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31Laboratoire Univers et Théories LUTh, Observatoire de Paris,
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We search for a stochastic gravitational wave background (SGWB) generated by a network of
cosmic strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar
Timing Array (EPTA). We perform a Bayesian analysis considering two models for the network
of cosmic string loops, and compare it to a simple power-law model which is expected from the
population of supermassive black hole binaries. Our main strong assumption is that the previously
reported common red noise process is a SGWB. We find that the one-parameter cosmic string model
is slightly favored over a power-law model thanks to its simplicity. If we assume a two-component
stochastic signal in the data (supermassive black hole binary population and the signal from cosmic
strings), we get a 95% upper limit on the string tension of log10(Gµ) < −9.9 (−10.5) for the two
cosmic string models we consider. In extended two-parameter string models, we were unable to
constrain the number of kinks. We test two approximate and fast Bayesian data analysis methods
against the most rigorous analysis and find consistent results. These two fast and efficient methods
are applicable to all SGWBs, independent of their source, and will be crucial for analysis of extended
data sets.

I. INTRODUCTION

All regional Pulsar Timing Array (PTA) collaborations
have recently, and independently, reported the presence
of a common red noise process in the observed data [1–3].
Furthermore, the combined dataset shows even stronger
evidence for its presence [4]. The exact nature of this
signal is as yet very uncertain. While its spectral prop-
erties are consistent with an expected stochastic gravi-
tational wave background (SGWB), the data is not sen-
sitive enough to make any informative statement for or
against its gravitational wave (GW) nature 1.

In this paper, we make a strong assumption that it
is, in fact, a SGWB and work towards its possible inter-
pretation. The most favorable model for an anticipated
SGWB is a superposition of monochromatic GW signals
from a population of supermassive black hole binaries
(SMBHBs) in the local Universe [1, 10]. This signal, as-
suming SMBHBs in circular orbits, is a power-law with
theoretical spectral index γ = 13/3 in the power spec-
tral density of the residuals [11]. However, realistic as-
trophysical simulations suggest that the spectral index
could vary based on the realization of the observed Uni-
verse [12]. For this reason, the spectral index is usually
inferred from the data, giving a two-parameter model:
A, γ. The amplitude A is referenced at the frequency
1/year.

We propose an alternative to SMBHBs, namely a
SGWB from an early universe source, and in particular a

∗ quelquejay@apc.in2p3.fr
† pierre.auclair@uclouvain.be
‡ stas@apc.in2p3.fr
§ steer@apc.in2p3.fr
1 After submission of this paper on the ArXiV and during the peer
review process, the results from the regional PTA collaborations
became public [5–9]. These papers have demonstrated evidence
of GW-induced correlations in their respective datasets with a
considerable statistical significance.

network of cosmic string loops. (See [13–17] for previous
work on cosmic strings in the nHz band.) Cosmic strings
are topological defects that could have emerged from
symmetry-breaking phase transitions in the early Uni-
verse [18–21]. These quasi one-dimensional objects are
characterized by their dimensionless tension Gµ, where
G is Newton’s constant. Numerical simulations show
that on large scales, cosmic string networks reach an
attractor ‘scaling’ regime in which all the characteristic
length scales in the network grow as t [22–25]. Cosmic
string loops are formed at all times by the scaling infinite
string network, oscillate with period ℓ/2, and decay into
GWs2. The superposition of the GW emitted generates a
SGWB that depends on the cosmic string loop distribu-
tion. While the loop distribution is well-understood on
large scales close to the Hubble radius, there is an active
debate regarding the distribution of smaller loops. To
account for this theoretical uncertainty, in the following
we consider two loop distribution models that have been
used by the LIGO-Virgo-Kagra [30, 31] and LISA [32, 33]
collaborations.
In this paper we use the six pulsars (see Table I)

from the early Data Release 2 (DR2) of European PTA
(EPTA) collaboration [1] 3 Six pulsars, at the current
sensitivity and observational time span, are not sufficient
to detect the stochastic GW signal, however the presence
of the common red process is evident. More pulsars are
required to populate the expected Hellings-Downs (HD)
[34] correlation curve and to get a high statistical signif-
icance for a SGWB. Nevertheless, in our study, we still
utilize Hellings-Downs correlations to analyze the com-

2 Field theory simulations show that cosmic string loops also de-
cay into particles [26, 27]. Although the balance between GW
and particle emission is still under debate, preliminary quantita-
tive studies tend to show that the SGWB from cosmic string is
unaffected at the frequency of PTAs [28, 29]

3 This dataset is a subset of the full DR2 dataset recently used in
[5] which includes a total of 25 pulsars.

mailto:quelquejay@apc.in2p3.fr
mailto:pierre.auclair@uclouvain.be
mailto:stas@apc.in2p3.fr
mailto:steer@apc.in2p3.fr
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mon red noise among pulsars. This approach allows us
to account for the correlations among pulsars when char-
acterizing the common red noise (CRN), resulting in a
distinct interaction with the individual red noises. Given
that we consider only 6 pulsars, the diagonal noise com-
ponent (autocorrelation part of the noise matrix) will
dominate and we expect only a small difference from the
inclusion of Hellings-Downs correlation. Here we describe
in detail the methodology of inferring parameters of the
string network. This same methodology will later be ap-
plied on the extended dataset [5].

