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To little Nora, hoping for you to find

passion, to be kind and open-minded.

Try everything you can, never settle.

Work hard but always have fun.

I wish you a wonderful life.
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1 Introduction

This thesis is a mix–and–match of topics that I found the most original and ap-

pealing during the time of my PhD. Rather than being a single–subject thesis,

it is a tortuous stream of topics sometimes sharing very little with each other.

Nonetheless, a single common factor pools all of them, I always consider open

systems.

These few paragraphs are a little introduction of how this thesis ended up

being the way it is. In my Masters project, I learned about the phenomenon

of non–Hermitian singularities also know as exceptional points (EPs). In this

first contact with non–Hermitian systems, I worked on microwave ring resonators

and explored different geometrical setups to find EPs. I built the theory and the

package to scan the parameter space searching for high–order EPs but I explored

no physical consequences. This project was indeed my first contact with the world

of open systems, classical in this case. Both the physical consequences and the

classical/quantum aspects of the EPs remained a curiosity at this point. Starting

my PhD, the next most natural step was to continue exploring the phenomenon of

the EPs and more general characteristics of open systems in different frameworks

and theories. For this reason, in this thesis, I study open system from several

perspectives, from a pure quantum thermodynamic setting in the form of master

equations (see Sec. 3), to classical wave scattering setups (see Sec. 2), to the

stochastic dynamics with classical/quantum statistics of the spin-boson model

(see Sec. 4). All these topics have in common some interaction with external

sources or baths. In the first two topics, I built the theory and explored different

aspects and consequences of the appearance of the EPs. In the latter, I have

extended a theoretical framework of stochastic spin dynamics in the presence

of non-Markovian interaction with a bath and contributed to define the quantum-

to-classical correspondence of the model. In the latter project, I was also able to

leverage my coding experience to build a full package for simulating the stochastic

dynamics of spins and harmonic oscillators (see Sec. 5).

This thesis is a journey through which I tried to make different theories and

tools dialogue. During this time, I independently learned and applied tools for the

analysis of non–Hermitian degeneracies and explored, learned, and lost myself in

the vastness (and wilderness) of graph theory. I have also autonomously learned
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new coding languages and studied the best software practices in order to obtain

quick and reliable stochastic simulations. The time for some expert guidance has

been key when I tried to merge my “solo” topics with the topics of expertise of my

supervisors and collaborators. In this process, I learned about master equations,

wave scattering and spin–boson theories. As this naivety in the adoption of new

topics might suggest to you, this thesis has not been built in a homogeneous

manner. On the one hand, it is possible to read the different sections of the thesis

independently and in any order. On the other hand, the order presented here is

not chronological but rather it is the order I believe the topics can be better linked

one another. Sometimes, they remain standalone, but always self-consistent.

As a mere curiosity of chronology, I firstly tackled the problem of EPs in open

systems when Luis Correa was in Exeter. Then it was time for the COVID pan-

demic and there has been a time of adjustment (and struggle), ending in a major

shift of topic, namely the spin–boson project led by Janet Anders. After this,

another big jump happened, motivated by my interest for graph theory. Here, Si-

mon Horsley proposed a possible theoretical platform and I started working on

the interpretation of EPs via graph theory in wave scattering. During this time, I

also finished rebuilding and continued improving the Julia package for stochastic

simulations. This has been a symbiotic and very productive collaboration with

Federico Cerisola. But as I mentioned, the story line in this thesis is not quite

chronological.

The thesis is organized as follows. Section 2 is a first, unconventional, ap-

proach to the topic of EPs. Having grown interest in the topic of combinatorics

and graph theory, I wanted to exploit its very abstract and mathematical tools to

reinterpret something very physical, that is, the EPs in wave scattering. To do

this, I build the interpretation of scattering events from a graph theory perspective

and show how EPs can be understood within this interpretation. In Section 3,

I move from a completely classical treatment to a purely quantum one. In this

section, I consider two quantum resonators coupled to two baths and study their

dynamics with local and global master equations. Here, the EPs are the key phys-

ical features used as a witness of validity of the master equation. Choosing the

wrong master equation in the regime of interest can indeed mask physical and

fundamental features of the system. In Section 4, there are no EPs. However I
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transition towards a classical/quantum framework via the topic of open systems.

My main contribution in this work is the classical stochastic treatment and simu-

lation of a spin coupled to a bath. In this work, I show how a natural quantum–

to–classical transition occurs at all coupling strengths when certain limits of spin

length are taken. As a key result, I also show how the coupling to the environ-

ment in this stochastic framework induces a classical counterpart to quantum

coherences in equilibrium. After this last topic, in Section 5, I briefly present the

key features of the code I built (and later extended) for the latter project. This, in

the form of a Julia registry package named SpiDy.jl, has seen further applications

in branching projects and allows for further exploration of the theoretical frame-

work. Finally, I conclude with a discussion section (see Sec. 6) where I recap

the different conclusions gathered in the previous sections and propose several

possible directions.

10



2 Graph theory approach to exceptional points in

wave scattering

2.1 Statement of contribution

In the following work, I devised the idea to apply graph theory to wave scattering

problems, while the idea to use the same framework to describe exceptional point

conditions followed as a consequence. Thus, I learned and developed graph

theory, built the code, generated the results and wrote the paper. The target

platform in the form of discrete dipole approximation has been proposed by Simon

Horsley while I revised and rewrote the derivation.

Note that this section requires the reader to familiarize with specific and slightly

technical graph theoretic definitions and terms. These are only reported in the

main text but are expanded with relative examples in the appendices. For this

reason and given how independent the different sections are, the reader can

choose to start from another section and come back to this later.

2.2 Summary

In this section, we use graph theory to solve wave scattering problems in the

discrete dipole approximation. As a key result of this work, in the presence of ac-

tive scatterers, we present a systematic method to find arbitrary large–order zero

eigenvalue exceptional points (EPs). This is achieved by solving a set of non–

linear equations that we interpret, in a graph theory picture, as vanishing sums

of scattering events. We then show how the total field of the system responds

to parameter perturbations at the EP. Finally, we investigate the sensitivity of the

power output to imaginary perturbation in the design frequency. This perturbation

can be employed to trade sensitivity for a different dissipation balance of the sys-

tem. The purpose of the results of this section is manifold. On the one hand, we

aim to shed light on the link between graph theory and wave scattering. On the

other hand, the results of this section find application in all those settings where

zero eigenvalue EPs play a unique role like in coherent perfect absorption (CPA)

structures.
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2.3 Introduction

Although wave scattering is an elementary process and straightforward to picture,

its analysis continues to fuel developments in electromagnetic and acoustic ma-

terial research. While a small object (particle) scatters as a point source with a

strength proportional to the applied field, larger objects scatter the wave between

their constituent parts. This multiple scattering process is an infinite chain of

possible scattering events, interfering to give the total field. This complicated in-

teraction breaks the simple relationship between the applied and scattered wave

amplitudes. From this complex interaction, several fields of research emerge in-

cluding metamaterials [1], photonic crystals [2], propagation and imaging through

disordered media [3], and random lasing [4].

The last decade has seen a large body of research into wave scattering in

non–Hermitian materials, originating from Bender’s proposed parity–time sym-

metric extension to quantum mechanics [5]. Non–Hermitian materials differ from

ordinary matter in that they are usually driven, containing regions where the wave

can be amplified, in addition to regions of absorption. This absorption and re–

emission of wave energy provides much more control over the wave field com-

pared to passive structures, demonstrated in designs for invisible and reflection-

less media [6, 7, 8], cloaking [9], one–way propagation [10], coherent perfect

absorption [11, 12], and disordered media without scattering [13]. Controlled

wave amplification has now been demonstrated from GHz [14] to optical frequen-

cies [15], as well as in acoustics [16, 17, 18].

In this work, we investigate the problem of designing non–Hermitian arrays

of particles with controllable exceptional point degeneracies. Exceptional points

(EPs) are peculiar to non–Hermitian materials where two or more modes of the

system have both eigenvalues and eigenvectors that coalesce. They have at-

tracted considerable interest [19] exhibiting an apparently increased sensitivity

to system perturbations [20, 21], with the degenerate modes transforming into

one another after cycling the system parameters [22, 23]. To the best of our

knowledge, while extensive work has been done on higher–order exceptional

points [21, 24, 25], no consistent method to find N th–order EPs in wave scat-

tering systems has been presented yet. In this work, we provide a recipe based

on graph theory for implementing an exceptional point of arbitrary order in a sys-
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tem of scattering particles. The resulting system exhibits scattering properties

with an extreme sensitivity to small changes in the particles’ positions.

Our graph theory approach is based on the discrete dipole approximation

(DDA) [26, 27]. This is an established method for calculating the field scattered

from any configuration of N particles. Originally introduced by Purcell to calculate

the scattering from astrophysical dust [28], this method is now commonly applied

to, e.g., metamaterial design [29, 30] and wave propagation in disordered me-

dia [31] thanks to its vast range of validity [32]. By treating the particles as point

sources, with a strength proportional to the incident field, the scattering prob-

lem can be solved self consistently determining the field on each particle. This

requires the inversion of an N × N matrix, which rapidly becomes analytically

intractable as the number of particles (scatterers) increases. Here, we provide a

graph theory representation of this matrix inversion. We use this to understand

the requirements on the scatterer parameters for the system to exhibit an ex-

ceptional point of arbitrary order, finding a remarkably simple picture in terms of

vanishing sums of graphs related to different scattering events.

The section is organized as follows: in Sec. 2.4, we review the discrete dipole

approximation (DDA). In Sec. 2.5, we show how to interpret DDA by means of

graph theory. In Sec. 2.6, we derive the single scattering events and define or-

ders of interactions. By means of the graph theory interpretation, we perform

and give insights on weak and strong interaction limits. In Sec. 2.7, we present

a method to design N th–order EPs with zero eigenvalue in systems described

by DDA, perhaps the most important result of this section. To do this, we de-

rive the conditions to find these EPs (Sec. 2.7.1) and, consequently, we interpret

these conditions in terms of graphs in a scattering setting (Sec. 2.7.2). In this

setting, we show the effects of the EPs on the system’s properties (Sec. 2.7.3),

namely the total field and the power output. Finally, we show how one can exploit

perturbations to the design resonant frequency to tune the dissipation balance

across the array of scatterers. However, this comes at the cost of a broader

power output. In Sec. 2.8, we conclude by summarizing the results and possible

next developments.
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2.4 Discrete dipole approximation

Within the discrete dipole approximation (also discrete dipole method) an object

is treated as a collection of dipoles. This theory has its power in the fact that any-

thing, if cut into small enough pieces, can be considered a collection of dipoles.

This treatment is equivalent to replacing the continuous susceptibility χ of an ob-

ject with a discrete sum, that is

εr(x)− 1 = χ(x) ∼
N∑

n=1

ᾱnδ(x− xn), (1)

where the sum runs over the N dipoles in the collection at the positions xn with the

polarizabilities ᾱn and εr(x) is the relative permittivity of the material. Through-

out this work, we assume constant polarizabilities although frequency–dependent

ones can be considered. The additional dependency would open the system to

further engineering possibilities and realizations. Note that, in addition, while this

dependency would hinder the calculations throughout this section, all the core re-

sults and interpretations would be preserved. Eq.(1) represents the response of

the material to a field at the position x. Note that this discrete sum is always valid

provided the number of “pieces” N is large enough. To understand how a material

with such susceptibility behaves in an electric field E(x) at a fixed frequency ω0,

we consider the dynamical Maxwell equations,

∇×E(x) = −∂B(x)

∂t
= iω0µ0H(x) (2)

∇×H(x) = j(x) +
∂D(x)

∂t
= j(x)− iω0ε0εr(x)E(x), (3)

where we used the relations between the displacement field D(x) and the electric

field E(x) in a linear, homogeneous, isotropic material and the relation between

the magnetizing field H(x) and the magnetic field B(x). Here, j(x) is the current

density of an external source and ε0 is the vacuum permittivity of the material.

Inserting the discretization of Eq.(1) in Eq.(3) and combining the two Maxwell

equations, we obtain

∇×∇×E(x) = ω2
0µ0ε0

[
1 +

N∑
n=1

ᾱnδ(x− xn)
]
E(x) + iω0µ0j(x). (4)
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Figure 1: Schematic of a source field ϕs incident onto an array of sub–wavelength
size scatterers (red dots) with polarizabilities αn. The scatterers respond to the
source field, producing an outgoing field ϕout =

∑
n ϕ

out
n .

We now use the vector identity ∇ × ∇ × E(x) = ∇
(
∇ ·E(x)

)
− ∇2E(x) and

redefine the polarizabilities as α̃n = −k2
0ᾱn with k2

0 = ω2
0/c

2 = ω2
0µ0ε0. Considering

a source with zero charge density but non–zero current density j(x) (e.g. for

acoustic waves), we find the vector Helmholtz equation for the electric field, the

core of the discrete dipole approximation,

(∇2 + k2
0)E(x) =

N∑
n=1

α̃nδ(x− xn)E(x) + s(x), (5)

where s(x) = −iω0µ0j(x) is the externally driven source of waves in the system.

For simplicity, we restrict our theory to scalar waves of amplitude ϕ (e.g., the

pressure of an acoustic wave in a fluid or, in two dimensions, the fundamental

mode of a waveguide), although there is no obstacle to adapting our theory to

vector waves. A model of the system presented in the following is shown in Fig. 1.

We take N scattering particles of polarizability αn, with n = 1, 2, · · · , N . Subject

to an incoming wave of amplitude ϕinc, each of these particles will act as a point

source sn of strength

sn(x) = αn ϕinc(xn) δ
(3)(x− xn). (6)

Note that the incoming field ϕinc(xn) is defined as the total field at position xn

(i.e. the position of the scatterer with polarizability αn) minus the self–field of the

scatterer. In this case, we use the incident field to remove the divergence of the
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dipole self–field at the position x = xn. For this reason, the polarizabilities of the

scatterers are redefined as the response of the n–th dipole to the incident field.

The total field ϕ(x) obeys the three dimensional Helmholtz equation, including the

sources of scattered waves given in Eq. (6),

(∇2 + k2
0)ϕ(x) =

N∑
n=1

αn ϕinc(xn) δ
(3)(x− xn) + s(x), (7)

where k0 = ω0/c is the wavenumber with ω0 the resonant frequency, and s(x) is

the externally driving source of waves in the system. Throughout this section, we

assume c = 1. The solution to the Helmholtz equation (7) can be written in terms

of the 3D Green’s function G(x,xn) = − exp
(
ik0|x− xn|

)
/(4π|x − xn|), which is

the solution to (∇2 + k2
0)G(x,xn) = δ(3)(x − xn). Integrating the Green function

against the right hand side of Eq. (7) we have the solution to Eq. (7), which takes

the form

ϕ(x) =
N∑

n=1

αnG(x,xn)ϕinc(xn) + ϕs(x), (8)

where ϕs(x) is the integral of the Green’s function over the source s(x). To de-

termine the unknowns ϕinc(xn), Eq. (8) is evaluated on each of the N scatterers,

excluding the infinite self–field, and demanding self–consistency,

ϕinc(xm) =
N∑

n=1
n̸=m

αnG(xm,xn)ϕinc(xn) + ϕs(xm). (9)

To write the problem in a more convenient form, we scale our field amplitudes by

the polarizability, defining the new set of unknowns ϕ̃inc(xn) = αn ϕinc(xn). Writing

Eqs. (9) in matrix form, the solution is

M−1ϕs = ϕ̃inc, (10)
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where the interaction matrix M is given by

M =



α−1
1 −G(x1,x2) −G(x1,x3) . . .

−G(x2,x1) α−1
2 −G(x2,x3) . . .

−G(x3,x1) −G(x3,x2) α−1
3 . . .

...
...

... . . .


, (11)

with the source field vector ϕs = (ϕs(x1), ϕs(x2), · · · , ϕs(xN))
T , and the incident

field vector ϕ̃inc = (ϕ̃inc(x1), ϕ̃inc(x2), · · · , ϕ̃inc(xN))
T . Note that, in general, the

matrix M is non–Hermitian, being both complex and symmetric. In non-reciprocal

systems [33], the interaction matrix is both complex and asymmetric. From Eq. (10),

we can therefore find a solution for the incident fields ϕ̃inc and consequently the

total field ϕ(x) using Eq. (8). This is the discrete dipole approximation (DDA)

method for solving scattering problems [26, 28, 34], reducing the entire problem

to the matrix inversion M−1. This must be done numerically even for a small

number of scatterers [27].

2.5 Graph theory interpretation of wave scattering

Graph theory is a branch of mathematics rooted in Euler’s solution to the problem

of the seven bridges of Königsberg [35]. From here, graph theory stemmed and

evolved, finding applications to many problems in science and engineering [36].

The interaction matrix M in Eq. (11) can be represented as a graph (e.g., in

panel (a) of Fig. 2), where the diagonal elements (the particles’ self-interaction

1/αi) are represented as vertices, and their interaction (−G(xi,xj)) as edges.

Multiple scattering events between the particles can thus be represented as a

path on this graph, known as a Coates digraph. This representation links interac-

tions and objects to edges and vertices respectively, fundamental constituents of

any graph.

For example, take a 4–scatterer system whose matrix M4 is the 4× 4 equiva-

lent of Eq. (11). In panel (a) of Fig. 2, we represent the matrix M4 as the complete

Coates digraph D∗(M4). Following convention [37, 38], we refer to the Coates di-

graph using a star superscript. The Coates digraph is constructed as follows: the

scatterers are represented by vertices, the Green’s function interactions take the
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Figure 2: Example graphs used to describe the scattering system and the single
scattering events. In panel (a), we show the Coates digraph D∗(M4), represen-
tation of the matrix M4. The vertices represent the scatterers with the self–loops
weighted by the inverse polarizabilities α−1

i while the edges represent the inter-
actions weighted by the Green’s functions Gi,j = G(xi,xj). Note that the labels
of self–loops and edges are always placed as close as possible to the origin
of the arrows they refer to. In panel (b), we show an example of linear sub-
digraph L of D∗(M4), i.e., a subdigraph in which exactly one edge enters and
exactly one edge leaves each vertex. Summing the weights of all the linear sub-
digraphs of D∗(M4), one obtains det(M4). In panel (c), we show an example of
1–connection D∗[1 → 1] built from the linear subdigraph L. This is built by remov-
ing the edge 1 → 1, as described in the main text. Summing the weights of all the
1–connections from i to j, one obtains adj(M4)i,j.

role of the edges, and the intrinsic (inverse) polarizabilities of the single scatterers

are identified by the vertices’ self–loops. This graph earns the technical name of

vertex–labeled directed weighted simple graph permitting loops [39, 40]. From

now on, we will shorten and refer to this type of graphs as digraphs or simply

graphs.

This interpretation of the interaction matrix allows us to calculate the inversion

of the matrix in Eq. (10) using graph theory. To do this, we consider the usual

formula for the inversion of a matrix [41],

M−1 =
adj(M )

det(M)
, (12)

where adj(M) and det(M ) are the adjugate (transpose of the cofactor matrix) and

the determinant of M , respectively. The i, j–th element of the adjugate matrix is

defined as adj(M )i,j = (−1)i+j det
(
M(j,i)

)
, where M(j,i) is the minor1 built by

removing the jth row and the ith column from the matrix M . Therefore, both
1In this section, we call a “minor” an n× n matrix built by removing m rows and columns from

an N × N matrix, with N = m + n. We will refer to the determinant of such a matrix as the
“determinant of a minor”.
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terms on the right hand side of Eq. (12) depend on determinant evaluations.

This form of inversion has a distinct interpretation in graph theory. It is thanks

to this graph interpretation that we will be able to distinguish and identify different

scattering events, ultimately solving for the total field of the system. In addition,

using the same interpretation, we will illustrate a new visual way to build the con-

dition to find zero eigenvalue EPs in scattering systems.

The determinant of a generic matrix A can be calculated using the Coates’

determinant formula [37, 38, 42],

det(A) = (−1)N
∑

L∈L (A)

(−1)c(L)γ(L), (13)

where N is the number of vertices of the Coates digraph D∗(A) and L is an ele-

ment in the set L (A) of all the possible linear subdigraphs of the Coates digraph

D∗(A) [37]. A linear subdigraph of the Coates digraph D∗(A) is a subdigraph of

D∗(A) in which exactly one edge enters and exactly one edge leaves each ver-

tex [38, 42]. The term γ(L) is the product of the weights (see below) of the edges

of L, and c(L) is the number of cycles contained in L, i.e., the number of closed

loops of the specific graph.

In panel (b) of Fig. (2), we show an example of a linear subdigraph L of the

Coates digraph D∗(M4) (with N = 4). Following the just mentioned definition,

note that exactly one edge enters and leaves each vertex. The number of cycles

of this graph is c(L) = 2, while its weight is γ(L) = −α−1
1 G2,3G3,4G4,2. Following

the same procedure applied in this example, we obtain the determinant of the ma-

trix A by simply adding, according to Eq. (13), the appropriately–signed weights

of the linear subdigraphs of D∗(A).

Using a similar construction, the expression for the adjugate of a generic ma-

trix A is [38],

adj(A)i,j = (−1)N
∑

D∗[i→j]

(−1)c(D
∗[i→j])+1γ(D∗[i → j]), (14)

where the sum runs over all the possible 1–connections D∗[i → j] of the Coates

digraph. A 1–connection D∗[i → j] is obtained from a linear subdigraph (contain-

ing the edge j → i) by simply removing the edge j → i. Note that, in the case

i = j, this corresponds to removing the self–loop at vertex i.
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An example 1–connection is shown in panel (c) of Fig. 2. Starting by consid-

ering the linear subdigraph L in panel (b), we remove the edge j → i, that is,

the self–loop 1 → 1. In this way, we obtain the corresponding 1–connection hav-

ing number of cycles c(D∗[1 → 1]) = 1 and weight γ(D∗[1 → 1]) = −G2,3G3,4G4,2.

Following the same procedure applied in this example, we obtain the adjugate ele-

ment i, j of the matrix A by simply adding, according to Eq. (14), the appropriately–

signed weights of the 1–connections of D∗([i → j]). See appendix A.1 for further

examples and more formal definitions of Coates digraphs, linear subdigraphs, and

1–connections.

As a result, we can graphically represent Eqs. (14) and (13) for the matrix

inversion (12), key for the evaluation of the total field of the system (8). These

graph theory constructions, namely 1–connections and linear subdigraphs, give

us a visual and systematic way of computing the elements of the inverse matrix

M−1. I.e., each element (M−1)i,j = adj(M )i,j/ det(M) is evaluated by dividing

the weighted sum of the 1–connections from vertex i to j by the weighted sum

of the linear subdigraphs of D∗(M). As seen in section 2.4, this inverse allows

us to solve for the total field of the system (8). Although graph theory doesn’t

reduce the number of calculations required to perform this inversion, it provides

an intuitive representation of any scattering process in terms of a sequence of

multiple scattering events. As we shall see, this allows us to give a graphical

recipe for finding exceptional points in resonant scatterer arrays.

2.6 Identification of different scattering orders

Before treating the problem of exceptional points in these scatterer arrays, we

show how we can use Eqs. (13) and (14) for the construction of the elements

of the inverse matrix M−1 in the case of weak and strong interaction limits of

the system. These limits are taken by controlling the order of magnitude of the

distance between the scatterers (large distance between scatterers being equiva-

lent to weak coupling and vice versa) relative to the magnitude of the wavenumber

used to probe the system. This results in a change of the interaction terms in the

form of Green’s functions G. To show how to select the graph terms most rep-

resentative of these limits, we firstly demonstrate how 1–connections and linear

subdigraphs capture all the possible interaction paths of the signal in the sys-
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Figure 3: We show an example of construction of the element (M−1
4 )1,1 =

adj(M4)1,1/ det(M4) in the weak (panel (a)) and strong (panel (b)) approxima-
tions. While the weak approximation accounts for scattering events up to 2nd–
order in the interaction (∝ G2), the strong approximation accounts for interactions
of 4th (∝ G4) or the highest non–trivial order. The contributions of the single
graphs are derived using Eq. (14) for the adjugate and Eq. (13) for the deter-
minant. In the top panels, we show the 1–connections D∗[1 → 1] obtained by
removing the self–loop in vertex 1 from the linear subdigraphs L that include the
edge 1 → 1. In the bottom panels, we show the linear subdigraphs obtained from
the Coates digraph D∗(M4).

21



tem. This allow us to identify scattering events of different orders to represent

approximations.

As a simple example, we consider a system of two scatterers characterized by

polarizabilities α1 and α2, symmetrically interacting via the Green’s function G1,2.

Now, we constructively build all the possible paths (or scattering events) of the

system. To do this, we evaluate the incident field on the first scatterer, ϕinc(x1),

while analogous considerations can be done for the second scatterer. The field

ϕinc(x1) is the sum of all the possible paths starting from the different scatterers

of the system and ending in scatterer 1. All these signals are scaled by the po-

larizability of the scatterer itself, α1. We start adding the contribution of a signal

generated in scatterer 1, ϕinc(x1) =
[
ϕs(x1)α1 + · · ·

]
, where the first term on the

RHS is given by the source field. Proceeding in the same way, a signal propagat-

ing from the second scatterer is scaled by the polarizability of the scatterer itself,

α2, then weighted by the interaction G1,2 connecting the two scatterers, obtain-

ing ϕinc(x1) =
[
ϕs(x1)α1 + ϕs(x2)α2G1,2α1

]
. While these contributions account for

the “one–round trips”, the signals can propagate back and forth in the systems.

Considering “multiple–round trips”, we obtain

ϕinc(x1) =
[
ϕs(x1)α1 + ϕs(x2)α2G1,2α1

]
(15)[

1 + α1α2G
2
1,2 + (α1α2G

2
1,2)

2 + · · ·
]
,

where the term in the second square bracket accounts for the paths of different

orders and extend to an infinite number of interactions. In the case of |α1α2G
2
1,2| <

1, this last term can be written using the closed form of the geometric series as

ϕinc(x1) =

[
ϕs(x1)α1 + ϕs(x2)α2G1,2α1

]
1− α1α2G2

1,2

. (16)

This is the analytical solution to Eq. (10) for the incident field ϕinc(x1) in the case of

a symmetric 2–scatterer system. Note that, in Eq. (16), the terms in the numerator

(i.e., the adjugate terms or 1–connections) represent the single scattering events,

while the denominator (i.e., the determinant or linear subdigraphs) represent the

possible multiple repetitions of the single scattering events. We identify the single

scattering events and multiple repetitions by their order in the interaction G. For

example, in Eq. (16), the numerator is made of 0th and 1st–order scattering events.
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In the same way, the denominator is made of 0th–and 2nd–order multiple repeti-

tions. Proceeding in the same way for an arbitrary number of scatterers, we can

build single scattering events and identify paths containing ith–order interactions.

Now, we translate this interpretation of scattering events into the graph theory

picture of Sec. 2.5 and we define different regimes of approximation. To do this,

as a second example, we consider again the system described by M4. In Fig. 3,

we show how to evaluate the term (M4)
−1
1,1 = adj(M4)1,1/ det(M4) for the weak

(panel (a)) and strong (panel (b)) coupling limits. By means of the construction

shown above, in the case of weakly interacting scatterers, we restrict the sums in

Eqs. (14) and (13) to those 1–connections/linear subdigraphs carrying weights γ

up to second order in the interactions G (i.e., up to G2), similar to the truncation

of the Born series to second order [43]. With this approximation, we account for

all those scattering processes whose graphs include no more than 2 edges (self–

loops excluded), as shown in Fig. 3 panel (a). Approximating both the adjugate

terms and the full determinant of the matrix M4, we can evaluate the entries of

M−1
4 , as per Eq. (12).

Unlike the Born series, which typically diverges in the limit of strong scatter-

ing, we can also take the limit of very strongly coupled particles, isolating those

graphs with the largest number of edges (i.e., the highest non–trivial power of

the inter–particle interaction G). Thus, we keep only the highest–order interaction

terms of the sum in the adjugate terms and in the full determinant. In Fig. 3 panel

(b), we see how these correspond to 1-connections of order N−1 for the adjugate

and linear subdigraphs of order N for the determinant. Consequently, the most

significant scattering event in the case of strongly interacting scatterers is rep-

resented by a signal traveling across the entire system and interacting with the

highest number of scatterers2. Therefore, graph theory allows for a systematic

way to calculate the total field ϕ(x) to any order in the interaction.

