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Abstract
Aims/hypothesis  The identification of people who are at high risk of developing type 2 diabetes is a key part of population-level 
prevention strategies. Previous studies have evaluated the predictive utility of omics measurements, such as metabolites, proteins 
or polygenic scores, but have considered these separately. The improvement that combined omics biomarkers can provide over 
and above current clinical standard models is unclear. The aim of this study was to test the predictive performance of genome, 
proteome, metabolome and clinical biomarkers when added to established clinical prediction models for type 2 diabetes.
Methods  We developed sparse interpretable prediction models in a prospective, nested type 2 diabetes case-cohort study 
(N=1105, incident type 2 diabetes cases=375) with 10,792 person-years of follow-up, selecting from 5759 features across 
the genome, proteome, metabolome and clinical biomarkers using least absolute shrinkage and selection operator (LASSO) 
regression. We compared the predictive performance of omics-derived predictors with a clinical model including the vari-
ables from the Cambridge Diabetes Risk Score and HbA1c.
Results  Among single omics prediction models that did not include clinical risk factors, the top ten proteins alone achieved the 
highest performance (concordance index [C index]=0.82 [95% CI 0.75, 0.88]), suggesting the proteome as the most informa-
tive single omic layer in the absence of clinical information. However, the largest improvement in prediction of type 2 diabetes 
incidence over and above the clinical model was achieved by the top ten features across several omic layers (C index=0.87 [95% 
CI 0.82, 0.92], Δ C index=0.05, p=0.045). This improvement by the top ten omic features was also evident in individuals with 
HbA1c <42 mmol/mol (6.0%), the threshold for prediabetes (C index=0.84 [95% CI 0.77, 0.90], Δ C index=0.07, p=0.03), the 
group in whom prediction would be most useful since they are not targeted for preventative interventions by current clinical 
guidelines. In this subgroup, the type 2 diabetes polygenic risk score was the major contributor to the improvement in predic-
tion, and achieved a comparable improvement in performance when added onto the clinical model alone (C index=0.83 [95% 
CI 0.75, 0.90], Δ C index=0.06, p=0.002). However, compared with those with prediabetes, individuals at high polygenic 
risk in this group had only around half the absolute risk for type 2 diabetes over a 20 year period.
Conclusions/interpretation  Omic approaches provided marginal improvements in prediction of incident type 2 diabetes. 
However, while a polygenic risk score does improve prediction in people with an HbA1c in the normoglycaemic range, the 
group in whom prediction would be most useful, even individuals with a high polygenic burden in that subgroup had a low 
absolute type 2 diabetes risk. This suggests a limited feasibility of implementing targeted population-based genetic screen-
ing for preventative interventions.
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NRI	� Net reclassification improvement
PGS	� Polygenic risk score
PLXB2	� Plexin B2

Introduction

Type 2 diabetes is predicted to affect 10.9% of the world’s 
population by 2045 [1], motivating the development of early 
risk assessment models and national screening programmes 
[2]. Changes in glucose metabolism are detectable years 
before type 2 diabetes onset, and yet some individuals remain 
undiagnosed for many years [3]. Screening for hyperglycae-
mia can detect people with previously undiagnosed diabetes 
and early treatment can reduce the risk of complications [4]. 
Measurement of glucose levels and HbA1c can also identify 
individuals at high risk of diabetes, and trials, predominantly 
in people with impaired glucose tolerance, have demonstrated 
the benefits of early behavioural and pharmacological inter-
vention [5]. The identification of risk factors and biomarkers 
that can identify people at high risk of type 2 diabetes has 
been an active area of research. Several risk scores based 
on readily available patient-derived information have been 
developed and tested, achieving already good predictive 

performance (concordance index [C index] ranging from 
0.73 to 0.81) [6]. Additional inclusion of blood-based clinical 
biomarkers (such as HbA1c, glucose, lipid profiles, uric acid 
and γ-glutamyl transferase [GGT]) has been shown to provide 
improvements in C indices of up to 0.9 [7], mostly provided 
by diagnostic markers: HbA1c and glucose measurements. 
However, systematic investigation of the added predictive 
performance provided by these biomarkers in the subset of 
individuals that are not classified as high risk by the current 
clinical guidelines has not been reported so far.