Assuming that the observed common red noise is a
SGWB, we use Bayesian methods to infer the character-
istics of the string network using a one-parameter model
(Gµ) and a two-parameter model (Gµ,Nk) where Nk is
the average number of kinks on a loop per oscillation pe-
riod, see section II. In addition to the SGWB signal,
we also model the three components of the noise: white
noise, pulsar red noise and chromatic noises (dispersion
measurement variations and scattering variations) (see
[35] for details).

We carry the Bayesian analysis through three differ-
ent approaches with varying accuracy of description and
computational cost. The first approach, dubbed in this
paper as “Full method” [36, 37], is the standard approach
in which the parameters of the SGWB and of the noise
are explored simultaneously. This method is the most ac-
curate but also the most computationally expensive due
to the high-dimensionality of the analysis and because we
consider Hellings-Downs correlations for the SGWB. The
second approach, dubbed as “Resampling method” [38],
neglects at first the spatial correlation between pulsars
considering a common uncorrelated signal. The result-
ing posterior distributions are then resampled by taking
into account GW-induced correlation. In this approach,
the likelihood is factorized into a product of likelihoods
for each pulsar [39], and the computational cost is signif-
icantly reduced with respect to the Full method as the
number of pulsars increases. Finally, the third method,
dubbed as “Free spectrum” [40, 41], amounts to obtain-
ing the correlated power of the common noise for each
frequency bin independently, marginalizing over the sin-
gle pulsar noise parameters, before inferring the SGWB
parameters. This method drastically reduces the dimen-
sionality of the analysis and allows for a very fast param-
eter estimation of the SGWB models.

The paper is organized as follows. We start with a de-
scription of the SGWB produced by cosmic string loops
in section II. In section III we explain the three data
analysis approaches used. In section IV, we present the
constraints on single parameter models (Gµ) and two pa-
rameter models (Gµ,Nk). We perform a Bayesian model
comparison between the different cosmic string models
and a simple power-law SGWB. Finally, we conclude in
section V.

II. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND FROM COSMIC STRINGS

The SGWB generated by a cosmic string network has
been studied in depth, see e.g. [32, 42]. It includes a con-
tribution from the uncorrelated superposition GW bursts
emitted from cusps, kinks and kink-kink collisions on os-
cillating loops [43]. Cusps, which are points at which
the loop reaches ultra relativistic velocities, emit a short
beam of GWs.
Kinks, which are discontinuities in the tangent vector

of the loop, propagate along the string at the speed of
light and emit a one-dimensional “fan-like” GW burst
with the same beaming angle as for cusps [43]. Finally,
when left- and right-moving kinks collide (kink-kink col-
lisions), an isotropic burst of GW emission is emitted
[44].
A loop of length ℓ oscillates periodically with corre-

sponding fundamental frequency f0 = 2/ℓ. For the n-th
oscillatory mode of the loop, the power (in units of Gµ2)
emitted in GWs by each of these burst events (labelled
by b) is given by 4 [43]

P (b)
n =

Γ(b)

ζ(qb)
n−qb . (1)

Here ζ(qb) is the Riemann zeta function, qb = 4/3, 5/3
and 2 for cusps, kinks and kink-kink collisions respec-
tively and [43, 44]

Γc =
3(πgc1)

2

21/3g
2/3
2

, Γk =
3(πgk1 )

2

22/3g
1/3
2

, Γkk = 2(πgkk1 )2 , (2)

where g2 =
√
3/4, gc1 ≈ 0.85, gk1 ≈ 0.29, gkk1 ≈ 0.1.

Given the exponents qb in Eq. (1), one might ex-
pect that, compared to the cusp contribution, the kink
and kink-kink collision contributions could be neglected.
However, as already noted in [44], if many kinks are
present they can dominate the power emitted in GWs.
Indeed, since two kinks (right and left moving) are formed
when two pieces of strings intercommute, the number of
kink-kink collisions on a loop with Nk kinks per oscilla-
tion period should scale as N2

k/4, which can then domi-
nate for high Nk. Furthermore, kinks can proliferate on
loops with junctions [45, 46]. To summarize, for a loop
containing Nc cusps and Nk kinks per oscillation period,
the total power emitted, in units of Gµ2, is

Γ = NcΓ
c +NkΓ

k +
N2

k

4
Γkk. (3)

The fractional energy density of the SGWB per loga-
rithmic interval of frequency is

Ωgw(t0, f) ≡
8πG

3H2
0

f
dρgw
df

, (4)

4 Formally this expression is only valid for large n, but as elsewhere
we assume that extrapolating to n ≥ 1 is a good approximation
to describe low-harmonic modes.
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where H0 is the Hubble constant, and dρgw/df is the
energy density in gravitational waves per unit frequency
f , observed today (at t = t0). Following [31, 47], for a
network of cosmic string loops with distribution n(ℓ, t),
this is given by

dρgw
df

=
2Gµ2

f

∑
b

NbΓ
(b)

ζ(qb)

×
+∞∑
n=1

∫
n1−qb dz

(1 + z)5H(z)
n

[
2n

(1 + z)f
, t(z)

]
, (5)

where we have summed over the cusp, kink and kink-kink
contributions, and H(z) is the Hubble parameter. In the
following we consider standard ΛCDM cosmology with
the Planck-2018 fiducial parameters [48].