This graph interpretation results in a very efficient way of getting a good ap-

proximation of the total field ϕ(x) while only including the dominant scattering

events in the weak (0th, 1st, 2nd–order) and strong (N th, (N − 1)th–order) cases.

We show this in Fig. 4, where we evaluate the average percentage error of the

absolute value of the approximated fields |ϕ(x)weak| (in panel (a)) and |ϕ(x)strong|
2Note that, although these approximations select a small subset of all the possible scattering

processes, their number still increases rapidly with the number of particles N .
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Figure 4: Percentage error of the weak (panel (a)) and strong (panel (b)) coupling
approximations of the total field. This is evaluated with respect to the correspond-
ing non–approximated total field obtained using Eq. (12). Since the interaction
strengths are determined by the Green’s functions, the weak and strong approxi-
mations only differ in the inter–scatterer distance, while the remaining parameters
are kept unchanged. The error is averaged over 100 setups with random polar-
izabilities (hence the asymmetric appearance of the plot in panel (a)). The white
dots identify the scatterers in the system. Given the small inter–scatterer distance
of the strong coupling approximation, in panel (b), the scatterers are represented
all on top of each other. In panel (c), while the strong–coupling approximation
(orange) maintains a uniform percentage error in space, the weak–coupling ap-
proximation (blue) strongly depends on spatial distribution.
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(in panel (b)) against the absolute value of the corresponding non–approximated

field |ϕ(x)|. The percentage error is averaged over 100 random values of scat-

terers’ polarizations. Note that, in the case of weak coupling, we set k0r̄ ≈ 1

where r̄ is the inter–scatterer distance, while in the case of strong coupling, we

set k0r̄ ≪ 1.

2.7 N–th order exceptional points

An exceptional point (EP) of a system is a non–Hermitian degeneracy in param-

eter space that emerges whenever two or more eigenvectors coalesce. The

order of the EP is determined by the number of coalescing eigenvectors. At

the EP, the matrix of the system is not diagonalizable but still admits a Jordan

form [44]. In such form, the dimension of the Jordan blocks correspond to the

order of the eigenvectors’ coalescence, e.g., a 2 × 2 Jordan block corresponds

to a 2nd–order coalescence and so on. Finding these non–Hermitian singularities

in small–dimensional systems is straightforward and an analytical solution can

be quickly determined. Both 2nd–order and limited higher–order EPs have been

thoroughly studied [45, 46, 47] and experimentally realized [21, 48, 49]. However,

no consistent method to find N th–order EPs in wave scattering systems has been

presented yet. Note that we focus on those EPs with degenerate zero eigenvalue

due to their clear physical implications on the total field of the system. In fact,

since the total field depends on the inverse of the determinant, these eigenvalues

are the cause to its highly degenerate responsiveness to parameter perturbation.

In the following, we use the transpose Frobenius companion matrix and its

characteristic polynomial to explore N th–order zero eigenvalue EPs [25] and we

interpret the result from a graph theory perspective. Note that, in a similar fashion,

companion matrices and N -th order EPs have been recently studied in a tropical

geometric framework [50]. We then design an EP in a scattering setting and

probe the system’s response against parameter perturbations.

2.7.1 EPs conditions

We now consider a system of N scatterers and impose the condition that, at

some desired resonant frequency ω0, the interaction matrix (11) exhibits an N th–

order EP whose eigenvalues coalesce to zero. As the outgoing field from the
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system depends on the inverse of the interaction matrix, this ought to yield a

system whose power output diverges at the design frequency, and yet is also

very sensitive to small perturbations (as in [21]), e.g., the scatterer positions.

We first consider the transpose Frobenius companion matrix MFrob associated

with the matrix M of Eq. (11) [51]. The companion matrix is defined such that it

generates the same polynomial for the eigenvalues λ of M , and is given by

MFrob =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−c0 −c1 −c2 · · · −cN−2 −cN−1


, (17)

where the ci are the coefficients of the powers of λ in the characteristic polyno-

mial,

0 = det(λ1−M) (18)

= det(λ1−MFrob)

= λN + (−1)1cN−1λ
N−1 + · · ·+ (−1)Nc1λ+ c0.

The form of the companion matrix is useful to us as it is closely related to the

single N ×N Jordan block matrix, J = δi+1,j where i, j ∈ [1, N ],

J =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

0 0 0 · · · 0 0


. (19)

The two matrices (17) and (19) take the same form once all the ci in (17) are

zero. We assume that the interaction matrix M in Eq. (11) differs from (17) by

a similarity transformation, an assumption which holds for the cases considered
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below. It is, in fact, sufficient for the interaction matrix M to have N distinct roots

(in regime of no EPs) for the transformation MFrob = T−1MT to exist [52]. The

transformation matrix T = PQ−1 is derived as the product of the non-singular

matrix P whose columns are the eigenvectors of M and Q whose columns are

made of the set of N eigenvectors of MFrob, qi = (1, λi, λ
2
i , · · · , λN−1

i )T relative

to its eigenvalues λi [53]. 3 For details on the derivation of such transformation

T see App. A.2. With this assumption, there is an N th–order non–Hermitian

degeneracy in the spectrum of M when all the ci are zero. By means of this

simple requirement, we can engineer a zero eigenvalue EP of desired order by

solving the set of non–linear equations given by the conditions ci = 0 for i =

0, 1, · · · , N−1. These coefficients ci can be evaluated relying on the expansion of

the determinant in terms of its minors. Our system of equations for an N th–order

EP with zero eigenvalue thus becomes

c0 = det(M ) = 0

c1 =
∑

I1∈S1([n])

det
(
M(i1,i1)

)
= 0

c2 =
∑

I2∈S2([n])

det
(
M(i1,i1),(i2,i2)

)
= 0

...

cN−1 =
∑

IN−1∈SN−1([n])

det
(
M(i1,i1),··· ,(iN−1,iN−1)

)
= Tr(M ) = 0,

(20)

where Im is the set of indices Im = {i1, i2, · · · , im} defining the minor and Sm([n])

is the collection of size–m combinations within the set [n] = {1, 2, · · · , n}. There-

fore, M(i,i) is the first minor obtained by removing the i–th row and column,

M(i,i),(j,j) is the second minor obtained by removing i–th and j–th rows and

columns, and so on. Using this form to construct the coefficients ci, we numer-

ically evaluate the solution to the non–linear system, identifying the parameters

for an N th–order EP.

Importantly, the EP conditions (20) are given in terms of sums of minors of
3Note that, in case there is no similarity transformation between the matrix and its Frobenius

companion matrix, it is always possible to find lower order EPs given by the block companion
matrices Ref. [52].
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the interaction matrix, which we have given a graph theoretic interpretation for

in Eq. (13) and Eq. (14). For instance, satisfying the final condition in Eq. (20)

requires a vanishing sum of the 1× 1 minors, which equals the trace of the inter-

action matrix. From the identification shown in Fig. 2, this condition requires the

vanishing sum of the self–interactions in the system. Thus, at a zero eigenvalue

N th–order exceptional point, we require (among others) the condition that the in-

verse polarizabilities α−1
i sum to zero. Since the polarizabilities are complex, both

the real and imaginary parts of the α will have to sum to zero, which is only pos-

sible in the presence of active scatterers, i.e., scatterers that exhibit gain. Note

that, as we will show in Sec. 2.7.3, the active/passive nature of the scatterers is

determined by an interplay of real and imaginary parts of the polarizabilities of

the scatterers. As a result, in the presence of scatterers with real polarizabilities,

a full system of active scatterers is required to find an exceptional point.

Moving up through the conditions (20), from cN−1 to cN−2 and so on, we see

that all the second order interactions within the 2 × 2 minors must also sum to

zero (equivalent to considering the 2 × 2 interaction matrix for every pair of par-

ticles in the system), as must the third order interactions defined within the 3 × 3

minors and so on. We thus reach the conclusion that an N th–order exceptional

point can be associated with N conditions, each requiring the vanishing sum of

sub–scattering events between a fixed number of particles. Note that the latter

zero trace and determinant conditions found in the scattering matrix are reminis-

cent of the ones found in the case of systems described by a Hamiltonian with

pseudochiral symmetry [25].

In addition to the maximal N th–order EP, we can also find nth–order singulari-

ties with n < N by requiring only the first n coefficients c0, c1, · · · , cn−1 to vanish.

This generates a smaller non–linear system whose solution identifies an nth–

order EP. This is only possible if n coefficients vanish in ascending order, starting

from c0. In fact, this condition allows one to collect a factor λn in the polynomial

in Eq. (18), producing an nth–order λ = 0 solution. This solution corresponds

to the n × n Jordan block relative to the nth–order EP. Any other combination of

vanishing coefficients results in a diagonalizable system, without non–Hermitian

singularities. Finally, note that the construction of EPs is inevitably dependent on

the presence of interaction G in the system. In fact, in the case of no interaction,

we would be left with a diagonalizable system.
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Figure 5: Example construction of a scattering system with an N th–order excep-
tional point. The system consists of N scatterers (here N = 4) with polarizabilities
αn forming a cyclic polygon on a circle with radius rEP. Since the scatterers are
equidistantly spaced, the angle θ is uniquely determined by the number of scat-
terers N , θ = 2π/N . The scatterers interact with the nearest neighbors via the
Green’s function G1 and with the next–to–nearest neighbors via G2. When prob-
ing the total field and the power output, we use the radial distance of the first
scatterer r as the tunable parameter to scan through the exceptional point in pa-
rameter space.

2.7.2 Graph theory conditions for EPs

As an example, we now design a scattering configuration exhibiting a 4th–order

exceptional point and we interpret the condition of non-Hermitian degeneracy in

terms of graphs. In the next subsection, we show how the scattered total field

depends on a chosen parameter, in our case, the position of the first scatterer.

For the purpose of simplicity and readability, we now find the parameters (in

our case, the polarizabilities α) that satisfy the EP conditions in a system in which

the scatterers’ positions are fixed. As sketched in Fig. 5, we equidistantly in-

scribe our scatterer array in a circle of radius rEP, simplifying the interaction ma-

trix such that it contains only N/2 different Green’s functions G when N is even,

and (N − 1)/2 when N is odd. Given the limited number of Green’s functions,

this configuration is particularly convenient for an efficient search of the EPs. The
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Figure 6: Example construction of the condition c1 = 0 represented by the ap-
propriate 1–connection graphs. The conditions are the graph–theory analogous
of the set of non–linear equations in (20) for the interaction matrix M4,sym relative
to Fig. 5. We show only the events D∗[4 → 4] with the 4th scatterer neglected,
however the condition accounts also for three analogous sets of graphs in which
the other scatterers are neglected, namely D∗[1 → 1], D∗[2 → 2], and D∗[3 → 3].
All the resulting scattering events have to be finally summed together to give the
final condition c1 = α−1

1 α−1
2 α−1

3 − α−1
1 G2

1 − α−1
2 G2

2 − α−1
3 G2

1 − 2G2
1G2 + · · · = 0.
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Figure 7: Effects of a 4th–order exceptional point on the total field (panel (a)),
global Euclidean distance (panel (b)), and power output (panel (c)) of the system
in response to a change in the tuning parameter, that is, the radial distance of the
first scatterer r. The latter ranges in r ∈ [rEP − ϵk−1

0 , rEP + ϵk−1
0 ], where ϵ defines

a small deviation from the exceptional point. In panel (a), we show the absolute
value of the total field normalized against the source field. In the scan from left
to right (indicated by the white arrow), the tunable radial distance r is shifted by
the amounts ϵ ∈ {−10−3,−10−5,+10−3}. Note how the total field experiences a
sudden peak in the proximity of the EP (middle plot). In panel (b), we show the
global Euclidean distance of the right eigenvectors (see Eq. (22)) as a function of
the tuning parameter r. This measure goes to zero when r = rEP. At this point, all
the right eigenvectors (and corresponding left eigenvectors) merge into a single
one. In panel (c), we show the power output (see Eq. (23)) with respect to the
tunable parameter r for different purely imaginary shifts of the resonant frequency,
Im{ω0} ∈ {0, 5 · 10−4, 1 · 10−3, 2 · 10−3}. For increasing imaginary shifts, the power
response of the system broadens while the peak power at the EP reduces. Note
that, given the general high gain of the system determined by the polarizabilities,
the baseline power output remains of order 107 even for significant shifts from the
ideal EP condition.
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interaction matrix associated with these cyclic polygons of scattering particles is,

Msym =



α−1
1 −G1 −G2 · · · −G2 −G1

−G1 α−1
2 −G1 · · · −G3 −G2

−G2 −G1 α−1
3 · · · −G4 −G3

...
...

... . . . ...
...

−G2 −G3 −G4 · · · α−1
N−1 −G1

−G1 −G2 −G3 · · · −G1 α−1
N


, (21)

where G1 represents the nearest–neighbor interactions, G2 represents the next–

to–nearest–neighbor interactions, and so on. The angle between two consecutive

scatterers is θ = 2π/N . In the figure, we also represent the tunable parameter,

that is, the radial distance of the first scatterer r. While this parameter is not used

to find the EP condition of Eq. (21) (it would indeed change the periodic–chain–

like structure of the matrix in Eq. (21)), it will be needed later for the numerical

analysis on the system’s sensitivity to parameter perturbations.

Our system is described by the 4 × 4 matrix M4,sym with G1 = G(x1,x2) =

G(x1,x4) = G(x2,x3) = G(x3,x4) and G2 = G(x1,x3) = G(x2,x4). The Frobe-

nius companion matrix of M4,sym takes the form of Eq. (17) restricted to the space

of 4 × 4 matrices, therefore including only the coefficients ci with i ∈ {0, 1, 2, 3}.

These coefficients can be evaluated using the determinants in Eq. (20).

Our graph theory description previously introduced illustrates the meaning of

this set of vanishing sums. For example, in Fig. 6, we show the condition c1 =

0 which requires all the 3rd–order scattering events to sum to zero. It is worth

recalling that the zero condition of the ith–order coefficient is entirely independent

of scattering events of any other order. This means that asking for the single

coefficient ci to be zero is equivalent to asking for all the scattering events of

order N − i to sum to zero. Thus, to find a 4th–order EP, we need the condition

ci = 0 to be satisfied by the scattering events of every order, that is, ci = 0 for

i = 0, 1, 2, 3.

We finally note that, while a graph can be associated to the matrix of eigenvec-

tors of the system, we could not find any particular interpretation to the coales-

cence of multiple eigenvectors in terms of graphs. Moreover, in the case of EPs of

non–trivial order, a mathematical expression for the eigenvectors becomes highly
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cumbersome and strongly dependent on the system described. The non–trivial

problem of finding a general expression for the eigenvectors of high–order EPs

and an associated graph theoretic interpretation is left for further studies.

2.7.3 Trading sensitivity for dissipation balance

In Sec. 2.7.2, we gave an example of a convenient system to find a 4th–order EP.

On this system, we interpreted the condition to find such EPs from a graph theory

perspective. We now show how the presence of this high–order EP affects the

total field of the system with respect to perturbations to the chosen parameter.

In our case, this parameter is the position of the first scatterer r as depicted in

Fig. 5.

In Fig. 7 panel (b), we show the coalescence of the eigenvectors in the range

of parameter r ∈ [rEP − ϵk−1
0 , rEP + ϵk−1

0 ] with ϵ = 0.02 by means of the vanishing

total Euclidean distance. This distance is defined as

ρ :=
N∑
i=1

j=i+1

||vi − vj||, (22)

where vi and vj are the right eigenvectors of the matrix M4,sym and the sum

takes care of not double–counting terms. This quantity vanishes when r = rEP,

signaling the coalescence of all the N eigenvectors relative to the degenerate

eigenvalue 0. This is the N th–order exceptional point. Note that, given the high–

order nature of the exceptional point, known EP measures like the phase rigidity

of the eigenvectors and the condition number of the eigenvector matrix do not en-

tirely capture the features of the singularity [54]. Note also that while the distance

in Eq. 22 serves as an intuitive quantity to witness full eigenvector degeneracy,

it is unable to give insight on the eigenvector scaling around the EPs. To do so,

one can still access the phase rigidity’s critical exponent [55, 56]. The immediate

effects of the EP on the total field are shown in Fig. 7 panel (a). In this figure, we

scan, from left to right, through the EP with the tunable parameter r. In proxim-

ity of the EP, the absolute value of the total field |ϕ(x)| rapidly increases before

attenuating again, once the singularity is passed.

In the same way, we can probe the EP just obtained by measuring the power
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output of our system of scatterers (see Fig. 5), which we define as

Pout :=

∮
S

Im
{
ϕ(x)∗∇ϕ(x)

}
· n̂ ds (23)

=−
N∑

n=1
n̸=m

Im{αn}|ϕinc(xn)|2.

Eq. (23) is derived, after little manipulation, by integrating the LHS of Eq. (7) (mul-

tiplied from the left by the complex conjugate field ϕ(x)∗) in a volume surrounding

all the scatterers. We obtain the closed surface integral in Eq. (23) by means of

the divergence theorem.

The power output, as written in Eq. (23), depends on the sum of the incident

fields on the different scatterers of the system weighted by the imaginary parts of

the polarizabilities. In our case, the entire dependence of the power response on

the tuning parameter r is contained in the incident field. This is uniquely deter-

mined by the matrix Msym. It is common to express the sensitivity (in our case, in

the form of power output) of the system at the EPs in terms of a perturbation to

the system matrix [21, 57]. Thus, to express the power output in Puiseux series,

one would need to rederive the scattering matrix in terms of a perturbation around

the EP as for example Msym = J + εM ′ where J is the full Jordan matrix (19)

and M ′ is a non trivial perturbation matrix [25]. Doing so, if the perturbation

around the EP lifts the coefficient cN−1 such that cN−1 ̸= 0, the Puiseux series

λ = λ0 +
∑∞

i=1 ε
i/Nλi exists and refers to the N th–order EP. However, in case the

perturbation leaves cN−1 = 0, the perturbed eigenvalues split in k different cycles

of order nk of the form λk = λ0 +
∑∞

i=1 ε
i/nkλk,i with the various nk < N summing

to N as
∑

k nk = N [25, 45, 58]. Note that, in the case of the system described

in Eq. (21), a perturbation in the radial distance r indeed lifts the coefficient cN−1

such that cN−1 ̸= 0.

Given the high order of the exceptional point, the power output of the system

shows extreme sensitivity to perturbations in parameter space. In Fig. 7 panel (c),

we show the power output of Eq. (23) versus the tunable parameter r for different

imaginary offsets of the resonant frequency ω0 at which the EP is found.

The introduction of an imaginary part in the design frequency has multiple

functions. On the one hand, it helps to understand how possible experimental in-

accuracies can affect peak and shape of the power output of the system. On the

34



α1 α2 α3 α4

-2

-1

0

4
π

Im
{α
}/

(ω
0
|α
|2 )
−

1 Passive

Active

Figure 8: Results of the inequality in Eq. (24) for the polarizabilities α. The po-
larizabilities are the solutions to the EP conditions (20) of the system described
by M4,sym and shown in Fig. 5. The solid lines are all the possible solutions
of polarizabilities for a scan in the imaginary part of the resonant frequency,
Im{ω0} ∈ [−1, 1]. This has been done in a similar fashion to Ref. [18]. The
“cross” marker indicates Im{ω0} = 0 while the “left–caret” and “right–caret” indi-
cate the end of the imaginary ranges, Im{ω0} = −1 and Im{ω0} = 1, respectively.
The scattering elements are passive when the α lay on the positive semi–plane
(red semi–plane), therefore they satisfy the inequality. In the figure, all the so-
lutions α of the system considered are active, therefore laying on the negative
semi–plane (green semi–plane). The figure shows how imaginary shifts in the
resonant frequency ω0 used to design the EP allows one to tune the distribution
of the gain/loss of the system across the scatterers.

other hand, it shows how “ad–hoc” imaginary shifts in the design frequency of the

system can help to adjust the distribution of gain/loss across the scatterers. Since

the system is then probed with real frequencies ω0, introducing an imaginary shift

in the design frequency results in a quasi–coalescence of the eigenvectors caus-

ing a drop in the system responsiveness to the singularity. This is shown in the

figure by means of the amplitude reduction and broadening of the power out-

put curves when increasing the imaginary shift of ω0. Note that the curve with

Im{ω0} = 0 (solid blue curve in the figure), which is set to cross the EP, is re–

scaled by a factor 10−26 in order to fit into the graph and give some insight of the

power output behavior.

We now show how we can tune the distribution of the gain/loss of the system

across the scatterers in order to finely adjust possible experimental setups, where

it is preferred to have a set of scatterers with the least possible gain. The pres-

ence of exceptional points inevitably depends on the scatterers’ structure and, in

particular, on their active nature. The condition for a scatterer j to be passive is
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that its polarizability αj satisfies the inequality [59]

Im
{
αj

}
>

k0
4π

|αj|2, (24)

obtained by asking for a negative divergence of the power output in the case of

passive scatterers. Eq. (24) is derived for the case of 3D Green’s function as

considered in this section. As a reminder, k0 = ω0/c with c = 1 in this section.

If the polarizabilty of a scatterer satisfies this inequality, the scatterer acts as a

passive, lossy medium. As we have seen in Eq. (20), one requirement to obtain

an N th–order EP is Tr(M ) = 0, i.e., all the scattering events of 0–th order have to

sum to 0 while individually being non–vanishing. This implies having active ele-

ments in the system, i.e., scatterers with Im{α} < 0 which cannot satisfy Eq. (24).

On the other hand, elements with Im{α} > 0 do not necessarily satisfy Eq. (24),

thus, are not necessarily passive. By means of this inequality, we define a polar-

izability regime in which energy has to be injected into the system to obtain these

N th–order EPs.

In Fig. 8, we show this inequality test for the polarizabilities of the system de-

scribed by M4,sym. In this case, none of the polarizabilities satisfy the inequality

(no polarizabilities lie on the positive half of the plane), indicating that no passive

scatterers are found in the system 4. The test consists of a scan in the imaginary

shift range Im{ω0} ∈ [−1, 1], where ω0 is the resonant frequency at which the

EP is evaluated. The “cross” marker indicates Im{ω0} = 0 while the “left–caret”

and “right–caret” indicate the end of the imaginary ranges, Im{ω0} = −1 and

Im{ω0} = 1, respectively. The semi–transparent lines represent all the intermedi-

ate α’s solutions found in this range.

Note that, we already implemented this imaginary–shifted resonant frequency

in order to control the spectral width of the scattering resonance of the system

(see panel (c) of Fig. 7). However, in this case, one can use the imaginary shift

to move the gain/loss bias on different scatterers. Therefore, an imaginary shift in

the design resonant frequency allows one to fine tune the dissipation balance of

the system in exchange of a broadening of the power output with respect to the

EP parameter. This fine tuning capability becomes crucial in experimental setups
4Using our numerics, we found polarizabilities satisfying the inequality (24) in 7–scatterer sys-

tems described by the matrix (21).
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that aim for the least possible gain in their set of scatterers.

2.8 Conclusion

In this section, we used graph theory to solve wave scattering problems within the

discrete dipole approximation (DDA).

Firstly, we showed how to use graph theory to develop a diagrammatic method

for understanding multiple scattering processes. These processes are encoded

in the inverse of the interaction matrix used to find the analytical total field of the

system. We interpreted single scattering events in terms of 1–connections and

linear subdigraphs and used these to approximate weakly and strongly coupled

systems. This is a convenient machinery to calculate the total field ϕ(x) when the

dimensionality of the system makes finding a full analytical solution impractical.

Secondly, by exploiting the Frobenius companion matrix associated with the

system, we developed a systematic procedure to find N th–order zero eigenvalue

exceptional points (EPs). The EPs are found by making vanish the sum of the

1–connections associated with scattering events of the same order. At a zero

eigenvalue EP, the scattering becomes singular, causing the divergence of the

emitted power. In our example, the perturbation coincided with a single–particle

displacement from the EP configuration of the order of 1/100 of a wavelength.

Although such a sharp sensitivity is achieved in position basis, one could de-

scribe the system in terms of the directions of input and output waves. Note that,

as shown in this section, one can also generate nth–order zero eigenvalue EPs

where n < N . This might be useful to trade part of the scattered field sensitiv-

ity with a reduced number of conditions in the non–linear system. This further

reduces the requirement for gain, crucial in certain experimental settings. The

generation of N th–order zero eigenvalue EPs can be of particular interest for co-

herent perfect absorption (CPA) structures [60, 61]. Here, the signature of the

zero eigenvalue EPs (referred to as CPA EPs) is a quartic behavior of the ab-

sorption line shape in the perfectly absorbed channel. In addition, we believe the

graph theoretical approach to be a promising tool to describe EPs associated with

PT symmetry breaking in scattering systems [62, 63] and the non-Hermitian skin

effect in the case of non–reciprocal 1D chains of scatterers [64, 65, 66].

Finally, to control the spectral width of the exceptional points, we explored
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the consequences of displacing the design resonant frequency into the complex

plane. We found that it is possible to trade the required gain/loss of the single

scatterers with a broadened response. This would allow one to choose the pre-

ferred dissipation balance throughout the array of elements at the expenses of a

reduction in the power output of the system. It might be possible to explore this

trade–off as well as the entirety of multiple scattering physics in programmable

metamaterials such as those demonstrated by Cho et al. [18].

Software package

The Julia package developed for solving the wave scattering problems found in

this section is available at https://github.com/mekise/graph-theory-dda.
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3 Local master equations bypass the secular ap-

proximation

3.1 Statement of contribution

In the following work, I devised the idea to study exceptional points in the regime

of open quantum systems. I did all the calculations to obtain the master equa-

tions’ expressions, exceptional point conditions, and transformations. I have built

the code, generated the results, and written the paper. The latter with a strong

contribution by Luis Correa. Luis Correa also devised the idea to look for key

dissimilarities between local and global master equations.

3.2 Summary

Master equations are a vital tool to model heat flow through nanoscale thermody-

namic systems. Most practical devices are made up of interacting sub-systems

and are often modelled using either local master equations (LMEs) or global mas-

ter equations (GMEs). While the limiting cases in which either the LME or the

GME breaks down are well understood, there exists a ‘grey area’ in which both

equations capture steady-state heat currents reliably but predict very different

transient heat flows. In such cases, which one should we trust? Here we show

that, when it comes to dynamics, the local approach can be more reliable than

the global one for weakly interacting open quantum systems. This is due to the

fact that the secular approximation, which underpins the GME, can destroy key

dynamical features. To illustrate this, we consider a minimal transport setup and

show that its LME displays exceptional points (EPs). These singularities have

been observed in a superconducting-circuit realisation of the model [67]. How-

ever, in stark contrast to experimental evidence, no EPs appear within the global

approach. We then show that the EPs are a feature built into the Redfield equa-

tion, which is more accurate than the LME and the GME. Finally, we show that

the local approach emerges as the weak-interaction limit of the Redfield equation,

and that it entirely avoids the secular approximation.
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3.3 Introduction

Master equations and quantum thermodynamics go hand in hand. The former

have become essential tools to make sense of the ‘thermodynamics’ of quan-

tum systems. But, conversely, the early works on quantum thermodynamics

[68, 69, 70] focused on the study of the mathematical properties of master equa-

tions. Nowadays the field is evolving very rapidly [71], and quantum heat devices

are making the transition from theory to experiments on a wide range of plat-

forms, including trapped ions, solid-state systems, atomic gases, single-electron

systems, nanoscale thermoelectrics, and superconducting circuits [72, 73, 74, 75,

76, 77, 78, 79, 80].

The Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) quantum master equa-

tion [81, 82] makes it easy to draw parallels between the dissipative dynamics of

a single open quantum system and the thermodynamics of macroscopic devices

[83, 84, 85]. Namely, these equations can be derived from first principles in the

limit of weak system–environment coupling, and may lead to thermal equilibrium

[86]. We shall refer to such ‘thermalising’ GKSL equations as global master equa-

tions (GMEs). Furthermore, heat currents can be formally defined such that they

obey the second law of (classical) thermodynamics [68, 83]. However, the un-

derlying assumptions of the global master equation require a clean timescale

separation [87], which may break down for, e.g., small multipartite quantum-

thermodynamic devices that interact weakly among them (see, e.g.,[88, 89]) and

large many-body open quantum systems [90].