Genome-wide association studies (GWAS) have identi-
fied hundreds of type 2 diabetes genetic risk variants [8, 
9]. However, genome-wide polygenic risk scores (PGSs) 
have not been shown to provide clinically meaningful 
improvements in predictive performance over and above 
what can be achieved with simple clinical models [10, 11]. 
Recent technological advancements in other broad capture 
omic technologies now enable systematic investigation 
of the individual and joint values of thousands of easily 
accessible blood molecules from different biological lay-
ers in a hypothesis-free manner. Early omic studies have 
tested the improvement in performance by single layers 
of biological information in isolation [12, 13] or by using 
complex signatures that include hundreds of features [14, 
15], restricting the potential for clinical translation.
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In this prospective study, comprising more than 300 
deeply phenotyped incident type 2 diabetes cases, we sys-
tematically tested whether integration of biological infor-
mation across the genome, the circulating metabolome and 
proteome, and a wide range of clinical biomarkers could 
provide improved predictive performances over and above 
what can be achieved by a currently available clinical model.

Methods

Study design  The EPIC-Norfolk study is a cohort of 25,639 
men and women aged 40–79 years at baseline in 1993–1997, 
which has previously been described in detail [16]. The 
EPIC-Norfolk study was approved by the Norfolk Research 
Ethics Committee (ref. 05/Q0101/191); all participants gave 
their informed written consent before entering the study.
Here, we designed a prospective type 2 diabetes case-cohort 
(Fig. 1) based on all individuals with no evidence of preva-
lent diabetes at baseline and available stored blood sam-
ples [17]. We ascertained and verified all individuals who 

developed incident type 2 diabetes over 10 years (follow-up 
was censored at date of type 2 diabetes diagnosis up to 31 
December 2007) based on self-report, doctor-diagnosed dia-
betes, diabetes drug use or evidence of diabetes after base-
line with a date of diagnosis prior to the date of baseline 
visit, as described previously [18]. We randomly selected 
875 individuals from eligible participants as a control 
cohort. Participants with evidence of prevalent diagnosed 
diabetes, or those with prevalent diabetes but undiagnosed 
at baseline, HbA1c  ≥48 mmol/mol (6.5%), were excluded. 
We further used the WHO threshold to define prediabetes 
according to HbA1c levels as ≥42 mmol/mol (6.0%) and <48 
mmol/mol (6.5%).

Type 2 diabetes PGS  Genome-wide genotyping was performed 
using the Affymetrix UK Biobank Axiom Array (Thermo 
Fisher Scientific, Santa Clara, USA), with imputation to the 
Haplotype Reference Consortium r1.0 and the UK10K plus 
1000 Genomes phase 3 reference panels. We generated a 
genome-wide PGS for type 2 diabetes using LDpred2 [19] 
(bigsnpr R package v1.8.8 [20]), which has been shown to out-
perform traditional pruning and thresholding methods. Briefly, 
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Fig. 1   Study design. We designed a case-cohort (N=1105) for inci-
dent type 2 diabetes within the EPIC-Norfolk study. Genotyping, pro-
teomics (SomaScan v4), metabolomics (Metabolon Discovery HD4) 

and biomarker profiling were done in samples from the baseline 
assessment. T2D, type 2 diabetes. Created with BioRender.com
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this method uses a Bayesian approach that relies on genome-
wide summary statistics and linkage disequilibrium (LD) 
information from an external reference panel to infer posterior 
mean effect size for each of the variants. Quality control for 
individual-level genotype data was performed using PLINK 
v1.9 (https://​www.​cog-​genom​ics.​org/​plink/1.9) [21, 22]. We 
removed strand ambiguous variants with a minor allele fre-
quency (MAF) <1%, Hardy–Weinberg equilibrium p<1×10−6 
or a missing rate >1%. Individuals with a genotype missing 
rate >10% or those with a first- or second-degree relative in 
the sample were removed (N=17). We further restricted PGS 
generation to HapMap3 variants as suggested by the LDpred2 
authors. PGSs were generated using the infinitesimal model 
option based on 721,911 variants. Summary statistics were 
obtained from the largest European meta-analysis including 
228,499 type 2 diabetes cases [9].