We consider the most updated loop distribution mod-
els n(ℓ, t) available, calibrated with numerical simula-
tions, that have also been used in LVK collaboration pa-
pers [30, 31] and LISA [33, 49]. They are denoted in the
following as BOS [42, 50] and LRS [51]. Each has an
intersection probability p = 1, and the largest loops pro-
duced are of size 0.1t. The main difference between these
models is that, relative to the BOS model, the LRS model
has an additional population of very small loops which
aim to account for physics at the gravitational backreac-
tion scale. These small loops emit high frequency GWs,
and lead to modifications of the SGWB at high frequen-
cies f ≫ H0(ΓGµ)−1 [52]. This can be seen in Fig-
ure 1 which plots the numerical evaluation of Eq. (5) for
Nc = 2, Nk = 0 for the BOS model (continuous lines)
and LRS model (dashed lines) for different values of Gµ.

Notice that as a consequence, the two models consid-
ered give a significantly different spectrum in PTA fre-
quency range only for ΓGµ ≳ 2 × 10−11 (as seen for
Gµ = 10−14 and Γ = 57 in Figure 1).

In this work, we consider two cases (i) smooth cosmic
string loops with two cusps only (as in Figure 1), (ii)
fixed number of cusps, Nc = 1, but a varying number of
kinks Nk with N2

k/4 kink-kink collisions. Our aim is to
quantify how well the SGWB from cosmic string loops
can explain the common red process that is already seen
with strong evidence in three PTAs, namely the EPTA,
NANOGRAV and PPTA consortiums [1–3].

III. DATA ANALYSIS METHOD

In this section, we use a Bayesian analysis to perform
parameter estimation and model selection. We will not
repeat the basis of Bayesian inference in the context of
PTA, and instead refer the reader to [1, 35] for a more de-
tailed description. In the following subsection, we briefly
describe the noise and SGWB models which we test.

We have applied three Bayesian approaches to the six
pulsars of the early second EPTA data release (DR2) [1]:

1. We directly infer the parameters of each model us-
ing the spectral shape of the SGWB as a prior,

10 10 10 8 10 6 10 4 10 2 100 102

Frequency [Hz]

10 19

10 17

10 15

10 13

10 11

10 9

10 7

10 5

h2
gw

G = 10 14

G = 10 11

G = 10 7

FIG. 1. SGWB from a network of cosmic string loops, ex-
pressed in terms of characteristic energy density. The spec-
trum is computed using the BOS (resp. LRS) loop number
density model for the solid (resp. dashed) lines. Here we
have taken Nc = 2, Nk = 0 leading to Γ = 57. For each
model, computations using three different tension values Gµ
are represented. The sensitivity frequency range of EPTA
corresponds to the yellow band.

considering HD correlation between pulsars. This
is the most computationally expensive path, which
is referred to as “full”.

2. Similar to 1, but initially we neglect all correla-
tions between pulsars, assuming an uncorrelated
common process. Then, we resample the posterior
points using “correct” likelihood with HD correla-
tion following the procedure outlined in [38]. This
path is significantly faster, we refer to it as “resam-
pling” (RS).

3. Finally, we also use the method suggested in [41]
and further developed in [40]. There, we first es-
timate the correlated power at each Fourier bin
with a relatively large log-uniform prior: we refer
to this as the “free spectrum”. Then, we perform
Bayesian analysis using the free spectrum as obser-
vational data. This is the computationally cheapest
path, which we refer to as the “free spectrum” (FS)
method.

A. PTA data analysis principles

In PTA, we work with time residuals, obtained as the
difference between observed and predicted time of ar-
rivals of the pulsars’ radio pulses

δti = tobsi − tTM
i (β⃗b), (6)

where i is the index of each observation and tTM is the
timing model attempting to explain the deviations from



5

the observed time-of-arrival using a set of parameters β⃗b.
Following the usual path [36, 37] we marginalize analyt-
ically over timing model parameters.

We assume that the noise in each pulsar consists of
the radiometer white noise, intrinsic pulsar spin noise,
dispersion measurement and finally scattering variations.
These last two components are referred to as chromatic
noises, since they are due to the propagation of the radio
pulses through the interstellar medium and depend on
the observational radio frequency. We follow the stan-
dard procedure [35], initially we infer the noise model in
each pulsar individually, and then we use these results as
a starting point in the search for the SGWB common to
all pulsars.

Besides these individual noise components, we also in-
troduce SGWB into the data model. It is characterized
by the spectral shape (subject to its source) and exhibits
a particular correlation across pulsar pairs which depends
on the angular separation of pulsars in the sky and is de-
scribed by the Hellings-Downs (HD) curve [34].

We assume that the data does not contain any deter-
ministic signals, with the exception of the two determin-
istic chromatic signals, referred to as exponential dips, of
PSR J1713+0747 (see Table I).

We can summarize the data model in the form of the
total covariance matrix

C(ai)(bj) = Na,(ij)δab + (CRN
a,(ij) +CChRN

a,(ij) )δab + ΓabC
CRN
(ij) ,

(7)
where δ(..) is the Kronecker delta function, a, b are in-
dexing the pulsars, i, j the timing residuals, Na is the
white noise covariance matrix of pulsar a, CRN

a its intrin-
sic red-noise covariance matrix and CChRN

a its chromatic
red-noise covariance matrix. CCRN is the common red
noise covariance matrix, and Γab is the overlap reduction
function giving the correlations between pulsars a and b.
The function Γab reduces to δab for an uncorrelated com-
mon red noise and is described by the HD correlations
for a SGWB,

Γab =
3

2
x lnx− 1

4
x+

1

2
(1 + δab), (8)

where x = 1−cos ξab

2 , ξab being the angular separation
between pulsars a and b.