Alternatively, in multipartite open quantum systems, master equations have

often been built heuristically by ‘adding up’ GKSL terms (cf. Fig. 9). These are

referred-to as local master equations (LMEs). While such equations do com-

ply, by construction, with the minimum expectation of generating a completely

positive dynamics, they have been criticised for their thermodynamic deficiencies

[88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]. Namely, unlike global

master equations, LMEs fail to bring systems to thermal equilibrium, even in the

limit of weak system–environment interactions [95, 98]. When applied to quantum

heat devices, they entirely miss crucial physics, such as heat leaks and internal

dissipation [92, 103]. They may even predict flagrant violations of the Second Law

of thermodynamics, in the form of cold-to-hot stationary heat flows [93]. Surpris-
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Figure 9: Example system and local/global pictures. Two resonators of fre-
quencies ωh and ωc are coupled linearly with strength k, and connected weakly
with dissipation strengths λh and λc to two independent thermal reservoirs at tem-
peratures, Th and Tc, respectively (panel (a)). Heat thus flows through the res-
onators. The key difference between the local (panel (b)) and the global (panel
(c)) master equations is illustrated by the shaded regions that indicate the scope
of the hot and cold dissipators, respectively.

ingly, however, the LME does prove very accurate in some cases—even more ac-

curate than the GME [88, 89]. The aim of this section is to understand when and

why. Using the most suitable master equation in each situation (see Fig. 9) can

make a crucial difference when studying the thermodynamics of any nanoscale

heat device.

Local master equations may be understood as a rough approximation to the

true dissipative dynamics, valid in the limit of weak interactions between the sub-

systems. Starting from a microscopic model this may be shown in two closely re-

lated ways—either by carefully introducing a coarse-graining in the time-evolution

of the open system [104, 105, 106, 107, 108, 109, 110, 111, 112], or by truncating

a perturbative expansion of the master equation in the internal coupling strength

[113, 114].

The disagreement between the steady-state thermodynamic predictions of

GME and LME had been illustrated before [89, 94, 115]. Here, we put the spot-

light on situations in which they agree in the steady state, but differ during the

transient dynamics. In such cases, which master equation is correct? One that

is thermodynamically sound (GME), or a truncated series expansion with limited

validity and serious thermodynamic deficiencies (LME)? Strikingly, our answer is

that we should always trust the latter within its error bars, which assume weak in-

ternal couplings. This holds for any multipartite quantum heat device which uses
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frequency filters to couple to the environment [116], e.g., a qubit or a harmonic

oscillator.

For illustration, we focus on the specific model of two coupled resonators that

connect two thermal reservoirs. We find that the LME exhibits a family of ex-

ceptional points [117] (EPs) in its dynamics, while the corresponding GME does

not. Yet, EPs have indeed been found experimentally in a superconducting circuit

described by the same model [67]. In addition, at weak internal couplings, the

transient heat currents obtained from the LME agree with the much more accu-

rate Redfield equation [118] while not with the global approach. The reason for

the failures of the GME is that it is underpinned by the (somewhat crude) secu-

lar approximation, which misses relevant physics. In contrast, the LME can be

obtained directly from the Redfield equation, bypassing the secular approxima-

tion. Our results thus add much needed clarity to the long-standing ‘local-versus-

global’ debate, and explain various previously reported features of both the global

and the local approach.

This section is structured as follows: We begin by giving an overview of open-

system dynamics within the global and local approach in Sec. 3.4 and then, de-

scribing the details of the example model in Sec. 3.5. In Sec. 3.6 we introduce

the concept of exceptional points and discuss how to search for them, given the

equations of motion of a linear open quantum system. We then illustrate the differ-

ent exceptional-point structure in parameter space according to the local, global,

and Redfield approaches (Sec. 3.7). Finally, in Sec. 3.7.4, we show that, at reso-

nance, the local approach succeeds at capturing the correct heat-flow dynamics,

while the global master equation fails. In Sec. 3.8 we summarise and conclude.

3.4 Open-system dynamics

3.4.1 The global master equation

The Hamiltonian of a generic multipartite open system connected to various in-

dependent bosonic heat baths reads

HHH =HHHS +HHHB +HHHSB, (25)
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where HHHS is the Hamiltonian of the system, HHHB the Hamiltonian of the baths,

each made of infinitely many uncoupled harmonic oscillators, and HHHSB stands for

the interaction between system and baths. Specifically, let

HHHS =
∑

i
HHH (loc)

i + kVVV , (26)

where HHH (loc)
i is the local Hamiltonian of each sub-system and VVV denotes the in-

teractions between them. Possibly incurring in some redundancy, we will indicate

the sub-system Hamiltonians with the superscript “(loc)” in the hope for clarity

when comparing the global with the local approach. The parameter k controls the

magnitude of the latter. Every sub-system couples to its own independent bath,

i.e.

HHHSB =
∑

α
λαSSSα ⊗BBBα, (27)

where BBBα is a generic bath operator and SSSα is a system operator which does not

commute with HHHS, thus allowing for energy dissipation as well as decoherence.

Here, λα controls the strength of the interaction with bath α.

The effective equation of motion for any arbitrary system observable OOO can be

cast in the standard GKSL form [81, 82]. Although its microscopic derivation is

textbook material [87], we provide it in Appendix B.1, making as few assumptions

as possible. Essentially, these are:

(i) that the dissipation strengths are small,

(ii) that system and bath start uncorrelated,

(iii) that the bath correlation functions are short-lived,

(iv) and that there is a clear-cut timescale separation between (fast) coherent

and (slow) dissipative processes.

The so-called (partial) Redfield equation [118] (cf. Appendix B.1) follows from

these assumptions,

dOOO

dt
= i[HHHS,OOO] +

∑
α
R†

α(OOO) +O(λ3
α). (28)
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The super-operator R†
α(OOO) associated to bath α is given by

R†
α(OOO) =

1

2

∑
ωi×ωj<0

γ(α)
ωi

(
AAA(α)†

ωi
OOOAAA(α)

ωj
−AAA(α)

ωj
AAA(α)†

ωi
OOO
)
+ h.c. (29)

where the summation ωi × ωj < 0 runs over the frequencies ωi and ωj of all open

decay channels [87] with different sign. The decay rates γ
(α)
ω are

γ(α)
ω = 2λ2

α Re

∫ ∞

0

ds eiωs ⟨BBBα(s)BBBα(0)⟩, (30)

where the notation ⟨·⟩ indicates thermal averaging at temperature Tα. Finally, AAA(α)
ω

is the ‘jump’ operator of the decay channel at frequency ω from bath α. These

satisfy

[HHHS,AAA
(α)
ω ] = −ωAAA(α)

ω , (31a)

SSSα =
∑

ω
AAA(α)

ω , (31b)

AAA(α) †
ω = AAA

(α)
−ω. (31c)

In particular, Eq. (30) implies that R†
α is O(λ2

α). Note as well that, to make sense

of (28) and all the following adjoint master equations, we must always take expec-

tation values, as we do in Eqs. (57), (70a) and (72a).

Pushing (iv) to its last consequences justifies the (full) secular approximation,

and allows to bring Eq. (28) to the simpler GKSL form,

dOOO

dt
= i[HHHS,OOO] +

∑
α
G †
α(OOO) +O(λ3

α), (32)

where the super-operators G †
α(OOO) are given by

G †
α(OOO) =

∑
ω
γ(α)
ω

(
AAA(α) †

ω OOOAAA(α)
ω −1

2
{AAA(α) †

ω AAA(α)
ω ,OOO}+

)
. (33)

Here, {·, ·}+ stands for the anti-commutator. Eq. (32) is a global master equation.

The name tag highlights the fact that the AAA
(α)
ω enable jumps between eigenstates

of the full multipartite HHHS, rather than between states of each sub-system HHH (loc)
α

(see Fig. 9).

Since full diagonalisation of HHHS is needed to construct these jump opera-

tors, setting up Eq. (32) may become computationally unworkable; especially,
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when one wishes to scale up a many-body open quantum system. Furthermore,

the GME suffers from another important issue, especially when applied to sys-

tems with a dense energy spectrum. In such cases, assumption (iv) from the list

above is likely to break down [90], which could invalidate the GME’s predictions

[88, 89, 119]. On the ‘plus side’, constructing jump operators that fulfil Eqs. (31) is

guaranteed to bring the system into a state of thermodynamic equilibrium when-

ever all temperatures coincide, i.e., Tα = T ∀α. This is analogous to the Zeroth

Law of thermodynamics [120]. Since, in addition, the dynamical map resulting

from (32) is completely positive [69], it can be shown that

∑
α

Q̇α

Tα

≤ 0, (34a)

for Q̇α := ⟨G †
α(HHHS)⟩∞, (34b)

where the steady-state heat currents Q̇α account for the stationary rate of energy

influx from bath α (i.e., ⟨·⟩∞ denotes here stationary average). Eq. (34) is inter-

preted as the Second Law of thermodynamics, since it is formally identical to the

statement of Clausius’ theorem [68, 83]. Therefore, the global GKSL equation is

particularly well suited to study the thermodynamics of (weakly dissipative) open

quantum systems.

3.4.2 The local master equation

Another type of quantum master equation may be built by simply adding up dissi-

pators that act locally on a specific part of the system

dOOO

dt
= i[HHHS,OOO] +

∑
α
L †

α(OOO), (35)

where L †
α(OOO) takes the form

L †
α(OOO) =

∑
ω′
γ
(α)
ω′

(
LLL

(α) †
ω′ OOOLLL

(α)
ω′ − 1

2
{LLL(α) †

ω′ LLL
(α)
ω′ ,OOO}+

)
. (36)
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Here, the non-hermitian operators LLL
(α)
ω′ have the properties,

[HHH (loc)
α ,LLL

(α)
ω′ ] = −ω′LLL(α)

ω′ , (37a)

SSSα =
∑

ω′
LLL

(α)
ω′ , (37b)

LLL
(α) †
ω′ = LLL

(α)
−ω′ . (37c)

in place of Eqs. (31). Note that the sum does not run over the Bohr frequencies

ω of HHHS, but over those of
∑

αHHH
(loc)
α ; hence the notation ω′.

Such local equation is easily scalable, as the resonators must be diagonalised

individually when searching for the operators LLL
(α)
ω′ . It also shares with the global

master equation its GKSL form, which means that the resulting dynamics is,

again, completely positive.

‘Completely positive’ is often equated identically to ‘physical’ because at least

it produces positive probabilities. We remark, however, that (completely positive)

LMEs violate the Zeroth Law by construction [95]. Indeed, due to Eq. (37a),

the dissipators L †
α ‘try’ to pull the system towards the local thermal state ∝

exp
{
(−∑α HHH (loc)

α /Tα)
}

, which does not commute with the full HHHS appearing in

the ‘coherent-evolution’ term of Eq. (35). Hence, according to the LME, the sys-

tem would never thermalise, even if all temperatures Tα are identical. As a result,

also the Second Law as stated in Eq. (34), may be violated. In fact, in our exam-

ple model of Eq. (39), the local approach invariably predicts unphysical cold-to-hot

heat currents whenever ωc/Tc < ωh/Th [93]. This, however, would cease to be an

issue if the environments were active, i.e., able to exchange both heat and work

with the system [121].

3.4.3 Comparing local and global approach

A local master equation can be motivated physically beyond merely “adding up

dissipators”. For instance, we may obtain the LME directly from a formal colli-

sional model, in the limit of instantaneous collisions [122, 123]. However, in this

case, the thermodynamics of the LME needs to be reassessed to account for

the ‘cost’ of those collisions with bath ‘units’ [121, 124]. On the other hand, for

microscopic Hamiltonian models, the general Markovian weak-coupling master

equation can be simplified by coarse-graining over a relevant time-scale [104,
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105, 106, 107, 108, 109, 110, 111, 112]. Depending on how this averaging is

done, both the LME and the GME can emerge naturally [105, 106].

The LME (35) can be alternatively viewed as the lowest order in an expansion

of the GME (32) [113, 114]. Namely, applying perturbation theory to the eigen-

states and eigenvalues of HHHS for small k and following the procedure to obtain a

GME [87, 113], gives

G †
α = G † (0)

α + k G † (1)
α + k2 G † (2)

α + · · · . (38)

Whenever G † (0)
α = L †

α , one can claim that the LME becomes equivalent to trun-

cating the expansion at zeroth order in k. Since all terms G † (n) are O(λ2), the

LME would thus be accurate within kλ2-sized ‘error bars’. If k is weak enough,

this may be acceptable when compared with the intrinsic error of the GME, set at

O(λ3) (cf. Eq. (32)). In light of this interpretation, the unphysical cold-to-hot heat

flows predicted by the local approach may be thought-of as a mere artifact of the

truncated expansion [113].

However, if the degeneracy of HHHS changes depending on whether k = 0 or

k ̸= 0, the zeroth order of the global dissipator does not coincide with the local

one (i.e., G † (0)
α ̸= L †

α) [113]. As we will see, this is precisely what happens to our

example model (39) when ωc = ωh = ω [88, 89, 105, 125]. Instead, we find that it

is the zeroth order of the Redfield dissipator that coincides with the local one (i.e.,

R† (0)
α = L †

α) [105].

3.5 The system

The system considered in what follows is sketched in Fig. 9. It is comprised of

two coupled resonators with frequencies ωc and ωh, which we model as

HHHS =
∑

α∈{c,h}

(
1

2
ω2
αxxx

2
α +

ppp2α
2

)
+ kxxxcxxxh (39)

where xxxα and pppα are the corresponding quadratures, and k denotes the inter-

resonator coupling strength. We also set the masses to mα = 1. From now on,

we work in units of ℏ = kB = 1. This model can describe the two capacitively

coupled superconducting resonators studied experimentally in Ref. [67] in search
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for exceptional points5.

Each resonator is weakly connected to a local heat bath α ∈ {c, h} (‘c’ for

cold and ‘h’ for hot) with equilibrium temperatures Tc < Th. The resonator–bath

couplings are

HHHSB = λcxxxc ⊗BBBc + λhxxxh ⊗BBBh, (40)

where the bath operators BBBα are

BBBα =
∑

ν
g(α)ν q(α)

ν , (41)

and q(α)
ν stands for the coordinate of the environmental mode of bath α at fre-

quency ων . Note that HHHSB is linear in the dissipation strengths λh and λc. The

couplings g
(α)
ν can be collected into the spectral densities

Jα(ω) := π λ2
α

∑
ν

g
(α) 2
ν

2ων

δ(ω − ων), (42)

where δ(ω − ων) stand for Dirac deltas. In the following we will work with the

standard Ohmic–algebraic spectral densities

Jα(ω) = λ2
α ω

Λ2

ω2 + Λ2
(43)

with α ∈ {c, h}. Here, the phenomenological parameter Λ sets an ‘ultraviolet’

cut-off on the spectrum of the bath. We note that the precise analytical form of

the spectral density does not play an active role in our problem, as long as Λ is

large when compared with all other relevant energy scales. Given the spectral

densities, the decay rates γ
(α)
ω of Eq. (30) take the form,

γ(α)
ω = 2Jα(ω)

(
1 +

1

eω/Tα − 1

)
. (44)

5More precisely, the Hamiltonian considered in the analysis of the experiment, i.e.,

HHH ′
S = ωc aaa

†
caaac + ωh aaa

†
haaah + κ (aaa†caaah + aaacaaa

†
h),

follows directly from our Eq. (39) after performing the rotating-wave approximation (also referred-to
as pre-tracing secular approximation [126]), discarding the zero-point energy terms, and defining
k := 2κ

√
ωc ωh. Since we focus on the resonant case ωh = ωc, using either HHHS or HHH ′

S does not
make any difference, as we have verified.
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3.6 Exceptional points

We now formally introduce the concept of exceptional points (EPs), before draw-

ing the link to open-system dynamics. EPs are branch-point singularities which

appear under variation of parameters of non-Hermitian matrices, such as those

describing the dynamics of quantum dissipative systems. EPs have been used

as resource for applications such as sensitivity amplification in micro-resonators

[127, 128], laser-mode selectivity [129], and topological chirality [130, 131]. More

recently, a gain in signal-to-noise-ratio has been shown in EP sensors [132] high-

lighting the practical relevance of exceptional points.

3.6.1 Formal definition and witnesses

Let M(k) ∈ CN×N be an N × N matrix dependent on some parameter (or set of

parameters) k. We denote the right eigenvectors of this matrix by {
∣∣vj〉}j=1,··· ,N ;

i.e.,

M(k)
∣∣vj〉 = µj

∣∣vj〉 . (45)

The corresponding left eigenvectors {(vj|}j=1,··· ,N are defined instead by

M(k)T(vj|† = µj(vj|†. (46)

Notice that (vj|† is a column vector (like
∣∣vj〉) due to the Hermitian conjugation.

These two indexed families of vectors form a bi-orthogonal set [133]; that is,

(vi|vj⟩ = 0 for i ̸= j, (47)

(vi|vi⟩ ≤ 1,

with (vi|vi⟩ = 1 being fulfilled only if M(k) is Hermitian. Note that, in general,

(vi|vi⟩ can be negative. We say that the matrix M(k) has an exceptional point for

those parameter choices k resulting in (vi|vi⟩ = 0 for two or more of the indices i ∈
{1, · · · , N}. This phenomenon is called self-orthogonality and it is the hallmark

of the coalescence of two or more right eigenvectors [134].

In order to locate the exceptional points of M(k) we could search for zeros of

the phase rigidities ϕi(k) := |(vi|vi⟩| for i ∈ {1, · · · , N} as a function of k. However,

analysing the behaviour of every single eigenvector can be time-consuming for
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large N . Luckily, we shall only be interested in finding where in parameter space

an EP of M(k) is located, and not in which or how many eigenvectors coalesce.

We can thus exploit the fact that, at an EP, the set {|vi⟩}i=1,··· ,N does not form a

complete basis. Therefore, the matrix Vk = (|v1⟩ , · · · , |vN⟩) features a singularity

and the norm of its inverse diverges. Consequently, the condition number of Vk,

denoted κ(Vk), could be a suitable witness for an EP. Namely,

κ(Vk) :=∥Vk∥ ∥V−1
k ∥, (48)

where the operator norm∥·∥ is defined as

∥O∥ := max x

∥Ox∥p
∥x∥p

, (49)

x is an arbitrary non-zero vector, and∥·∥p stands for the p-norm

∥x∥p :=
(∑

i
|xi|p

)1/p
. (50)

Here, the parameter p could take on any real value p ≥ 1. In our numerical

calculations, we use the 2-norm. Regardless of p, κ(Vk) diverges iff there is an

EP at position k in parameter space. Also, note that ∥V−1
k ∥ can be alternatively

cast as ∥V−1
k ∥ = maxx∥x∥/∥Vk x∥, which resolves the issue of inverting a singular

matrix.

3.6.2 EPs in open quantum systems

In many cases of practical interest, an open system may be fully described by

choosing a set of observables θ = (ϑ1, · · · ,ϑm)
T and applying the corresponding

adjoint quantum master equation to each of them; i.e.,

dϑi

dt
= i[HHHS,ϑi] +

∑
α
D†

α(ϑi), (51)

where the dissipators D†
α can take, e.g., the global G †

α, local L †
α , or Redfield R†

α

form (cf. (33), (36), and (B.15)).

The aim is to pick observables ϑj so that (51) becomes a closed set of equa-
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tions [135]. This can then be expressed in compact form as

d⟨θ⟩
dt

= MD ⟨θ⟩, (52)

were the resulting matrix of coefficients MD ∈ Cm×m is generally non-Hermitian.

At an EP, MD stops being diagonalizable, which has a detectable impact on the

dynamics and thermodynamics of the open system [135, 136, 137]. Practical

examples of which are the exploitation of the fastest channels of dissipation for

superconducting qubits resetting [67] and an enhanced sensitivity of optical mi-

crocavities [128].

Specifically, in continuous-variable settings with linear HHHS—as our example

model—it is always possible to write a set of equations like (52). For instance, we

can build a 14-element θ by grouping the four position and momentum operators

q := (xxxh, ppph,xxxc, pppc)
T, (53)

together with the 10 distinct combinations

Cij :=
1

2
{qi,qj}+, (54)

e.g., C33 = xxx2
c , C12 = C21 = 1

2
{xxxh, ppph}+, or C32 = C23 = xxxc ppph. Note that other

choices of θ are possible. Ordering the observables so that xxxh, ppph, xxxc, and pppc are

the first elements of θ results in the 14× 14 coefficient matrix MD

MD =

MD ,1 0

0 MD ,2

 . (55)

That is, for the Hamiltonian HHHS, one finds that MD is the direct sum of sub-

matrices MD ,1 ∈ C4×4 and MD ,2 ∈ C10×10. Looking back at Eq. (52), we thus

see that the dynamics of the first-order moments ⟨qi⟩ decouples from that of

the second-order moments ⟨Cij⟩. Note that the same block-diagonal structure

is found for the local (L ), the global (G ), and Redfield (R) equations. Since the

exceptional points are properties of the dissipator [137], it seems reasonable that

their signatures appear both in MD ,1 and MD ,2. In Sec. 3.7 below, we focus on the

appearance of EPs in the sub-matrices MD ,1 while the discussion about MD ,2 has
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Figure 10: EPs in the dynamics of first-order moments. Condition number
κ (cf. (48)) of the matrix of eigenvectors of ML ,1 (left), MG ,1 (centre), and MR,1

(right), as a function of the frequency of the resonators ωh = ωc = ω and the
strength of their capacitive coupling k (see Eqs. (58), (70b), and (72b)). These
are the coefficient matrices of the equations of motion for the first-order moments
⟨qqq⟩ of the coupled-resonator system, according to the local, global, and Redfield
master equation, respectively. A diverging condition number is the distinct signa-
ture of an exceptional point. The EPs predicted by the Redfield equation (right)
are lost as a result of the secular approximation and thus, entirely missed by
the global approach (middle). They are, however, captured by the local master
equation (left). Note that the EPs appear exactly along the ‘exceptional lines’
(61), superimposed in dashed red. The parameters chosen are Th = 10, Tc = 5,
λ2
h = 10−8, λ2

c = 10−4, and Λ = 103 (ℏ = kB = 1).

been deferred to Appendix B.2.

3.7 Results and discussion

3.7.1 Local master equation

In order to obtain the equations of motion for the first-order moments ⟨qqq⟩ of the

system according to the LME, we need to know the Bohr frequencies involved,

and the corresponding jump operators. From now on, we work in the regime

of resonant oscillators, i.e. ωh = ωc = ω, which is a necessary condition for the

appearance of the exceptional points in the example model considered, as shown

in Appendix B.3.

The Bohr frequencies in Eq. (36) thus become {ω′} = {±ω}, and the local

jump operators of (37a) become

LLL(α)
ω =

aaaα√
2ω

, (56)

where we call LLL(α)
−ω = LLL

(α) †
ω and aaaα is an annihilation operator, so that xxxα = LLL

(α)
ω +
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LLL
(α)
−ω = (aaaα + aaa†α)/

√
2ω. Replacing these into the LME (36) gives

d⟨qqq⟩
dt

= ML ,1⟨qqq⟩, (57)

with local coefficient matrix ML ,1

ML ,1 =
1

2


∆

(h)
ω 2 0 0

−2ω2 ∆
(h)
ω −2k 0

0 0 ∆
(c)
ω 2

−2k 0 −2ω2 ∆
(c)
ω


, (58)

where we have introduced the notation

∆(α)
ω :=

γ
(α)
−ω − γ

(α)
ω

2ω
. (59)

Since ML ,1 is simple enough, one can obtain an analytic expression for the

exceptional points in parameter space. Looking at its eigenvalues, we see that

degeneracy appears, provided that

4k2 −
(
∆(h)

ω −∆(c)
ω

)2
ω2 = 0 =⇒ k = ± ω

2
|∆(h)

ω −∆(c)
ω |. (60)

Further replacing the expressions of the decay rates γ
(α)
±ω into the coefficients ∆α

for our choice of spectral density (cf. Eqs. (43) and (44)) results in the remarkably

simple expression

k = ± ω

2
|λ2

h − λ2
c |. (61)

Resorting now to the condition number of the eigenvector matrix of ML ,1, we con-

firm that whole family of exceptional points does lie along (61) (see leftmost panel

Fig. 10). That is, adjusting resonance frequency and internal couplings, it is al-

ways possible to tune the system into an EP. Interestingly, for exceptional points

to appear in this system, dissipation must be asymmetric and the oscillators res-

onant (see Appendix B.3). Note as well that, at resonance, the LME cannot give

rise to unphysical cold-to-hot heat currents [93]. Moreover, in a recent experiment

with coupled superconducting resonators, signatures of precisely the EPs in (61)

have been indeed detected [67].
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3.7.2 Global master equation

In order to find the jump operators AAA
(α)
ω within the global dissipators G †

α (cf. (33)

and Eqs. (31)), we must rotate our system into its normal-mode quadratures QQQ =

(ηηη1,ΠΠΠ1, ηηη2,ΠΠΠ2)
T, so that

HHHS =
2∑

j=1

(
ΠΠΠ2

j

2
+

1

2
Ω2

jηηη
2
j

)
. (62)

At resonance, the orthogonal transformation (xxxh,xxxc)
T = P (ηηη1, ηηη2)

T between local

and global modes has the form

P =
1√
2

1 1

1 −1

 , (63)

and the normal-mode frequencies are

Ω1,2 =
√
ω2 ± k. (64)

We must decompose the system’s coupling operators xxxα (cf. Eq. (40)) in

eigenoperators of HHHS. Taking, for instance, xxxh, one can see that

xxxh =
ηηη1 + ηηη2√

2
=

bbb1

2
√
Ω1

+
bbb2

2
√
Ω2

+ h.c., (65)

where bbbj is the annihilation operator associated with ηηηj. Hence,

AAA
(h)
Ωj

=
P1j√
2Ωj

bbbj =
P1j

2

(
ηηηj +

i

Ωj

ΠΠΠj

)
, (66)

AAA
(c)
Ωj

=
P2j√
2Ωj

bbbj =
P2j

2

(
ηηηj +

i

Ωj

ΠΠΠj

)
. (67)

Also note that, unlike in the local approach, now there are two open decay chan-

nels into each bath, at frequencies Ω1 and Ω2, respectively.

We can obtain the equations of motion for the normal-mode variables ⟨QQQ⟩ from

(33);
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namely,

d⟨QQQ⟩
dt

= M′
G ,1⟨QQQ⟩,

M′
G ,1 =

2⊕
j=1

∆̃j/2 1

−Ω2
j ∆̃j/2

 , (68)

where we have introduced the new coefficients

∆̃j :=
1

2

∑
α
∆

(α)
Ωj

. (69)

For completeness, we can rotate Eq. (68) back to the original coordinates qqq, which

gives

d⟨qqq⟩
dt

= MG ,1⟨qqq⟩, (70a)

MG ,1 =
1

2



1
2
(∆̃1 + ∆̃2) 2 1

2
(∆̃1 − ∆̃2) 0

−2ω2 1
2
(∆̃1 + ∆̃2) −2k 1

2
(∆̃1 − ∆̃2)

1
2
(∆̃1 − ∆̃2) 0 1

2
(∆̃1 + ∆̃2) 2

−2k 1
2
(∆̃1 − ∆̃2) −2ω2 1

2
(∆̃1 + ∆̃2)


. (70b)

The coefficient matrices M′
G ,1 and MG ,1 have the same condition number κ, since

they are connected via an orthogonal transformation. As a result, they also have

the same EPs, since the norms involved in the calculation of κ remain unaffected

(see Eq. (48)).

As seen in the middle panel of Fig. 10, the ‘exceptional lines’ of diverging con-

dition number in the frequency–coupling space disappear completely, according

to the global master equation.

One may question the validity of the GME for such parameters. Namely, in

Fig. 10 we set k ∼ λ2
α whereas, to be on the safe side when it comes to the secular

approximation, we should ensure instead that k ≫ maxα λ
2
α [88]. However, as we

show in Sec. 3.7.4, the GME does lead to the correct steady-state properties at

all plotted points save for the fringe |k| ⪅ 0.1λ2
h. Hence the disappearance of the

EPs cannot be simply attributed to the global approach breaking down.

