2 16 2 18 4 26 5
G12 18 2 23 2 16 4 26 6
G13 16 2 31 2 18 4 36 5
G14 14 1 20 2 16 3 28 5
G15 18 2 17 2 24 4 30 5
Average 16.1 1.9 18.3 2.2 22 3.9 27.1 5.2

inference time. The results of One way ANOVA on Jetson
Xavier also show the same trend for EffNet and EEGNet mod-
els (95%CI [−3.53:−3.00], [−.33: .20], p< 0.001, p= 9.11),
but for DeepConvNet and proposedmodel there is a significant
difference between the inference time on Jetson Xavier plat-
form (95%CI [−2.21:-1.73], p< 0.001). From the results, it is
clear that the proposed CNN model achieves lesser inference
time on Nvidia Jetson xavier nx (subject-wise), the average
inference time on jetson Nano and Xavier NX of the proposed

model, EEGNet, EffNet, and DeepConvNet are 16.13 sec,
1.9 sec, 27.07 sec, 2 sec, 18.27 sec, 3.9 sec and 22 sec, 5.2 sec
respectively.

5. Discussion

The main aim of this research is the development of an
efficient and lightweight DL model that can be used for the
classification of hand motion using neural correlates. For this
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Figure 5. Boxplot of classification accuracies of proposed DL
model with machine learning models (LDA, SVM, KNN).

Figure 6. Average classification results across 15 subjects on the
proposed CNN model along with EEGNet, DeepConvNet, and
EffNet.

purpose, a lightweight model of DL is designed and tested
on the raw EEG signals of reach and grasp actions. For the
comparison purpose, 3 states of the art ML models are also
used that are previously used in the literature for the clas-
sification of brain signals of different hand movements i.e.,
LDA, SVM, and K-NN models with 70:30 split ratios. 2-way
ANOVA is applied to the classification accuracies of these 3
ML classifiers with the proposed DL model. The results show
that there is a significant difference (95% CI [28.22:35.11],
[22.25:29.15], [9.17: 16.07], p < 0.002, <0.001, <0.001)
present between accuracies of proposed model and LDA,
SVM, K-NN. According to the results, our models performed
better than the conventionally used ML models for EEG sig-
nals classification. So the method of DL is more efficient as
compared to the conventional ML approaches and also it uses
less preprocessing of data so overall it requires less computa-
tional power. After testing the results of the proposed model
with ML models, the model is then tested with three DL
proposes that were previously proposed in the literature i.e.,
EEGNet, DeepConvNet, and EffNet. The results of the clas-
sification accuracies show that the proposed model performs
better than the EEGNet and EffNet models (figure 5). But there
is a very slight difference between the average accuracies of
DeepConvNet and the proposed model as figure 6 shows the

Figure 7. Average power consumption across 15 subjects of the
proposed CNN model along with EEGNet, DeepConvNet, and
EffNet with 95% CI on NVIDIA Jetson Xavier NX.

estimated marginal means of accuracies of all 4 models with
a 95% confidence interval the results clearly show that there
is a slight difference between the average actuaries of pro-
posed model and Deep ConvNet model. For testing the best
performance between the 4 DL in terms of accuracy, inference
time, and power consumption 2-way multivariant ANOVA
(MANOVA) between subjects is applied which shows that
p < 0.001 for accuracy, inference time, and power. The res-
ults shows that the proposed model and DeepConvNet per-
forms better in term of classification as compared to EEGNet
and EffNet models (95% CI [−4.9185:4.00], [−2.78:6.14],
[−15.21: −6.29], p = .993, .752, <0.001).

The performance of the DL models is then evaluated
on the hardware in terms of power consumed by the mod-
els and inference time. On the Nvidia Jetson Nano plat-
form, the proposed model and EEGNet model show no sig-
nificant difference as compared to EffNet and DeepConvNet
models (95% CI [−49 161:340.14], [−2220.88: −1389.12],
[−952.74: −120.99], p = .963, <0.05, <0.001) while on
Nvidia JetsonXavier proposedmodel shows no significant dif-
ference with EEGNet and DeepConvNet while it shows sig-
nificance difference with EffNet models (95% CI [−141.72:
424.66], [−446.05: 120.32], −1565.86:−999.48], p = .553,
.431, <0.001).

Overall, the best model that shows the least performance on
both hardware in terms of power consumption is the EffNet
model as compared to the proposed model (p < 0.001). In
terms of Inference time on Nvidia Jetson Nano the proposed
model performs better than the DeepConvNet and EffNet
models as there is a significant difference between them (95%
CI [−11.07:−.66], [−16.14:-5.72], p< 0.05, p< 0.05).While
there is no significant difference between proposed model and
EEGNet (95% CI [−7.34: 3.07], p = 0.7). On the Nvidia
Jetson.

Xavier NX the same trend is repeated between the pro-
posed model and DeepConvNet, EffNet models (p < 0.001)
but the significant difference between EEGNet and the pro-
posed Model is less (p = 0.25).

So, in terms of accuracy, the proposed model and
DeepConvNet models perform better as shown in figure 6,
in terms of power consumption and inference time on Nvidia
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Figure 8. Average power consumption across 15 subjects of the
proposed CNN model along with EEGNet, DeepConvNet, and
EffNet with 95% CI on NVIDIA Jetson Nano.

Figure 9. Average Inference across 15 subjects of the Proposed
CNN model along with EEGNet, DeepConvNet, and EffNet with
95% CI on NVIDIA Jetson Xavier NX.

Figure 10. Average inference time across 15 subjects of the
proposed CNN model along with EEGNet, DeepConvNet, and
EffNet with 95% CI on NVIDIA Jetson Nano.

Jetson Nano proposed model and EEGNet performs better as
shown in figures 8 and 10. So overall on jetson Nano the pro-
posed model performs better as compared to the other 3 DL
models.

On jetson Xavier EEGNet uses less power as compared to
the proposed model as shown in figure 7 but in terms of the

inference time proposedmodel performs better as compared to
the other 3 DL models shown in figure 9. Overall, in terms of
accuracy, power, and time model proposed in this work shows
the best result on 3 parameters on Jetson Nano and on 2 para-
meters (accuracy, inference time) on Jetson Xavier.

6. Conclusion

In this research, the dataset of BNCI horizon 2020 is utilized to
classify hand motions using ML and DL models. The primary
focus of this research is the development of an efficient and
lightweight DL model and evaluating its performance on the
embedded platforms. Additionally, we compared our proposed
models with ML models (LDA, SVM, KNN) and three previ-
ously used DL models (EEGNet, DeepConvNet, EffNet).

To make the model lightweight, we leverage the separable
convolution layers which decomposes convolution operation
in depth-wise and point wise convolutions. Separable convo-
lution layer significantly reduces the number of computations
and enhances the representational capacity of the network. The
results show that our proposed models provide better results
as compared to ML models and from DL models our models
perform better than EEGNet and EffNet models. The classific-
ation results of the Proposed model and DeepConvNet models
are approximately the same but because of the higher model
size, the DeepConvNet model uses more computational power
and inference time on both embedded platforms (Nvidia Jetson
Nano & Nvidia Jetson Xavier).
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