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Abstract

Randomized controlled trials are the gold standard to answer causal questions

in health research as the process of randomization ensures balanced treatment

groups and therefore makes it possible to compare average group outcomes di-

rectly. But they have many limitations with respect to costs, ethical considera-

tions and practicability and therefore may not be suitable to answer all research

questions. Evidence on cause and effect relationships from observational stud-

ies have the potential to overcome the limitations of trials and close important

research gaps as they provide the possibility to study subpopulations of patients

which are often excluded due to safety concerns, or can give insights into the risk

profile of long-term endpoints. The quality of this real-world evidence depends on

the quality of data, their suitability to answer a particular research question and

the use of appropriate methods to estimate the treatment effect of interest. Of

concern in observational research is bias in the treatment effect estimation due

to confounding, as the treatment assignment is not controlled by the researcher

and cannot be randomized. It is therefore possible that treatment groups are not

balanced and confounding factors exist in the data which influence the treatment

choice and the outcome of interest simultaneously.

The benefits of observational studies make them attractive for studying the risk

and benefit profiles of oral type 2 diabetes treatments, especially of newer agent

classes such as Sodium-glucose Cotransporter-2 Inhibitors. Prescribing of this

treatment class has increased in recent years and a large proportion of type 2

diabetes patients have become eligible to receive agents from this class after

recent treatment guideline changes. More information about treatment effects

of Sodium-glucose Cotransporter-2 Inhibitors are needed especially for the large

patient population of older adults (e.g. 70 years or older), as possible adverse

3



effects such as osmotic symptoms associated with this class could have severe

consequences for these patients.

The overall aim of this thesis is to develop a causal inference framework for the

exploitation of observational data, needed to derive high quality evidence on the

benefit and safety profile of oral type 2 diabetes treatments, with a focus on the

widely prescribed treatment class of Sodium-glucose Cotransporter-2 Inhibitors

and the patient population of older adults. Chapter 1 and 2 are introductions to

causal inference theory including the description of all estimation methods em-

ployed in this thesis and an introduction to type 2 diabetes research encompass-

ing important treatment decision considerations, and current research evidence

on Sodium-glucose Cotransporter-2 Inhibitors. Chapter 3 presents a triangulation

framework of assorted estimation methods to establish the consistency of esti-

mation results from approaches utilizing different parts of the data and relying on

different data structure assumptions. Furthermore, an Instrumental Variable ap-

proach is introduced which uses data from the period before treatment initiation

to mitigate potential bias in case the exchangeability assumption is violated and a

history of the outcome of interest previous to treatment initiation has an influence

on the treatment decision. Chapter 4 describes a simulation study on the perfor-

mance of established construction methods for a proxy Instrumental Variable of

health care provider prescription preference. The methods are tested under differ-

ent data conditions such as change in provider preference over time, missing data

in baseline covariates and different sample sizes within each health care provider.

Additionally, a construction method is introduced that aims to address changes in

preference over time and non-ignorabile missingness in baseline characteristics.

In Chapter 5 the developed conclusions about a robust Instrumental Variable es-

timation approach from previous chapters are applied for a causal analysis on

the relative benefit and risk profile of Sodium-glucose Cotransporter-2 Inhibitors

versus Dipeptidyl peptidase-4 Inhibitors in the patient population of older adults.

Chapter 6 provides an overview of the main findings and implications of this thesis

and discusses limitations and future research potential of each study.
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eGFR glomerular filtration rate

EHR electronic healthcare records

EMA European Medicines Agency

FDA US Food and Drug Administration

FN False negatives

FNR False negative rate

FP False positives

FPR False positive rate
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GP general practice

HbA1c glycated haemoglobin

HR hazard ratio

HES Hospital Episode Statistics

IMD Index of Multiple Deprivation

ITT intention to treat analysis

IV Instrumental Variable

IV alldichmean IV based on all prescriptions (dichotomized with mean)

IV alldichmedian IV based on all prescriptions (dichotomized with median)

IV allprop IV based on all prescriptions (proportion)