In PTA data analysis, red stochastic processes are
often described via Gaussian Processes with truncated
Fourier basis (see [37] for details)

δtred(ti) =

Nf∑
n=1

[
an cos

(
2πnti
T

)
+ bn sin

(
2πnti
T

)]
,

(9)
where T is the observational time span and an, bn are
random variables (weights) defined by the spectral shape
of the underlying process. In this work, we use Nf = 30
for the common red process while for the individual pul-
sar noises, we employ a custom number of Fourier bins
determined through single pulsar analysis, following the

method detailed in [35] (see Table I for an overview of
the different Nf values used for each pulsar noise). For
the chromatic noises, we use a similar approach but in-
troduce a scaling with the observational radio frequency
ν, δtred ∝ ν−χ, where χ is a chromatic index equals to
2 for dispersion measure variations and 4 for scattering
variations.
For all intrinsic red noise components attached to each

pulsar, we assume a power-law shape for the one-sided
power spectral density (PSD) of the residuals

S(f ;A, γ) =
A2

12π2

(
f

yr−1

)−γ

yr3 , (10)

characterized by the spectral index γ and the amplitude
A defined at the reference frequency of 1/year.
Here we assume that the CRN is a SGWB with the

one-sided power spectral density given in terms of the
fractional energy density by

S(f ; η⃗) =
H2

0

8π4

1

f5
ΩSGWB(f ; η⃗), (11)

where η⃗ are the hyper-parameters of the SGWB model
considered. The SGWB from a population of SMBHB is
well approximated by a power-law model, and takes the
same form as in (10), see [10]. Moreover, for the SMBHBs
in circular orbits with GW-driven evolution, we expect
γ ≈ 13/3. The spectral shape for the network of cosmic
strings is obtained by integration of Eq. (5) which adds
computational time.
In the following analysis, we fix the parameters (and,

therefore the level) of the white noise based on each pul-
sar investigation [35]. We vary the parameters of all
red noise components together with the parameters of
SGWB. In total, there are 30 + NCRN parameters, where
NCRN is the number of hyper-parameters of the CRN
(varies from model to model).

B. “Full” Method

This is the standard path one would follow to infer the
parameters of each model (pulsars and SGWB). The like-
lihood for the concatenated array of observations (resid-

uals) δ⃗t is given by the usual Gaussian form

p(δ⃗t|η⃗) = 1√
|2πC|

exp

(
−1

2
δ⃗t

T
C−1δ⃗t

)
, (12)

where C is the full covariance matrix of Eq. (7). It is
parametrized by Aa, γa for each red noise component for
each pulsar a and by parameters describing the SGWB
spectrum. We use the python package ENTERPRISE [53]
for its computation (with an extension to include cos-
mic string models). We sample parameters using PTMCMC
sampler [54]. Note that we do not employ the “parallel
tempering” features due to technical reasons.
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Pulsar Time Span (years) Number of ToAs Red Noise DM Variations Scattering Variations Deterministic Signals

J0613−0200 22.89 2909 10 144 − −
J1012+5307 23.68 5325 149 45 − −
J1600−3053 14.32 2982 − 26 137 −
J1713+0747 24.46 5003 11 148 − Two exponential dipsa

J1744−1134 24.01 1946 9 151 − −
J1909−3744 15.74 2503 20 151 − −

a Interested readers are directed to section 5.2.2 of [35] for further details regarding these events.

TABLE I. Noise model used for each of six pulsars. For each pulsar, we also consider white noise whose parameters are set
to the maximum likelihood values obtained through single pulsar analysis. We indicate the number of Fourier bins (Nf in
Equation 9) employed for each noise type and pulsar. In cases where a particular noise type is not included in the pulsar’s
noise model, we denote it with a − sign.

For the SGWB we have used either the power-law
model, the BOS or the LRS models with fixed and vari-
able number of kinks. This is computationally the most
expensive (but most rigorous) approach. There are two
bottlenecks in the analysis: (i) integration of Eq. (5),
and (ii) accounting for the correlation between pulsars
(inverting the Γab part in the covariance matrix). How-
ever, thanks to the low dimensionality of the parameter
space of the cosmic string spectrum (f , Gµ, Nk), we were
able to address point (i) by using numerical interpolation
method over a precomputed grid to speed-up the compu-
tation of its power spectrum.

We can also perform Bayesian model selection. We use
the Bayes Factor (BF) as a way to measure which model
is preferred by the data. The Bayes Factor is equivalent
to the posterior odds ratio O if we assume (and we do)
equal model priors

BM1

M2
=

p(d|M1)

p(d|M2)
=

p(M1|d)
p(M2|d)

p(M2)

p(M1)
= OM1

M2

p(M2)

p(M1)
. (13)

It is computationally prohibitive to compute the evi-
dence for each model directly using the Nested sampling
method. Instead, we used the product-space sampling
approach described in [55] and already used in several
PTA analysis (e.g. in [1, 56]). The artificially introduced
hyperparameter (model index) allows the sampler also
to jump between several models and the BF is given by
a ratio of the number of samples accumulated in each
model.