Thinking of the local coefficient matrix ML ,1 as the lowest order M
(0)
G ,1 of a
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perturbative expansion in k of the dissipative contributions to MG ,1, i.e.

MG ,1 = M
(0)
G ,1 + kM

(1)
G ,1 + · · · ,

it would even be tempting to disregard the EP singularities predicted by the LME

as mathematical artifacts, and trust instead the a priori more physical (given its

microscopical derivation, see App. B.1) GME. However, as advanced in Sec. 3.4.3,

this interpretation is not valid here. To see why, we only need to calculate M
(0)
G ,1

from Eq. (70b) and show that it differs from ML ,1 in Eq. (58). Namely, we must set

k = 0 in all terms arising from the global dissipators G †
α (33), while keeping those

from the commutator part of Eq. (32) intact [113]. This is achieved by replacing

all coefficients ∆̃j in MG ,1 by (∆
(h)
ω +∆

(c)
ω )/2, i.e.,

M
(0)
G ,1 =

1

2



1
2
(∆

(h)
ω +∆

(c)
ω ) 2 0 0

−2ω2 1
2
(∆

(h)
ω +∆

(c)
ω ) −2k 0

0 0 1
2
(∆

(h)
ω +∆

(c)
ω ) 2

−2k 0 −2ω2 1
2
(∆

(h)
ω +∆

(c)
ω )


̸= ML ,1.

(71)

That is, even in the limit k = 0, each heat bath continues to act globally on both

resonators, rather than on the resonator directly coupled to it. This is a side-

effect of the secular approximation, which introduces a ‘heat leak’ channel. And

that is why the GME predicts steady-state heat flows in the resonant case even

at vanishing coupling, as noted in Refs. [88, 89].

Eq. (71) confronts us with the fact that the LME is not, in general, a limiting

case of the GME. But then, what is it? What we are after is a microscopic justifica-

tion of the local equation (57) capable of explaining why it succeeds in capturing

the EPs detected experimentally in [67], while the global equation (70a) fails.

3.7.3 Redfield equation

We now resort to the Redfield equation, as introduced in Eqs. (28) and (29), to

shed light on the nature of the LME. As outlined in Sec. 3.4.1, this equation is the

last step in the derivation of the GME, before forcing the GKSL form by means

of the (full) secular approximation. Consequently, in the regime of positivity, the

Redfield equation is always more accurate than the GME. In the context of quan-
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tum thermodynamics, however, the main shortcoming of the Redfield equation is

its lack of GKSL structure. Without it, it may fail to generate a completely positive

dynamics [138, 139]. Nonetheless, if used with caution, the Redfield equation

can still yield thermodynamically sound results [140, 141, 142].

To be more precise, (28) is a partial Redfield equation [88, 100, 105, 140].

That is, a simplified version of the equation in which its most rapidly oscillating

terms—but not all oscillating terms—are averaged out under a coarse graining of

time. Below, we also discard the Lamb shifts, defined in Appendix B.1. These

terms introduce an effective renormalization of the energy levels of the open sys-

tem leaving untouched its steady–state properties [143]. This approximation has

been verified to lead to excellent approximations of steady–state and long–time

dynamics [144]. The resulting system is

d⟨qqq⟩
dt

= MR,1 ⟨qqq⟩, (72a)

MR,1 =
1

2


[MR,1]11 2 [MR,1]13 0

−2ω2 ∆̄h −2k δh

[MR,1]31 0 [MR,1]33 2

−2ω2 δc −2ω2 ∆̄c


, (72b)

where δα := 1
2
(∆

(α)
1 −∆

(α)
2 ), ∆̄α := 1

2
(∆

(α)
1 +∆

(α)
2 ), and

[MR,1]11 =
Ω2 − Ω1

4

(
∆

(c)
1

Ω2

− ∆
(c)
2

Ω1

)
+

Ω2 + Ω1

4

(
∆

(h)
1

Ω2

+
∆

(h)
2

Ω1

)

[MR,1]13 =
Ω2 − Ω1

4

(
∆

(c)
1

Ω2

+
∆

(c)
2

Ω1

)
+

Ω2 + Ω1

4

(
∆

(h)
1

Ω2

− ∆
(h)
2

Ω1

)

[MR,1]31 =
Ω2 + Ω1

4

(
∆

(c)
1

Ω2

− ∆
(c)
2

Ω1

)
+

Ω2 − Ω1

4

(
∆

(h)
1

Ω2

− ∆
(h)
2

Ω1

)

[MR,1]33 =
Ω2 + Ω1

4

(
∆

(c)
1

Ω2

+
∆

(c)
2

Ω1

)
+

Ω2 − Ω1

4

(
∆

(h)
1

Ω2

+
∆

(h)
2

Ω1

)
. (72c)

In spite of the cumbersome expressions, one can see that the zeroth order

term M
(0)
R,1 of the k-expansion of the dissipative part of MR,1,

MR,1 = M
(0)
R,1 + kM

(1)
R,1 + k2M

(2)
R,1 · · · , (73)
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Figure 11: Heat currents at an exceptional point. a) Steady-state heat currents
from the hot bath (red) and the cold bath (blue) as a function of k, according to the
GME (solid) and the LME (dashed). b) Phase rigidity calculated according to the
LME (dashed red) for the two coalescing eigenvectors, and according to the GME
(solid black), for which no eigenvectors coalesce. Note that the phase rigidity
seems to converge to unity (solid black) away from the EP. Recall from Sec. 3.6.1
that ϕi = 1 only for Hermitian systems. In fact, evaluating the behaviour of ϕi in
the range of parameters shown in the plot, we see that the phase rigidity remains
ϕi < 1, albeit by a very small amount (∼ 10−5). The position of the EP according
to (61) is indicated by the dotted grey line across a) and b). c) Transient of the
hot heat current Q̇h(t) according to the LME (solid red), the GME (dashed blue),
and the Redfield equation (dotted green). The steady-state value is indicated by
the dot-dashed grey line. The global approach thus deviates from the true heat-
flow dynamics, set by the Redfield equation. On the contrary, the local approach
remains accurate throughout. Parameters are as in Fig. 10, except for ω = 1. As
initial state, we take the tensor product of the thermal state of each oscillator at
its local bath’s temperature.
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is identical to ML ,1 in Eq. (58) (or, equivalently, R† (0)
α = L †

α , see Appendix B.4).

One only needs to set k = 0 in all dissipative contributions of Eq. (28), which is

equivalent to setting k = 0 in the ∆̄α and δα terms, as well as in the four matrix

elements written out in Eqs. (72c).

We have thus shown that, at resonance, the LME is the low-k limit of the

Redfield equation; not of the GME. In fact, it is easy to see that R† (0)
α = L †

α

holds as well out of resonance for any multipartite model, as long as the coupling

to the heat baths is mediated by ‘frequency filters’. More precisely, these are

multipartite systems in which the coupling HHHSB is of the form, e.g., aaaα ⊗BBBα + h.c.

or |ϵi⟩
〈
ϵj
∣∣ ⊗BBBα + h.c., where |ϵi⟩ are eigenstates of the local Hamiltonian HHH

(loc)
α

(see Appendix B.4 for details). In such settings, the LME emerges directly from

the Redfield equation. This is why MR,1 and ML ,1 share the same pattern of EPs

in parameter space (cf. Fig. 10).

Crucially, unlike the Redfield approach, the LME is guaranteed to generate a

completely positive dissipative dynamics [111]. In addition, this explains the un-

likely success of the LME over the GME at low k, when the secular approximation

breaks down [88, 89]. In this new light, we see that the LME simply bypasses the

secular approximation. This is one of the main results of this section.

Furthermore, note from Eq. (63) that the eigenstates of HHHS do not depend on

k. It then becomes clear why the local approach remains accurate even at larger

couplings at resonance [89]: A small-k approximation of the dissipators R†
α (or

G †
α) is valid over a wider range of couplings if the expansion affects only the Bohr

frequencies ω, but not the jump operators AAA
(α)
ω . Conversely, out of resonance, the

LME loses validity at non-zero couplings, since the eigenstates of HHHS are then

explicitly dependent on k (see Appendix B.4). We note as well that EPs can be

studied exploiting the stochastic unraveling of GKSL master equations to define

an effective non-Hermitian Hamiltonian, as shown in [137].

The failure of the GME at capturing the correct dynamics is precisely due to

the fact that the secular approximation—required by the GME—‘washes away’

relevant dynamical features. We have just illustrated this with the disappearance

of the EPs. Next, we show that, even when the LME and GME do agree in their

steady-state predictions, the local approach can generate more accurate heat-

flow dynamics.
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3.7.4 Heat currents

The instantaneous rate of heat flow into the system from each of the baths can

be obtained by generalising Eq. (34b) to

Q̇α,D(t) := ⟨D†
α(HHHS)⟩t, (74)

where the transient heat currents Q̇α(t) generally do not sum up to zero, nor

obey the Clausius-like inequality (34a); they only do so at very long times, t → ∞.

Directly applying this definition using the local, global, and Redfield dissipators

gives

Q̇α,L =
∆

(α)
ω

2

(
⟨ppp2α⟩+ ω2⟨xxx2

α⟩+ k⟨xxxhxxxc⟩
)
+

Σ
(α)
ω

2
,

Q̇α,G =
1

4

∑
j

[
∆

(α)
Ωj

(
⟨ΠΠΠ2

j⟩+ Ω2
j⟨ηηη2j⟩

)
+ Σ

(α)
Ωj

]
,

Q̇α,R = Q̇α,G +
∆

(α)
1 +∆

(α)
2

4

(
Ω1Ω2⟨ηηη1ηηη2⟩+ ⟨ΠΠΠ1ΠΠΠ2⟩

)
, (75)

where Σ
(α)
ω := 1

2ω
(γ

(α)
−ω + γ

(α)
ω ), and ⟨ηηηiηηηj⟩ and ⟨ΠΠΠiΠΠΠj⟩ are second-order moments.

Therefore, in order to evaluate Eqs. (75) we must set up and solve the correspond-

ing linear system of 10 equations with coefficient matrices M2,D from Eq. (55).

This is a rather tedious but, otherwise, straightforward process. As it turns out,

the 10 × 10 matrices ML ,2 and MR,2 have the same exceptional points than their

4× 4 first-order counterparts ML ,1 and MR,1. We defer details to Appendix B.2.

In Fig. 11 we tune the parameters to be at an exceptional point of the system

according to Eq. (61), and plot both steady-state and transient heat currents. For

the chosen parameters, LME and GME agree in their steady-state predictions

to a very good approximation, see panel a) and b) of Fig. 11. However, local

and global dynamics do differ significantly at finite time. In contrast, the Redfield

equation agrees with the LME at all times, see panel c) of Fig. 11. This suggests

that, within its error bars, the local approach can be superior to the global one

when studying the thermodynamics of multipartite systems with weak internal

couplings.
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3.8 Conclusion

We have analysed one of the central problems in quantum thermodynamics.

Namely, the modelling of heat flows across open systems with quantum mas-

ter equations. We have shown that the two most common approaches—the local

and the global master equations—can make very different predictions. Firstly,

our results illustrate that the local approach succeeds at capturing dynamical fea-

tures, in the form of exceptional points, that escape the global master equation.

Secondly, we have found that, when considering degenerate multipartite open

quantum systems with weak internal coupling, the LME also yields much more

accurate heat-flow dynamics than the GME, even when both agree in the steady-

state.

Furthermore, we have shown that the LME follows directly from the more ac-

curate Redfield equation, and is generally not a weak-coupling limit of the GME.

This is always the case for any multipartite weakly-interacting open quantum sys-

tem that couples to the environment(s) via single-frequency contacts, such as a

qubit or a harmonic oscillator. Therefore, for such systems, the LME emerges as

an accurate and computationally efficient alternative to the Redfield equation. It

proves to be superior to the GME and, in contrast to the Redfield equation, it does

guarantee positivity.

These results have profound consequences for quantum thermodynamics.

Namely, modelling heat flow in a quantum thermal machine with the local ap-

proach instead of the global one, could make a sizeable difference in the predicted

heat transfer in, e.g., any thermalising stroke of a finite-time thermodynamic cy-

cle. This could result in a radically different assessment of both performance

and power output. However, it is important to remember that the local approach

has a limited range of validity. Specifically, it is unsuitable for open systems with

strong internal couplings (i.e., large k), and it can lead to unphysical results at

odds with thermodynamics. Finding an accurate and scalable master equation

for such scenarios still remains an open challenge.

Code availability

The code used to produce the figures is available upon reasonable request to

s.scali@exeter.ac.uk.
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4 Quantum–classical correspondence in spin–boson

equilibrium states at arbitrary coupling

4.1 Statement of contribution

In the following work, I generalized the theory developed in Ref. [145] to anisotropic

baths and produced all the classical results in the section. Among these, I dis-

covered the third key result we present in this section. This is the presence of a

classical counterpart to quantum coherences in equilibrium induced by the cou-

pling to the environment. To do so, I rebuilt and generalized the existing code

for the stochastic simulations. I checked the results for the ultrastrong coupling,

evaluated the limit of the classical steady state at zero temperature and within

this, calculated the reorganization energy result. Finally, I participated in gener-

ating the figures, text and reviewing the manuscript. Janet Anders devised the

original idea of the quantum–classical correspondence of the large spin limit at

all coupling strengths.

4.2 Summary

The equilibrium properties of nanoscale systems can deviate significantly from

standard thermodynamics due to their coupling to an environment. For the θ-

angled spin-boson model, we first derive a compact and general form of the clas-

sical equilibrium state including environmental corrections to all orders. Secondly,

for the quantum spin-boson model we prove, by carefully taking a large spin limit,

that Bohr’s quantum-classical correspondence persists at all coupling strengths.

This correspondence gives insight into the conditions for a coupled quantum spin

to be well-approximated by a coupled classical spin-vector. Thirdly, we demon-

strate that previously identified environment-induced ‘coherences’ in the equilib-

rium state of weakly coupled quantum spins, do not disappear in the classical

case. Finally, we provide the first classification of the coupling parameter regimes

for the spin-boson model, from weak to ultrastrong, both for the quantum case and

the classical setting. Our results shed light on the interplay of quantum and mean

force corrections in equilibrium states of the spin-boson model, and will help draw

the quantum to classical boundary in a range of fields, such as magnetism and
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exciton dynamics.

4.3 Introduction

Bohr’s correspondence principle [146] played an essential role in the early devel-

opment of quantum mechanics. Since then, a variety of interpretations and appli-

cations of the correspondence principle have been explored [147, 148, 149, 150,

151, 152, 153, 154]. One form asks if the statistical properties of a quantum sys-

tem approach those of its classical counterpart in the limit of large quantum num-

bers [149, 150]. This question was answered affirmatively by Millard and Leff, and

Lieb for a quantum spin system [147, 148]. They proved that the system’s ther-

modynamic partition function Zqu
S associated with the Gibbs state, converges to

the corresponding classical partition function Zcl
S , in the limit of large spins. Such

correspondence gives insight into the conditions for a quantum thermodynamic

system to be well-approximated by its classical counterpart [153, 154]. While

Zqu
S is computationally tough to evaluate for many systems, Zcl

S offers tractable

expressions with which thermodynamic properties, such as free energies, sus-

ceptibilities and correlation functions, can readily be computed [147, 148]. Simi-

larly, many dynamical approaches solve a classical problem rather than the much

harder quantum problem. For example, sophisticated atomistic simulations of the

magnetisation dynamics in magnetic materials [155, 156, 157, 158, 159] solve

the evolution of millions of interacting classical spins. A corresponding quantum

simulation [160] would require no less than a full–blown quantum computer as its

hardware.

Meanwhile, in the field of quantum thermodynamics, extensive progress has

recently been made in constructing a comprehensive framework of “strong cou-

pling thermodynamics” for classical [161, 162, 163, 164, 165, 166] and quan-

tum [167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177] systems. This frame-

work extends standard thermodynamic relations to systems whose coupling to a

thermal environment can not be neglected. The equilibrium state is then no longer

the quantum or classical Gibbs state, but must be replaced with the environment-

corrected mean force (Gibbs) state [176, 177, 178]. These modifications bring

into question the validity of the correspondence principle when the environment-

coupling is no longer negligible. Mathematically, the challenge is that in addition
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to tracing over the system, one must also evaluate the trace over the environment.

Strong coupling contributions are present for both classical and quantum sys-

tems. However, a quantitative characterisation of the difference between these

two predictions, in various coupling regimes, is missing. For example, apart

from temperature, what are the parameters controlling the deviations between the

quantum and classical spin expectation values? Do coherences, found to persist

in the mean force equilibrium state of a quantum system [179], decohere when

taking the classical limit? How strong does the environmental coupling need to be

for the spin-boson model to be well-described by weak or ultrastrong coupling ap-

proximations? In this section, we answer these questions for the particular case

of a spin S0 coupled to a one-dimensional bosonic environment such that both

dephasing and detuning can occur (θ-angled spin-boson model).

4.4 Setting

This generalised version of the spin-boson model [180, 181] describes a vast

range of physical contexts, including excitation energy transfer processes in molec-

ular aggregates described by the Frenkel exciton Hamiltonian [182, 183, 184, 185,

186, 187, 188], the electronic occupation of a double quantum dot whose elec-

tronic dipole moment couples to the substrate phonons in a semi-conductor [179],

an electronic, nuclear or effective spin exposed to a magnetic field and interacting

with an (anisotropic) phononic, electronic or magnonic environment [145, 189,

190, 191, 192], and a plethora of other aspects of quantum dots, ultracold atomic

impurities, and superconducting circuits [193, 194, 195, 196]. In all these con-

texts, an effective “spin” S interacts with an environment, where S is a vector of

operators (with units of angular momentum) whose components fulfil the angular

momentum commutation relations [Sj, Sk] = iℏ
∑

l ϵjklSl with j, k, l ∈ {x, y, z}. We

will consider spins of any length S0, i.e. S2 = S0(S0+ℏ)1. The system Hamiltonian

is

HS = −ωLSz, (76)

where the system energy level spacing is ℏωL > 0 and the energy axis is in the −z-

direction without loss of generality. For a double quantum dot, the frequency ωL is

determined by the energetic detuning and the tunneling between the dots [179].

For an electron spin with S0 = ℏ/2, the energy gap is set by a gyromagnetic ratio γ
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and an external magnetic field Bext = −Bextẑ, such that ωL = γBext is the Larmor

frequency.

The spin system is in contact with a bosonic reservoir, which is responsible

for the dissipation and equilibration of the system. Typically, this environment

will consist of phononic modes or an electromagnetic field [177, 197]. The bare

Hamiltonian of the reservoir is

HR =
1

2

∫ ∞

0

dω
(
P 2
ω + ω2X2

ω

)
, (77)

where Xω and Pω are the position and momentum operators of the reservoir mode

at frequency ω which satisfy the canonical commutation relations [Xω, Pω′ ] =

iℏ δ(ω − ω′). With the identifications made in (76) and (77), the system-reservoir

Hamiltonian is

Htot = HS +HR +Hint, (78)

which contains a system-reservoir coupling Hint. Physically, the coupling can

often be approximated to be linear in the canonical reservoir operators [177], and

is then modelled as [179, 197, 198]

Hint = Sθ

∫ ∞

0

dω CωXω, (79)

where the coupling function Cω determines the interaction strength between the

system and each reservoir mode ω. Cω is related to the reservoir spectral den-

sity Jω via Jω = C2
ω/(2ω). It is important to note that the coupling is via the spin

(component) operator Sθ = Sz cos θ − Sx sin θ which is at an angle θ with respect

to the system’s bare energy axis, see Fig. 12. For example, for a double quan-

tum dot [179], the angle θ is determined by the ratio of detuning and tunnelling

parameters.

In what follows, we will need an integrated form of the spectral density, namely

Q =

∫ ∞

0

dω
Jω
ω

=

∫ ∞

0

dω
C2

ω

2ω2
. (80)

This quantity is a measure of the strength of the system–environment coupling

and it is sometimes called “reorganization energy” [178, 199, 200, 201]. The an-

alytical results discussed below are valid for arbitrary coupling functions Cω (or re-
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Figure 12: Illustration of bare and interaction energy axes. A spin operator
(vector) S with system Hamiltonian HS with energy axis in the −z-direction is
coupled in θ-direction to a harmonic environment via Hint.

organisation energies Q). The plots assume Lorentzians Jω = (2ΓQ/π)ω2
0ω/((ω

2
0−

ω2)2 + Γ2ω2), where ω0 is the resonant frequency of the Lorentzian [145] and Γ

the peak width.

We will model Htot (Eq. (78)) either fully quantum mechanically as detailed

above, or fully classically. To obtain the classical case, the spin S operator will

be replaced by a three-dimensional vector of length S0, and the reservoir oper-

ators Xω and Pω will be replaced by classical phase–space coordinates. Below,

we evaluate the spin’s so-called mean force (Gibbs) states, CMF and QMF, for

the classical and quantum case, respectively. The mean force approach postu-

lates [177] that the equilibrium state of a system in contact with a reservoir at

temperature T is the mean force (MF) state, defined as

τMF := trR[τtot] = trR

[
e−βHtot

Ztot

]
. (81)

That is, τMF is the reduced system state of the global Gibbs state τtot, where

β = 1/kBT is the inverse temperature with kB the Boltzmann constant, and Ztot is

the global partition function. Quantum mechanically, trR stands for the operator

trace over the reservoir space while classically, “tracing” is done by integrating

over the reservoir degrees of freedom. Further detail on classical and quantum

tracing for the spin and the reservoir, respectively, is given in Appendix C.1.

While the formal definition of τMF is deceptively simple, carrying out the trace

over the reservoir – to obtain a quantum expression of τMF in terms of system

operators alone – is notoriously difficult. Often, expansions for weak coupling are
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Figure 13: Classical mean force and steady–state spin expectation values.
Normalised expectation values of the classical spin components ⟨sz⟩ (left) and
⟨sx⟩ (right) as a function of temperature. These are obtained with: (CSS) the
long time average of the dynamical evolution of the spin, ⟨sk⟩ = ⟨Sk⟩CSS /S0; and
(CMF) the classical MF state (Eq. (82)), ⟨sk⟩ = ⟨Sk⟩MF /S0. These are shown
for three different coupling strengths Q = 0.04ωLℏ−1, 2ωLℏ−1, 14ωLℏ−1, that range
from the weak to the strong coupling regimes. In all three cases, we see that the
MF predictions are fully consistent with the results of the dynamics. All plots are
for Lorentzian coupling with ω0 = 7ωL, Γ = 5ωL, and coupling angle θ = 45◦. The
temperature scale shown corresponds to a spin S0 = ℏ/2.

made [167, 179]. For a general quantum system (i.e. not necessarily a spin),

an expression of τMF has recently been derived in this limit [178]. Furthermore,

recent progress has been made on expressions of the quantum τMF in the limit

of ultrastrong coupling [178], and for large but finite coupling [176, 177, 202].

Moreover, high temperature expansions have been derived that are also valid at

intermediate coupling strengths [188]. However, the low and intermediate tem-

perature form of the quantum τMF for intermediate coupling is not known, neither

in general nor for the θ–angled spin boson model [203].

4.5 Classical MF state at arbitrary coupling

In contrast, here we establish that the analogous problem of a classical spin vec-

tor of arbitrary length S0, coupled to a harmonic reservoir via Eq. (79), is tractable

for arbitrary coupling function Cω and arbitrary temperature. By carrying out the

(classical) partial trace over the reservoir, i.e. trclR[τtot], we uncover a rather com-
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Figure 14: Classical and quantum mean force spin components. Normalised
expectation values of the spin components ⟨sz⟩ (left) and ⟨sx⟩ (right) obtained
with: (QMFWK) the quantum MF partition function Z̃qu

S in the weak coupling limit
for a spin of length S0 = nℏ/2 (n = 1, 2, 5, 1000); (CMF) the classical MF partition
function Z̃cl

S given in (82). As the length S0 of the quantum spin is increased, the
quantum mean force prediction QMFWK converges to that corresponding to the
CMF state. Non-zero sx (right) indicate “coherences” with respect to the system’s
bare energy axis (z). These arise entirely due to the spin-reservoir interaction.
Such coherences have been discussed for the quantum case [179]. Here we
find that they also arise in the classical CMF and, comparing like with like for the
same spin length S0 = ℏ/2, the classical “coherences” are larger than those of the
quantum spin. All plots are for a weak coupling strength, α = 0.06, and θ = π/4.

pact expression for the spin’s CMF state τMF and the CMF partition function Z̃cl
S :

τMF =
e−β(HS−QS2

θ )

Z̃cl
S

, (82)

with Z̃cl
S = trclS [e

−β(HS−QS2
θ )].

The state τMF clearly differs from the standard Gibbs state by the presence of the

reorganisation energy term −QS2
θ . The quadratic dependence on Sθ changes the

character of the distribution, from a standard exponential to an exponential with

a positive quadratic term, altering significantly the state whenever the system–

reservoir coupling is non-negligible.

Throughout this section, we will consider that the MF state is the equilibrium

state reached by a system in contact with a thermal bath. While this is widely

thought to be the case, some open questions remain about formal proofs show-

ing the convergence of the dynamics towards the steady state predicted by the

MF state [170, 171, 172, 177, 179, 204, 205, 206, 207, 208, 209]. For example,

for quantum systems, this convergence has only been proven in the weak [167]

and ultrastrong limits [176], while for intermediate coupling strengths there is nu-
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merical evidence for the validity of the MF state [181]. Here, we numerically verify

the convergence of the dynamics towards the MF state for the case of the clas-

sical spin at arbitrary coupling strength. This is possible thanks to the numerical

method proposed in [145]. Fig. 13 shows the long time average of the spin com-

ponents once the dynamics has reached steady state (CSS, triangles), together

with the expectation values predicted by the static MF state (CMF, solid lines), for

a wide range of coupling strengths going from weak to strong coupling 6. We find

that both predictions are in excellent agreement, providing strong evidence for

the convergence of the dynamics towards the MF. The compact expression (82)

for the CMF state, as well as the numerical verification that the dynamical steady

state matches the CMF state, are the first result of this section.

4.6 Quantum–classical correspondence

We now demonstrate that the quantum partition function Z̃qu
S , which includes arbi-

trarily large mean force corrections, converges to the classical one, Z̃cl
S in Eq. (82).

A well-known classical limit of a quantum spin is to increase the quantum

spin’s length, S0 → ∞. This is because, when S0 increases, the quantised angu-

lar momentum level spacing relative to S0 decreases, approaching a continuum

of states that can be described in terms of a classical vector [146]. Taking the

large spin limit for a spin-S0 system can be achieved following an approach used

by Fisher when treating an uncoupled spin with Hamiltonian HS [210]. This in-

volves introducing a rescaling of the spin operators via sj = Sj/S0 so that the

commutation rule becomes [sj, sk] = iℏ ϵjkl sl/S0. Hence, in the limit of S0 → ∞,

the scaled operators will commute, so in that regard they can be considered as

classical quantities [210]. Millard & Leff [147] take this further and prove, for any

spin Hamiltonian H in the spin Hilbert space HS, the identity

lim
S0→∞

ℏ
2S0 + ℏ

trquS

[
e−βH

]
= lim

S0→∞

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ e−βH(S0,ϑ,φ), (83)

provided the limit on the right hand side exists 7. Here H(S0, ϑ, φ) is the classical

6See later discussions where the different regimes of coupling strength are thoroughly charac-
terised.

7The factor of ℏ/(2S0+ℏ) guarantees that the sides of (83) are equal for β = 0. For a fixed value
of S0, this pre-factor is un-important as it immediately cancels in any calculation of expectation
values, i.e. for a quantum system, the expressions ℏ

2S0+ℏZ
qu
S (β, S0) and Zqu

S (β, S0) give the same
expectation values.
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spin-S0 Hamiltonian, where the spin-vector S is parametrised by two angles, φ

and ϑ, such that Sx = S0 sinϑ cosφ, Sy = S0 sinϑ sinφ and Sz = S0 cosϑ. Eq. (83)

was further confirmed by Lieb who provides a rigorous argument based on the

properties of spin-coherent states [148].