IV ePP IV constructed with the Ertefaie method

IV ePP (rirs) IV constructed with our proposed extended Ertefaie

method

IV(PP) True simulated PP as IV, utilizing all data in case of miss-

ingness

IV(PP) cc True simulated PP as IV, utilizing complete case data in

case of missingness

IV prevpatient IV based on previous prescription

IV prev2patient IV based on previous 2 prescriptions

IV prev5patient IV based on previous 5 prescriptions

IV prev10patient IV based on previous 10 prescriptions

IV allprevprop IV based on all previous prescriptions

IV star IV constructed with the Abrahamowicz method

LATE local average treatment effect

MAD mean absolute difference

MCAR missing completely at random

MFN Metformin

MNAR missing not at random

MSE mean squared error

NPV Negative predictive value

NUC no unmeasured confounding

ONS Office for National Statistics
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Obs. estimate Observational estimate, multivariable regression adjusted

for measured confounders

PERR prior event rate ratio

PP prescription preference

PPV Positive predictive value

POA-IV prior outcome augmented Instrumental Variable ap-

proach

POA-CF prior outcome augmented Control Function approach

PSM propensity score matching

RCT randomized controlled trial

RMSE relative root mean squared error

RWE real-world evidence

SE standard error

SGLT2i Sodium-glucose Cotransporter-2 Inhibitors

SU Sulfonylureas

T1D type 1 diabetes

T2D type 2 diabetes

TN True negatives

TNR True negative rate

TP True positives

TPR True positive rate

TSLS Two-Stage Least Squares

TZD Thiazolidinediones
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Notation

Variables:

Y Health outcome of interest (binary or continuous)

X Treatment decision (binary)

Z Instrumental Variable

W Measured confounder(s)

U Unmeasured confounder(s)

R Randomization

PP Provider preference

∆̂ Residuals for the Control Function approach

T Time of prescription

V Provider level influence on missing data

F Missingness indicator

O Minimal variable set that satisfies the backdoor criterion if controlled

for in the causal analysis

Population:

N Study population size

NTx Treatment group size

NCt Control group size

J Number of health care provider in the study population

j = 1, . . . , J Index of individual provider in the study population

nj Number of patients treated by provider j

i = 1, . . . , nj Patients’ index within provider j (ordered by T)

Treatment effects:

β Treatment effect of interest

β̂aT As Treated estimate

β̂CaT Corrected as treated estimate
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β̂PSM Treatment effect estimated with a propensity score matching model

β̂IV Treatment effect estimated with the Instrumental Variable method

β̂CF Treatment effect estimated with the Control Function method

β̂DiD Treatment effect estimated with the difference-in-difference method

β̂POA−IV Treatment effect estimated with prior outcome augmented Instru-

mental Variable method

β̂POA−CF Treatment effect estimated with prior outcome augmented Control

Function method

ĤRPERR PERR estimate of the treatment effect (time-to-event data)

ĤRprior Hazard ratio of the prior outcome model

ĤRstudy Hazard ratio of the study outcome model

Other notation:

π Propensity score

◦ indicates propensity score matched data

Qe Generalized heterogeneity statistic

b Number of previous prescriptions used to construct the proxy instru-

ment for provider preference

Lj Number of period for the generation of continuous change of

provider j

i? Change time of provider prescription preference
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Chapter 1

Introduction to causal inference
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1.1 Structure and aims of this thesis

The overall aim of this thesis is the development of a causal inference framework

for the exploitation of observational data, needed to derive high quality evidence

on the benefit and safety profile of oral type 2 diabetes treatments, with a focus

on the widely prescribed treatment class of Sodium-glucose Cotransporter-2 In-

hibitors and the large patient subpopulation of older adults, as these patients are

under-represented in clinical trial studies.

Chapter 1 aims to introduce the theory of causal inference to estimate the causal

effect of an exposure/ treatment of an health outcome of interest such as the

achieved reduction of blood glucose levels or the experience of adverse effects.