Omics profiling  For the individuals included in the case-
cohort, we used citrate plasma samples that had been stored 
in liquid nitrogen since the baseline assessment, which took 
place between 1993 and 1997, for proteomics profiling 
using the SomaScan v4 assay (SomaLogic, Boulder, USA). 
Assay details have been described previously [14]. Briefly, 
this assay uses 4979 aptamer reagents to target 4775 unique 
proteins. Normalisation was performed by SomaLogic using 
adaptive normalisation by maximum likelihood (ANML). 
For all analyses, protein relative fluorescence intensities 
were log10-transformed and scaled to have a mean of zero 
and variance of 1.

Untargeted metabolomics profiling was done in sam-
ples from the baseline visit for individuals included in the 
case-cohort using the Metabolon Discovery HD4 platform, 
as previously described [23] (Metabolon, Durham, USA). 
We kept data from only 762 metabolites with no more than 
50% of missing values overall and no more than 50% of 
missing values in incident type 2 diabetes cases. Missing 
values were imputed using the missForest v1.4 R package 
[24]. Metabolites were natural log-transformed and scaled. 
We further measured 17 biomarkers and again imputed 
missing values with the missForest R package. Transferrin, 
albumin, alkaline phosphatase (ALP), alanine aminotrans-
ferase (ALT), apolipoprotein (Apo)A1, ApoB, aspartate 
aminotransferase (AST), C-reactive protein (CRP), ferri-
tin, GGT, iron and uric acid were measured by standard 
immunoassays (Olympus AU640 Analyzer). Total choles-
terol, triglycerides and HDL-cholesterol were analysed on 
an RA-1000 (Bayer Diagnostics, Basingstoke, UK). LDL-
cholesterol was calculated with the Friedwald formula [25], 
except for when triglyceride levels were >4 mmol/l. Vita-
min C levels were measured with a fluorometric assay from 
plasma that was stabilised using metaphosphoric acid [26]. 
HbA1c was measured as part of the EPIC-Interact project 
using a Tosoh (HLC-723G8) assay on a Tosoh G8 analyser.

Derivation and validation of predictive models  We excluded 
participants with missing genotype data, HbA1c or informa-
tion on variables included in the Cambridge Diabetes Risk 
Score [27], leaving 1105 participants (10,792 person-years 
of follow-up) for analyses (375 incident type 2 diabetes 
cases) (electronic supplementary material [ESM] Fig. 1a). 
To have an independent internal validation set, completely 
blinded to any previous feature selection and hyperparameter 
tuning steps, we divided individuals into a training set (80%, 
N=884) and a testing set (20%, N=221). We trained mod-
els using regularised Cox regression, including a patient-
derived information model, which is based on variables used 
for the Cambridge Diabetes Risk Score (age, self-reported 
sex, family history of diabetes, smoking status, prescrip-
tion of antihypertensive medication and BMI) [27], and a 
standard clinical model (including the variables from the 
Cambridge Diabetes Risk Score and HbA1c). We refitted a 
model using variables from the Cambridge Diabetes Risk 
Score to find optimal weights in EPIC-Norfolk and to enable 
a fair comparison among all models.

For omic predictors, we first performed feature selection 
in the training set. Feature selection was carried out by least 
absolute shrinkage and selection operator (LASSO) to iden-
tify the top predictors among the proteome, the metabolome 
and 17 clinical biomarkers. A nested tenfold cross-validation 
(inner loop to determine regularisation parameter, ʎ) was 
done over 100 subsamples, taking 80% of the training set 
(outer loop). Within each omic layer, we ranked each feature 
based on an absolute weighted sum of the number of times it 
was included in the final model from each of the 100 subsam-
ples and selected the ten features with the highest rankings 
separately for each omic layer. We additionally performed 
feature selection across all omic layers (including all proteins 
and metabolites and the type 2 diabetes PGS) to identify the 
top ten omic predictors. We implemented this workflow using 
the R packages caret v6.0-89 [28] and glmnet v4.1 [29]. Fea-
tures selected were taken forward for parameter optimisation 
by tenfold cross-validation of the model by regularised Cox 
regression (incorporating Prentice weights to account for the 
case-cohort design [30, 31]) in the entire training set. For 
each of the omic layers, top predictors were optimised alone 
or on top of the standard clinical model, for which variables 
were forced to be kept in the models.