Note, though, if one simply takes the S0 → ∞ limit in (83), with H being the

system Hamiltonian HS ∝ S0, that would have the same effect as sending β → ∞;

namely, all population will go to the ground state. Instead, maintaining a non-trivial

temperature dependence after taking the S0-limit requires a further rescaling step.

One approach involves a rescaling of the physical parameters of the Hamiltonian

H, as followed, e.g., by Fisher [210]. A second approach is to rescale the inverse

temperature via βS0 = β′, and take the limit S0 → ∞ with β′ held fixed. This

is the limit we will take here. The effect of this constrained limit can readily be

seen for the thermal states of the uncoupled classical or quantum spin. The clas-

sical partition function Zcl
S (βS0) = sinh(βS0ωL)/βS0ωL is left invariant because β

and S0 always appear together in Zcl
S . In contrast, the quantum partition function

Zqu
S (β, S0) = sinh

(
β(S0 + ℏ/2)ωL

)
/ sinh

(
βℏωL/2

)
is altered in the constrained limit,

since Zqu
S separately depends on β and S0. Eq. (83) then expresses the conver-

gence of the partition functions [147, 148, 210], i.e. ℏ
2S0+ℏ Z

qu
S (β, S0) → Zcl

S (βS0).

We now take a step further and extend this result to the case of a spin coupled

to a reservoir. The first step is to consider that the relevant Hilbert space is now

the tensor product space of spin and reservoir degrees of freedom, HS ⊗ HB.

It was argued by Lieb [148] that (83) remains valid in this case, i.e. even when

H ∈ HS ⊗ HB. This means we can replace H in (83) with our Htot. But note

that the trace is still only over the system Hilbert space HS. Thus, formally one

obtains an operator valued identity for operators on HB. The second step is then

to evaluate the trace over the reservoir degrees of freedom. To do so, we start by

writing the total unnormalised Gibbs state as

e−βHtot = exp

[
−β′

(
−ωLsz +

HR

S0

+ sθ

∫ ∞

0

dω CωXω

)]
, (84)

with the rescaled inverse temperature β′ = βS0. Since β′ is constant as the

limit S0 → ∞ is taken, doing so rescales the spin operators, as required. But it

also rescales HR to hR = HR/S0, which can be expressed in terms of rescaled

reservoir operators, pω and xω where pω = Pω/
√
S0 and xω = Xω/

√
S0. The com-
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mutation relations are then [xω, pω′ ] = iℏ δ(ω − ω′)/S0, so in the limit of S0 → ∞,

these two operators commute [211]. Thus, the classical limit of the spin induces

a limit for the reservoir. That is, the quantum nature of the reservoir is inevitably

stripped away, so that the result eventually obtained is that of a classical spin

coupled to a classical reservoir.

Written in terms of these rescaled reservoir operators, one now has,

e−βHtot = exp

[
−β′

(
−ωLsz + hR + sθ

∫ ∞

0

dω Cω

√
S0 xω

)]
. (85)

If one were to naively take the S0-limit, then the interaction term dominates and

the dependence on the bare system energy −ωLsz drops out. To maintain a non-

trivial dependence on both, bare and interaction energies, one needs to make

an assumption on the scaling of the coupling function Cω with spin-length S0. We

choose to keep the relative energy scales of the bare and interaction Hamiltonians

the same throughout the S0 limit. Eq. (85) shows that this requires a scaling of

Cω ∝ 1/
√
S0. This implies a reorganisation energy (80) scaling of

Q = α
ωL

S0

, (86)

where α is a unit-free constant independent of S0 and β. Inserted in the classical

MF state (82) this shows that both, the system energy HS as well as the correction

that comes from the reservoir interaction, scale as S0. The combined scaling of Q

with S0 (Eq. (86)), and the rescaling of the inverse temperature, βS0 = β′ = const,

then leaves the CMF state (82) invariant under variation of S0.

Crucially, given the same scaling, the QMF state defined by Eq. (81) will not

be invariant under variation of S0. Returning to the unnormalised total Gibbs state

(85), taking the quantum trace over the spin, and using Eq. (83), one obtains an

identity that still contains the bath operators in contrast to the uncoupled spin.

Finally taking the quantum trace over the reservoir on both sides, one finds

lim
S0→∞

ℏ
2S0 + ℏ

Zqu
SR(β, S0, α)

Zqu
R (β)

= lim
S0→∞

ℏ
2S0 + ℏ

Z̃qu
S (β, S0, α) = Z̃cl

S (βS0, α). (87)

Here it was used that the fraction of the total quantum partition function divided by

the bare quantum reservoir partition function is the quantum mean force partition
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function (see Appendix C.4) [212, 213]. In contrast to the quantum-classical cor-

respondence established by Millard & Leff, and Lieb, for the standard Gibbs state

partition functions, there now is a dependence on the spin-environment coupling

strength α. For the classical case, one has Z̃cl
S (βS0, α) = trclS [e

−βS0(HS/S0−αωLS
2
θ/S

2
0)].

While we derived Eq. (87) assuming a constant ratio between bare and in-

teraction energy, i.e. Cω ∝ 1/
√
S0, the quantum-classical correspondence also

holds for other scalings. Indeed, when Cω ∝ 1/
√
Sp
0 with p > 1, the bare en-

ergy will grow much more rapidly than the interaction term in the limit S0 → ∞.

This immediately leads to the ultraweak coupling limit where the known quantum-

classical correspondence (83) applies. On the other hand, when Cω ∝ 1/
√

Sp
0

with 0 ≤ p < 1, the interaction term will grow much more rapidly than the bare

energy. As we show in Appendix C.7, in this ultrastrong limit [178], the quantum

and classical mean force partition functions turn out to be identical. In this ultra-

strong limit, the partition function loses all dependence on the coupling strength

α. Thus, while (87) is valid for p > 1 and 0 ≤ p < 1, these scalings give a trivial

correspondence, independent of α. Only for the scaling (86) is a dependence of

the mean force partition functions on the coupling strength retained.

The results presented here show the quantum-classical correspondence of

the equilibrium states of the spin-boson model for the first time. The proof of this

correspondence, valid at all coupling strengths, is the second result of the section.

We remark that, in the above proof, it was assumed that α is independent

of β. Physically this is not entirely accurate because the coupling Cω is usually a

function of temperature [214], albeit often a rather weak one. For the same limiting

process to apply, a weak dependence on β would need to be compensated by an

equally weak additional dependence of Q on S0.

To visually illustrate the quantum to classical convergence, we choose a weak

coupling strength, α = 0.06, for which an analytical form of the quantum Z̃qu
S is

known [178]. Mean force spin component expectation values ⟨sk⟩ = ⟨Sk⟩MF /S0

for k = x, z can then readily be computed from the partition functions Z̃qu
S and Z̃cl

S ,

respectively. Fig. 14 shows ⟨sz⟩ and ⟨sx⟩ for various spin lengths, S0 = nℏ/2 with

n = 1, 2, 5, 1000 for the quantum case (QMFWK, purple to green) and the classical

case (CMF, dashed black). Note, that the x-axis is a correspondingly rescaled

temperature, 2kBT/nℏωL, a scaling under which the CMF remains invariant. The

numerical results illustrate that the quantum ⟨sz⟩ and ⟨sx⟩ change with spin length
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Figure 15: Coherences and inhomogeneous probabilities. Spin vector prob-
ability distributions (blue = high probability, white = low probability) as a function
of three spin components on a sphere of radius S0. a) The classical Gibbs state
τGibbs is a homogeneous function of HS, i.e. it is constant over the energy shells
of HS which are fixed by the value of Sz. b) The classical mean force probabil-
ity distribution τMF given in (82), peaks in a direction with positive components in
−Sx and Sz directions. This makes τMF an inhomogeneous probability distribution
over the energy shells of HS. Parameters for the plots: θ = π/4, kBT = S0ωL, and
Q = ωL/S0.

S0 = nℏ/2, and indeed converge to the classical prediction in the large spin limit,

n → ∞.

4.7 Coherences

As seen in Fig. 14 (right panel), the ⟨sx⟩ spin-component in the quantum mean

force state (solid purple line for spin-1/2) is non-zero at low temperatures, despite

the fact that the bare system energy scale is set along the z-direction, see (76).

Such non-zero ⟨sx⟩ implies the presence of energetic “coherences” in the sys-

tem’s equilibrium state, as recently discussed in [179, 215] for a quantum spin-

1/2. Considering the quantum–classical correspondence discussed above, a nat-

ural question is whether in the classical limit one can observe “decoherence”, in

the sense of vanishing coherences. However, comparing like with like, we see in

Fig. 14 that “coherences” are also present for a classical spin with length S0 = ℏ/2

(dashed black). Indeed, maybe surprisingly, classical “coherences” can be even

larger in magnitude than those of a quantum spin with corresponding length S0.

This observation reveals that the mechanism that gives rise to these coher-

ences is not an intrinsically quantum one. Indeed, when we plot our CMF state (82)
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in Fig. 15b), one can immediately see that the classical spin alignment in equi-

librium tilts towards the −Sx direction compared to the Gibbs state shown in

Fig. 15a). Such ‘inhomogenity’ of a classical distribution has recently been iden-

tified by A. Smith, K. Sinha, C. Jarzynski [216] as the classical analogue to quan-

tum coherences in the context of thermodynamic work extraction [217, 218]. Here

we uncover that the mechanism of producing such classical coherences can be

due to the nature of the environmental coupling, which is asymmetric with respect

to the bare Hamiltonian, see Fig. 12. This third finding, that coherences can be

present even in classical equilibrium states, will have implications on a variety of

fields, including quantum thermodynamics and quantum biology, which have so

far interpreted a non-zero value of ⟨sx⟩ as a ‘quantum signature’.

4.8 Coupling regimes

Finally, we now classify the interaction strength necessary for the spin-boson

model to fall in various coupling regimes, from ultra-weak to ultra-strong. To

quantify the relative strength of coupling we use the dimensionless parameter

ζ =
QS0

ωL

, (88)

which is the ratio of interaction and bare energy terms, see also Eq. (82). For the

scaling choice (86), one has ζ = α. It’s important to note that temperature sets

another scale in this problem – higher temperatures will allow higher coupling

values ζ to still fall within the “weak” coupling regime [178, 223]. Thus, we will

first characterise various coupling regimes at T = 0 K, where the coupling has

the most significant effect on the system equilibrium state, and then proceed to

study finite temperatures.

Fig. 16a) and 16b) show the spin components ⟨sz⟩ and ⟨sx⟩ in the quantum

MF state (QMF, solid dark blue) at T = 0 K. These expressions are evaluated

numerically using the reaction coordinate method [219, 220, 221, 222] for S0 =

ℏ/2 and angle θ = π/4. Also shown are the spin components for the quantum

Gibbs state (QG, dashed green), for the quantum MF state in the weak coupling

limit (QMFWK, dashed turquoise), and for the quantum MF state in the ultrastrong

coupling limit (QMFUS, dashed grey) [178].
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Figure 16: Quantum coupling regimes at T = 0 and T > 0. Panels a) and
b): Spin expectation values ⟨sz⟩ and −⟨sx⟩ for the MF state (81) at T = 0 for the
total Hamiltonian (78) with S0 = ℏ/2, θ = π/4 and different coupling strengths
as quantified by the dimensionless parameter ζ, see (88). We identify four cou-
pling regimes for the numerically exact QMF state (solid dark blue): Ultraweak
coupling (UW), where the spin expectation values are consistent with the Gibbs
state (QG, dashed light green); Weak coupling (WK), where the expectation val-
ues are well approximated by a second order expansion in ζ (QMFWK, dashed
turquoise) [179]; Ultrastrong coupling (US), where the asymptotic limit of in-
finitely strong coupling ζ → ∞ is valid (QMFUS, dashed grey) [178], and
Intermediate coupling (IM) where the QMF state is not approximated by any
known analytical expression. The dynamical steady state of the quantum spin
(QSS, dark blue triangles) is also computed using the reaction coordinate tech-
nique [219, 220, 221, 222]. Excellent agreement between the QSS and the QMF
prediction is seen for all ζ. Panel c): Coupling regimes as a function of tempera-
ture T and coupling strength ζ. With increasing temperature, the boundaries shift
towards higher coupling ζ. At large temperatures, all three boundaries follow a
linear relation T ∝ ζ (dashed lines). The red star functions as a comparison with
Fig. 17 and it is treated in its caption.

By comparing the analytical results (dashed lines) to the numerically exact

result (solid line), and requiring the relative error to be at most 4 · 10−3, we can

clearly identify four regimes: For ζ < 4 · 10−2, equilibrium is well-described by

the quantum Gibbs state and this parameter regime can thus can be considered

as ultraweak coupling (UW) [177]. For 4 · 10−2 ≤ ζ < 8 · 10−1, equilibrium is

well-described by the weak coupling state QMFWK, which includes second order

coupling corrections [178]. Thus, this regime is identified as the weak coupling

regime (WK). At the other extreme, for 7 · 101 ≤ ζ, the equilibrium state converges

to the ultrastrong coupling state QMFUS which was derived in [178]. Thus, this
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Figure 17: Classical coupling regimes at T = 0 and T > 0. Same plot as
Fig. 16, but here for the equilibrium state of a classical spin vector S with Hamilto-
nian Eq. (78). A particular (T, ζ)-pair (red star) is identified for which the classical
spin falls in the intermediate regime. For the same parameter pair, the quantum
spin falls in the weak coupling regime, see red star in Fig. 16c). Moving the clas-
sical red star upwards in temperature until it reaches a point (black square) in the
weak coupling regime that is laterally distanced from the boundaries similar to the
quantum star, Fig. 16c), gives an effective temperature shift of ∆T = 1.6·2ℏωL/kB.
This example evidences significant differences between the environmental impact
on quantum and classical equilibrium states.

regime is identified as the ultrastrong coupling regime (US). Finally, for the pa-

rameter regime 8 · 10−1 ≤ ζ < 7 · 101 the exact QMF shows variation with ζ that is

not captured by neither weak nor ultrastrong coupling approximation. This is the

intermediate coupling regime (IM), which is highly relevant from an experimental

point of view, but there are no known analytical expressions that approximate the

numerically exact QMF [203].

Beyond the zero temperature case, we compute ⟨sx⟩ and ⟨sz⟩ with the numer-

ically exact QMF state over a wide range of coupling strengths and temperatures,

and compare the results with those of the UW, WK, and US approximations al-

lowing an error of 4 · 10−3, as above. Fig. 16c) shows how pairs of ζ and T fall

into various coupling regimes. One can see that, at elevated temperatures, the

coupling regime boundaries shift towards higher coupling ζ. Thus at higher tem-

peratures, 2kBT/ℏωL ≳ 10, the UW and WK approximations are valid at much

higher coupling strengths ζ than at T = 0. At higher temperatures we also ob-

serve an emerging linear relation, 2kBT/ℏωL ∝ ζ, for all three regime boundaries.
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The temperature dependence of the border between the weak and intermediate

coupling regime has previously been identified to be linear by C. Latune [223].

The quantum coupling regimes can now be compared to the corresponding

regimes for a classical spin vector, shown in Fig. 17a-c). Perhaps surprisingly, we

find that the classical regime boundary values for ζ differ significantly from those

for the quantum spin, e.g., by a factor of 10 for the WK approximation. This shift

is exemplified by the red star, which indicates the same parameter pair (T, ζ) in

both figures, Figs. 16c) and 17c). While the open quantum spin lies in the weak

coupling regime, the classical one requires an intermediate coupling treatment.

We suspect this quantum-classical distinctness comes from the fact that, while

for a classical spin at zero temperature there is no noise induced by the bath,

in the quantum case noise is present even at T = 0 K due to the bath’s zero-

point-fluctuations [145]. One may qualitatively interpret this additional noise as

an effective temperature shift with respect to the classical case, by ca. ∆T =

1.6 · 2ℏωL/kB, as indicated by the black square in Fig. 17c).

To conclude, for any given coupling value ζ and temperature T , the two plots

Fig. 16c) and Fig. 17c) provide a tool to judge whether a “weak coupling” approxi-

mation is valid for the spin-boson model or not. We emphasise that, interestingly,

the answer depends on whether one considers a quantum or a classical spin.

4.9 Conclusion

In this section we have characterised the equilibrium properties of the θ–angled

spin-boson model, in the quantum and classical regime.

Firstly, for the classical case, we have derived a compact analytical expression

for the equilibrium state of the spin, that is valid for arbitrary coupling to the har-

monic reservoir. This is of great practical relevance as it allows one to analytically

obtain all equilibrium properties of the spin at any coupling strength. It remains

an open question [177] to find a similarly general analytical expressions for the

quantum case.

Secondly, we have proved that the quantum MF partition function, including

environmental terms, converges to its classical counterpart in the large-spin limit

at all coupling strengths. Our results provide direct insight into the difference be-

tween quantum and classical states of a spin coupled to a noisy environment.
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Apart from being of purely fundamental interest, this will constitute key informa-

tion for many quantum technologies [224], and ultimately links to the quantum

supremacy debate.

Third, a large and growing body of literature identifies coherences as quan-

tum signatures and attributes speed-ups (e.g. in quantum computing and quan-

tum biology) or efficiency gains (e.g. in quantum thermodynamics) to quantum

coherences. Here, we demonstrated that even the equilibrium states of classi-

cal open spins host ‘coherences’ when the environment couples asymmetrically.

Thus, measures other than ‘coherences’ may be required to certify the quantum

origin of certain speed-ups or efficiency improvements in the future.

Finally, we presented the first quantitative characterisation of the coupling pa-

rameter values that put the spin-boson model in the ultraweak, weak, interme-

diate, or ultrastrong coupling regime, both for the quantum case as well as the

classical setting. This classification will be important in many future studies of the

spin-boson model, quantum or classical, for which it provides the tool to chose

the correct approximation for a specific parameter set.

Code availability

The code to obtain the classical steady–state curves is available online in the form

of official Julia package at https://github.com/quantum-exeter/SpiDy.jl. This is also

the subject of the next section. The code used to produce Fig. 16 and Fig. 17 is

publicly available online at https://github.com/quantum-exeter/SpinMFGS. It can

be used to make analogous plots for a desired coupling angle θ and spin length

S0.

78

https://github.com/quantum-exeter/SpiDy.jl
https://github.com/quantum-exeter/SpinMFGS


5 SpiDy.jl: open–source Julia package for the study

of non–Markovian stochastic dynamics

5.1 Statement of contribution

In the following work, I devised the idea for a standalone Julia package rebuilding

and extending the code written for the work in Ref. [145]. I have written this

package together with Federico Cerisola. Federico had several clever ideas to

boost the code efficiency. The entire coding process has been a symbiotic work,

while often I would take the burden of writing some trivial but necessary lines.

I have written the Julia notebook to guide the user through the pieces of the

code and the brief paper for the package. Federico contributed and polished both

notebooks and paper. The entire code and git history is available on GitHub at

https://github.com/quantum-exeter/SpiDy.jl.

5.2 Summary

SpiDy.jl solves the non–Markovian stochastic dynamics of interacting classical

spin lattices and harmonic oscillators networks. The methods implemented al-

low the user to include arbitrary memory effects and colored noise spectra. We

provide the user with Julia notebooks to guide them through the various mathe-

matical constructions and simulations. The field of applicability for SpiDy.jl is vast,

allowing for the study of multi–dimensional anisotropic system-bath interactions,

spectral densities, noise, and temperature effects. Some examples range from

atomistic spin dynamics to ultrafast magnetism and anisotropic materials.

5.3 Introduction

Modeling the dynamics of spins at low temperatures and at short timescales is

a fundamental task to address many open questions in the field of magnetism

and magnetic material modeling [225]. State-of-the-art tools such as those de-

veloped for atomistic spin dynamics simulations are based on solving the Lan-

dau–Lifshitz–Gilbert (LLG) equation [155]. Despite their massive success, these

tools run into shortcomings in accurately modeling systems at low temperatures

and for short timescales where environment memory effects have been observed
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[190, 226]. Recent work has focused on developing a comprehensive quantum

thermodynamically consistent framework suitable to model the dynamics of spins

in magnetic materials while addressing these shortcomings [145]. This framework

includes strong coupling effects to the environment such as non-Markovian mem-

ory, colored noise, and quantum-like fluctuations. At its core, SpiDy.jl implements

the theoretical framework introduced in Ref. [145], allowing for the study of envi-

ronment memory effects and anisotropic system-environment coupling. SpiDy.jl

can be readily adopted for atomistic spin dynamics simulations [155, 157], ultra-

fast magnetism [227], and ferromagnetic and semiconductive systems exhibiting

anisotropic damping [228]. A further set of applications stems from the extension

of SpiDy.jl to handle the non-Markovian stochastic dynamics of harmonic oscil-

lators. This model might be of interest in the field of quantum thermodynamics

where harmonic oscillators play a key role in the environment modelling. The

package is written in pure Julia to take advantage of the language performance.

The software package has seen a wide range of applications to date. Firstly,

the convenience of three independent environments in SpiDy.jl finds application

in the microscopic modelling of spins affected by noise due to vibrations of the

material lattice [145]. SpiDy.jl also found application in the demonstration of the

quantum-to-classical correspondence at all coupling strengths between a spin

and an external environment [229]. Here, the temperature dependence of the spin

steady-state magnetization obtained with SpiDy.jl is successfully compared with

the classical mean force state of the system. In Ref. [230], the authors take ad-

vantage of the customizable coupling tensor in SpiDy.jl to explore the anisotropic

effects of the environment onto the system. In Ref. [231], SpiDy.jl is used as a

sub-routine to build quantum-improved atomistic spin dynamics simulations. In

the paper, the authors take advantage of the customizable power spectrum to

implement ad-hoc simulations matching known experimental results. Lastly, with

an eye to the harmonic oscillator side, SpiDy.jl is used to match the quantum har-

monic oscillator dynamics with its stochastic counterpart [232]. Here, the authors

exploit the recent implementation of harmonic oscillator dynamics.
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5.4 Overview

To model a system of interacting classical spin vectors, SpiDy.jl solves the gener-

alized stochastic LLG equation [145]

dSn(t)

dt
=

1

2
Sn(t)×

[∑
m ̸=n

Jn,mSm(t) +B+ bn(t) +

∫ t

t0

dt′Kn(t− t′)Sn(t
′)

]
, (89)

where Sn(t) represents the n-th spin vector, the interaction matrix Jn,m sets the

interaction strength between the n-th and m-th spins, B is the external field, which

determines the natural precession direction and frequency of the spins in the ab-

sence of interaction, and bn(t) is the time-dependent stochastic field interacting

with the spin. Finally, the last integral term in Eq. (89) takes care of the spin dissi-

pation due to the environment, including non-Markovian effects accounted for by

the memory kernel matrix Kn(t). Note that, while the term bn(t) reflects the color

of the noise and eventual zero–point fluctuations, the integral term introduces

the damping on the spins and the geometry of their coupling to the environment.

Here, we allow each spin to interact with three independent sources of noise, so

that in general Kn(t) = Cnkn(t), where kn(t) is a time dependent function and Cn

is a 3 × 3 matrix that determines how each of the n-th spin components couples

to each of the three noise sources. To efficiently simulate the non-Markovian ef-

fects, we follow the methods explained in [145] and restrict ourselves to the case

where the memory kernel k(t) comes from a Lorentzian spectral density of the

bath J (ω) = αΓ/((ω2
0 − ω2)2 + Γ2ω2) with peak frequency ω0, peak width Γ and

amplitude α, so that k(t) = Θ(t)α e−Γt/2 sin(ω1t)/ω1, where ω2
1 = ω2

0 − Γ2/4. In the

code, the stochastic noise bn(t) is generated so that it satisfies the fluctuation-

dissipation relation (FDR) (see Ref. [145]). That is, the power spectral density of

the stochastic noise satisfies P (ω, T ) = J (ω)η(T ) where J (ω) is the Lorentzian

spectral density and η(T ) defines the temperature dependence on the bath. Here,

the user can choose, among others, a classical or quantum-like temperature de-

pendence, namely ηcl(T ) = kBT/2ℏω and ηqu(T ) = coth(2ℏω/kBT ) respectively.

In addition, SpiDy.jl also allows one to study the stochastic dynamics of cou-

pled harmonic oscillator networks. In the same way, as for the spin case, the

harmonic oscillators can be coupled together with a user-defined system-system
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interaction. The equations of motion solved in this case are

d2Xn(t)

dt2
=
∑
m ̸=n

Jn,mXm(t)− Ω2Xn(t) + bn(t) +

∫ t

t0

dt′Kn(t− t′)Xn(t
′), (90)

where Xn(t) represents the position vector of the n-th harmonic oscillator, the

interaction matrix Jn,m sets the interaction strength between the n-th and m-th

harmonic oscillators, and Ω is the bare frequency of the harmonic oscillators (we

consider identical oscillators). All other terms have the same role as in the spin

case (see Eq. (89)).

In conclusion, SpiDy.jl implements the stochastic dynamics of coupled integro-

differential equations to model systems of interacting spins or harmonic oscillator

networks subject to environment noise. Among other, some of the key features of

the package include:

• Coloured stochastic noise that satisfies the FDR and accounts for both clas-

sical and quantum bath statistics.

• Simulation of non-Markovian system dynamics due to the coloured noise.

• Custom system-environment coupling tensors, allowing for isotropic or aniso-

tropic couplings. Both amplitudes and geometry of the coupling can be

specified.

• Choice between local environments, i.e. distinct baths acting on the single

sub-system, or a single common environment.

• System-system coupling for the interactions between sub-systems.

5.5 Example

Now, we show an example code to generate a run of SpiDy.jl for the spin dynam-

ics case. Given the stochastic nature of the problem solved, we will be dealing

with different dynamical trajectories. In the following code, we set the parameters

needed to build these trajectories, solutions to the stochastic set of equations and

plot a single one of them as an example. The entire code is commented through-

out for a better understanding of the single elements of the run. We show the re-

sults of the dynamics averaged over the full set (10000) of trajectories in Fig. 18.
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Figure 18: Simulation results for the single-spin dynamics. Dynamics of the
x, y, and z components of the spin. The components are normalized against
the total spin length S0. We show an example set of 5 stochastic trajectories of
the spin dynamics (colored semi-transparent lines) together with their stochastic
average (gray solid line). Note that, while we show only 5 trajectories for clarity,
the average dynamics is obtained from 10000 trajectories. We also represent the
area of dynamics included within a standard deviation of the average dynamics
(gray-shaded area). In the inset, we show the convergence of the same dynamics
towards the steady state at longer times. This example is obtained using the
Lorentzian parameters "set 1" found in Ref. [145]. The code used to generate the
stochastic trajectories is shown in the main text.

Note that both the average and the standard deviation of the set of trajectories

are not evaluated with the following code but are nonetheless represented in the

figure for clarity.

