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Abstract

Findings from genome-wide association studies have facilitated the generation of genetic

predictors for many common human phenotypes. Stratifying individuals misaligned to a

genetic predictor based on common variants may be important for follow-up studies that aim

to identify alternative causal factors. Using genome-wide imputed genetic data, we aimed to

classify 158,951 unrelated individuals from the UK Biobank as either concordant or deviat-

ing from two well-measured phenotypes. We first applied our methods to standing height:

our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically pre-

dicted height. We show that these individuals are enriched for self-reporting being shorter or

taller than average at age 10, diagnosed congenital malformations, and rare loss-of-function

variants in genes previously catalogued as causal for growth disorders. Secondly, we apply

our methods to LDL cholesterol (LDL-C). We classified 156 (0.12%) individuals as mis-

aligned to their genetically predicted LDL-C and show that these individuals were enriched

for both clinically actionable cardiovascular risk factors and rare genetic variants in genes

previously shown to be involved in metabolic processes. Individuals whose LDL-C was

higher than expected based on the genetic predictor were also at higher risk of developing

coronary artery disease and type-two diabetes, even after adjustment for measured LDL-C,

BMI and age, suggesting upward deviation from genetically predicted LDL-C is indicative of

generally poor health. Our results remained broadly consistent when performing sensitivity

analysis based on a variety of parametric and non-parametric methods to define individuals

deviating from polygenic expectation. Our analyses demonstrate the potential importance of

quantitatively identifying individuals for further follow-up based on deviation from genetic

predictions.
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Author summary

Human genetics is becoming increasingly useful to help predict human traits across a

population owing to findings from large-scale genetic association studies and advances in

the power of genetic predictors. This provides an opportunity to potentially identify indi-

viduals that deviate from genetic predictions for a common phenotype under investiga-

tion. For example, an individual may be genetically predicted to be tall, but be shorter

than expected. It is potentially important to identify individuals who deviate from genetic

predictions as this can facilitate further follow-up to assess likely causes. Using 158,951

unrelated individuals from the UK Biobank, with height and LDL cholesterol as exemplar

traits, we demonstrate that approximately 0.15% and 0.12% of individuals deviate from

their genetically predicted phenotypes, respectively. We observed these individuals to be

enriched for a range of rare clinical diagnoses, as well as rare genetic factors that may be

causal. Our analyses also demonstrate several methods for detecting individuals who devi-

ate from genetic predictions that can be applied to a range of continuous human

phenotypes.

Introduction

Since 2007 [1], genome-wide association studies (GWAS) have identified thousands of associa-

tions between common single nucleotide polymorphisms (SNPs) and human traits. This has

resulted in an increase in the variance explained and out-of-sample prediction accuracy for

common human traits [2–4]. For example, the largest published GWAS meta-analysis for

height identified 12,111 SNP-associations that explained *40% of the variance in height

among individuals of European genetic ancestry and between 10–20% in other genetic ances-

tries [3]. Although the amount of variance explained for common quantitative traits continues

to increase, less is understood of how common genetic variation contributes to phenotypic

variation in the extreme tails of quantitative trait distributions [5], and whether individuals

who present relatively extreme deviation from their expected phenotype given their common

SNP-based predictor can be identified.

It may be important to identify individuals who deviate from their predicted phenotype

based on an assumed polygenic model of association because they may be more likely to carry

rarer and more penetrant pathogenic mutations or have some other cause to their phenotype.

Specific alternative causes of an extreme phenotype may require targeted clinical investigations

for an individual.

Using height and LDL cholesterol (LDL-C) as exemplar traits, chosen for their high herita-

bility and clinical relevance respectively, we aimed to classify individuals who deviate from

their genetically predicted phenotype, using 158,951 unrelated individuals from the UK Bio-

bank with whole exome-sequencing data. We subsequently aimed to determine if individuals

classified as misaligned to their genetically predicted height were enriched for recall of being

relatively short or tall in childhood, disproportionate body stature, clinical diagnoses of syn-

dromes associated with extreme stature, carriers for rare genetic variation relevant to height,

or environmental factors that may have influenced growth. Secondly, we aimed to determine

if individuals classified as misaligned to their genetically predicted LDL-C were at higher risk

of heart disease, more or less likely to have type 2 diabetes, or were carriers for rare genetic var-

iation relevant to LDL-C. Finally, we assessed the sensitivity of our results based on four meth-

ods, each with two thresholds, that have the potential to be used to identify individuals whose

phenotype deviates from the expectation based on their polygenic score.
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Results

Standing height

A derived polygenic score for height explains 32% of the variance in the UK Biobank.

We derived a polygenic score using conditional effect estimates of 3,198 SNPs reaching P<
5 × 10−8 obtained from a meta-analysis of 1.2M individuals from European-based studies

(excluding the UK Biobank) contributing to the Genetic Investigation of ANthropometric

Traits (GIANT) consortium. The polygenic score explained 31.6% of the variance in height

among 158,951 unrelated individuals of European genetic ancestry with exome sequencing in

the UK Biobank (Fig 1). A 1SD increase in the polygenic score increased standardized height

(adjusted for age, sex and assessment centre and five principal components) by 0.562 SDs

([95% CI 0.558, 0.566], P< 1 × 10−128), equivalent to 5.19cm. Effects were similar in males and

females (0.561 SDs [95% CI 0.555, 0.567] and 0.564 SDs [95% CI 0.558, 0.569], respectively).