Performance of the classification models was evaluated 
in the internal independent validation set, which was never 
used for training and optimisation. The prediction models’ 
discriminatory power was assessed by computing the C 
index over 1000 bootstrap samples of the test set. We fur-
ther tested the model’s performance by stratifying the test 
set into participants with (N=176) and without prediabetes 
(defined as HbA1c ≥42 mmol/mol [6.0%], N=46). Perfor-
mance of PGS-only models was tested using simple Cox 
proportional hazards models (Prentice-weighted), using 

https://www.cog-genomics.org/plink/1.9
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an analogous bootstrapping framework. To determine 
whether the addition of omics improved performance over 
the clinical model, we estimated one-sided p values for 
the difference in the mean C indices (from bootstrapping). 
This was calculated as the number of times the difference 
(between the C indices from clinical + omics and the clini-
cal model) was lower than zero divided by 1000 (that is, 
the number of bootstrap C indices). For each of the omic 
layers, we calculated the net reclassification improvement 
(NRI) when added on top of the clinical model in the test 
set (all and stratifying by the HbA1c threshold for predia-
betes) using the R package nricens v1.6 [32].

Cumulative type 2 diabetes incidence  To be able to com-
pute absolute risk estimates, we leveraged genotype infor-
mation available for participants from the entire EPIC-Nor-
folk study. Linkage with hospitalisation and death registry 
data was done using UK National Health Service (NHS) 
numbers through NHS Digital. Vital status was ascertained 
for the entire EPIC-Norfolk cohort and death certificates 
were coded by trained nosologists according to ICD-10. 
For type 2 diabetes definitions, participants were identified 
as having an event if the corresponding ICD-10 code was 
registered on the death certificate (as the underlying cause 
of death or as a contributing factor) or as the cause of hos-
pitalisation. Since the long-term follow-up of EPIC-Norfolk 
included a period in which coding shifted from ICD-9 to 
ICD-10, codes were consolidated. We computed the pre-
dicted risk for incident type 2 diabetes using the clinical + 
PGS model in the entire EPIC-Norfolk cohort, excluding 
individuals with HbA1c levels above the threshold for dia-
betes (≥48 mmol/mol [6.5%]), with incomplete data for the 
variables included in this model or who were included in 
the training set from the case-cohort study (N=9009, ESM 
Fig. 1b). We stratified participants into those with prediabe-
tes according to their HbA1c levels (≥42 mmol/mol [6.5%]) 
and quartiles of predicted risk according to the clinical + 
PGS model among individuals with normoglycaemia. We 
estimated the cumulative incidence of type 2 diabetes over 
a 20 year follow-up period in these five strata as 1 minus the 
Kaplan–Meier estimate of the survivor function.

Results

Baseline characteristics are presented in ESM Table 1. 
Incident type 2 diabetes cases were on average older, more 
likely to be men and presented with higher BMI and HbA1c 
levels compared with cohort control participants.

Comparison between the predictive performance of sparse 
omics signatures and standard clinical models  The Cam-
bridge Diabetes Risk Score model achieved a C index of 0.76 

(95% CI 0.69, 0.82). The top ten proteins achieved the high-
est predictive performance compared with the Cambridge 
Diabetes Risk Score model (C index 0.82 [0.75, 0.88], Δ C 
index=0.06, p=0.042) out of all single omic predictors, fol-
lowed by clinical biomarkers (C index 0.78 [0.72, 0.85], Δ C 
index=0.02, p=0.29), metabolites (C index 0.78 [0.71, 0.84], 
Δ C index=0.02, p=0.28) and the type 2 diabetes PGS (C 
index 0.69 [0.60, 0.76], Δ C index=−0.07, p=0.1). Besides 
proteins, the top ten combined omic features (C index 0.86 
[0.80, 0.91]) had a significantly higher predictive perfor-
mance compared with the basic Cambridge Diabetes Risk 
Score model (Δ C index=0.10, p=0.004).