### importing SpiDy ###

using SpiDy

### setting the parameters ###

∆t = 0.1 # time step for the dynamics evaluation

Tend = 150 # final time of the dynamics

N = round(Int, Tend/∆t) # number of total steps

tspan = (0, N*∆t) # tuple of initial and final time

saveat = (0:1:N)*∆t # vector of times at which the solution is saved

α = 10 # Lorentzian coupling amplitude

ω0 = 7 # Lorentzian resonant frequency

Γ = 5 # Lorentzian width

Jsd = LorentzianSD(α, ω0, Γ) # Lorentzian spectral density

Cw = IsoCoupling(1) # isotropic coupling tensor

# the resulting coupling tensor is equivalent to the following

# Cw = AnisoCoupling([1 0 0
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# 0 1 0

# 0 0 1]);

T = 0.8 # temperature at which the dynamics takes place

noise = ClassicalNoise(T) # noise profile for the stochastic field

s0 = [1.0; 0.0; 0.0] # initial conditions of the spin vector for the

dynamics

ntraj = 10000 # number of trajectories (stochastic realizations)

### running the dynamics ###

sols = zeros(ntraj, 3, length(saveat)) # solution matrix

for i in 1:ntraj # iterations through the number of trajectories

# we use the Lorentzian spectral density Jsd to generate the

stochastic

# field. This assures the field obeys the FDR as noted in the main

text

local bfields = [bfield(N, ∆t, Jsd, noise),

bfield(N, ∆t, Jsd, noise), # vector of independent

bfield(N, ∆t, Jsd, noise)] # stochastic fields

# diffeqsolver (below) solves the system for the single trajectory

local sol = diffeqsolver(s0, tspan, Jsd, bfields, Cw; saveat=saveat)

sols[i,:,:] = sol[:,:] # store the trajectory into the matrix of

solutions

end

### example plot ###

# use Plots.jl pkg to plot a single trajectory of the dynamics over time

using Plots

plot(xlabel="time", ylabel="spin components")

# sols[i,j,k] with i: trajectory index, j: spin component, k: solution

at

# the k-th time point

plot!(saveat, sols[1,1,:], label="x-component")

plot!(saveat, sols[1,2,:], label="y-component")

plot!(saveat, sols[1,3,:], label="z-component")

savefig("example_run.pdf")
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6 Discussion

In this thesis, we have journeyed through some aspects of open systems, quan-

tum and classical. To do so, we have touched fields going from classical wave

scattering theories, to quantum master equations and beyond-LLG theories. We

have adopted tools of increasing popularity like graph theory to explore the ex-

ceptional points of classical systems. We have uncovered the caveats of ap-

proximations in quantum master equations, again, exploiting physical features in

the form of EPs. We have expanded theories to go beyond the prediction of the

LLG equation to explain the spin dynamics at low temperature. In the process,

we have developed an entire package to explore the stochastic equations of the

spin-boson model and harmonic oscillators.

Here, I recap on a few key points about the conclusions drawn in the previous

sections and propose a few possible further research directions.

Graph theory approach to exceptional points in wave scattering

• In section 2, I developed a diagrammatic method to understand multiple

scattering processes using graph theory and used this to find the excep-

tional points of the system.

• The scattering events are understood via 1–connections and subdigraphs,

allowing for approximation in weakly and strongly coupled systems.

• The Frobenius companion matrix gives a general formula to find the zero

eigenvalue exceptional points (EPs) of the system considered.

• It is possible to control the spectral width of the power response at an EP,

indicating an interplay between the gain/loss of the scatterers and the power

output.

Several future directions and possible studies can stem from here. First of all,

linking graph theory with wave scattering systems allows to port numerical tools

from one world to the other. For example, this might help in the development of

alternative and more efficient search routines in parameter space. Another in-

teresting direction would be to explore less approximated theories (in this case,

the discrete dipole approximation), considering scatterers with a non–trivial form
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factor and see if any diagrammatic interpretation remains. It would also be in-

teresting to expand the graph theoretical treatment of wave scattering events to

find EPs not associated to zero eigenvalues. To do so, one would need to study

the EPs conditions derived from the block companion matrices rather then the full

Frobenius matrix [52]. In addition, one could represent the companion matrices

themselves via Coates digraphs in search for even more insightful interpretations

for the EPs conditions [38]. On a more experimental side, it would be possible to

explore the implication of these findings in settings relevant for coherent perfect

absorption (CPA) [60, 61], in which zero eigenvalue EPs play a crucial role.

Local master equations bypass the secular approximation

• In section 3, I focused on modeling the dynamics and heat flows across two

coupled harmonic oscillators interacting with external baths using quantum

master equations.

• The local and global master equations, two common approaches, can yield

very different predictions.

• The local master equation (LME) captured dynamical features that the global

master equation (GME) missed. We identified the breakdown of the GME

predictive capabilities in the secular approximation.

• The LME directly derives from the Redfield equation in the limit of vanishing

inter–node coupling. In this regime, the LME bypasses the secular approxi-

mation and maintains its predictive accuracy.

• The LME can be superior to the GME in the presence of weak internal cou-

pling and offers a computationally less demanding alternative to the Redfield

equation.

• In a regime where both LME and GME are valid, modeling using the local

approach can also make a significant difference in the prediction of heat

transfer in quantum thermal machines.

From these findings, one might be interested in the understanding of discrete

rather than continuous variable systems in the direction of Ref. [233]. Would this

lack of physicality of the global master equation remain valid in the discrete case?
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In fact, nowadays, a deeper understanding of the limiting cases of approximation

and applicability of the local and global master equation remains desirable. As

we have seen in this section, performing approximations, e.g. the secular approx-

imation, have profound consequences on the thermodynamics of the system. It

would be key to know if other physical features, other than the EPs, are affected

by such approximations.

Quantum-classical correspondence in spin-boson equilibrium states at ar-

bitrary coupling

• In section 4, I explored the equilibrium properties of the θ-angled spin-boson

model in both quantum and classical regimes.

• A compact analytical expression was derived for the equilibrium state of the

spin in the classical case, which is universally applicable for any coupling

strength.

• A comparison between quantum and classical states of a spin coupled to a

noisy environment was discussed, providing insights into the quantum vs.

classical debate.

• Even classical open spins at equilibrium can showcase an equivalent of

quantum coherences when the environment is coupled asymmetrically. This

suggests the need for alternative measures of quantum coherences to cer-

tify the quantum origin of certain speed-ups or efficiencies.

• A quantitative characterization of the coupling parameter values was pre-

sented, which will be a benchmark for future studies of the spin-boson

model.

Different possible directions can emerge from this work. First of all, while we have

found an analytical expression for the equilibrium state of the spin at arbitrary

coupling with the environment, a quantum equivalent is yet to be derived [177].

From a quantum thermodynamic perspective, these contributions are of interest

for the development of quantum hardware and technologies [224]. In fact, a link

can be further drawn between the thermodynamics of a qubit and its quickest

channel of dissipation to the environment. This happens at an EP and it is crucial
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for qubit resetting in quantum computing [67]. It would also be interesting to

explore further the link between the quantum coherences at zero temperature

and their classical equivalent found in the case of asymmetric coupling to the

environment.

SpiDy.jl: open–source Julia package for the study of non–Markovian stochas-

tic dynamics

• In section 5, I have introduced SpiDy.jl, a comprehensive Julia package de-

signed to simulate the stochastic dynamics of the spin-boson model and

harmonic oscillators.

• A key feature is the possibility to choose a noise power spectrum between

classical, quantum, and quantum without zero–point fluctuations. This al-

lows for reasonable comparison with predictions obtained from semi–classical

and quantum models.

• The package offers the possibility to tune the noise distribution profile by

supporting external packages like Distributions.jl.

• An explicit and customizable coupling tensor allows the user to study spe-

cific configurations and geometries of the system–bath coupling.

• The addition of a system–system coupling matrix further enhance the ex-

ploration capabilities.

• The design of the package ensures modularity and extensibility, allowing it

to adapt to various physical models and experimental setups.

SpiDy.jl provides a robust computational addition for the spin dynamics commu-

nity and for the study of non–trivial systems of harmonic oscillator. Crucial here is

the possibility to tune a non–Markovian colored stochastic noise. Given its flexibil-

ity and adaptability, future work could involve extending its capabilities to handle

more specialized spectral densities or introducing more efficient algorithms for

larger scale simulations. A collaborative effort with experimentalists could also

improve the prediction capabilities of the package, optimizing it based on feed-

back and real-world testing.
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To conclude, we have seen how opening the (quantum or classical) system

to an external environment hides dynamical and thermodynamic peculiarities and

unexpected behaviours. As hinted in this conclusive section, the subject is so vast

that every little contribution to the field generates a plethora of further topics one

could explore. There is still extensive work to be done but open system theory has

unparalleled potential for multidisciplinarity, thus the fun is unlikely to end soon.
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A Graph theory in wave scattering

A.1 Graph theory fundamentals

“A graph G is an ordered pair of disjoint sets (V ,E ), such that E is a subset of

unordered pairs of V ” [40]. The set V defines the vertices of the graph, i.e., the

interacting elements of a structure we consider. The interactions between these

elements are defined by the edges in the set E . In the case of interacting discrete

scatterers, the set of vertices V represents the set of scatterers and the set of

edges E correspond to the set of interactions between the scatterers. Note that,

in general, these interactions are not symmetric. By means of these fundamen-

tal blocks, we can translate every matrix M of the form Eq. (11) into a graph of

the form 5. The resulting graph will represent the polarizabilities α as self–loops

(or self–edges) and the Green’s functions G(xi,xj) as edges starting from the

vertex i and ending in the vertex j. This directed edges, from i to j, promote

the graph to a directed–graph or digraph. As mentioned in the main text, this

graph is the Coates digraph D∗(M) associated with the matrix M . Note that the

asterisk superscript takes care of the historical definition of the Coates digraph,

i.e., the digraph associated with the transpose of the matrix we intend to represent

[37, 38]. In the main text, we refer to this kind of graphs as vertex–labeled directed

weighted simple graph permitting loops. “Vertex–labeled”, as the name suggests,

indicates that the scatterers are distinguishable, “directed” means that interac-

tions between scatterers are not necessarily symmetric, “weighted” indicates a

non–unit interaction, “simple” indicates the presence of a single directional inter-

action between edges, while “permitting loops” identifies a graph that allows for

self–interaction, in our case, the polarizabilities.

A.1.1 Linear subdigraphs

Consider the Coates’ determinant formula in Eq. (13), expression for the con-

struction of determinants by means of graphs. We report the expression here for

convenience,

det(A) = (−1)N
∑

L∈L (A)

(−1)c(L)γ(L). (A.1)
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Figure 19: Example of linear subdigraphs associated with the graph K3. For the
example graph K3, there are 6 linear subdigraphs in total. Note that, given that
we deal with directed graphs, we distinguish between subdigraphs with edges
linking the same nodes but in opposite directions as in the case of the last and
second–to–last subdigraphs in the figure.

Figure 20: Construction of the determinant of the matrix G. On the left, the
Coates digraph of the matrix G. On the right, the linear subdigraphs of the matrix
G which define the determinant as per Eq. (13).
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As a reminder, N is the dimension of a generic matrix A whose determinant we

want to evaluate, c(L) is the number of cycles in L, γ(L) is the weight of the linear

subdigraph L, and L (A) is the set of all possible linear subdigraphs of the Coates

digraph D∗(A). We now show what a linear subdigraphs is and how to construct

it.

A subdigraph is a digraph with V ′ ⊂ V vertices and E ′ ⊂ E edges. In addition,

to earn the name of linear subdigraph, the vertices in V ′ must have in–degree and

out–degree equal to 1, i.e., every vertex must have exactly one edge entering and

one edge leaving. In Fig. 19, we report the entire set of linear subdigraphs for an

example digraph K3. In the main text, we use these set of graphs to construct

the determinants in the adjugate inversion formula. We now show how we use

these linear subdigraph constructions for the determinant evaluation. Consider

the sparse matrix G,

G =



0 1 0 0

3 1 0 3

0 0 4 2

0 3 2 0


. (A.2)

We can work out the digraph associated with the matrix G and its linear sub-

digraphs to evaluate the determinant. To do this, we use Eq. (13), i.e., we

search for all the subdigraphs whose vertices have in–degree and out–degree

equal to 1. We show the results in Fig. 20, where on the LHS we find the di-

graph D∗(G) associated with the matrix G and on the RHS we find the deter-

minant of G, consisting of the only linear subdigraph of the graph D∗(G). Sum-

ming the weights of the edges of the subdigraph, we obtain the determinant,

det(G) = (−1)4(−1)2(1 · 3 · 2 · 2) = 12, where the first term accounts for the factor

(−1)N , the second term accounts for the number of cycles (−1)c(L), and the last

accounts for the weights of the subdigraphs γ(L).

A.1.2 1–connections

Consider the adjugate expression in Eq. (14), expression for the construction of

adjugate terms by means of graphs. We report the expression here for conve-
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Figure 21: Construction of the adjugate element adj(G)1,2, built using the off–
diagonal 1–connections from vertex 1 to vertex 2. On the left, again the Coates
digraph of the matrix G. On the right, the 1–connections of the matrix G which
define the adjugate term adj(G)1,2 as per Eq. (14). The latter is built by the cor-
responding linear subdigraphs by removing the edge 2 → 1 as described in the
text.

nience,

adj(A)i,j = (−1)N
∑

D∗[i→j]

(−1)c(D
∗[i→j])+1γ(D∗[i → j]). (A.3)

In this expression, the terms D∗[i → j] are the 1–connections from vertex i to

vertex j while all the other elements of the equation have an analogous meaning

as in the determinant expression. The 1–connection D∗[i → j] is obtained from

the corresponding linear subdigraph L∋i→j (linear subdigraph that includes the

edge i → j) by simply removing the edge j → i. Note that, in the case i = j,

this corresponds to removing the self–loop at vertex i. This definition leads to the

following relation between the number of cycles in a linear subdigraph L∋i→j and

the relative 1–connection D∗[i → j] [38],

c(L∋i→j) = c(D∗[i → j]) + 1, (A.4)

which justifies the “+1” in the adjugate expression. More formally, following the

definition of a 1–connection reported in Ref. [38], we call 1–connection from ver-

tex i to vertex j, the spanning subdigraph D∗[i → j] such that,

• for i ̸= j, all vertices k with k ̸= i, j must have in–degree and out–degree

equal to 1, vertex i must have in–degree equal to 0 but out–degree equal

to 1 and vertex j must have in–degree equal to 1 but out–degree equal to

0. The resulting spanning subdigraph therefore has a path from vertex i to

vertex j,
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• for i = j, all vertices must have in–degree and out–degree equal to 1, while

vertex i = j must have in–degree and out–degree equal to 0.

As mentioned in the main text, the 1–connections are closely related to the linear

subdigraphs. In fact, the 1–connections D∗[i → j] obtained using the definition

above are equivalent to those obtained from the corresponding linear subdigraph

L∋i→j simply by removing the edge j → i. By means of this definition, we now

show the construction of an off–diagonal adjugate term. Consider again the ma-

trix G, we now build the adjugate term adj(G)1,2 consisting of the 1–connections

D∗[1 → 2]. To do this, we consider all the linear subdigraphs that include the

edge 1 → 2 (one single subdigraph in our example) and remove the edge from

vertex 2 → 1, as shown in Fig. 21. Summing the weights of the edges of the 1–

connections, we obtain the adjugate term, adj(G)1,2 = (−1)4(−1)1+1(1 · 2 · 2) = 4,

where the first term accounts for the factor (−1)N , the second term accounts for

the number of cycles (−1)c(D
∗[i→j])+1, and the last accounts for the weights of the

1–connections γ(D∗[i → j]).

A.2 Similarity transformation between a matrix and its Frobe-

nius companion form

Consider a matrix A ∈ CN×N and its Frobenius companion matrix (see Eq. 17 in

the main text),

AFrob =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−c0 −c1 −c2 · · · −cN−2 −cN−1


, (A.5)
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where ci are the coefficients of the characteristic polynomial of A. If there exists

a row vector b ∈ C1×N such that the matrix

T =



b

bA
...

bAN−2

bAN−1


∈ CN×N (A.6)

is non-singular, then the matrix A is similar to its Frobenius companion matrix

AFrob [52],

AFrob = T−1AT . (A.7)

Here, the matrix T is the Vandermonde matrix, whose entries are thus given by

Tij = bAi−1
:,j , (A.8)

where Ai−1
:,j denotes the j-th column of Ai−1. Note that, in what follows, we do

not compute the vector b but rather we infer the transformation matrix T while

keeping b implicit. The Vandermonde determinant can be expressed as

det(T ) =
∏

1≤i<j≤N

(bAj−1 − bAi−1). (A.9)

It is immediate to see that T is non-singular if and only if det(T ) ̸= 0, thus the N

rows b, bA, · · · , bAN−2, bAN−1 are distinct. The rows of the Vandermonde ma-

trix are generated by the different powers of A multiplied by the same vector b.

Therefore, asking for T to be non-singular is equivalent to ask that the character-

istic polynomial of A has N distinct roots, which requires A to be diagonalizable.

Thus, we can write A = PDP−1, where D is a diagonal matrix whose entries

are the eigenvalues of A, and P is a non-singular matrix whose columns are the

eigenvectors of A. Now, if A has N distinct roots, the Frobenius companion ma-

trix can be diagonalized by the matrix Q whose columns are made of the set of

N eigenvectors of AFrob [53]

qi = (1, λi, λ
2
i , · · · , λN−1

i )T (A.10)
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relative to its eigenvalues λi. Note that a consistent order of the eigenvalues must

be kept throughout the calculations. We have that

AFrob = T−1AT = T−1PDP−1T = QDQ−1 (A.11)

which implies Q = T−1P . Since all the matrices in the last expression are in-

vertible, we can derive T = PQ−1 and consequently find the transformations

AFrob = T−1AT .

As an example, consider the 3× 3 matrix

A =


2 0 0

−3 5 −4

−2 2 −1

 (A.12)

with eigenvalues λ1 = 3, λ2 = 2, λ3 = 1. The similarity matrices P and Q are,

P =


0 1 0

2 1 1

1 0 1

 , Q =


1 1 1

3 2 1

9 4 1

 . (A.13)

The similarity transformation T between the matrix A and its Frobenius compan-

ion matrix AFrob thus results

T = PQ−1 =


−3 4 −1

2 −3/2 1/2

4 −4 1

 . (A.14)

We finally perform the transformation,

AFrob = T−1AT =


0 1 0

0 0 1

6 −11 6

 . (A.15)
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B Local vs global master equation

B.1 Derivation of the GME

Here, we derive a second-order master equation under the Markov and secular

approximations. Essentially, we follow Ref. [139], but simplify the derivation. Let

the Hamiltonian of our system be

HHH =HHHS +HHHB + λHHHSB, (B.1)

where HHHSB stands for the dissipative interactions between system (S) and bath

(B). Note that we are transferring the magnitude of these interactions into λ, which

means that the rescaled HHHSB is now O(1), unlike in the main text (cf. Eq. (40)).

Our starting point will be the Liouville–von Neumann equation in the interaction

picture with respect to HHH0 :=HHHS +HHHB. This is

dρ̃̃ρ̃ρ

dt
= −i λ [H̃̃H̃HSB(t), ρ̃̃ρ̃ρ(t)] := λ L̃(t) ρ̃̃ρ̃ρ(t), (B.2)

where Õ̃ÕO(t) := eiHHH0tOOO e−iHHH0t. Here, ρ̃̃ρ̃ρ(t) is the full system–environment state.

Since we are only interested in the system’s marginal ϱ̃̃ϱ̃ϱ := trB ρ̃̃ρ̃ρ(t), we trace out

the bath, i.e.,
dϱ̃̃ϱ̃ϱ

dt
= λ trB L̃(t) ρ̃̃ρ̃ρ(t) (B.3)

and integrate formally. This gives us

ϱ̃̃ϱ̃ϱ(t) = ϱϱϱ(0) + λ

∫ t

0

ds trB L̃(s)ρ̃̃ρ̃ρ(s), (B.4)

and iterating,

ϱ̃̃ϱ̃ϱ(t) = ϱϱϱ(0) + λ

∫ t

0

ds trB L̃(s)ρρρ(0) + λ2

∫ t

0

ds

∫ s

0

ds′ trB L̃(s)L̃(s′)ρ̃̃ρ̃ρ(s′). (B.5)

Replacing the state ρ̃̃ρ̃ρ(s′) in Eq. (B.5) by the expression in (B.4) once again, we

see that

ϱ̃̃ϱ̃ϱ(t) = ϱϱϱ(0) + λ

∫ t

0

ds trB L̃(s)ρρρ(0) + λ2

∫ t

0

ds

∫ s

0

ds′ trB L̃(s)L̃(s′)ρρρ(0) +O(λ3).

(B.6)
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Assuming that λ is small enough so that all O(λ3) terms or smaller can be ne-

glected will be our first key approximation. This will lead to a second-order quan-

tum master equation after taking the time derivative; namely,

dϱ̃̃ϱ̃ϱ

dt
= λ trB L̃(t)ρρρ(0) + λ2

∫ t

0

ds trB L̃(t)L̃(s)ρρρ(0). (B.7)

Notice, however, that this master equation time-non-local and, still, of little

practical use. To overcome this problem, we make two additional assumptions:

First, we require the initial state to include no correlations between system’s and

bath’s degrees of freedom. Namely, ρρρ(0) = ϱϱϱS(0)⊗ ϱϱϱB. Secondly, we impose

trB L̃(s)ϱϱϱ(0)⊗ ϱϱϱB = 0. (B.8)

For instance, if the system–bath interaction is of the simple form HHHSB = SSS ⊗ BBB

(cf. Eq. (40)), Eq. (B.8) translates into ⟨BBB⟩ = 0 when averaged on the initial state

of the environment.

Inserting (B.8) into (B.6), we see that ϱϱϱ(0) = ϱ̃̃ϱ̃ϱ(t) + O(λ2), which allows us to

write our equation in the much more convenient time-local form

dϱ̃̃ϱ̃ϱ

dt
= λ2

∫ t

0

ds trB L̃(t)L̃(s)ϱ̃ϱϱ(t)⊗ ϱϱϱB (B.9)

while still remaining accurate within O(λ3). It is customary to perform a change

of variables in the integral, re-expressing it as

dϱ̃̃ϱ̃ϱ

dt
= λ2

∫ t

0

ds trB L̃(t)L̃(t− s)ϱ̃̃ϱ̃ϱ(t)⊗ ϱϱϱB. (B.10)

We note that objects like

trB L̃(t)L̃(t− s)ϱ̃̃ϱ̃ϱ(t)⊗ ϱϱϱB (B.11)

enclose two-time correlation functions of bath operators, i.e., trB B̃̃B̃B(t)B̃̃B̃B(t − s)ϱϱϱB.

In many situations of practical interest, these decay extremely fast—much faster

than any relevant timescale in the problem. Hence, we may replace the upper
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integration limit in (B.10) by infinity without substantial error

dϱ̃̃ϱ̃ϱ

dt
= λ2

∫ ∞

0

ds trB L̃(t)L̃(t− s)ϱ̃̃ϱ̃ϱ(t)⊗ ϱϱϱB. (B.12)

This is often referred-to as the Markov approximation and the resulting equa-

tion, as (Markovian) Redfield master equation. However, the use of the term

‘Markovian’ can be problematic since the dynamics generated by this equation

is, in general, not even positive [139]. This means that the corresponding dy-

namical map might not be divisible, and lack of divisibility is often associated with

‘non-Markovianity’ [234].

Before the final step in our derivation, we must transcribe the shorthand trB L̃(t)L̃(t−
s)ϱ̃̃ϱ̃ϱ(t)⊗ ϱϱϱB, which gives

L̃(t)L̃(t−s)ϱ̃̃ϱ̃ϱ(t)⊗ϱϱϱB = −H̃̃H̃HSB(t)H̃̃H̃HSB(t−s)ϱ̃̃ϱ̃ϱ(t)⊗ϱϱϱB+H̃̃H̃HSB(t−s)ϱ̃̃ϱ̃ϱ(t)⊗ϱϱϱBH̃̃H̃HSB(t)+h.c.

We may always write the system–bath interaction term as HHHSB =
∑

αSSSα ⊗BBBα.

Here, we take HHHSB = SSS ⊗BBB for simplicity, and hence,

L̃(t)L̃(t− s)ϱ̃̃ϱ̃ϱ(t)⊗ ϱϱϱB =− S̃̃S̃S(t)S̃̃S̃S(t− s)ϱ̃̃ϱ̃ϱ(t) trB B̃̃B̃B(t)B̃̃B̃B(t− s)ϱϱϱB

+ S̃̃S̃S(t− s)ϱ̃̃ϱ̃ϱ(t)S̃̃S̃S(t) trB B̃̃B̃B(t− s)ϱϱϱBB̃̃B̃B(t) + h.c.

The explicit form of the interaction-picture system operator S̃̃S̃S(t) can be found

easily by exploiting the decomposition from Eqs. (31) in the main text. Namely,

given the properties of the jump operatorsAAAω it is easy to see that S̃̃S̃S(t) =
∑

ωAAAω e
−iωt.

Putting together all the pieces

dϱ̃̃ϱ̃ϱ

dt
=
∑

ω,ω′

(
−Γ(ω)AAAω′AAAωe

−i(ω+ω′)tϱ̃̃ϱ̃ϱ(t) +Γ(ω)AAAωϱ̃̃ϱ̃ϱ(t)AAAω′e−i(ω+ω′)t + h.c.
)

=
∑

ω,ω′

(
−Γ(ω)AAA†

ω′AAAωe
i(ω′−ω)tϱ̃̃ϱ̃ϱ(t) +Γ(ω)AAAωϱ̃̃ϱ̃ϱ(t)AAA

†
ω′e

i(ω′−ω′)t + h.c.
)
, (B.13)

where

Γ(ω) := λ2

∫ ∞

0

ds eiωs trB B̃̃B̃B(t)B̃̃B̃B(t− s), (B.14)

and the corresponding real and imaginary parts are Γ(ω) = 1
2
γ(ω) + iS(ω). The

imaginary part S(ω) is typically ignored. It introduces two effects—a displace-

ment of the energy levels of HHHS through a Lamb shift term HHHL =
∑

ω S(ω)AAA
†
ωAAAω
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([HHHS,HHHL] = 0); but also, non-trivial dissipative terms. These are, however, typi-

cally very small.

Many terms in Eq. (B.13) can be dropped, since they are fast-oscillating and

average out to zero over the time-scale defined by the dynamics of ϱϱϱ(t) [87].

Namely, we can drop all terms for which ω and ω′ have the same sign (ω × ω′ >

0), since these oscillate as e±|ω+ω′|t. Eq. (B.13) is often called ‘partial Redfield

equation’ [88, 100, 105]

It is now time to abandon the interaction picture undoing the corresponding

unitary transformation. This gives us

dϱϱϱ

dt
= −i[HHHS, ϱϱϱ] +

1

2

∑
ω×ω′<0

γ(ω)
(
AAAωϱϱϱ(t)AAA

†
ω′ −AAA†

ω′AAAωϱϱϱ(t)
)
+ h.c. (B.15)

One final step is necessary to bring Eq. (B.15) into GKSL form—the secular

approximation. This consists in removing all terms in which ω ̸= ω′ from the

double sum in (B.15). The rationale for this—seemingly arbitrary—simplification

often involves again a time averaging which now ‘kills’ all the remaining oscillating

terms in Eq. (B.13) [87]. From all approximations involved in the process, this is

certainly the most problematic and difficult to justify. Nonetheless, it does hold

in many situations of practical interest [87]. This way, we finally arrive at the

celebrated global GKSL master equation

dϱϱϱ

dt
= −i[HHHS, ϱϱϱ] +

∑
ω

γ(ω)

(
AAAωϱϱϱ(t)AAA

†
ω − 1

2
{AAA†

ωAAAωϱϱϱ(t)}+
)
. (B.16)

B.2 Dynamics of second-order moments

We now study the dynamics of the second-order moments showing the matrices

of the dynamics generated by LME (Eq. (B.21)), GME (Eq. (B.25)) and Redfield

equation (Eq. (B.28)).

We first consider the local approach. Using Eq. (35), we obtain a set of 10

coupled first-order differential equations defining the dynamics of the covariances

CCCij of the system, as defined in Sec. 3.6.2. These equations can be expressed

as
d⟨q̃̃q̃q⟩
dt

= ML ,2⟨q̃̃q̃q⟩+ cL ,2, (B.17)
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where the ordered vector of the covariances is

q̃̃q̃q :=

(
xxx2
h, ppp

2
h,
1

2
{xxxh, ppph}+,xxx2

c , ppp
2
c ,
1

2
{xxxc, pppc}+,xxxhpppc,xxxcppph,xxxhxxxc, ppphpppc

)T

, (B.18)

and the constant vector cL ,2 is

cL ,2 =

(
Σ

(h)
ω

2ω
,
ωΣ

(h)
ω

2
, 0,

Σ
(c)
ω

2ω
,
ωΣ

(c)
ω

2
, 0, 0, 0, 0, 0

)T

. (B.19)

The coefficients Σ
(α)
ω s are defined as

Σ(α)
ω :=

γ
(α)
−ω + γ

(α)
ω

2ω
. (B.20)

Therefore, in the local approach, the matrix of the dynamics takes the form

ML ,2 =



∆
(h)
ω 0 2 0 0 0 0 0 0 0

0 ∆
(h)
ω −2ω2 0 0 0 0 k 0 0

−ω2 1 ∆
(h)
ω 0 0 0 0 0 k/2 0

0 0 0 ∆
(c)
ω 0 2 0 0 0 0

0 0 0 0 ∆
(c)
ω −2ω2 k 0 0 0

0 0 0 −ω2 1 ∆
(c)
ω 0 0 k/2 0

k/2 0 0 0 0 0 ∆
(h)
ω +∆

(c)
ω

2
0 −ω2 1

0 0 0 k/2 0 0 0 ∆
(h)
ω +∆

(c)
ω

2
−ω2 1

0 0 0 0 0 0 1 1 ∆
(h)
ω +∆

(c)
ω

2
0

0 0 k/2 0 0 k/2 −ω2 −ω2 0 ∆
(h)
ω +∆

(c)
ω

2



,

(B.21)

where the coefficients ∆
(α)
ω were already introduced in Eq. (59). Studying (nu-

merically) the condition number of the eigenvectors matrix of ML ,2, we obtain the

exact same line of singularities emerging from the condition in Eq. (61).