Statistical analysis identifies 244 individuals misaligned to genetically predicted

height. Using a simulated dataset of 158,951 individuals and 3,198 SNPs explaining 31.6% of

the variance under an additive model (see methods), we classified 244 individuals of the

158,951 individuals from the UK Biobank as deviating from the polygenic expectation, using

Mahalanobis distances based on means of the standardized polygenic scores and adjusted

height measures, accounting for covariance between the two variables. Of the individuals devi-

ating from expectation, 150 and 94 individuals were relatively short or tall for their polygenic

score, respectively (Fig 2). A total of 109,858 individuals were classified as aligned to their poly-

genic prediction (residual <1SD) and formed the comparison group for enrichment analyses.

Observed enrichment of characteristics associated with childhood height, body shape,

and rare genetic and non-genetic factors among individuals who deviate from polygenic

expectation. Individuals misaligned to their genetically predicted height are more likely to
recall being shorter or taller than average at age 10. As a validation of our polygenic deviation

classification for height, we hypothesised that individuals deviating from polygenic expectation

were likely to self-report being shorter or taller than average during childhood. We tested for

Fig 1. A density plot of standardized polygenic scores for height plotted against standardized height for 158,951

unrelated individuals from the UK Biobank.

https://doi.org/10.1371/journal.pgen.1010934.g001
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enrichment of self-reporting being shorter or taller than average at age 10 among individuals

who were shorter or taller than genetically predicted, respectively. We observed evidence of

enrichment in both the short and tall deviator groups relative to the group aligned to their

genetic score with OR = 10.1 [95% CI 7.19, 14.2], P = 2 × 10−42 and OR = 10.4 [95% CI 6.52,

16.5], P = 4 × 10−27, respectively.

Individuals who deviate from their genetically predicted height are enriched for having a dis-
proportionate body stature. As individuals at the extremes of the polygenic score distribution

for height are enriched for recalling being shorter or taller at age 10, we next hypothesised that

individuals classified as deviating from their genetically predicted phenotype are also more

likely to have disproportionate body sizes that affect standing height and have more extreme

sitting-to-standing height ratios. We observed individuals who were shorter or taller than

genetically predicted were enriched for extreme values of sitting-to-standing height ratio

(greater than 1SD) with OR = 2.99 [95% CI 2.12, 4.15], P = 1.22 × 10−10, OR = 6.39 [95% CI

1.72, 53.4], P = 7.85 × 10−4, respectively.

Individuals with shorter stature than genetically predicted are enriched for congenital malfor-
mations and deformations of the musculoskeletal system. To identify potential reasons why

individuals deviate from polygenic prediction, we first tested for enrichment of clinical diagno-

ses of congenital malformations and deformations of the musculoskeletal system as captured

by ICD9 (754–756) and ICD10 (Q75-Q69) codes from Hospital Episode Statistics and primary

care data where an ICD9 or ICD10 code could be extracted. We observed an enrichment

within the group of individuals with shorter stature misaligned to the genetic predictor with

Fig 2. a) Observed (red) and simulated (black) polygenic scores and standardized height adjusted for age, sex and assessment centre. b)

Individuals aligned (black) and misaligned (red) to genetically predicted height defined using Mahalanobis distance P< 0.001 and being

more than 2 standard deviations away from the mean of the residual distribution generated by regressing the polygenic score against

height. Individuals who were neither classified as aligned or misaligned were removed from b.

https://doi.org/10.1371/journal.pgen.1010934.g002
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an odds ratio of 3.45 [95% CI 2.11, 5.65], P = 2 × 10−5 of having a diagnosis of congenital mal-

formations and deformations of the musculoskeletal system but observed a lack of enrichment

among the taller group (OR = 1.00 [95% CI 0.999, 1.00], P = 0.783).

Individuals who are shorter relative to their genetically predicted height are enriched for loss-
of-function variants in genes most commonly associated with monogenic forms of short stature.
We next hypothesised that individuals classified as having relatively short or tall stature given

their polygenic score for height would be enriched for rare variants in dominantly inherited

genes previously associated with growth disorders, including overgrowth.

Using 238 genes catalogued in OMIM as causally associated with short or tall stature (see

methods) with at least one dominant pattern of inheritance, we first tested whether individuals

classified as deviating from polygenic expectation were enriched for any rare (minor allele fre-

quency< 0.1%) loss-of-function (LoF) variants in those genes. We did not observe evidence

(at P< 0.05) for enrichment of rare LoF variants present in people defined as relatively short

for their polygenic prediction (OR = 1.39 [95% CI 1.00, 1.94], P = 0.071). However, we did

observe a stronger enrichment for LoF carriers when limiting the analysis to a subset of 6

genes (SHOX,NPR2, ACAN, IGF1, IGF1R, and FGFR3) in which variants are known to be rela-

tively common Mendelian causes of short stature (OR = 78.4 [95% CI 40.1, 153.3],

P = 6.83 × 10−16) (see methods).