C. Resampling method

This approach is based on importance sampling and
described in detail in [38]. The main idea is to perform
sampling like in the ”full” method neglecting the correla-
tion between pulsars, taking Γab = δab in (7). This way
the likelihood is factorized into a product of likelihoods
for each pulsar [39]. The likelihood computational time
is reduced by a factor 6 for six pulsars, but this gain

increases as the number of pulsars analyzed increases.
Once it is done, we resample (reweigh) the posteriors
by recomputing the likelihood for each sample using Γab

defined by the HD curve. As a result, it is possible to
parallelize the calculation and therefore gain even more
speed. This method works well if the difference in the
posteriors obtained with and without HD correlation is
not very large (not disjoint distributions).
We can use the same approach to get a cheap estima-

tion of the Bayes factors. To the best of our knowledge,
it was not used before, so we provide here some detailed
computation.
We refer the reader to section 2 of [38] for details on the

resampling of the posterior from an approximate model
“A” to a target posterior “T”. We apply this method to
the product space approach for computing the Bayes Fac-
tor. We consider two hyper-models M, MHD with the
same model parameters θ and hyperparameter n indexing
the models describing the common red noise we want to
compare. The difference between the two hyper-models is
in the likelihood computation: we consider uncorrelated
common process in the hyper-model M. Computations
of Bayes factor with M are significantly faster and more
reliable, we want to evaluate the Bayes factor of models
in MHD by resampling the hyper-chain (product space)
M. We repeat the steps outlined in section 3 of [55] but
introducing the approximate likelihood in the posterior
probability of n for MHD

P (n|D,MHD) =
π(n)

ZMHD

∫
LHD(θn)π(θn|n)dθn

=
π(n)

ZMHD

∫ LHD(θn)

L(θn)
L(θn)π(θn|n)dθn

≈ π(n)

ZMHD

1

N
(n)
s

N(n)
s∑

i=1

w
(n)
i Zn. (14)

Here we introduced π(n) the prior on the model index
(chosen to be uniform), LHD / L are likelihood functions
with/without HD spatial correlations and ZMHD is the
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evidence of the hyper-model with HD (in our case just
normalization factor which cancels out). In the last line,
we have approximated the integral using Monte Carlo

approach, with N
(n)
s being the number of samples corre-

sponding to the model associated to n in the hyper-model

M posterior. The weights w
(n)
i = LHD(θ

(i)
n )/L(θ(i)n ) are

computed at each posterior points (indexed by i) of M,
the θn being the θ parameters attached to the model n.

The Bayes Factor (assuming uniform prior across the
models π(n)) between the models within each hyper-
model posterior is given as

BMa

Mb
≡ Ba/b =

P (⌊n⌋ = na|D,M)

P (⌊n⌋ = nb|D,M)
, (15)

where ⌊.⌋ is the floor function.
Applying this expression to the resampled hyper-model

posterior, we obtain

BMHD

a/b =
ZHD
a

ZHD
b

=
w̄(a)

w̄(b)
×BM

a/b, (16)

where w̄(n) = 1

N
(n)
s

∑N(n)
s

i=1 w
(n)
i is a posterior average

weight of the model indexed by n. As previously men-
tioned, the Bayes factor for the hyper-model M (without

HD correlations) is simply given by BM
a/b ≈ N

(na)
s /N

(nb)
s .

The performance of this method depends on the sampling
efficiency, as described in [38]. Note that the novelty of
this method is in the efficient evaluation of Bayes factor
between two or more GWB models via resampling.

D. “Free spectrum” method

As mentioned, this method was suggested in [41] and
further developed in [40]. The main idea is to get rid
of the high dimensionality of the problem by marginaliz-
ing over the single pulsar noise parameters. We want to
estimate the PSD assuming the HD correlation at each
frequency bin fk = k/T , where T is the total time span of
the array. Using MCMC we get a posterior distribution
for the amplitude ρk at each frequency bin, where

ρ2k =
S(fk)

T
, (17)

where S(f) is the one-sided PSD of the SGWB we want
to characterize, see Eq. (11). We assume that all bins
are independent and impose log-uniform prior for each
amplitude, log10 ρk ∈ [−12,−4], a justification for this
range is given in section IVB.

We use a kernel density estimator to obtain a smooth

probability distribution function p(ρk|δ⃗t). In this study,
we use Gaussian kernels, and their bandwidth is selected
using Scott’s rule of thumb [57]. We use the estimated
PSD of a common process with HD correlation as our
new data. We can then build a factorized likelihood that

depends only on the parameters of the SGWB η⃗, follow-
ing [40], we get

p(δ⃗t|η⃗) ≈
Nf∏
k=1

∫
dρk p(δ⃗t|ρk)p(ρk|η⃗)

∝
Nf∏
k=1

∫
dρk

p(ρk|δ⃗t)
p(ρk)

p(ρk|η⃗). (18)

We have used the following notation : p(ρk|δ⃗t) are the
posterior distributions of the ρk describing our observa-
tions in Fourier domain, p(ρk) is the prior on the ρk and
p(ρk|η⃗) is the probability to have ρk given the CRN pa-
rameters η⃗. For the latter, we consider that the PSD is
perfectly deterministic such that

p(ρk|η⃗) = δ
(
ρk − ρSGWB

k (η⃗)
)
, (19)

where ρSGWB
k (η⃗) is derived from the PSD of a correspond-

ing SGWB model computed at fk = k/T for a set of
background parameters η⃗.
Note that the Fourier frequency bins are not entirely

independent as the PTA data are not evenly sampled and
pulsars do not have the same observational duration. We
have computed the associated Pearson correlation coef-
ficient matrix Pi,j = Ci,j/

√
Ci,iCj,j where Ci,j is the

covariance matrix of the ρ’s. We have found that the fre-
quency bins are approximately independent: the average
of the non-diagonal coefficients being ⟨|Pi,j |⟩i<j ≈ 0.02.
Taking all into account, the likelihood of Eq. (18) takes

the form

p(δ⃗t|η⃗) ∝
Nc∏
k=1

p
(
ρSGWB
k (η⃗)|δ⃗t

)
. (20)

This method is extremely fast and drastically reduces
the dimensionality of the problem, making it possible to
use the Nested sampling [58, 59] algorithm to obtain the
evidence for each model and posterior distributions of the
SGWB parameters η⃗. We used a particular implementa-
tion of nested sampling, dynesty, described in [60, 61].