For this introduction, a formal definition of the causal effect using the counter-

factual framework is given and directed acyclic graphs are established as a vi-

sualization tool utilized in this thesis to communicate data structure assumptions

of causal inference methods made for the treatment effect estimation. Addition-

ally, this chapter aims to reason the concept of integrating evidence of random-

ized controlled trials and observational studies for high quality evidence-based

medicine. Similar to this concept is the triangulation of evidence from different

estimation methods which is valuable to discuss the consistency of research evi-

dence. Finally, this chapter aims to provide and overview of all estimation meth-

ods employed in this thesis’ observational studies and their data structure as-

sumptions.

Chapter 2 aims to provide an introduction to type 2 diabetes and considerations

important for clinicians to make individualized treatment decisions. Furthermore,

this chapter aims to illustrate limitations of randomized controlled trials and their

implications to provide adequate evidence for treatment guidelines for type 2 di-

abetes, especially for the important subpopulation of older patients. A compre-

hensive summary of current evidence on the benefit and risk profile of Sodium-

glucose Cotransporter-2 Inhibitors is provided. This discussion will highlight cur-

rent research gaps on the use of Sodium-glucose Cotransporter-2 Inhibitors in

older type 2 diabetes patients and ways to close them with causal evidence from

observational data.
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Chapter 3 aims to present the development of an approach for causal effect es-

timation which utilizes data from the periods before and after study treatment

initiation and combines aspects of the difference-in-difference and Instrumental

Variable approach. This approach aims to mitigate potential bias under data struc-

ture conditions which violate necessary assumptions of these two methods. Fur-

thermore, this chapter aims to showcase a triangulation framework of assorted

causal inference methods which leverage different parts of the data and rely on

different data structure assumptions to judge the consistency of estimation results

and identify potential sources of bias in observational data.

Chapter 4 aims to provide a comprehensive summary and state of the art es-

timation performance analysis of different Instrumental Variable methods using

the proxy design for healthcare provider prescription preference as instrument.

The different construction methods for a proxy variable of prescription preference

are assessed under different data situations regarding sample size, missingness

in confounder data and different structures of change in preference over time.

Furthermore, this chapter aims to introduce an extended version of a construction

and estimation method for a preference-based instrument which is able to ac-

commodate change in prescription preference over time as well as non-ignorable

missingness in measured confounders.

Chapter 5 aims to utilize the causal estimation framework established in previ-

ous chapters to investigate the benefit and risk profile of Sodium-glucose Co-

transporter-2 Inhibitors in type 2 diabetes patients 70 years and older. This causal

inference analysis aims to determine the relative benefit of this treatment class

compared to Dipeptidyl peptidase-4 Inhibitors regarding the reduction of blood

glucose levels and body weight as well as the relative risk of experiencing ad-

verse effects which are particularly of concern in older patients such as genital

infections, volume depletion/ dehydration or diabetic ketoacidosis.

Chapter 6 is a summary of the main results and discussion of the limitations and

future research opportunities for each chapter.
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Chapter 3, 4, 5 have been written as full manuscripts to be published in topical

peer reviewed journals. Supplementary online material, such as analysis codes

and data descriptions are available and will be directed to in the respective chap-

ters.

1.2 Introduction

Medical research often tries to answer cause-and-effect questions, for example

about factors causing a disease or influencing the risk of experiencing adverse

effects. The gold standard for the analysis of causal questions are randomized

controlled trials, which analyse the difference in an health outcome of interest

between two groups of individuals exposed or unexposed to a study treatment.

The process of randomizing the treatment assignment ensures that both treat-

ment groups are comparable regarding individuals characteristics. Therefore, it

is possible to compare the causal effect of the treatment on the outcome directly.

[1, 2, 3] Randomized controlled trials are not practical or ethically acceptable to

answer all medical research questions. [3, 4] In such cases, evidence from ob-

servational studies, for example analysing primary care patient records, insurance

claims, or registers, can be valuable to overcome limitations of trials. [4, 5]

The value of these studies to answer causal questions lies in the quality of the

data, their suitability to answer a particular research questions and the use of ap-

propriate analysis methods. As treatment allocation in observational data is not

randomized, confounding of factors influencing the treatment decision and the

outcome of interest simultaneously is possible. If confounding is not accounted

for, it can lead to bias in the estimation of the treatment effect and hence result in

incorrect conclusions about the cause-and-effect relationship under investigation.