Among individuals with relatively tall stature for their genetic prediction, we did not

observe evidence for enrichment of rare LoF variants residing in the 238 genes (OR 1.11 [95%

CI 0.699, 1.75] P = 0.63). These results were nominally significant (P< 0.05) when limiting

our analysis to 3 genes in which variants have previously been described as causal for some of

the most prevalent syndromes associated with tall stature, specifically Marfan syndrome

(FBN1) [6–8], Weaver syndrome (EZH2) [9], and Sotos syndrome (NDS1) [10] (OR = 43.7

[95% CI 1.06, 271], P = 0.024).

Individuals misaligned to their genetically predicted height showed no enrichment of inbreed-
ing. Following on from previous research that has suggested an association between inbreeding

and reduced adult height [11], we next tested whether inbreeding could be associated with our

definition of deviation from polygenic expectation. However, we found no evidence of associa-

tion between the inbreeding F-statistic when comparing individuals who were shorter than

genetically predicted versus those who were concordant with their genetically predicted height

(β = −0.0488 [95% CI -0.207, 0.109], P = 0.54). We also observed no evidence of association in

those who were taller than expected (β = −0.0559 [95% CI -0.256, 0.144], P = 0.58).

Individuals who are shorter relative to their genetic predictor for height are enriched for lower
socioeconomic status. Finally, we explored whether non-genetic factors could influence

whether an individual was classified as deviating from their genetically predicted height given

their observed height. Specifically, we assessed the effect of socioeconomic status as repre-

sented by the Townsend deprivation index (TDI). We observed an enrichment of higher TDI

(representing lower socioeconomic status) among individuals who were relatively short given

their genetically predicted height (OR = 2.69 [95% CI 1.92, 3.76], P = 5.97 × 10−8). We did not

observe evidence that taller individuals were enriched for lower levels of TDI (OR = 1.122

[95% CI 0.625,2.02], P = 0.64).

Findings remain consistent after applying alternative methods to define individuals

deviating from polygenic predictions. Given our primary analysis was based on using

Mahalanobis distances (P<0.001) to define individuals deviating from polygenic predictions,

we performed several sensitivity analyses to determine if our overall findings would change if

different thresholds and methods were applied to define individuals deviating from polygenic

expectation (see methods). Briefly, alternative approaches to define polygenic deviators that

assume trait normality included 1) using Mahalanobis distances with P< 0.05/n, 2) using
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absolute standardised residual values greater than a) 2 or b) 3 after regressing observed poly-

genic scores against observed height values, and 3) using empirical P-values based on 10,000

simulations of phenotypes and polygenic score whereby an observed phenotype at a given

rank of polygenic score (PS-rank) is compared with 10,000 simulated phenotypes at the same

simulated PS-rank. In addition, we implemented a non-parametric centile approach that made

no assumptions about the distribution of the quantitative phenotype under examination.

While the number and intersection of individuals grouped into the taller and shorter groups

differed depending on the method and threshold used (Tables B, C, and D in S1 Text), our

findings were largely unchanged (Table E and F in S1 Text). Fig 3 shows how the methods for

defining deviator status vary visually.

LDL cholesterol

A polygenic score for LDL cholesterol explains 16.7% of the variance in the UK Bio-

bank. We derived an LDL-C polygenic score for 134,979 unrelated European individuals

with measures of LDL-C (UKB Field 30780) and exome-sequencing data in the UK Biobank.

We used 1,239,184 SNP effect estimates from the latest meta-analysis of LDL cholesterol

(LDL-C) that excluded UK Biobank [4]. The polygenic score explained 16.7% of the variance

in LDL-C.

A 1SD increase in the polygenic score increased rank-inverse normalised residualised

LDL-C (adjusted for statin use, age, sex and assessment centre and five genetic principal com-

ponents) by 0.408 SDs ([95% CI 0.403, 0.413], P< 1×10−128), equivalent to 0.866 mmol/l.

When repeating this analysis in 61,598 males and 73,377 females separately, the polygenic

Fig 3. Scatter plots showing the distribution of individuals who deviate (red) and do not deviate (black) from their

genetic predictor for height, based on a) Mahalanobis distances with P< 0.001 and b) P< 0.05/n, c) regression

residuals at the 2SD and d) 3SD threshold, e) GRS centiles with a Q3 + 1.5 IQR and f) Q3 + 3 IQR threshold, and g)

GRS rank with P< 0.001 and (h) P< (1/10000).

https://doi.org/10.1371/journal.pgen.1010934.g003
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score explained 16.2% and 18.0% of the variance, respectively. A 1SD change in the polygenic

score resulted in a 0.402 SD [95% CI 0.395, 0.409] and 0.424 SD [95% CI 0.417, 0.430] change

in LDL-C in the males and females, respectively.

Statistical analysis classifies 159 individuals as misaligned to their

genetically predicted LDL cholesterol

We used the Mahalanobis metric to classify individuals who deviated from their polygenic

score. Based on 134,979 individuals and 1,239,184 variants that explained 16.7% of the vari-

ance of a normally distributed outcome, we classified 159 individuals from the UK Biobank as

deviating from the polygenic expectation (P<0.01), and 92,897 individuals as aligned to their

polygenic score (residual < 1SD).