IV. RESULTS

Before discussing our results, we should mention that
the six pulsars dataset considered here is non-informative
about the presence of the HD correlations, as was shown
in [1, 35]. Consequently, we expect that the results of
the analysis will be similar (though not identical) using
CURN or GWB assumptions for the CRN. The main
purpose of this paper is to introduce the methodology
which will be applied to the extended (25-pulsar) EPTA
dataset.
We start by considering the cosmic string models with

the fixed average number of cosmic string bursts per os-
cillation to Nc = 2 and Nk = Nkk = 0, leading to Γ = 57,
which is expected by a population of smooth loops [62].
Later we extend our analysis by allowing the number of
kinks to vary (and so the value of Γ).
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A. Parameter estimation

1. Smooth loops

When we infer a SGWB from a network of smooth
loops with Nk = 0 and Nc = 2 (alongside the individual
pulsar noise models), we find a very constrained distribu-
tion for the tension Gµ for both loop density distribution
models, see Figure 2. As one can see the posterior dis-
tributions given by the Full, the RS and the FS methods
agree very well, though we find that the FS method gives
slightly broader posteriors. The string tension 90% cred-
ible (symmetric) intervals for each Bayesian method can
be found in the two first lines of Table II. These intervals
show nice consistency across all three Bayesian methods:
log10 Gµ ∼ −10.1 (resp. −10.6) for the BOS (resp. LRS)
model.

These results can be understood as follows. For the
BOS model, the SGWB exhibits a peak around f ∼
F0 ≡ 3H0(ΓGµ)−1 before decreasing to reach a plateau
at higher frequencies (see Figure 1) [52] . According to
the posterior for Gµ, the peak is in the middle of the PTA
band, thus the spectral index of ΩSGWB transits from 1 to
0 (flat spectrum) throughout the PTA frequency range.
This is comparable to the value of 2/3 (corresponding to
γ = 13/3) expected for a SMBHB background. As can be
seen in Figure 5, the BOS model slope is very compatible
with the spectral estimated from the data.

Regarding the LRS model, the extra population of
small loops (see [52]) is responsible for the fact that in-
stead of decreasing to a plateau for f > F0, the char-
acteristic energy density rather increases again up to a
second peak at very high frequencies compared to the
PTA band, see Figure 1. The fractional energy density
follows there a power-law of spectral index ≈ 0.4, which
also fits well the spectral shape of the data (see Figure 5).

As an alternative, we also consider a two-component
SGWBmodel: a SGWB generated by a population of cir-
cular binary black holes with γ = 13/3 plus a stochastic
signal from the cosmic strings.

We find a very strong correlation between those two
components as one can see in Figure 3. The 2D-posteriors
exhibit a pronounced L-shape, meaning that both model
can explain the data. Based on the obtained posterior
distribution, we can extract an upper limit which we
evaluate to be log10 Gµ < −9.9 (resp. −10.5) for the
BOS (resp. LRS) model using the Full method, and it
corresponds to 95% confidence. In addition, the evalua-
tion obtained with the two fast methods (RS, [FS]) give
very consistent upper bounds: log10 Gµ < −9.8[−9.5]
(resp. −10.5[−10.4]) for the BOS (resp. LRS model).
The slightly broader posterior obtained with FS earlier
leads to a less stringent upper bound for the BOS model.
One can notice that we constrain better the tension, Gµ,
for the LRS model, this is due to the excess of power that
the small loop population introduces.

2. Kinky loops

Next we also vary the number of kinks (and thus kink-
kink collisions) in addition to the string tension, consid-
ering two-dimensional models (log10 Gµ,Nk). The PSD
of the SGWB created by such a model is calculated from
Eq. (5) by setting Nc = 1 (in order to still have some GW
power at the low number of kinks) and Nkk = N2

k/4.
We took a uniform prior for Nk letting it vary between

0 and 200, the same prior was used in the LVK analysis
[31]. This large prior on Nk accounts for theoretical un-
certainties on the initial number of kinks at loop creation
and on the efficiency of the gravitational backreaction
that is expected to smooth out the loop.
In the case of the BOS model, if we increase the number

of kinks (and so Γ), the SGWB in the PTA band now cor-
responds to the transition between the peak of the spec-
trum and the high frequency plateau and thus increases
the characteristic slope of its PSD while decreasing the
amplitude. This increase in spectral index will be dis-
favored as it will be too steep to fit the data properly.
However, to compensate the decrease in amplitude, an
increase of the string tension Gµ can both correct the
amplitude and the spectral index by placing the high fre-
quency plateau in the PTA frequency band. One can see
such interplay between Gµ and Nk in the left panel of
Figure 4. The data equally allows two joined solutions:
low tension with low number of kinks and very kinky
loops (Nk ≳ 120) with high tension, log10 Gµ ∼ −8.3.
Contrary to the BOS case, the PSD slope of the LRS