This chapter provides an introduction to causal inference theory, starting with

the formal definition of the causal effect of interest, utilizing the counterfactual

framework and directed acyclic graphs for the visualization of the assumed data

structure under which the causal effect is studied. Directed acyclic graphs are a

helpful tool which will be employed throughout this thesis to communicate data
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structure assumptions of treatment effect estimation methods. [4, 6, 7] In the fol-

lowing, a detailed explanation of confounding bias in observational research and

an introduction to the idea of integrating evidence from randomized controlled

trials and observational studies is given. Furthermore, the idea of triangulating

evidence from estimation methods which use different parts of the data at hand,

make different data structure assumptions and are potentially subject to different

sources of bias is introduced. As the analysis of treatment effects in observational

data is complex and may be influenced by confounding bias, triangulating results

from different methods provides a possibility to assess the consistency of estima-

tion results. [8, 9, 10, 11] Lastly, an overview of all methods for the estimation of

treatment effects, employed in latter chapters of this thesis, is given. The methods

differ in their ability to account for measured and unmeasured confounding. Spe-

cial focus is placed on the Instrumental Variable method using a proxy variable

for healthcare provider prescription preference as instrument in order to create a

pseudo-randomized sample and minimize the risk of unmeasured confounding in

the causal effect estimation. For each method important assumptions on the data

structure are explained.

1.3 The concept of causality and causal inference

Defining questions in medical research and epidemiology concern cause-and-

effect relationships such as:

• Which factors cause a disease;

• How does a certain therapy or treatment effect the duration/ course of the

disease;

• What is the efficacy of a drug in a given population;

rather than questions of association. Inferring causality requires knowledge of

the data-generating process and - different to associations - cannot be computed

only from the data at hand. [12, 13, 14] Causal knowledge in medical research

is valuable as it helps to understand what can be done or should be avoided in

order to achieve desired outcomes (e.g. treatment targets) or avoid undesirable

consequences (e.g. side effects). [15] Discussions about the precise definition

25



of causality as a concept dates back to the 18th century. The philosopher David

Hume offered a widely known definition of the concept stating that: ‘We may de-

fine cause to be an object, followed by another, ... where, if the first object had

not been, the second had never existed’. [16] This definition focuses on a specific

aspect of causation in that event A causes event B, if the occurrence of event

A was necessary for the occurrence of event B under the observed background

circumstances. [6] A similar definition is given by Pearl [17] who states that ‘A

variable X is a cause of a variable Y if Y in any way relies on X for its value. . . X

is a cause of Y if Y listens to X and decides its value in response to what it hears’.

The process of causal inference uses data of a sample/ study cohort to infer these

kinds of cause-and-effect relationships in the target population of interest. [13] It

is argued that we are never able to prove causal relationships beyond any doubt

from the impression of a sample or repeated samples as faulty observations can

never be ruled out. Therefore, rather than proving causality, medical research

relies on empirical evidence to strengthen arguments for a possible causal rela-

tionships between an exposure (e.g. treatment or medical intervention) and an

outcome (e.g. disease). [18, 19]

1.4 Counterfactual framework and definition of the

causal effect

Counterfactual or potential outcomes is a conceptual and notational framework

and is useful for the analysis of causality and estimation of causal effects. It

is commonly utilized in psychology, statistics and epidemiology and formalizes

how humans naturally think about causality. [6, 4, 7] Throughout this thesis, the

outcome of interest is denoted with Y. We are interested in defining the individual

causal effect of a treatment X for individual i in a given population of size N. In

its basic form, the framework assumes that individuals can be assigned to two

alternative states of treatment, the index treatment X = 1 (e.g. intake of a specific

drug) or the control X = 0 (e.g. placebo or no administration of drug). When

comparing two active treatments in this framework they are sometimes referred

to as treatment B and treatment A respectively. The treatment effect is defined

for the index treatment compared to the control treatment. The assumption of
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a binary treatment will be maintained throughout this thesis. In this framework

treatment assignment must be manipulable and each treated individual has a

theoretically observable outcome for the active treatment (YX=1
i ) and the control

(YX=0
i ). [4, 6] The definition of a causal effect measure can be of additive or

multiplicative scale (if the outcome is strictly positive) and depends on the type of

outcome variable of interest. [12, 20] For a continuous outcome, the causal effect

of the treatment on the outcome for each individual, expressed on an additive

scale, is:

βi = YXi=1
i − YXi=0

i .