Of those 159 individuals classified as misaligned, 91 and 68 had a relatively low or high

LDL-C for their polygenic score, respectively. In a sex stratified analysis, motivated by the sex-

heterogeneous nature of lipid levels, 53 and 38 males had relatively low or high LDL-C respec-

tively. Additionally, 41 and 44 females had relatively low or high LDL-C respectively. An addi-

tional 17 females were classified as misaligned to their polygenic score in the sex stratified

analysis, 14 (82.4%) of which had a higher LDL-C than expected. The absolute number of

males classified as misaligned to their polygenic score did not change in the sex-stratified anal-

ysis, but the relative number of individuals who had a polygenic score higher than expected

increased by 12.1%. Due to these differences, we used the sex-stratified analysis as our primary

results. We provide scatter plots in Fig 4 showing how these individuals are distributed as com-

pared to controls, as well as scatter plots showing how this distribution changes for the differ-

ent methods that we have introduced to classify polygenic misalignment. Counts of polygenic

deviators for each method are also given in Table G in S1 Text. A total of 42,652 and 50,461

individuals were classified as aligned to their polygenic prediction (residual<1SD) and

formed the comparison group for the following male and female sex-specific enrichment anal-

yses, respectively.

Observed enrichment of characteristics associated with cardiovascular risk, diabetes

and rare genetic factors among individuals who deviate from polygenic expectation. Indi-
viduals who deviate from their genetically predicted LDL-cholesterol had differing levels of com-
mon cardiovascular risk factors. Our primary hypothesis for the LDL-C phenotype was that

individuals whose LDL-C was not aligned with their polygenic prediction would have differing

levels of common cardiovascular risk factors. Compared to individuals classified as not deviat-

ing from their genetically predicted LDL-C levels, males with high LDL-C relative to their

polygenic score had higher triglyceride levels (β = 0.695 [95% CI 0.403, 0.985], P = 2.87 × 10−6)

and nominally higher HDL levels (β = 0.247 [95% CI -0.017, 0.510], P = 0.0667). All effect sizes

are in sex-specific SD units. Based on the same comparison in females, individuals with a high

LDL-C for their polygenic score had higher triglyceride levels (β = 0.877 [95% CI 0.635, 1.12],

P = 1.29 × 10−12), higher BMI (β = 0.636 [95% CI 0.321, 0.950], P = 7.35 × 10−5) and higher cig-

arette use (β = 0.303 [95% CI 0.0838, 0.523], P = 6.76 × 10−3).

Compared to individuals labelled as aligned to the genetically predicted LDL-C, males

whose LDL-C was low for their polygenic score had lower triglyceride levels (β = −0.885 [95%

CI -1.13, -0.638], P = 2.00 × 10−12), lower HDL levels (β = −0.632 [95% CI -0.855–0405],

P = 3.00 × 10−8) and nominally lower diastolic blood pressure (β = −0.271 [95% CI [-0.507,

-0.03], P = 0.0246). In females, individuals with a low LDL-C for their polygenic score had

lower triglyceride levels (β = −0.983 [95% CI -1.23, -0.732], P = 1.64×10−14) and were nomi-

nally older (β = 0.353 [95% CI [0.0531, 0.652], P = 0.0210)—see Fig 5, Table B in S1 Data and

Table H in S1 Text for all Q-risk factors that were assessed.
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Deviation from genetically predicted LDL-C increases the risk of having coronary artery dis-
ease and diabetes, even after adjusting for the effects of LDL-C, BMI and age. Having demon-

strated that individuals who deviate from their polygenic prediction had different background

risk levels for cardiovascular diseases, we next hypothesised that those individuals would be

more likely to be diagnosed with either coronary artery disease or diabetes. Compared to indi-

viduals labelled as aligned to genetically predicted LDL-C levels, females whose LDL-C was

high for their polygenic score had a nominally increased risk of T2D (OR = 7.07, [95% CI 1.38,

36.2], P = 0.019), even after adjusting for the effects of measured LDL-C, age and BMI. We did

not observe an association with higher risk of T2D in males labelled as deviating from geneti-

cally predicted LDL-C.

Among males classified as misaligned to their LDL-C genetic predictor and whose LDL-C

was lower than expected, we observed an enrichment for coronary artery disease (OR = 4.82,

[95% CI 2.57, 9.02], P = 8.87 × 10−7) and nominally higher risk of type-two diabetes

(OR = 2.32, [95% CI 1.10, 4.90], P = 0.0278). In females, individuals with a low LDL-C for

their polygenic score showed no evidence of enrichment for T2D or CAD. Refer to Fig 6 and

Table B in S1 Data for all results.

Individuals who deviate from their genetically predicted LDL-cholesterol were more likely to
be carriers of damaging exome-sequenced loss-of-function variants in LDLR, APOB and PCSK9.

As considered for height, we finally hypothesised that individuals who were misaligned to the

polygenic prediction for their phenotype would be enriched for rare genetic variants in key

monogenic genes. Males and females whose LDL-C was high for their LDL-C polygenic score

showed evidence of enrichment for rare (< 0.1%) loss-of-function variants in the LDLR gene

Fig 4. Scatter plots showing the distribution of individuals who deviate (red) and do not deviate (black) deviate their

genetic predictor for LDL cholesterol, based on a) Mahalanobis distances with P< 0.001 and b) P< 0.05/n, c)

regression residuals at the 2SD and d) 3SD threshold, e) GRS centiles with a Q3 + 1.5 IQR and f) Q3 + 3 IQR threshold,

and g) GRS rank with P< 0.001 and (h) P< (1/10000).

https://doi.org/10.1371/journal.pgen.1010934.g004
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(males: OR = 4.28 [95% CI 2.28, 8.02], P = 5.96 × 10−6; females: OR = 4.02 [95% CI 2.17, 7.44],

P = 1.02 × 10−5).