increases only slightly at low frequency with increasing
Nk. Once F0 ≲ 1/T ∼ 10−9, the spectrum is domi-
nated by the extra population of small loops that the
LRS model introduces and the associated power is now
independent of Γ and proportional to Gµ [32]. Therefore,
the only shift in amplitude is caused by the domination of
kinks (instead of cusp) in the GW power emission lead-
ing to an increase by a factor ∼ 1.6 [32], that can be
simply compensated by a slight decrease in the tension
leading to log10 Gµ ∼ 10.9. As a result, adding kinks has
practically no effect in the LRS model, and we recover
the prior for Nk, as seen the right panel of Figure 4.
According to the posterior, the model with a high num-

ber of kinks is supported by the observed data, especially
for BOS where it suggests a possible very high number of
kinks. For example, Nk = 120 corresponds to Γ ≈ 960,
which is well above the value of 50 expected in the lat-
est simulations of cosmic string loops. Finally, all three
methods (depicted with different line styles in Figure 4)
show very consistent results, even if the FS method strug-
gles more to recover the double peak solution in the BOS
model case.

B. Model comparison

The fact that the cosmic string parameters are well
constrained does not tell us how well it explains the ob-
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(dashed lines), Resampling (RS) method (dotted lines) and with the free spectrum (FS) method (solid lines). We assume here
that the loops are populated by two cusps, leading to Γ = 57.
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served data. The Bayes factor, defined as the ratio of
evidence between two models, is often used to quantify
the ability of two different models to fit a set of data.
Note that the Bayes factor can tell us which model is pre-
ferred based on the observations, but still does not tell
us how well it describes the data. In what follows, we
want to compute the Bayes factors of the considered cos-
mic string models against the power-law (PL) (SMBHB-
inspired) model. Results are reported in Table II. We
find that the cosmic string models are slightly preferred
over PL model thanks to its simplicity: only one param-

eter. However, Figure 5 shows that all models fit the
spectral shape similarly well.

Considering the two-component model of SGWB
(SMBHB+CS, see previous subsection), we have found
no statistical support for this complex model as com-
pared to a simple SMBHB, BSMBHB+CS

SMBHB ≈ 1 for both
BOS and LRS cosmic string networks (using Full, RS
and FS methods).

We have demonstrated earlier that the kinks had no
strong impact and were not constrained by the data in
the models with the variable number of kinks. This is
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the power in the Fourier bins (passing from −10 to −15 for the
log10 ρk lower bound). The solid line (restricted prior) sug-
gests a truncated correlation of the common red noise with
the spin red noise of J1909-3744. We also plotted for com-
parison those posteriors when using as common red noise, a
SGWB from cosmic string following the BOS (blue line)/LRS
(orange line) models.

also reflected in the evaluated Bayes Factors.

Both Full and the RS methods give very consistent
Bayes factors for all models, as shown in Table II.

The Bayes factors computed with FS method depend
on the prior chosen for evaluating the FS amplitude com-
ponents ρk. The main reason is that power at all low fre-
quency bins is not fully constrained. The posteriors have
a long tail towards the low values of power (see Figure 5).
Choosing a wider prior makes those tails longer, spread-
ing the probability across a long range of ρk (draining it
from the ”bumps” located at high power). Despite the
fact that the tails are thin, they go all the way to minus
infinity in log-scale (zero in power) and the probability
distribution is then strongly affected (through normaliza-
tion). So we are facing the question of what we should
use as a prior range for the log10 ρk?

The choice of the prior range has a direct impact
on the evidence calculation: some values of the SGWB
model parameters have no support (zero contribution to
the evidence integral) because of the truncation of the
ρk imposed by the prior (which is not the case in the
Full or RS approach). Even more important is the in-
direct impact caused by the correlation of pulsar spin
noise (red noise intrinsic to each pulsar) and common
red noise at the lowest frequencies. In Figure 6, we show
the inferred distribution for the parameters of the spin
red noise in one of the best pulsars, PSR J1909-3744.

Extending the prior range for ρk leads to steeper and
stronger spin red noise in that pulsar (dashed brown line
compared to the solid brown line). This implies that the
(artificially) over-constrained prior on ρk truncates the
noise estimation in the pulsar J1909-3744. We empir-
ically determined a fiducial value of power in terms of
log10 ρth (that can be roughly regarded as common to
all frequency bins) which represents the threshold below
which our data becomes insensitive. We selected a sym-
metric range centered around this specific value, which
we set at log10 ρth = −8. For the upper limit, we opted
for −4, leading to a lower bound of −12 for the log10 ρ
prior. This prior answers direct (albeit partially) and in-
direct (by preserving correlations) impact on the Bayes
factor while avoiding an overblow of the prior range.
In addition, it is worth noting 5 that the posteriors

given by the FS method typically have a broader spread
compared to other methods. Moreover, the FS method
encounters difficulties in accurately capturing the double
peak feature observed in the Gµ posterior for the BOS
model in Figure 4. This issue is mainly due to the width
of the prior for the ρk parameters. Indeed, if a ρk poste-
rior is not well-constrained, which is the case for several
frequency bins as evident in Figure 5, taking a wider prior
results in a longer tail and less constrained posterior at its
upper bound (due to normalization). This gives a likeli-
hood function (Equation 20) with less pronounced peaks,
leading to the spread in the posterior distributions. By
running the FS method using a narrower prior range of
[−10,−4] for the ρk, we recover the posterior distribution
which is much closer to the one obtained with the Full
method.
In general, we have found the choice for the prior for

the free spectrum evaluation (or rather a lack of rigor-
ously defined cut) is a weak point of the FS approach
in computing the evidence, despite that it perfectly falls
into Bayesian philosophy.
Accumulating high-quality data and using more pul-

sars in the array, will hopefully result in the well-
constrained power at low frequencies. Consequently, this
will make the choice of the prior for the ρk parameters
much less relevant for evaluation of the Bayes factors us-
ing the FS method.