We derived a clinical benchmark model by adding HbA1c 
to the Cambridge Diabetes Risk Score, which performed sig-
nificantly better (C index=0.82 [0.77, 0.88], Δ C index=0.06, 
p=0.002). Beyond HbA1c, only the top ten omic features (C 
index 0.87 [0.82, 0.92]) significantly improved the C index 
over the standard clinical benchmark (Δ C index=0.05, 
p=0.045) (Fig. 2a). However, the largest NRI over the clini-
cal model (that is, the Cambridge Diabetes Risk Score + 
HbA1c) was provided by the top ten proteins (NRI=0.19), 
followed by the top ten omic features (NRI=0.14, ESM 
Table 2). Among the top ten omics predictors were several 
markers also selected among the top ten proteins, such as 
β-glucuronidase (BGLR), carboxypeptidase M (CBPM), 
insulin-like growth factor binding protein (IGFBP)-2, plexin 
B2 (PLXB2), serine protease HTRA1 and ApoF; or the top 
ten metabolites, including mannose, N-acetylglycine and a 
metabolite of unknown identity (X-22822). We provide all 
model coefficients in ESM Table 3.

Improvements in prediction over and above a standard clinical 
model in individuals without prediabetes  According to cur-
rent clinical guidelines in England, individuals with HbA1c 
levels above the prediabetic threshold (≥42 mmol/mol [6.0%]) 
would be offered a referral to a behavioural intervention pro-
gramme [33]. As clinical action differs depending on whether 
or not an individual is deemed to have prediabetes, we there-
fore assessed the predictive performance provided by the dif-
ferent omic layers by stratifying the internal validation test set 
into individuals with prediabetes and with normoglycaemia 
according to their HbA1c measurements. In the group of indi-
viduals without prediabetes (HbA1c <42 mmol/mol [6.0%]), 
in whom prediction would be most relevant, the Cambridge 
Diabetes Risk Score model (C index=0.74 [0.65, 0.83]) was 
not improved by the addition of HbA1c (C index=0.77 [0.68, 
0.85], Δ C index=0.03, p=0.20). This is well in agreement 
with the selection of the HbA1c threshold to define prediabetes. 
The maximum improvement over the clinical model in this 
subgroup was achieved by adding the top ten omic predictors 
(C index=0.84 [0.77, 0.90], Δ C index=0.07, p=0.03), which 
resulted in the highest NRI (0.27), mainly attributed to cor-
rect reclassification of cases (ESM Table 4). Stepwise addition 
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of omic biomarkers did not provide any further significant 
improvements (ESM Table 5). Among the top ten predictor 
omic features, the type 2 diabetes PGS had the largest weight 
and was the most frequently selected in different iterations 
(Fig. 2b). The type 2 diabetes PGS alone provided a com-
parable improvement over the clinical model (C index=0.83 

[0.75, 0.90], Δ C index=0.06, p=0.002) to the top ten omic 
features. However, we note the relative difference in informa-
tion content when comparing these predictors, as the type 2 
diabetes PGS includes genome-wide information, compared 
with information on only ten features for the other omic pre-
dictors. In the subgroup of people with prediabetes, none of 

Fig. 2   Multi-omic prediction of type 2 diabetes incidence. (a–d) 
C index of the prediction models in all individuals from the inter-
nal validation set or by stratifying into individuals with prediabetes 
(HbA1c  ≥42 mmol/mol [6.5%], n=45) and individuals with normo-
glycaemia (HbA1c <42 mmol/mol [6.5%], n=171). The 95% CI from 
bootstrapping is shown. (e–h) Top ten features selected from each of 

the omic layers. Selection scores are shown normalised to the feature 
with the highest score for interpretability. 2-linoleoyl-GPC, 2-linole-
oyl-glyceroposphocholin; MXRA8, matrix remodelling associated 
protein 8; 1-oleoyl-2-linoleoyl-GPC, 1-oleoyl-2-linoleoyl-glycerop-
osphocholin; SLIK3, SLIT and NTRK like family member 3; T2D, 
type 2 diabetes
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the omic predictors improved the performance over and above 
the clinical model (ESM Table 6), although the small sample 
size in this subgroup was insufficient to draw robust conclu-
sions. However, we note that prediction in this subgroup is 
less relevant in clinical practice, as these individuals would be 
referred for preventative interventions.