Males and females whose LDL-C was low for their LDL-C polygenic score showed evidence

of enrichment for rare loss-of-function variants in APOB (males: OR = 5.49 [95% CI 4.30,

7.02], P = 4.12 × 10−42; females: OR = 5.29 [95% CI 4.11, 6.84], P = 1.34 × 10−37), and for males

in PCSK9 (males: OR = 4.99 [95% CI 3.48, 7.17], P = 2.54 × 10−18).

Refer to Fig 7 and Table B in S1 Data for all exome-sequencing derived enrichment results.

Using the GRS-ranking method classifies more individuals as deviating from their poly-

genic LDL-C score, with similar features and some stronger statistical associations. We

additionally classified individuals who were misaligned to their polygenic score for LDL-C

using the GRS ranking method, interquartile ranges, and residuals derived from regressing

LDL-C on the polygenic score. The results of classifying deviators from a polygenic score for

each of the four methods can be found in Tables G and H in S1 Text. Although the number of

individuals who were classified as deviating from their polygenic score was 176.1% higher

using the GRS-ranking method, the features of those individuals were similar, with the same

sign of effect in 73.5% of all analyses. Additionally, with the higher number of individuals clas-

sified as deviating, the strength of the statistical association was stronger for some analyses.

For example, even after adjusting for BMI, age and measured LDL-C, individuals whose

LDL-C was higher than expected based on the GRS-ranking method were much more likely to

suffer from type-two diabetes (males: OR = 10.3 [95% CI 3.93, 26.9], P = 2.09 × 10−6). We

Fig 5. Odds ratio per standard deviation increase in Q-Risk exposure phenotypes with respect to being classified

as a deviating for a polygenic score for LDL cholesterol.

https://doi.org/10.1371/journal.pgen.1010934.g005
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present all GRS-ranking method results in Tables G and H in S1 Text, alongside those derived

from the Mahalanobis method.

Discussion

We have established novel, robust methods for identifying individuals whose phenotype is

misaligned to their polygenic prediction, which we referred to as deviating from a polygenic

score, applied to two well-known phenotypes: height, chosen for its high heritability and

strongly predictive polygenic score, and LDL-C, chosen for being clinically actionable into

adulthood, with a range of associated co-morbidities.

Our results were broadly consistent across the methods tested and are thus likely to be

applicable to a range of phenotypes. With ever-increasing sample sizes, we suspect more traits

will have highly powered polygenic risk scores that increase the efficacy of this method.

Several lines of evidence indicate that our approach is effective. First, we found, for both

standing human height and LDL-C, individuals who deviated from their expected genetic

score were enriched for rare genetic mutations in several genes known to be associated with

extreme stature and LDL-C. These mutations were discovered using the whole exome

sequence data in UK Biobank, and occurred in established genes, such as ACAN and SHOX
for height and LDLR and PCSK9 for LDL-C. These results are similar to that of Lu et. al [12],

who found an enrichment of rare damaging variants in individuals with common diseases

despite having a low polygenic risk score. Second, individuals who deviated were also enriched

Fig 6. Odds ratios for an individual having either type two diabetes (T2D) or coronary artery disease if they

classified as misaligned to their LDL-C polygenic score, adjusted for BMI, age and LDL-C.

https://doi.org/10.1371/journal.pgen.1010934.g006
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for other factors known to be associated with differences in phenotype, such as differences in

BMI, smoking, and socio-economic position for LDL-C, consistent with the expectation that

lifestyle factors play a role in deviation from polygenic prediction. For LDL-C, these differ-

ences were also reflected in different risks of heart disease and type 2 diabetes. Other environ-

mental factors not assessed in the manuscript may be drivers for polygenic misalignment and

may encompass gene-environment interactions as well.

The number of individuals identified as deviators from their expected phenotype given

their polygenic risk varied by method and statistical threshold used. For example, based on the

less stringent statistical thresholds (Fig 2A, 2C, 2E and 2G for height) the four methods identi-

fied between 244 and 7,316 individuals for height and between 158 and 6,402 individuals for

LDL-C. Using the more stringent thresholds (Fig 2B, 2D, 2F and 2H for height) the four meth-

ods identified between 10 and 702 individuals for height and between 3 and 577 individuals

for LDL-C. Across all Q-risk outcomes, as compared to individuals who had either a lower or

higher LDL-C than expected classified using Mahalanobis distance at the standard threshold

(P<0.001), the statistical evidence for association with Q-risk criteria was stronger (p<0.05)

when individuals were classified by either the IQR (Q3 + 1.5IQR) or GRS residual (>2SD)

methods: the two methods which classified the largest number of individuals as misaligned to

their polygenic score.