V. CONCLUSION AND DISCUSSION

In this work, we demonstrated that the Free Spectrum
and Resampling methods are very powerful tools to de-
termine rapidly the posterior distributions for the pa-
rameters describing the SGWB. Moreover, those meth-
ods (taking into account caveats for FS method dis-
cussed above) could be used to evaluate the Bayes fac-
tor between various SGWB models. We have demon-
strated these methods using the 6-pulsar early DR2

5 We thank the referee for pointing us in this direction.
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Full Method RS Method FS Method

CS Posterior BF (PL/CS) CS Posterior BF (PL/CS) CS Posterior BF (PL/CS)

BOS log10 Gµ = −10.08+0.32
−0.26 0.3 −10.08+0.30

−0.27 0.2 −9.95+0.56
−0.45 0.1

LRS log10 Gµ = −10.60+0.17
−0.17 0.2 −10.60+0.16

−0.18 0.3 −10.59+0.27
−0.28 0.2

BOS kk
log10 Gµ = −8.92+1.12

−1.42

Nk = 105+86
−96

0.2
−8.98+1.17

−1.38

101+90
−96

0.3
−8.66+1.24

−1.65

100+88
−87

0.1

LRS kk
log10 Gµ = −10.90+0.29

−0.27

Nk = 102+89
−92

0.2
−10.89+0.29

−0.27

103+89
−95

0.3
−10.86+0.35

−0.40

104+85
−92

0.2

TABLE II. For each Bayesian analysis method (columns), we write the cosmic string parameters posteriors for each loop
distribution (BOS/LRS) with a varying number of kinks ( kk) or without. The 5% and 95% quantiles are used to set up the
credible interval. The second column quotes the linear Bayes Factors comparing each of the cosmic string (CS) models against
a power-law (PL) PSD for the SGWB.

EPTA dataset and comparing several models of SGWB
produced by a network of cosmic strings.

For this 6-pulsars only dataset, we could perform rig-
orous inference (Full method) of SGWB parameters (in
addition to pulsar noise parameters) and Bayes factors
evaluation Table II. Note that the Full method took sev-
eral days to complete, whereas the execution time for
RS/FS methods is reduced to hours/minutes. Extend-
ing the data by including more pulsars, more back-ends
and new observations will hugely explode the dimension-
ality of the problem and make the Full method computa-
tionally not tractable. The computational power scaling
quadratically with the number of pulsars and the num-
ber of observations. We hope that this work convinces
the reader of the validity of the fast and approximate
methods which have to be used in the future PTA data
analysis. The attractiveness of FS method is that it is not
very sensitive to the number of pulsars in the array. Of
course the evaluation of the free spectrum does heavily
depend on the volume of the data and dimensionality of
parameters space (pulsars noise models), but it can then
be cheaply used to infer parameters for multiple SGWB
models. The Resampling method is also relatively cheap,
the sampling step scales linearly with number of pulsars
in the array and can be efficiently parallelized (if needed).
Even though we have demonstrated the fast methods us-
ing simplistic power-law model for SMBHB and two cos-
mic string SGWB models, the methods are generic and
can be used to infer parameters of any SGWB.

The second result of this paper are the constraints
on the cosmic string tension Gµ for the BOS and LRS
models. Assuming that the observed red noise process
is GWs, we have obtained the preferred value for the
string tension Gµ ≈ 10−10.1 (resp. 10−10.6) for BOS
(resp. LRS). Moreover, we find that the power-law model
with HD correlations is slightly disfavored compared to
the simpler one-parameter cosmic strings model. The
posterior is not informative about the number of kinks
when we consider the two-parameter (Gµ,Nk) cosmic
string models. However, it also implies that the pos-

sibility of having a large number of kinks is not ruled
out, though it might be disfavored on the theoretical
grounds. Considering a two-component SGWB model
(SMBHB+CS) shows a strong correlation between two
components, and we set the upper bounds log10 Gµ ≲
−9.9 (BOS model) and log10 Gµ ≲ −10.5 at 95% (LRS
model) confidence.
Compared to previous EPTA constraints [63, 64] on

log10 Gµ which were obtained using the EPTA sensitivity
curve, here we use more up to date models and consider
directly the PSD of the cosmic string SGWB through a
wide range of frequencies to obtain our constraints. Our
upper bounds on the string tension are well under the one
given by CMB experiment log10 Gµ ≲ −7 [65] and the
LVK collaboration [31] for the BOS model (log10 Gµ ≲
−8). However, for the LRS model, due to the population
of small loops emitting at higher frequencies, the LVK
constraint is more stringent, log10 Gµ ≲ −14.
This paper lays the path for the search and interpreta-

tion of a SGWB signal of any origin. The fast methods
suggested here will be applied to the extended EPTA
dataset containing 25 pulsars [5]. In addition to EPTA
data, the new dataset which combines the most sensitive
observations from all PTAs, International PTA data com-
bination, is being produced. We expect the future data
to be more sensitive to GWs and give better constraints
on the string tension in BOS and LRS models.
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