Absolute type 2 diabetes risk in individuals without prediabetes 
with a high polygenic burden  We next sought to quantify the 
absolute risk for type 2 diabetes among individuals with pre-
diabetes compared with those without prediabetes, but at high 
polygenic risk, in the entire EPIC-Norfolk cohort with complete 
data (N=9009, ESM Table 7) (Methods). The cumulative inci-
dence at 5, 10, 15 and 20 years of follow-up in individuals with 
prediabetes was 0.29%, 3.67%, 11.94% and 19.89%, compared 
with 0.08%, 0.58%, 5.14% and 9.83% in the quartile at high-
est risk according to the clinical + PGS model (Fig. 3, ESM 
Table 8). This showed that individuals considered at high poly-
genic risk were at about half the absolute risk compared with 
individuals with prediabetes over a 20 year follow-up period.

Discussion

This paper reports a systematic study of the predictive value 
of molecular features selected across several omics layers 
using a machine-learning approach to develop sparse pre-
diction models and test their performance over and above a 

currently established standard clinical prediction model for 
type 2 diabetes, which accounts for participant character-
istics such as age, sex, anthropometry and lifestyle, among 
others. Our results show that a combination of different 
omic features improved the performance beyond the clini-
cal standard, of which the type 2 diabetes PGS was the major 
contributor. However, individuals at high predicted poly-
genic risk were at a substantially lower absolute risk than 
people with prediabetes, suggesting limited potential value 
in targeted genetic screening for preventative interventions, 
if the absolute risk of people with prediabetes is taken as the 
benchmark against which to determine societal willingness 
to implement interventions to other subgroups.

Early evidence from randomised controlled trials showed 
the effectiveness of behavioural and lifestyle interventions 
to reduce incidence of type 2 diabetes in individuals at high 
risk [34]. This prompted a substantial amount of research 
to focus on the development and enhancement of predic-
tion models to enable early detection and intervention in 
high-risk groups. Beyond well-established patient-derived 
risk factors, the search for novel biomarkers has led to only 
marginal improvements with very few successful examples 
[7]. For example, national screening programmes, such as 
the NHS Diabetes Prevention Programme (NHS-DPP), have 
proven to be successful in significantly reducing the popula-
tion incidence of type 2 diabetes, with up to 23,776 cases 
prevented in a 1 year period [35], by enabling identification 
of high-risk individuals using basic patient-derived risk fac-
tors and HbA1c measurements.

Fig. 3   Cumulative incidence of 
type 2 diabetes over 20 years 
in individuals with prediabetes 
compared with quartiles of 
clinical + polygenic risk. The 
clinical + PGS model was 
used to divide individuals with 
normoglycaemia into quartiles 
according to predicted risk 
and to estimate the cumulative 
incidence among these groups 
compared with the cumulative 
incidence in individuals with 
prediabetes
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According to current screening guidelines, individu-
als with HbA1c above the diabetic or prediabetic threshold 
would be referred for treatment or preventative behavioural 
interventions. Therefore, improved predictive strategies 
would be of most theoretical benefit in subgroups of indi-
viduals who are missed by HbA1c screening but who are at 
high risk of type 2 diabetes and its associated comorbidities 
and could benefit from preventative interventions that would 
not otherwise be considered. Here, we identified a subset 
of people with HbA1c below the prediabetic threshold for 
whom a combination of ten omic features improved predic-
tive performance beyond the standard clinical model. Since 
the type 2 diabetes PGS was the strongest contributor to this 
omic predictive signature, we leveraged genotyping done in 
the entire EPIC-Norfolk study to estimate the absolute risk 
in individuals with a high polygenic type 2 diabetes bur-
den. Our results show that over a 20 year follow-up period 
the absolute risk in individuals at high polygenic risk was 
less than half that of individuals with prediabetes, therefore 
highlighting the limited feasibility of implementing targeted 
genetic screening, as this would translate into a large number 
needed to treat, and in line with previous studies showing 
a low absolute risk in lean individuals with a high genetic 
risk [18]. This is assuming that the relative risk reduction 
following preventative interventions would be the same in 
all individuals irrespective of genetic risk. Currently, there 
is no evidence from trials, such as the NHS-DPP, that this 
assumption is incorrect [36].