Fig 7. Odds ratio of an individual being a carrier of a loss-of-function variant in one of three genes known to

affect LDL-C levels: (LDLR, APOB and PCSK9) if they were classified as misaligned to their LDL-C polygenic

score.

https://doi.org/10.1371/journal.pgen.1010934.g007
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Given both height and the genetic predictor are normally distributed, we were able to use

both parametric and non-parametric methods to define individuals who are phenotypically

misaligned to their genetic prediction based on the additive model of inheritance. However,

phenotypes such as body-mass-index (BMI) are known to be skewed [13] and therefore the

non-parametric approaches discussed in this study are more likely to be suitable for other phe-

notypes analysed on the raw scale and are recommended if rank-based normalisation of the

phenotype, for example, is not implemented.

There are some limitations of this study. First, while the primary method is suited for nor-

mally distributed phenotypes and genetic scores, as observed for height, no optimal Mahalano-

bis distance threshold is known. We have attempted to overcome this by demonstrating the

efficacy of our method on LDL-C, a skewed phenotype. We have also shown that our results

remain largely consistent when changing statistical thresholds that guide inclusion of individu-

als to follow-up who are deviating from polygenic expectation. Second, the UK Biobank is

healthier than the general population [14], which may have affected our ability to identify peo-

ple with rare genetic or non-genetic causes to their phenotype. Third, the methods applied,

and analysis performed in this manuscript rely on polygenic scores that explain an appreciable

amount of variance in a trait. However, even the most predictive polygenic risk scores to date

are known to exhibit uncertainty [15] that could affect our proposed GRS-ranking methodol-

ogy. Furthermore, the utility of this work in under-represented populations in GWAS studies

is likely to be more limited presently. Our work has focussed on individuals of European

genetic ancestry: recent work has shown how the continuum of genetic ancestry can impact

the predictability of a polygenic score [3,16]. In addition, our approach has not been applied to

groups of individuals from more heterogeneous populations. More work is required to develop

and evaluate existing statistical approaches to identify individuals likely deviating from poly-

genic expectation from such populations. Fourth, a potential explanation for polygenic devia-

tion is sample mix-up [17]. However, we did not apply methods to determine this because 1)

some methods rely on phenotypic mismatch with polygenic expectation, and 2) we have used

samples that have not been flagged by UK Biobank has having sex-mismatches. Importantly,

we did not observe an overlap between individuals classified as misaligned to the height and

LDL-C polygenic scores that may be indicative of sample mix-up if missed by sex-checks.

Finally, we note that analysis of socioeconomic status during adulthood may not necessarily

serve as a good proxy for socioeconomic status at childhood during the key stages of growth

and development when the living environment has the potential to act adversely on growth. In

addition, we note that genetics can determine socioeconomic status [18] and is not strictly a

measure of the effect of an individual’s environment.

In conclusion, our results support the hypothesis that individuals who deviate from their

genetically predicted phenotype, as defined by common variants and using a suite of statistical

methods, are of clinical interest. These individuals are more likely to carry rare genetic varia-

tion, or be at greater risk of co-morbidities, and should be considered in future discovery

studies.

Methods

Ethics statement

The UK Biobank was granted ethical approval by the North West Multi-centre Research Ethics

Committee (MREC) to collect and distribute data and samples from the participants (http://

www.ukbiobank.ac.uk/ethics/) and covers the work in this study, which was performed under

UK Biobank application numbers 9072. All participants included in these analyses gave writ-

ten consent to participate.
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Study population

We analysed 158,951 unrelated individuals from the UK Biobank with inferred European

genetic ancestry as previously described [19]. All individuals had measurements for height,

genetic data derived from genome-wide array-based imputation, and whole-exome sequence

data, as described in [20]. Of those 158,951 individuals, 134,979 also had measure of LDL cho-

lesterol from blood biochemistry.

Phenotypic derivation

Height (cm) was derived from the UK Biobank (field 50) and converted to standardized resid-

uals, after adjustment for age, sex and UK Biobank assessment centre. We subsequently

defined short/tall stature as a residualised height> 2 standard deviations from the mean.

LDL cholesterol (mmol/l) was derived from the UK Biobank (field 30780) and converted to

rank-inverse normalised residuals, after adjustment for medication, age, sex and UK Biobank

assessment centre.

Derivation of a polygenic predictor for height

We created a genetic predictor for height (Eq (1)) for each of the unrelated 158,951 individuals

using conditional effect estimates of 3,198 SNPs reaching P� 5×10−8 from an interim meta-

analysis of height performed by the Genetic Investigation of Anthropometric Traits (GIANT)

consortium in up to 1,400,860 individuals (mean N = 1,148,694) that excluded the UK Biobank

(Table C in S1 Data).

We created a genetic predictor for LDL-C (Eq (1)) for each of the unrelated 134,979 indi-

viduals using PRS-Cs [21] applied to GWAS summary statistics of 1,239,184 SNPs from [4],

based on an interim analysis that excluded UK Biobank.

We calculated the genetic predictors using the following formula:

PSi ¼
X

bjGj ð1Þ

where PSi refers to the ith individual’s polygenic score, calculated as the overall sum of the effect

sizes of each SNP j (βj) multiplied by an individual’s genotype for the respective SNP (Gj). The

genetic predictors were subsequently corrected for the first five principal components, calcu-

lated within a broader set of unrelated European individuals from the UK Biobank [22].

Finally, the distribution of the genetic predictors adjusted for genetic ancestry were standard-

ized with μ = 0 and σ = 1.