As only one of the treatment states for each i is observable, βi is not directly

measurable. Instead, the focus of causal inference is usually on estimation of the

average causal effect for the population of interest:

β = E[Y|X = 1]− E[Y|X = 0]

This is the expected difference of potential outcomes in case every individual in

the population receives the treatment and in case every individual receives the

control. Individuals will only receive one of treatment alternatives and therefore

causal inference methods focus on consistently estimating E[Y|X = 1] = ȲX=1 and

E[Y|X = 0] = ȲX=0 from individuals in the treatment group (i ∈ Tx) and in the con-

trol group (i ∈ Ct). The standard estimator for the average treatment effect (ATE)

in a study cohort is:

β̂ = ȲX=1
i∈Tx − ȲX=0

i∈Ct ,

where Ȳ denotes the sample average. [4, 6] In order to estimate this effect mea-

sure with observable data, identifying assumptions about the data structure and

underlying causal relationships are necessary. These assumptions are often not

fully testable and therefore need to be justified with subject matter knowledge.

Four identifying assumptions need to be considered:

1. Exchangeability: It requires individuals in both treatment groups to have on

average the same potential outcome under assignment to treatment or con-

trol. That is: ȲX=1
i∈Tx = ȲX=1

i∈Ct and ȲX=0
i∈Tx = ȲX=0

i∈Ct . This assumption is necessary

in order to be able to utilize the observed outcomes of both treatment groups

as proxy for their counterfactual unobserved potential outcomes. [21] Con-

ditional exchangeability requires exchangeability to hold after conditioning

on a set of measured variables.
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2. Positivity assumption: It specifies that each individual must have a non-

zero probability to receive either of the treatment choices. When condition-

ing on other variables, this assumption needs to hold for all possible co-

variate combinations. A structural positivity violation is possible for example

in case of contraindication of a treatment for certain patient characteristics.

[20, 22]

3. Consistency assumption: This assumption is sometimes referred to as

treatment variation irrelevance and states that the exposure of interest needs

to be sufficiently well defined in order for each individual to have one poten-

tial outcome for each treatment condition. It is violated for example in case

of multiple different versions of the treatment. [20, 23]

4. Non-Interference assumption: It requires that an individual’s potential out-

come is not dependent on the exposure status of other individuals in the

population. Spillover effects of some exposures such as vaccinations for

infectious diseases can lead to a violation of this assumption. [20, 24]

The consistency assumption and non-inference assumption together are often re-

ferred to as stable unit treatment value assumption. [4, 20]

If the exchangeability assumption does not hold and there exists systematic dif-

ferences between the treatment groups, the standard estimator will not consis-

tently estimate the true ATE in the population. There are two main reasons why

exchangeability might not hold in the analysis. A restriction of the analysis to se-

lected individuals can lead to selection bias if the selection process is affected by

the treatment and outcome of individuals or their causes. A selection would be

for example necessary if the loss of follow-up data was affected by side-effects

of the study treatments or symptoms of the outcome of interest. Another source

of bias due to inherent differences between study and control group can arise

when the treatment and outcome share an uncontrolled common cause. This is

referred to as confounding/ confounding bias and a confounder is a variable that

affects the treatment assignment and the outcome simultaneously. Additionally,

the distinction is made between measured and unmeasured confounders, refer-

ring to whether or not the variables are recorded in the data at hand. Often, the

exchangeability assumption is also called ‘no confounding’ assumption. If the
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confounders are measured it is possible to control for them in the analysis. In this

case the analysis will rely on the conditional exchangeability assumption or the

assumption of ‘no unmeasured confounding’ (NUC). [6, 20, 25]

1.5 Causal diagrams and directed acyclic graphs

Causal effects can only be identified in the context of relationships of important

components in the system related to the causal question at hand. Causal dia-

grams are a powerful graphical tool to represent prior knowledge and assump-

tions about causal mechanisms, such as statistical dependence, independence,

and underlying causal effects of interest. [13, 20, 26] Figure 1.1 shows a causal

diagram for the assumed relationships between a treatment X, outcome Y and a

measured confounder W, for example a biomarker such as age or weight.