While studies have reported significant associations of 
omic signatures and incident type 2 diabetes [14, 37, 38], 
consistent assessment of performance against a clinical gold 
standard in a formal prediction framework has often been 
missing. Furthermore, several studies have tested large omic 
signatures with up to hundreds of proteins or metabolites, 
which limits their potential to be feasibly translated into 
clinical settings given the costs and need to validate and 
harmonise hundreds of assays. We addressed this limitation 
by developing sparse models, restricting the omic signatures 
tested to the ten most informative features, and demonstrated 
limited value of more inclusive signatures.

Among the top ten features selected in each omic layer, 
we identified novel biomarkers that might reflect specific 
aetiological processes and organ systems linked to type 2 
diabetes risk. Examples include BGLR, PLXB2 and metab-
olites of unknown structural identity but consistent spec-
tral pattern (X-22822, X-23637, X-12063 and X-11564). 
PLXB2, a cell surface receptor for semaphorins that has a 
known role in axon guidance and cell migration [39], has 
also been shown to be expressed in both pancreatic insulin-
producing beta and glucagon-producing alpha cells [40]. 
This suggests that its presence in plasma might be a marker 
of pancreatic beta and/or alpha cell damage, a hallmark of 
early pathways into type 2 diabetes. Furthermore, PLXB2 

has been recently found to be putatively causally associ-
ated with type 2 diabetes [41] and we have previously found 
evidence for this protein to be a causal candidate associ-
ated with systolic blood pressure [42], suggesting that this 
protein may represent a potential molecular link between 
type 2 diabetes risk and cardiovascular comorbidities. Our 
feature selection approach identified several validated bio-
markers that have already been shown to be associated with 
type 2 diabetes risk, including mannose [43], glycine [44] 
and IGFBP-1 [45], among others. We further identified the 
proteins CBPM and serine protease HTRA1, which we have 
previously shown to be strongly discriminative for impaired 
glucose tolerance and to be associated with body fat dis-
tribution and inflammation [46]. Furthermore, circulating 
proteins, like ApoF and IGFBP-2, have been associated with 
non-alcoholic fatty liver disease [47], a risk factor for type 
2 diabetes. Our findings therefore suggest that predictive 
circulating biomarkers may represent early derangements in 
pathways and organ systems that can be detected in individu-
als on the path to type 2 diabetes.

While a strength of our study is the comprehensive case 
ascertainment and virtually complete follow-up among 
deeply phenotyped participants, several limitations are 
worth noting. First, our analysis was based on participants 
of European ancestry, limiting the generalisability of our 
results across populations of different ethnic backgrounds. 
To date, few studies [48] have systematically compared type 
2 diabetes prediction models across different ancestries, and 
further work is needed in more ethnically diverse popula-
tions. This would be of particular interest in the context of 
prognosis since susceptibility to specific comorbidities might 
be far more prevalent in specific ethnic groups. Second, the 
technology used for proteomics profiling relies on preserved 
protein structure for recognition by the affinity reagents, 
meaning that protein-altering variants could lead to biased 
measurements. However, we have previously shown that 
LASSO-selected protein candidates were more likely to repli-
cate well across proteomics platforms [46]. Finally, since our 
study integrated information across several omic layers, this 
was only available in a relatively small subset of individuals 
which did not enable estimation of the cumulative type 2 
diabetes incidence in individuals predicted to be at high risk 
by the full omic signature. This further meant that external 
replication of our results is currently not possible due to the 
unique depth of information incorporated in these analyses.

In summary, we have shown that the integration across 
several omics layers provides significant improvements in 
the prediction of type 2 diabetes over and above what can 
already be achieved by the current clinical standard. How-
ever, when individuals with prediabetes are taken out of the 
analysis, as they would routinely be offered an interven-
tion, the prediction by a PGS, the most informative omic 
feature, improves discrimination in individuals who do not 
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have prediabetes but in whom the absolute risk for type 2 
diabetes is low. Whether society deems it acceptable to offer 
preventative interventions to individuals at half the risk of 
groups for whom interventions are now routinely offered 
is an economic and political decision. This exemplifies the 
importance of embedding novel predictive models and bio-
markers into the clinical reality to assess and inform the 
translational potential of innovative strategies.
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