Identifying individuals who deviate from their expected phenotype

For our primary analysis on standing height, we defined two statistical criteria for labelling

individuals as deviating from their expected height given their genetic height score. First, we

estimated the variance explained by the genetic predictor in the 158,951 individuals from the

UK Biobank. Next, we simulated 158,951 individuals and 3,198 SNPs under the additive poly-

genic model whereby the phenotypic variance explained by the simulated SNP effects approxi-

mated those observed in the UK Biobank. We subsequently calculated a polygenic score for

each simulated individual (Eq (1)) prior to deriving the covariance matrix of the standardized

simulated phenotypes and standardized polygenic scores. Next, we calculated Mahalanobis

distances for the standardized observed height measures and polygenic scores using the covari-

ance matrix from the simulated dataset. All Mahalanobis distances were subsequently con-

verted to P-values based on a χ2 distribution with 2 degrees of freedom to represent the

probability of a data point being an outlier relative to the correlation between the genetic
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predictor and observed phenotype. We used P-value thresholds of< 0.001 to define individu-

als deviating from their expected phenotype.

Second, to account for the possibility of outlying Mahalanobis distances being associated

with individuals with both an extreme polygenic score and height measurement, consistent

with the additive polygenic model, we regressed the observed standardized polygenic scores

against the observed standardized heights and retained individuals reaching our P-value

threshold if |z|> 2, where z represents the z-score of the normalised residuals of the regression

model. Individuals with |z|< 1 were defined as being consistent with the additive polygenic

model.

Individuals classified as deviating from their expected phenotype were subsequently split

into two groups dependent on whether their standardized height was below the mean (shorter)

or above the mean (taller) for follow-up analyses.

Testing for enrichment of characteristics among individuals deviating from

genetically predicted height

We performed separate enrichment analysis of several characteristics in the shorter and taller

than predicted for their genetically predicted phenotype individuals defined above.

Self-reporting of being shorter or taller than average at age 10 and sitting to standing

height ratio. We tested whether individuals who were classified as deviating from the poly-

genic risk score were enriched for physical observations we may expect. This included self-

reporting of being shorter or taller at age 10 (UK Biobank field 1697), and extreme values of

the ratio of their sitting-to-standing height ratio (UK Biobank data fields 20015 and 50)

adjusted for age, sex and centre.

Congenital malformations and deformations of the musculoskeletal system defined

using ICD9&10 codes. To identify individuals previously clinically diagnosed as having con-

genital malformations affecting the musculoskeletal system we used ICD9 and ICD10 codes

available from Hospital Episode Statistics (HES), and primary care data where read codes

could be converted to ICD9 or ICD10 codes. We selected ICD9 codes 754–756 (UK Biobank

data fields 41203, 41205) and ICD10 codes Q65-Q79 (UK Biobank data fields 41202, 41204)

(and the sub-classifications of these codes).

Rare variants in genes with dominant inheritance catalogued in OMIM as associated

with stature phenotypes. Using whole-exome sequence data available in the UK Biobank,

we tested for enrichment of rare (MAF < 0.001) loss-of-function variants residing in a curated

list of genes related to short and tall stature from OMIM (Online Mendelian Inheritance in

Man) [23]. This list was generated from all genes published in [24] (curated from OMIM que-

ries for short stature, tall stature, overgrowth, brachydactyly, or skeletal dysplasia), plus curated

genes from the union of the list in [25] with OMIM queries for short stature in 2019 and 2020,

as well as OMIM queries for tall stature, overgrowth, brachydactyly or skeletal dysplasia in

2020, and Endotext skeletal disorders. Specific skeletal phenotypes can be found in S1 Text.

From this query, we restricted analysis to a list of 238 genes for which OMIM had catalogued

as having at least one dominant inheritance pattern (Table A in S1 Text). Based on the canoni-

cal transcripts of the 238 genes, we used VEP [26] and the LOFTEE plugin [27] to annotate

variants as loss-of-function with high confidence. We also separately assessed a subset of 6

genes (SHOX, NPR2, ACAN, IGF1, IGF1R, and FGFR3) [28] and 3 genes (FBN1, EZH2 and

NSD1) [6–10] established as common Mendelian causes of short and tall stature, respectively.

Inbreeding coefficients. It has previously been shown that enhanced inbreeding can lead

to lower height [29].
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We thus assessed whether the F-statistic for inbreeding was significantly different for those

individuals classified as deviating. The F-statistic for inbreeding was calculated using PLINK

(v1.9) [30].

A proxy measure of socioeconomic status. We tested for enrichment of socio-economic

status using townsend deprivation index (UK Biobank data field 189), to determine whether

individuals who were short/tall had a depleted/enriched socio-economic status respectively.

Sensitivity analyses

To determine whether our findings for standing height were based on our primary definition

of deviation from polygenic expectation would be generalisable to other definitions, we

repeated our analysis using additional statistical thresholds and methods. These included a

more stringent Mahalanobis distance threshold of P< 0.05/n, where n is the number of indi-

viduals in the analysis. As a second approach, we generated standardized residuals for height

by regressing the polygenic score for height on height measures and subsequently labelling

individuals as deviating from genetic predictions if their kz-scorek was>2 or >3 (‘Regres-

sion’–Table B in S1 Text). A third approach combined observed data with simulated data.