Let us consider next the case of the global master equation. Since the condi-

tion number is independent of the basis, in the following we report the dynamics

expressed in terms of the normal-mode quadratures of the system. In the case

of the global master equation, we obtain

d⟨Q̃̃Q̃Q⟩
dt

= M′
G ,2⟨Q̃̃Q̃Q⟩+ c′G ,2. (B.22)
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In this case, the ordered vector of the covariances is

Q̃̃Q̃Q :=

(
ηηη21,ΠΠΠ

2
1,
1

2
{ηηη1,ΠΠΠ1}+, ηηη22,ΠΠΠ2

2,
1

2
{ηηη2,ΠΠΠ2}+, ηηη1ΠΠΠ2, ηηη2ΠΠΠ1, ηηη1ηηη2,ΠΠΠ1ΠΠΠ2

)T

, (B.23)

and the constant vector is given by

c′G ,2 =

(
Σ̃1

2Ω1

,
Ω1Σ̃1

2
, 0,

Σ̃2

2Ω2

,
Ω2Σ̃2

2
, 0, 0, 0, 0, 0

)T

, (B.24)

while the matrix of the dynamics is

M′
G ,2 =



∆̃1 0 2 0 0 0 0 0 0 0

0 ∆̃1 −2Ω2
1 0 0 0 0 0 0 0

−2Ω2
1 1 ∆̃1 0 0 0 0 0 0 0

0 0 0 ∆̃2 0 2 0 0 0 0

0 0 0 0 ∆̃2 −2Ω2
2 0 0 0 0

0 0 0 −Ω2
2 1 ∆̃2 0 0 0 0

0 0 0 0 0 0 ∆̃1+∆̃2

2
0 −Ω2

2 1

0 0 0 0 0 0 0 ∆̃1+∆̃2

2
−Ω2

1 1

0 0 0 0 0 0 1 1 ∆̃1+∆̃2

2
0

0 0 0 0 0 0 −Ω2
1 −Ω2

2 0 ∆̃1+∆̃2

2



.

(B.25)

The ∆̃j have been introduced in Eq. (69) and, analogously, we define here the

coefficients

Σ̃j :=
1

2

∑
α
Σ

(α)
Ωj

. (B.26)

In this case, the evaluation of the condition number reveals no exceptional

points, just as in the case of the first-order moments. Hence, the discrepancy

between the local and global master equation persists at the level of the second-

order moments.

Now, we present the evolution of the covariances in the case of the Redfield

equation. Again, in normal-mode variables, the dynamics is expressed as

d⟨Q̃̃Q̃Q⟩
dt

= M′
R,2⟨Q̃̃Q̃Q⟩+ c′R,2. (B.27)
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The matrix of the dynamics takes the form

M′
R,2 =



∆̃1 0 2 0 0 0 0 0 Ω2

Ω1
∆̃′

2 0

0 ∆̃1 −2Ω2
1 0 0 0 0 0 0 ∆̃′

2

−2Ω2
1 1 ∆̃1 0 0 0

∆̃′
2

2
Ω2

2Ω1
∆̃′

2 0 0

0 0 0 ∆̃2 0 2 0 0 Ω1

Ω2
∆̃′

1 0

0 0 0 0 ∆̃2 −2Ω2
2 0 0 0 ∆̃′

1

0 0 0 −Ω2
2 1 ∆̃2

∆̃′
1

2
0 0 0

0 0
∆̃′

1

2
0 0 Ω2

2Ω1
∆̃′

2
∆̃1+∆̃2

2
0 −Ω2

2 1

0 0 Ω1

2Ω2
∆̃′

1 0 0
∆̃′

2

2
0 ∆̃1+∆̃2

2
−Ω2

1 1

Ω1

2Ω2
∆̃′

1 0 0 Ω2

2Ω1
∆̃′

2 0 0 1 1 ∆̃1+∆̃2

2
0

0
∆̃′

1

2
0 0

∆̃′
2

2
0 −Ω2

1 −Ω2
2 0 ∆̃1+∆̃2

2



,

(B.28)

while the constant vector is

c′R,2 =

(
Σ̃1

2Ω1

,
Ω1Σ̃1

2
, 0,

Σ̃2

2Ω2

,
Ω2Σ̃2

2
, 0, 0, 0,

Σ̃′
1

4Ω2

+
Σ̃′

2

4Ω1

,
Ω1Σ̃

′
1

4
+

Ω2Σ̃
′
2

4

)T

. (B.29)

In these expressions, we have defined the new coefficients

∆̃′
j :=

1

2

(
∆

(h)
Ωj

−∆
(c)
Ωj

)
(B.30a)

Σ̃′
j :=

1

2

(
Σ

(h)
Ωj

− Σ
(c)
Ωj

)
. (B.30b)

Calculating the condition number of the corresponding matrix of eigenvectors,

one can readily confirm, once again, the presence of the exceptional points along

the exact same ‘exceptional lines’ (61).

It is worth noting that, since the system considered is Gaussian, these sin-

gularities will be present, according to the LME and the Redfield equation, in

any nth-order moment. This is so, because any higher-order correlation functions

of a Gaussian system can be cast as a combination of first- and second-order

moments, and these simultaneously display exceptional points. Conversely, no

moments of any order will ever pick up exceptional points according to the global

description.
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B.3 Conditions for the appearance of exceptional points

As mentioned in the main text, for the exceptional points to appear, dissipation

must be asymmetric and the oscillators must be resonant. Here, we show the

validity of this statement.

Consider the non-resonant case, where the resonators have bare frequencies

ωh and ωc. The matrix of the dynamics of the first order moments is

M̃L ,1 =
1

2


∆

(h)
ωh 2 0 0

−2ω2
h ∆

(h)
ωh −2k 0

0 0 ∆
(c)
ωc 2

−2k 0 −2ω2
c ∆

(c)
ωc


, (B.31)

where

∆(α)
ωi

:=
γ
(α)
−ωi

− γ
(α)
ωi

2ωi

. (B.32)

To identify the exceptional points we look for square root singularities in the ex-

pressions of the eigenvalues. Two of the eigenvalues of the latter matrix are

λ1,2 =
1

4

[
∆(h)

ωh
+∆(c)

ωc
+ 2
√

−(ωh + ωc)2+ (B.33)

±
√

(∆
(h)
ωh −∆

(c)
ωc )2 − 4(ωh − ωc)2 −

4k2

ωhωc

− 4(∆
(h)
ωh −∆

(c)
ωc )

ω2
h − ω2

c√
−(ωh + ωc)2

]

which coalesce when the latter square root vanishes. Therefore, we find the

condition of exceptional points for the inter-resonators coupling k,

k = ±1

2

√
ωhωc

√
(∆

(h)
ωh −∆

(c)
ωc )2 − 4(ωh − ωc)

[
(ωh − ωc)− i(∆

(h)
ωh −∆

(c)
ωc )
]
. (B.34)

Since the inter-resonators coupling k is assumed to be real, we have the only

acceptable solution when the system is resonant, ωh = ωc = ω and dissipation

asymmetric, ∆h ̸= ∆c. In this way, we recover the expression in Eq. (60).

B.4 Local, global, and Redfield dissipators out of resonance

We now show that the relationship between the Redfield and the local approach

pertains even in the non-resonant case. First of all, note that, out of resonance,

the transformation matrix P that defines the rotation into normal modes gener-

104



alises to [88]

P =

sin ζ cos ζ

cos ζ − sin ζ

 , (B.35)

where ζ = arccos

√
δ +

√
4k2 + δ2

2
√
4k2 + δ2

and δ = ω2
h − ω2

c . The eigenfrequencies are

Ω2
1,2 =

1

2

(
ω2
h + ω2

c ±
√
4k2 + δ2

)
. (B.36)

Namely, in the non-resonant case both the eigenvectors and the Bohr frequencies

of HHHS depend explicitly on the internal coupling strength k.

Moving now to the Redfield dissipators (B.15) we can write it out in adjoint

form as

R†
h(OOO) + R†

c(OOO) =
2∑

i,j=1

[γ(h)
Ωi

2

(
AAA

(h)
−Ωj

OOOAAA
(h)
Ωi

+AAA
(h)
−Ωi

OOOAAA
(h)
Ωj

−OOOAAA
(h)
−Ωj

AAA
(h)
Ωi

−AAA
(h)
−Ωi

AAA
(h)
Ωj
OOO
)

+
γ
(h)
−Ωi

2

(
AAA

(h)
Ωj
OOOAAA

(h)
−Ωi

+AAA
(h)
Ωi
OOOAAA

(h)
−Ωj

−OOOAAA
(h)
Ωj
AAA

(h)
−Ωi

−AAA
(h)
Ωi
AAA

(h)
−Ωj

OOO
)

+
γ
(c)
Ωi

2

(
AAA

(c)
−Ωj

OOOAAA
(c)
Ωi

+AAA
(c)
−Ωi

OOOAAA
(c)
Ωj

−OOOAAA
(c)
−Ωj

AAA
(c)
Ωi

−AAA
(c)
−Ωi

AAA
(c)
Ωj
OOO
)

+
γ
(c)
−Ωi

2

(
AAA

(c)
Ωj
OOOAAA

(c)
−Ωi

+AAA
(c)
Ωi
OOOAAA

(c)
−Ωj

−OOOAAA
(c)
Ωj
AAA

(c)
−Ωi

−AAA
(c)
Ωi
AAA

(c)
−Ωj

OOO
) ]

(B.37)

To find the zeroth order term R† (0), we must simply set k = 0 in P and the normal-

mode frequencies. We thus find that the normal modes rotate back to the local

coordinates xxxα and Ωα collapse into the bare frequencies ωα. Importantly, as a

result, frequency Ω
(0)
1 = ωh will only appear in the hot dissipator R†

h and Ω
(0)
2 =

ωc will be only linked to R†
c . Therefore, the double sums in Eq. (B.37) directly

transform into the local expression (36) which in the specific case of the system
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studied is

L †
h (OOO) + L †

c (OOO) = γ(h)
ωh

(
LLL

(h)
−ωh

OOOLLL(h)
ωh

− 1

2
{LLL(h)

−ωh
LLL(h)

ωh
,OOO}+

)
+γ

(h)
−ωh

(
LLL(h)

ωh
OOOLLL

(h)
−ωh

− 1

2
{LLL(h)

ωh
LLL

(h)
−ωh

,OOO}+
)

+γ(c)
ωc

(
LLL

(c)
−ωc

OOOLLL(c)
ωc

− 1

2
{LLL(c)

−ωc
LLL(c)

ωc
,OOO}+

)
+γ

(c)
−ωc

(
LLL(c)

ωc
OOOLLL

(c)
−ωc

− 1

2
{LLL(c)

ωc
LLL

(c)
−ωc

,OOO}+
)
. (B.38)

In the low-k limit, this will always be true—regardless of HHHS—provided that the

system couples to each bath by a single transition at some specific frequency.

In the same way, it is easy to show that the relationship between the global

and the local dissipators, proposed in [113], remains valid in the out-of-resonance

case. The adjoint global dissipator takes the form

G †
h (OOO) + G †

c (OOO) =
2∑

i=1

[
γ
(h)
Ωi

(
AAA

(h)
−Ωi

OOOAAA
(h)
Ωi

− 1

2
{AAA(h)

−Ωi
AAA

(h)
Ωi

,OOO}+
)

+γ
(h)
−Ωi

(
AAA

(h)
Ωi
OOOAAA

(h)
−Ωi

− 1

2
{AAA(h)

Ωi
AAA

(h)
−Ωi

,OOO}+
)

+γ
(c)
Ωi

(
AAA

(c)
−Ωi

OOOAAA
(c)
Ωi

− 1

2
{AAA(c)

−Ωi
AAA

(c)
Ωi
,OOO}+

)
+γ

(c)
−Ωi

(
AAA

(c)
Ωi
OOOAAA

(c)
−Ωi

− 1

2
{AAA(c)

Ωi
AAA

(c)
−Ωi

,OOO}+
)]

. (B.39)

Again, to find the zeroth order term of the k-expansion of the dissipator, we set

k = 0 in the matrix P. Therefore, the global jump operators in Eq. (66) are cast

to AAA
(h)
Ω1

= LLL
(h)
ωh ,AAA

(h)
Ω2

= 0,AAA
(c)
Ω1

= 0,AAA
(c)
Ω2

= LLL
(c)
ωc which makes the global dissipator

converge to the local expression.
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C Spin-boson model

C.1 Tracing for spin and reservoir, in classical and quantum

setting

C.1.1 Spin tracing in the classical setting

For a classical spin of length S0, with components Sx, Sy, Sz, one can change into

spherical coordinates, i.e.

Sx = S0 sinϑ cosφ, Sy = S0 sinϑ sinφ, (C.1)

Sz = S0 cosϑ, ϑ ∈ [0, π], φ ∈ [0, 2π].

Then, traces of functions A(Sx, Sz) are evaluated as

trclS [A(Sx, Sz)] = (C.2)

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑA(S0 sinϑ cosφ, S0 cosϑ).

C.1.2 Spin tracing in the quantum setting

For a quantum spin S0, given any orthogonal basis |m⟩, then the trace of functions

of the spin operators A(Sx, Sz) are evaluated as

trquS [A(Sx, Sz)] =
∑
m

⟨m|A(Sx, Sz) |m⟩ . (C.3)

C.1.3 Reservoir traces

When taking traces over the environmental degrees of freedom (in either the

classical or quantum case), we ought to first discretise the energy spectrum of

HR. This is because, strictly speaking, the partition function for the reservoir,

ZR = tr
[
exp(−βHR)

]
, is not well defined in the continuum limit. Thus, we write

HR =
∞∑
n=0

1

2

(
P 2
ωn

+ ω2
nX

2
ωn

)
. (C.4)
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Then, for example, the classical partition function of the environment is

Zcl
R =

∞∏
n=0

[∫ +∞

−∞
dXωn

∫ ∞

−∞
dPωne

−β
2 (P 2

ωn+ω2
nX

2
ωn)

]
, (C.5)

and similarly for the quantum case.

C.2 Expectation values from the partition function

With the partition function of the MF we can proceed to calculate the Sz and Sx

expectation values as follows.

C.2.1 Classical case

For the classical spin, from (82) we have the partition function

Z̃cl
S =

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑe−β(−ωLSz(ϑ,φ)−QS2
θ (ϑ,φ)). (C.6)

While obtaining the Sz expectation value is straightforward, the Sx case may seem

less obvious. It is therefore convenient to do a change of coordinates

Sz′(ϑ, φ) = Sz(ϑ, φ) cos θ − Sx(ϑ, φ) sin θ, (C.7)

Sx′(ϑ, φ) = Sx(ϑ, φ) cos θ + Sz(ϑ, φ) sin θ.

Defining hx′ = −ωL sin θ, hz′ = −ωL cos θ, we then have that

Z̃cl
S =

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ (C.8)

e−β(hz′Sz′ (ϑ,ϕ)+hx′Sx′ (ϑ,ϕ)−QS2
z′ (ϑ,ϕ)),

and we can obtain the Sz′ and Sx′ expectation values as usual, i.e.

〈
Sx′,z′

〉
= − 1

β

∂

∂hx′,z′
log Z̃cl

S . (C.9)
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Finally, by linearity, we have that

⟨Sx⟩ = ⟨Sx′⟩ cos θ − ⟨Sz′⟩ sin θ, (C.10)

⟨Sz⟩ = ⟨Sz′⟩ cos θ + ⟨Sx′⟩ sin θ.

C.2.2 Quantum case

For the quantum case we proceed in a completely analogous manner. We have

that

⟨Sx⟩ = trqu
[
Sxe

−β(−ωLSz+SθB+HR)
]
, (C.11)

⟨Sz⟩ = trqu
[
Sze

−β(−ωLSz+SθB+HR)
]
.

Starting from the partition function

Zqu
SR = trqu

[
e−β(−ωLSz+SθB+HR)

]
, (C.12)

we define a new set of rotated operators,

Sz′ = Sz cos θ − Sx sin θ, (C.13)

Sx′ = Sx cos θ + Sz sin θ,

and variables hx′ = −ωL sin θ, hz′ = −ωL cos θ, so that

Zqu
SR = trqu[e−β(hz′Sz′+hx′Sx′+Sz′B+HR)]. (C.14)

Then, we proceed in an analagous way as in (C.9) and (C.10).

C.2.3 Example: Ultrastrong limit

Let us consider the quantum ultrastrong partition function,

Z̃qu
S,US = cosh (βωLS0 cos θ) . (C.15)
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Following the procedure outlined above, we have that hz′ = −ωL cos θ, and there-

fore

Z̃qu
S,US = cosh (βS0hz′) . (C.16)

Therefore, the expectation values of the transformed observables are

⟨Sx′⟩ = − 1

β

∂

∂hx′
log Z̃qu

S,US = 0, (C.17)

⟨Sz′⟩ = − 1

β

∂

∂hz′
log Z̃qu

S,US = −S0 tanh (βS0hz′)

= −S0 tanh (βωLS0 cos θ) . (C.18)

Therefore, in the original variables we have

⟨Sx⟩ = S0 sin θ tanh (βωLS0 cos θ) , (C.19)

⟨Sz⟩ = −S0 cos θ tanh (βωLS0 cos θ) , (C.20)

in agreement with what is later obtained in Appendix C.7 directly from the MF in

the ultra-strong limit.

C.3 Derivation of classical MF state for arbitrary coupling

In this section we derive the mean force Gibbs state of the classical spin for

arbitrary coupling strength. As discussed in C.1, we discretise the environmental

degrees of freedom, and thus we have for the total Hamiltonian, (78)

Htot = −ωLSz +
∞∑
n=0

[
1

2

(
P 2
ωn

+ ω2
nX

2
ωn

)
+ SθCωnXωn

]
. (C.21)

On ‘completing the square’, we get

Htot = −ωLSz +
∞∑
n=0

1

2

[
P 2
ωn

+ ω2
n

(
Xωn − SθCωn

ω2
n

)2
− (SθCωn)

2

2ω2
n

]
. (C.22)
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The partition function is then,

Zcl
SR =

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑe−βHeffZcl
R . (C.23)

Here, there appears an effective system Hamiltonian given by

Heff ≡ −ωLSz −QS2
θ (C.24)

where the reorganization energy Q, is given by Eq. (80) of the main text, and

Zcl
R =

∏
n

∫ ∞

−∞
dXωn

∫ ∞

−∞
dPωn (C.25)

e
− 1

2
β
(
P 2
ωn

+ω2
n

(
Xωn−

SθCωn
ω2
n

)2)
,

is the partition function for the reservoir only. Note that, despite seemingly de-

pending on the spin coordinates, this last integral coincides with the reservoir par-

tition function since once one carries out the Gaussian integral, the dependence

on Sθ vanishes.

While it is possible to derive an expression for ZR, its details are not needed

as it depends solely on reservoir variables and can be divided out to yield the

system’s MF partition function,

Z̃cl
S =

Zcl
SR

Zcl
R

=
1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑe−βHeff , (C.26)

where Heff includes all spin terms independent of the coordinates of the environ-

ment. Finally, the MF is given by

τMF =
1

Z̃cl
S

e−βHeff , (C.27)

which is precisely Eq. (82) of the main text.

In terms of polar coordinates, we have Sθ = S0 (cosϑ cos θ − sinϑ cosφ sin θ),

and then

Heff(ϑ, φ) =− ωLS0 cosϑ (C.28)

− S2
0Q (cos θ cosϑ− sin θ sinϑ cosφ)2 .
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The equilibrium state of the spin is then entirely determined by Z̃cl
S . The classical

expectation values for the spin components Sz and Sx are then given by

⟨sz⟩ =
⟨Sz⟩
S0

(C.29)

=
1

Z̃cl
S

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ cosϑe−βHeff(ϑ,φ)

⟨sx⟩ =
⟨Sx⟩
S0

(C.30)

=
1

Z̃cl
S

∫ 2π

0

dφ cosφ

∫ π

0

dϑ sin2 ϑe−βHeff(ϑ,φ).

The integral expressions for the expectation values above cannot in general be

expressed in a closed form, but can be readily evaluated numerically for arbitrary

coupling strength Q.

C.4 Quantum–classical correspondence for the MF partition

functions

Starting from equation (C.75) of the main text, we now “complete the square” for

the combination

hR + sθ

∫ ∞

0

dω Cω

√
S0xω, (C.31)

to arrive at

1

2

∫ ∞

0

dω

p2ω + ω2

(
xω + sθ

Cω

√
S0

ω2

)2
− s2θS0Q(S0) = hshift

R − s2θS0Q(S0),

(C.32)

where Q(S0) =
∫∞
0
dω C2

ω(S0)/(2ω
2) is the reorganisation energy, see (80). Note

that because of the scaling Cω ∝ 1/
√
S0, the product S0Q(S0) = αωL is indepen-

dent of S0. Here, we have defined the reservoir Hamiltonian

hshift
R =

1

2

∫ ∞

0

dω

p2ω + ω2

(
xω + sθ

Cω

√
S0

ω2

)2
 , (C.33)

where the oscillator centres have been shifted.

Applying (83) to the total spin-reservoir Hamiltonian Htot, and immediately
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taking the reservoir trace on both sides, gives

lim
S0→∞

ℏ
2S0 + ℏ

Zqu
SR(β, S0, α) = lim

S0→∞

ℏ
2S0 + ℏ

trquSR

[
e−β′(−ωLsz+hshift

R −s2θ αωL)
]

= lim
S0→∞

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ

trquR

[
e−β′(−ωL cosϑ+hshift

R −s2θ(ϑ,ϕ
′)αωL)

]
= lim

S0→∞

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ

e−β′(−ωL cosϑ−s2θ(ϑ,ϕ
′)αωL) trquR

[
e−β′hshift

R

]
, (C.34)

where the trace over the reservoir now factors out and

sθ(ϑ, ϕ
′) = cos θ cosϑ− sin θ cosφ sinϑ. (C.35)

The reservoir trace factor gives

trquR

[
e−β′hshift

R

]
= trquR

[
e−β 1

2

∫∞
0dω (P 2

ω+ω2(Xω+µω)
2)
]

= Zqu
R (β), (C.36)

with µω = Sθ
Cω

ω2 a shift in the centre position of the oscillators. The operators

Xω + µω have the same commutation relations with the Pω as the Xω themselves.

Thus such a shift does not affect the trace and the result is the bare quantum

reservoir partition function at inverse temperature β, i.e. Zqu
R (β).

Dividing by Zqu
R (β) on both sides, putting it all together, we find

lim
S0→∞

ℏ
2S0 + ℏ

Zqu
SR(β, S0, α)

Zqu
R (β)

=
1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ e−β′(−ωL cosϑ−s2θ(ϑ,ϕ
′)αωL),

(C.37)

where we have dropped the limit symbol since there is no dependence on S0.

Now we may replace again β′ = βS0, and the RHS emerges as the spin’s

classical mean force partition function Z̃cl
S (βS0, α), cf. (82), where the classical

trace is taken according to (C.2). Moreover, the fraction of total quantum partition

function divided by bare reservoir partition function is the quantum mean force
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partition function [212, 213]. Thus, we conclude:

lim
S0→∞

ℏ
2S0 + ℏ

Z̃qu
S (β, S0, α) = lim

S0→∞

ℏ
2S0 + ℏ

Zqu
SR(β, S0, α)

Zqu
R (β)

= Z̃cl
S (βS0, α). (C.38)

C.5 Quantum Reaction Coordinate mapping

The Reaction Coordinate mapping method [219, 220, 221, 222] is a technique for

dealing with systems strongly coupled to bosonic environments. To do so, it iso-

lates a single collective environmental degree of freedom, the so called “reaction

coordinate” (RC), that interacts with the system via an effective Hamiltonian. The

rest of the environmental degrees of freedom manifest as a new bosonic environ-

ment coupled to the RC. Concretely, for our total Hamiltonian (78), the effective

Hamiltonian that we have to consider is

HRC
tot = HS +HRC +HRC

int +Hres
int +Hres, (C.39)

where HRC is the Hamiltonian of the RC mode,

HRC = ℏΩRCa
†a, (C.40)

with a† the creation operator of a quantum harmonic oscillator of frequency ΩRC;

HRC
int is the spin–RC interaction

HRC
int = λRCSθ(a+ a†), (C.41)

where λRC determines the the coupling strength between the RC mode and the

spin; Hres =
∫
dω(p2ω + ω2q2ω)/2 is the Hamiltonian of the residual bosonic bath;

and finally the residual bath-RC interaction Hres
int is

Hres
int = (a+ a†)

∫ ∞

0

dω
√

2ωJRCqω, (C.42)

with JRC the spectral density of the residual bath.

Given Htot, for an appropriate choice of JRC (which depends on the original

Hamiltonian spectral density and coupling), it has been proven that the reduced
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dynamics of the spin under Htot are exactly the same as those of the spin un-

der the effective Hamiltonian HRC
tot [221]. In general, the mapping between the

original spectral density, Jω, and that of the RC Hamiltonian, JRC, is hard to find.

However, one particular case were there is a simple closed form for JRC is that of

a Lorentzian spectral density Jω (see main text). In such case, the JRC spectral

density is exactly Ohmic [219, 220, 221], i.e. has the form

JRC = γRCωe
−ω/ωc , ωc → ∞. (C.43)

Furthermore, the RC effective Hamiltonian parameters (ΩRC, λRC and γRC) are

given in terms of the Lorentzian parameters by

ΩRC = ω0, (C.44)

λRC =
√
Qω0, (C.45)

γRC =
Γ

2πω0

. (C.46)

Noticeably, by appropriately choosing Q, Γ, and ω0, we can have an initial Hamil-

tonian with arbitrarily strong coupling to the full environment (i.e. arbitrarily strong

Q), while having arbitrarily small coupling to the residual bath of the RC Hamilto-

nian (i.e. arbitrarily small γRC).

As mentioned, it has been shown that the reduced spin dynamics under Htot

with Lorentzian spectral density (see main text) is exactly the same as the re-

duced spin dynamics under HRC
tot with spectral density (C.43). In particular, the

steady state of the spin will also be the same. Therefore, it is reasonable to ex-

pect that the spin MF state obtained with Htot will be the same as the spin MF

state for HRC
tot , i.e.

τMF = Z̃−1
S trR[e

−βHtot ] = Z̃ ′−1
S trR[e

−βHRC
tot ]. (C.47)

We now assume that γRC is arbitrarily small, so that the MF state is simply

going to be given by the Gibbs state of spin+RC, i.e.

τMF = Z̃ ′−1
S trR[e

−βHRC
tot ] (C.48)

≈ Z̃ ′′−1
S trR

[
e−β(HS+ΩRCa

†a+λRCSθ(a+a†))
]
.
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It is key here to observe that the condition γRC → 0 does not imply any constraint

on the coupling strength to the original environment, since we can always choose

Γ and ω0 so that γRC is arbitrarily small, while allowing Q to be arbitrarily large.

Finally, to numerically obtain the MF state, since unfortunately (C.48) does

not have a general closed form, we numerically evaluate (C.48) by diagonalising

the full Hamiltonian and then taking the partial trace over the RC. To numerically

diagonalise this Hamiltonian we have to choose a cutoff on the number of energy

levels of the RC harmonic oscillator. This cutoff was chosen by increasing the

number of levels until observing convergence of the numerical results.