First, each individual was ranked according to their height PS and the corresponding pheno-

typic values stored. Next, we simulated 158,951 individuals and 3,198 genetic variants matched

on the observed allele frequencies and variances explained. Subsequently, a PS was generated

for each simulated individual, ranked, and their corresponding phenotype stored. This was

repeated 10,000 times. Finally, at each PS rank based on the observed data, we compared the

observed phenotype associated with the PS rank with the 10,000 simulated phenotypic values

associated with the simulated PS rankings. An empirical p-value was calculated as (r + 1)/
10001, where r represented the number of simulated phenotypes that were as extreme as that

observed at the given PS rank. (‘GRS Ranks’–Table B in S1 Text). Finally, we used a non-

parametric approach that made no assumption about the distributions of the phenotype or

polygenic scores. Specifically, within each centile of the polygenic score, we defined phenotypic

outliers as those outside 1) Q1-1.5×IQR to Q3+1.5×IQR (Inter Quartile Range) and 2) Q1-

3×IQR to Q3+3×IQR of the standardized height measure, where Q1 and Q3 are the 25th and

75th centiles of the observed height distribution within the GRS centile (‘GRS Centiles’–

Table B in S1 Text).

Identifying individuals who deviate from their expected LDL-C

We next identified individuals whose LDL-C was higher or lower than predicted by a poly-

genic score, again using the Mahalanobis distance as a measure of deviation from polygenic

score. The distribution of LDL-C is right-skewed, and as such we applied the GRS-ranking

method as a sensitivity analysis because of its less restrictive parameterisation assumptions.

We additionally performed a stratified analysis of males and females separately for LDL-C due

it being a static measure influenced by sex-heterogenous effects, and the associated differing

downstream risk of related outcomes such as coronary artery disease. To maximise the nor-

mality of the distributions considered, we rank-inverse normalised LDL-C distributions for

each sex independently.

Testing for enrichment of characteristics among individuals deviating from

genetically predicted LDL-C

We performed separate enrichment analysis of several characteristics in the higher LDL-C and

lower LDL-C than predicted for their genetically predicted phenotype individuals defined

above.
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Cardiovascular Q-Risk phenotypes and disease. Individuals in the UK who are thought

to be at risk of cardiovascular complications are measured on a QRISK scale [31]. The QRISK

model accounts for phenotypes such as sex, ethnicity, ancestry, economic deprivation etc. We

tested whether individuals who deviated from their polygenic score for LDL-C had higher/

lower (as appropriate) QRISK factors. For a complete list of Q-risk factors tested, and the UKB

fields from which they were derived, see Table H in S1 Text. For each QRISK factor we per-

formed a linear regression with the LDL-C misalignment (higher or lower) as an exposure,

corrected for sex, UKB assessment centre, age and BMI, excluding when those factors were

outcomes. The QRISK outcomes were additionally rank inverse normalised so that effect sizes

were scaled by the standard deviation. For downstream risk factors (diabetes, type 2 diabetes

and coronary artery disease), we performed a logistic regression where LDL-C misalignment

was a risk factor to one of the three outcomes.

Rare variants in genes with established associations with LDL-C. Using whole-exome

sequence data available in the UK Biobank, we tested for enrichment of rare (MAF < 0.001)

loss-of-function variants in one of three genes known to affect levels of LDL-C: LDLR, APOB
and PCSK9, as in [32]. As for height, based on the canonical transcripts of the 3 genes, the

LOFTEE plugin to annotate variants as loss-of-function with high confidence within VEP.

Supporting information

S1 Text. Phenotypic criteria for filtering genes catalogued in OMIM and described as

causal for syndromes associated with stature. Table A. List of 238 genes with prior evidence

for a causal association with syndromes associated with stature, filtered on those with evidence

of a dominant inheritance relationship. Table B. The number of individuals who are defined

as deviating from their polygenic score for height using different methodologies, split by those

relatively tall and relatively short for their polygenic score (total n = 158,951). Table C. Per-

centage overlap of individuals classified as shorter than expected for their polygenic score for

height across derivation methods Table D. Percentage overlap of individuals classified as taller

than expected for their polygenic score for height across derivation methods. Note, no individ-

uals were classified as being relatively tall when using a Mahalanobis-based P-value thresh-

old = 0.05/n. Table E. Empirical P-values for enrichment in individuals who are short relative

to their genetically predicted height across all deviator definitions. Table F. Empirical P-values

for enrichment in individuals who are tall relative to their genetically predicted height across

all deviator definitions. No individuals were classified as being relatively tall when using a

Mahalanbobis-based P-value threshold = 0.05/n. Table G. Number of individuals, and per-

centage of population, identified as deviating from their polygenic score for measured LDL

using different methodologies. Table H. UKB Fields used to derive Q-risk measures.

(PDF)

S1 Data. Table A. Continuous Q-risk outcome regression results for LDL-C polygenic devia-

tors, for all methods. Table B. Binary outcome regression results for LDL-C polygenic devia-

tors, for all methods. Analyses where the logistic regression model did not converge are

labelled with “NA”. Table C. SNP weights used to calculate the polygenic score for height

(GIANT meta-analysis excluding UKB and 23&Me).

(XLSX)
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