C.6 Quantum to classical limit in the weak coupling approxi-

mation

In this section we explicitly compute the large spin limit for the weak coupling

expressions of the classical and quantum mean force Gibbs states. These results

are used in the characterisation of the different coupling regimes.

Since we are going to perform perturbative expansions in the coupling strength,

in what follows we introduce, for book-keeping purposes, an adimensional param-

eter λ in the interaction, so that Hint now reads

Hint = λSθ

∫ ∞

0

dω CωXω. (C.49)

This will allow us to properly keep track of the order of each term in the expansion.

Finally, at the end of the calculations we will take λ = 1.

C.6.1 Classical spin: weak coupling

Here, we derive the classical weak coupling expectation values starting from the

exact MF found in C.3. The effective Hamiltonian, with the inclusion of the param-

eter λ now reads

Heff = −ωLSz − λ2QS2
θ . (C.50)

For weak coupling, the expressions for Z̃cl
S , ⟨Sz⟩ and ⟨Sx⟩ can be approximated by

treating the term λ2S2
0Q as a perturbation. Therefore, expanding exp[−βHeff ] to
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lowest order in λ we have

e−βHeff = eβωLS0 cosϑ
[
1 + βλ2S2

0Q (cos θ cosϑ− sin θ sinϑ cosφ)2
]
+ O(λ4), (C.51)

from which we can determine the weak coupling limit of the classical spin partition

function and spin expectation values.

Standard Gibbs results for a classical spin First, here we write the partition

function and spin expectation values for a classical spin in the standard Gibbs

state for the bare Hamiltonian HS (i.e. in the limit of vanishing coupling, λ = 0).

These expressions will be useful to later on to write the second order corrections.

For the partition function we have that

Zcl
0 =

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ exp[βωLS0 cosϑ]

=
sinh(βωLS0)

βωLS0

. (C.52)

The expectation value of Sx is trivially 0 by symmetry, i.e.

⟨Sx⟩0 =
1

Zcl
0

S0

∫ 2π

0

dφ cosφ

∫ π

0

dϑ sin2 ϑeβωLS0 cosϑ (C.53)

= 0.

For the expectation value of the powers of Sz (which will be useful later), we

have

⟨Sn
z ⟩0 =

2π

Zcl
0

Sn
0

∫ π

0

dϑ sinϑ cosn ϑ eβωLS0 cosϑ. (C.54)

In particular, we find

⟨Sz⟩0 = S0 coth(βωLS0)−
1

βωL

, (C.55)〈
S2
z

〉
0
= S2

0 −
2S0 coth(βωLS0)

βωL

+
2

(βωL)2
, (C.56)

〈
S3
z

〉
0
= S3

0 coth(βωLS0)−
3S2

0

βωL

(C.57)

+
6S0 coth(βωLS0)

(βωL)2
− 6

(βωL)3
.
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Classical spin partition function for weak coupling Expanding the partition

function to second order in λ we find that

Z̃cl
S =

1

4π

∫ 2π

0

dφ

∫ π

0

dϑ sinϑ

[
eβωLS0 cosϑ +

βλ2S2
0Q

4π
eβωLS0 cosϑ

(
cos θ cosϑ

− sin θ sinϑ cosφ
)2]

+ O(λ4). (C.58)

The first term can be recognised as the partition function for the bare system, Zcl
0 .

The φ′ integral in the second term is straightforward to perform,

Z̃cl
S = Zcl

0 +
1

2
βλ2S2

0Q

∫ π

0

dϑ sinϑeβωLS0 cosϑ

[
(3 cos2 θ − 1) cos2 ϑ+ sin2 θ

]
+ O(λ4). (C.59)

We typically require the inverse of the partition function, which to lowest order in

the perturbation is

Z̃cl
S = (Zcl

0 )
−1

[
1− πβλ2S2

0QZ−1
0

∫ π

0

dϑ sinϑeβωLS0 cosϑ (C.60)

(
(3 cos2 θ − 1) cos2 ϑ+ sin2 θ

) ]
+ O(λ4).

Now turning to the expectation value ⟨Sz⟩, given in Eq. (C.29), and carrying

out the same lowest order expansion we get

⟨Sz⟩ = ⟨Sz⟩0 +
1

2
βλ2Q

[
(3 cos2 θ − 1)(

〈
S3
z

〉
0
− ⟨Sz⟩0

〈
S2
z

〉
0
)
]
+ O(λ4). (C.61)

This result will be compared later to the quantum weak coupling result obtained

in the large spin (classical) limit.

Classical ⟨Sx⟩ for weak coupling A similar calculation can be followed for ⟨Sx⟩,
the main difference being in the handling of the φ′ integral. Thus, we find

⟨Sx⟩ = −1
2
sin 2θβλ2Q

(
⟨Sz⟩0 S2

0 −
〈
S3
z

〉
0

)
+ O(λ4), (C.62)

where we have used that Z0/Z̃
cl
S = 1 to lowest order.

Using the zeroth order expressions for ⟨Sz⟩0 and
〈
S3
z

〉
0

from (C.55) we get the
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result in terms of the scaled temperature β′ = βS0

⟨sx⟩ = −sin 2θλ2S0Q

ωL

(
1− 3 coth(β′ωL)

β′ωL

+
3

(β′ωL)2

)
+ O(λ4). (C.63)

This result will be compared later to the quantum weak coupling result obtained

in the large spin (classical) limit.

C.6.2 Quantum spin: weak coupling

In general, the quantum mean force Gibbs state is given by

τMF =
trquR

[
e−βHtot

]
Zqu

tot

, (C.64)

with Htot given by Eq. (78) of the main text. Unfortunately, determining the form

of τMF and the various expectation values for the spin components is unfeasible

in the general case, but limiting forms are available. Here we derive the spin

expectation values in the weak coupling limit, and then later on take the large

spin limit to explicitly verify the quantum-to-classical transition.

Standard Gibbs results for a quantum spin Here, we present the results of

the standard Gibbs state for the quantum spin (i.e. in the limit of vanishing cou-

pling, λ = 0). The Gibbs state for the system’s bare Hamiltonian is

τS =
eβωLSz

Zqu
S

, Zqu
S = tr

[
eβωLSz

]
. (C.65)

We also have that [τS, Sz] = 0. The trace is readily evaluated, yielding the partition

function

Zqu
0 =

sinh βωL(S0 +
ℏ
2
)

sinh ℏ
2
βωL

, (C.66)

from which we can derive the expectation values of Sz, S2
z and S3

z ,

⟨Sn
z ⟩0 =

1

Zqu
0

dn

d(βωL)n
Zqu

0 . (C.67)

119



We find,

⟨Sz⟩0 = (S0 +
ℏ
2
) coth

(
βωL(S0 +

ℏ
2
)
)
− ℏ

2
coth

(
ℏ
2
βωL

)
(C.68)〈

S2
z

〉
0
= (S0 +

ℏ
2
)2

− ℏ(S0 +
ℏ
2
) coth

(
ℏ
2
βωL

)
coth

(
βωL(S0 +

ℏ
2
)
)

+ ℏ2
4

(
2 coth2(ℏ

2
βωL)− 1

)
(C.69)〈

S3
z

〉
0
= (S0 +

ℏ
2
)3 coth

(
βωL(S0 +

ℏ
2
)
)

− 3ℏ
2
(S0 +

ℏ
2
)2 coth

(
ℏ
2
βωL

)
+ 3ℏ2

4
(S0 +

ℏ
2
) coth

(
βωL(S0 +

ℏ
2
)
)

(
2 coth2(ℏ

2
βωL)− 1

)
− 3ℏ3

4
coth3(ℏ

2
βωL) +

5ℏ3
8
coth

(
ℏ
2
βωL

)
. (C.70)

General form of weak coupling density operator For a total Hamiltonian HS+

HR +Hint with interaction of the form Hint = λXB, the general expression for the

unnormalised mean force state to second order in the interaction is given by [178]

ρ̃(2) = τS

+ λ2
∑
n

([
X†

n, τSXn

]
A′

β(ωn) + βτSXnX
†
nAβ(ωn)

)
+ λ2

∑
m ̸=n

ω−1
mn

([
Xm, X

†
nτS

]
+
[
τSXn, X

†
m

])
Aβ(ωn), (C.71)

where the system operator X is expanded in terms of the energy eigenoperators

Xn

X =
∑
n

Xn, (C.72)

with [HS, Xn] = ωnXn, and ωn are Bohr frequencies for the system. We have X†
n =

X−n and ωn = −ω−n. The quantities Aβ(ωn) are determined by the correlation

properties of the reservoir operator B and are given by

Aβ(ωn) =

∫ ∞

0

dω Jω

(
nβ(ω) + 1

ω − ωn

− nβ(ω)

ω + ωn

)
, (C.73)

A′
β(ωn) =

∫ ∞

0

dω
Jω
ℏ

(
nβ(ω) + 1

(ω − ωn)2
+

nβ(ω)

(ω + ωn)2

)
. (C.74)
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We can separate out the particular case of ωn = 0, for which we find

Aβ(0) =

∫ ∞

0

dω
Jω
ω

= Q. (C.75)

It turns out that we will require various symmetric and antisymmetric com-

binations of Aβ(ωn) and A′
β(ωn). [Note that in the following (and in the initial

definition of the quantity A′
β(ωn)), the dash indicates a derivative wrt to the ar-

gument ωn. Thus the quantity A′
β(−ωn) is a derivative wrt −ωn, i.e., A′

β(−ωn) =

−dAβ(−ωn)/dωn, whereas, as usual, A′
β(ωn) = dAβ(ωn)/dωn etc.] Therefore, we

define

Σ(ωn) = Aβ(ωn) + Aβ(−ωn)

= 2

∫ ∞

0

dω Jω
ω

ω2 − ω2
n

(C.76)

∆β(ωn) = Aβ(ωn)− Aβ(−ωn)

= 2ωn

∫ ∞

0

dω Jω
1

ω2 − ω2
n

coth
(
1
2
βℏω

)
(C.77)

∆′
β(ωn) = A′

β(ωn) + A′
β(−ωn)

= 2

∫ ∞

0

dω
Jω
ℏ

(ω2 + ω2
n)

(ω2 − ω2
n)

2
coth

(
1
2
βℏω

)
(C.78)

Σ′(ωn) = A′
β(ωn)− A′

β(−ωn)

= 4ωn

∫ ∞

0

dω
Jω
ℏ

ω

(ω2 − ω2
n)

2
. (C.79)

Normalising the second order MF state From (C.71) we get the second order

partition function

Z̃
(2)
S = tr

[
ρ̃(2)
]
= 1 + βλ2

∑
n

tr
[
τSXnX

†
n

]
Aβ(ωn). (C.80)

This can be used directly to evaluate the second order expectation value ⟨Sz⟩(2),
but instead we will proceed to derive the second order MF state. This normalised

state can be arrived at as in [178], where a binomial approximation in used. Those

expressions however seem to imply that the validity of the approximation depends

on the temperature, with the approximation breaking down at low enough temper-

atures. Here we proceed in an alternative way that shows that there is no such

limitation.
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The exact density operator is

τMF(λ) =
ρ̃(λ)

Z̃qu
S (λ)

, (C.81)

where the dependence on λ is made explicit, and write

τMF(λ) = τMF(0) +
1
2
λ2d

2τMF

dλ2
(0) + O(λ4), (C.82)

where τMF(0) = τS is the Gibbs state of the system in the limit of vanishingly small

system-reservoir coupling, and it has been recognised that odd order contribu-

tions will vanish.

From this we also find

Z̃qu
S (λ) = 1 + 1

2
λ2d

2Z̃qu
S

dλ2
(0) + O(λ4). (C.83)

If we now do a Taylor series expansion of τMF(λ) we find, using Z̃qu
S (0) = 1,

τMF(λ) = τS +
1
2
λ2

(
d2ρ̃

dλ2
(0)− d2Z̃qu

S

dλ2
(0)τS

)
O(λ4)

= τS + λ2
∑
n

[ [
X†

n, τSXn

]
A′

β(ωn) + βτS

(
XnX

†
n − tr

[
τSXnX

†
n

])
Aβ(ωn)

]

+
∑
m ̸=n

([
Xm, X

†
nτS

]
+
[
τSXn, X

†
m

]) Aβ(ωn)

ωnm

+ O(λ4). (C.84)

We regain the expressions found in [178], but without having to consider any

restrictions on β. In contrast, the binomial expansion based derivation of [178]

seems to imply that irrespective of the choice of coupling strength, there will al-

ways be a temperature below which the binomial approximation will fail and (C.84)

can lead to incorrect results below this temperature. But this argument cannot be

sustained as the validity of the second order expansion is not constrained by any

lower temperature limit implied by the binomial expansion as it can be obtained

without making this approximation.

What we now have is the necessary requirement that (for some definition of
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the norm || . . . || of the operators involved)

1
2
λ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣
(
d2τMF

dλ2
(0)− τS

d2Z̃qu
S

dλ2
(0)

)∣∣∣∣∣∣
∣∣∣∣∣∣∣≪

∣∣|τS|∣∣ , (C.85)

for the second order result (C.84) to be valid. This of course is not a sufficient

condition as the higher order terms, O(λ4), are not guaranteed to be negligible.

The concern is the low temperature limit β → ∞, where the term linear in β

seems to imply linear divergence so the condition (C.85) cannot be met. How-

ever, it can be shown that in this limit the second order correction term in (C.84)

actually vanishes [178]. It also does so for β → 0, the high temperature limit, so

there might be an intermediate temperature for which the condition (C.85) is not

satisfied, this then requiring a weaker interaction coupling strength.

The conclusion then is that for sufficiently weak coupling, the result (C.84) will

hold true for all temperatures.

To evaluate the second order expression for the normalised density operator

given by (C.84) we need to expand X = Sθ in terms of the energy eigenoperators

Xn,

X = Sz cos θ − Sx sin θ (C.86)

= −1
2
sin θS− + cos θSz − 1

2
sin θS+,

so we can identify, from X = X−1 +X0 +X+1,

X−1 = −1
2
sin θS−, (C.87)

X0 = cos θSz, (C.88)

X+1 = −1
2
sin θS+. (C.89)

To determine the corresponding eigenfrequencies, we use [HS, Xn] = ωnXn and

find that

[HS, X−1] =
[
−ωLSz,−1

2
sin θS−

]
= ωLX−1, (C.90)

and hence ω−1 = ωL. It follows that ω+1 = −ωL, and by inspection, ω0 = 0.

To evaluate τ
(2)
MF we then have a number of sums to evaluate, and from that

123



expression we can then calculate the expectation values of Sz and Sx. The calcu-

lation of these quantities is made ‘easier’ by the fact that τS is diagonal in the Sz

basis, and that
〈
Sy

〉
= 0. After somewhat lengthy but straightforward calculations

we find that

⟨Sz⟩(2) = ⟨Sz⟩0 + 1
4
ℏλ2 sin2 θ

[
(S0(S0 + ℏ)

−
〈
S2
z

〉
0
)Σ′(ωL)− ⟨Sz⟩0 ℏ∆′

β(ωL)
]

− βλ2
[
1
4
sin2 θ

( (〈
S2
z

〉
0
− ⟨Sz⟩20

)
ℏ∆β(ωL)

+
(〈

S3
z

〉
0
− ⟨Sz⟩0

〈
S2
z

〉
0

)
Σ(ωL)

)
− cos2 θ

(〈
S3
z

〉
0
− ⟨Sz⟩0

〈
S2
z

〉
0

)
Q
]
, (C.91)

and

⟨Sx⟩(2) = λ2 sin 2θ

4ωL

[ (
S0(S0 + ℏ)−

〈
S2
z

〉
0

)
Σ(ωL)

− ℏ ⟨Sz⟩0∆β(ωL)− 4
〈
S2
z

〉
0
Q
]
, (C.92)

where ⟨. . .⟩0 = tr[τS . . .].

C.6.3 Quantum to classical limit for weak coupling

In what follows we explicitly verify the quantum to classical transition in the large

spin limit presented in C.4, using the quantum and classical weak coupling ex-

pressions found in the previous sections.

First, (C.91), we have ⟨Sz⟩, regrouped to read

⟨Sz⟩ = ⟨Sz⟩0 + 1
4
λ2 sin2 θ

[
(S0(S0 + ℏ)− ⟨S2

z ⟩0)ℏΣ′

− ⟨Sz⟩0ℏ2∆′
β − β

( (
⟨S2

z ⟩0 − ⟨Sz⟩20
)
ℏ∆β

+
(
⟨S3

z ⟩0 − ⟨Sz⟩0⟨S2
z ⟩0
)
(Σ− 2Q)

)]
+ 1

4
βλ2(1 + 3 cos 2θ)Q

(
⟨S3

z ⟩0 − ⟨Sz⟩0⟨S2
z ⟩0
)
. (C.93)

Introducing the scaled temperature β′ = βS0 and the scaled spin sz = Sz/S0 and
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taking the limit S0 → ∞ with β′ held constant gives

⟨sz⟩ = ⟨sz⟩0 + 1
4
λ2 sin2 θ

[
(1− ⟨s2z⟩0)ℏ(S0Σ

′)

− ⟨sz⟩0ℏ2∆′
β − β′( (⟨s2z⟩0 − ⟨sz⟩20

)
ℏ∆β

+
(
⟨s3z⟩0 − ⟨sz⟩0⟨s2z⟩0

)
((S0Σ)− 2S0Q)

)]
+ 1

4
β′λ2(1 + 3 cos 2θ)(S0Q)

(
⟨s3z⟩0 − ⟨sz⟩0⟨s2z⟩0

)
. (C.94)

with (and noting that S0Jω is independent of S0)

S0Σ →
∫ ∞

0

(S0Jω)
2ω

ω2 − ω2
L

dω, (C.95)

∆β →
∫ ∞

0

(S0Jω)

ℏ
4ωL

ω2 − ω2
L

1

β′ω
dω, (C.96)

∆′
β →

∫ ∞

0

(S0Jω)

ℏ2
4
(
ω2 + ω2

L

)(
ω2 − ω2

L

)2 1

β′ω
dω, (C.97)

S0Σ
′ →

∫ ∞

0

(S0Jω)

ℏ
4ωLω(

ω2 − ω2
L

)2dω, (C.98)

S0Q →
∫ ∞

0

(S0Jω)
1

ω
dω. (C.99)

Making use of the S0 → ∞ limit of ⟨snz ⟩0, n = 1, 2, 3 with β′ held constant, given

from (C.68) by the classical forms (C.55):

⟨sz⟩0 = coth
(
β′ωL

)
− 1

β′ωL
, (C.100)

⟨s2z⟩0 = 1− 2 coth(β′ωL)

β′ωL
+

2

(β′ωL)2
, (C.101)

⟨s3z⟩0 = coth
(
β′ωL

)
− 3

β′ωL
+

6 coth(β′ωL)

(β′ωL)2

− 6

(β′ωL)3
, (C.102)

and the above limiting forms for the integrals, we find that the factor multiplying

sin2 θ vanishes and we are left with

⟨sz⟩ = ⟨sz⟩0 (C.103)

+
1

4
β′λ2S0Q(1 + 3 cos 2θ)

(
⟨s3z⟩0 − ⟨sz⟩0⟨s2z⟩0

)
,

which on substituting for the ⟨snz ⟩0 yields a result formally identical to the fully
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classical result, (C.61). In a similar way we can check the large spin limit for ⟨Sx⟩,
and we regain the classical result, (C.63).

C.7 Ultrastrong coupling limit

In this section the we examine ultrastrong coupling limit of the quantum and clas-

sical MF.

C.7.1 Classical ultrastrong coupling limit

The ultrastrong limit is the limit in which the coupling λ is made very large, in

principle taken to infinity. To take this limit, first note that the partition function can

be written as

Zcl
S = Zcl

0

∫ π

0

dθ′ sin θ′eβωLS0 cos θ′ F (λ, θ, θ′), (C.104)

where

F (λ, θ, θ′) =

∫ 2π

0

dφ′e
1
2
βλ2S2

0Q(sin θ sin θ′ cosφ′−cos θ cos θ′)
2

. (C.105)

Defining a = 1
2
βQS2

0 , expanding the exponent and using the periodicity of the

trigonometric functions we can rewrite

F (λ, θ, θ′) = eaλ
2 cos2(θ′−θ)H(cos θ′ cos θ)∫ 2π

0

dφ′e−4aλ2 sin θ sin θ′ cos2(φ′/2)
(
sin θ sin θ′ sin2(φ′/2)+cos θ cos θ′

)
+ eaλ

2 cos2(θ′+θ)H(− cos θ′ cos θ)∫ π

−π

dφ′e−4aλ2 sin θ sin θ′ sin2(φ′/2)
(
sin θ sin θ′ cos2(φ′/2)−cos θ cos θ′

)
(C.106)

where H(x) is the Heaviside step function. The advantage of this rewriting of

F (λ, θ, θ′) is that now the exponents in the integrands are all negative (or zero)

over the range of integration. The exponent of the integrand for the first integral

where cos θ′ cos θ > 0 will vanish at φ′ = π, while for the second integral, where

cos θ′ cos θ < 0, the exponent of the integrand will vanish at φ′ = 0, 2π. At these

points the integrands will have local maxima which will become increasingly sharp

as λ is increased. Similarly, for the second integral the maximum of the second

integrand lies at φ′ = 0.
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Thus, as λ is increased, we can approximate the exponent in the integral by

its behaviour in the neighbourhood of φ′ = π for the first integral, and in the

neighbourhood of φ′ = 0 for the second one. This is just using the method of

steepest descent. We then obtain

Zcl
S ∼ Zcl

0 e
aλ2

∫ π

0

dθ′ sin θ′eβωLS0 cos θ′
[
e−aλ2 sin2(θ′−θ)R−(θ

′, θ)H(cos θ′ cos θ)∫ 2π

0

dφ′δ(φ′ − π)

+ e−aλ2 sin2(θ′+θ)R+(θ
′, θ)H(− cos θ′ cos θ)∫ π

−π

dφ′δ(φ′)
]
. (C.107)

where

R±(θ
′, θ) =

√
π

aλ2| sin θ′ sin θ cos(θ′ ± θ)| , (C.108)

and for later interpretation purposes, the φ′ integrals have been retained uneval-

uated.

Once again we notice that the exponents in the integrands are all negative.

The zeroes of the exponents will occur within the range of integration for θ′ = θ

for the first exponents, and for θ′ = π − θ for the second. Therefore, in the large λ

limit we have

Zcl
S → Z̃cl

S,US ∼ Zcl
0

πeaλ
2

aλ2

∫ π

0

dθ′eβωLS0 cos θ′
[ ∫ 2π

0

dφ′δ(θ′ − θ)δ(φ′ − π)

+

∫ π

−π

dφ′δ(θ′ + θ − π)δ(φ′)
]
. (C.109)

This suggests that in the large λ limit, the spin orients itself in either the θ′ =

θ, φ′ = π or θ′ = π − θ, φ′ = 0 directions, though with different weightings for the

two directions.

If we return to the interaction on which this result is based, that is

V = (Sz cos θ − Sx sin θ)B (C.110)

= S ·B(− sin θx+ cos θz)

= S ·B,

we see that the vector − sin θx+cos θz has the polar angles θ′ = θ, φ′ = π. But as
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B can be fluctuate between positive or negative values, the vector B can fluctuate

between this and the opposite direction θ′ = π − θ, φ′ = 0. So the effect of the

ultrastrong noise is to force the spin to orient itself in either of these two directions.

Returning to the expression for the partition function, we have

Z̃cl
S,US ∼ Z ′′

0

(
eβωLS0 cos θ + e−βωLS0 cos θ

)
∝ cosh(βωLS0 cos θ), (C.111)

where extraneous factors have been absorbed into Z ′′
0 . These results are of the

same form as found for a quantum spin half. That result is understandable given

that the spin half would have two orientations, which mirrors the two orientations

that emerge in the strong coupling limit here in the classical case.

C.7.2 Quantum ultrastrong coupling limit

The aim here is to derive an expression for the quantum MFG state of a spin S0

particle coupled to a thermal reservoir at a temperature β−1, (C.64).

The ultrastrong coupling limit is achieved by making λ very much greater than

all other energy parameters of the system, in effect, λ → ∞. However, note the

absence of the ‘counter-term’ −λ2(cos θSz − sin θSx)
2Q in the above Hamiltonian.

This term appears in [178], where it is found to be cancelled in the strong coupling

limit when the trace over the reservoir states is made. Here, that cancellation will

not take place, so its presence must be taken into account. It will have no impact

in the case of S0 = 1
2
, as this will be a c-number contribution, but it will have an

impact otherwise.

With HS = −ωLSz and Psθ = |sθ⟩⟨sθ| the projector onto the eigenstate |sθ⟩ of

Sθ where

Sθ = cos θSz − sin θSx; Sθ|sθ⟩ = sθ|sθ⟩ (C.112)

we have, in the ultrastrong coupling limit, the unnormalised MFG state of the
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particle

ρ̃ = exp

−β

S0∑
sθ=−S0

PsθHSPsθ

 eβλ
2S2

θQ

=

S0∑
sθ=−S0

Psθ exp
[
−β⟨sθ|HS|sθ⟩

]
eβλ

2γ2s2θQ. (C.113)

Note, as a consequence of the absence of a counter-term, the contribution exp
[
βλ2S2

θQ
]

is not cancelled.

Further note the limits on the sum are ±S0. This follows since Sθ = cos θSz −
sin θSx is just Sz rotated around the y axis, i.e.,

cos θSz − sin θSx = eiθSySze
−iθSy = Sθ (C.114)

so the eigenvalue spectrum of Sθ will be the same as that of Sz, i.e., sz =

−S0,−S0 + 1, . . . , S0 − 1, S0. The eigenvectors of Sθ are then, from Sz|sz⟩ = sz|sz⟩

Sθe
iθSy |sz⟩ = sz e

iθSy |sz⟩ (C.115)

i.e., the eigenvectors of Sθ are

|sθ⟩ = eiθSy |sz⟩; sθ = sz = −S0, . . . , S0. (C.116)

We then have

⟨sθ|HS|sθ⟩ = ωL⟨sz|e−iθSySze
iθSy |sz⟩

= ωL⟨sz| cos θSz + sin θSx|sz⟩

= ωLsz cos θ, (C.117)

from which follows

ρ̃ =

S0∑
sz=−S0

eiθSy |sz⟩⟨sz|e−iθSyeβωLsz cos θeβλ
2Qs2z . (C.118)
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The partition function is then given by

Z̃qu
S =

sz=S0∑
sz=−S0

eβωLsz cos θeβλ
2Qs2z . (C.119)

This cannot be evaluated exactly, but the limit of large λ is yet to be taken. The

dominant contribution to the sum in that limit will be for sz = ±S0, so we can write

Z̃qu
S,USe

−βλ2QS2
0 ∼ eβωLS0 cos θ + e−βωLS0 cos θ

∝ cosh(βωLS0 cos θ). (C.120)

Apart from an unimportant proportionality factor, this is exactly the same results

as found for the classical case in the limit of ultrastrong coupling, (C.111).
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[47] Zin Lin, Adi Pick, Marko Lončar, and Alejandro W. Rodriguez. Enhanced
spontaneous emission at third-order dirac exceptional points in inverse-
designed photonic crystals. Physical Review Letters, 117(10), aug 2016.
doi:10.1103/physrevlett.117.107402.

[48] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Re-
hfeld, and A. Richter. Experimental observation of the topological structure
of exceptional points. Physical Review Letters, 86(5):787–790, jan 2001.
doi:10.1103/physrevlett.86.787.

133

https://doi.org/10.1063/1.1725879
https://doi.org/10.1007/978-1-4612-0933-1
https://doi.org/10.1109/tct.1959.1086537
https://doi.org/10.1201/9781420082241
https://doi.org/10.1007/978-1-4612-9967-7
https://doi.org/10.1007/978-3-662-01545-2
https://doi.org/10.2307/3615432
https://doi.org/10.1007/978-3-642-88128-2
https://doi.org/10.1017/cbo9781139020411
https://doi.org/10.1088/1751-8113/45/2/025303
https://doi.org/10.1103/physrevlett.112.203901
https://doi.org/10.1103/physrevlett.117.107402
https://doi.org/10.1103/physrevlett.86.787
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