Figure 1.1: Example of a directed acyclic graph depicting the assumed relation-

ship between the variable X: treatment, Y: health outcome of interest and W:

measured confounder, for example age or weight. We are interested in estimat-

ing the causal effect β of X on Y.

Each variable in a causal diagram is represented at a specific point in time and

referred to as a node. An arrow from variable X to Y indicates the assumption

of a causal relationship between these two variables. In Figure 1.1 this is the

average causal effect β of the treatment X on the health outcome Y we want to

estimate. As each connection between nodes has an arrow of effect which is

‘directed’, causal diagrams which entail instantaneous non-cyclical relationships

are also called directed acyclic graphs (DAGs). [27] Furthermore, a lack of an

arrow between nodes indicates that no relationship between the variables is as-

sumed. A path is a sequence of arrows that connects two variables. It can be

causal or non-causal depending on the direction of the arrows. Specifically, if all
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arrows on a path point in the same direction, such as the path X→ Y in Figure

1.1, each variable on the path causes the subsequent variable and the path is

causal. Arrows on a non-causal path on the other hand do not all point in the

same direction, such as the path X← W→ Y in Figure 1.1. Paths can also be

blocked or unblocked depending on their structure and conditioning strategy of

the analysis. Conditioning on a variable in the analysis is marked in a DAG with a

rectangle around the respective variable. Three important graphical rules (known

collectively as ’d-separation’) determine whether a path is open or closed, a sum-

mary of these rules is given in Figure 1.2. [28]

Figure 1.2: D-separation rules to decide which paths in a DAG are open and

closed/blocked.

Paths a) and b) as depicted in Figure 1.2 represent a chain and a fork respec-

tively. These paths are open and can be blocked if the analysis conditioned on

the middle variable, here W. An example would be a regression model of Y on X

with W as covariate. An inverted fork with a collider (W) is presented with path c).

This path is blocked due to the collider, but will be opened if the analysis condi-

tions on W.

Appropriately drawn DAGs and correct application of the d-separation rules helps

to identify whether an observed association between X and Y has a causal inter-

pretation or instead might be due to a spurious association. Additionally, it can

be identified which variables the analysis should be conditioned on in order to

consistently estimate the causal effect of interest. The “backdoor path criterion” is

a tool to identify the set of variables O in a given DAG that need to be controlled

for in the analysis in order to identify the causal relationship between X and Y.

For this criterion to be satisfied no node in O can be affected by X and condi-
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tioning on all variables in O must ensure that all backdoor paths between X and

Y are blocked. [27, 28] In Figure 1.1, X and Y are connected via the direct path

X→ Y and the backdoor path X← W→ Y. This backdoor path includes a fork

and can be blocked by conditioning on the confounder W in the analysis, if this

variable has been measured in the data. If β is estimated without controlling for W

the observed association between X and Y can not be interpreted as causal and

might be due to spurious association, confounding bias. Figure 1.3 represents a

more complex DAG including 5 measured confounders (Wg and g = 1, . . . 5) and

an unmeasured confounder U. In order to determine if it is possible to estimate

the causal effect of X on Y with the data at hand and the assumed relationships,

the backdoor path criterion can be applied. Besides the direct path X→ Y there

are four backdoor paths from X to Y and the d-separation rules (Figure 1.2) help

decide which of them need to be blocked in order to estimate the causal effect

without bias.

Figure 1.3: DAG representing a complex data structure between X: treatment,

Y: outcome of interest, W1, . . . ,W5: measured confounders and U: unmeasured

confounder.

The backdoor path X← W3 → Y includes a fork and can be blocked if the anal-

ysis conditions on the confounder W3. This will also block the backdoor paths

X← W1 ← W2 ← W3 → Y and X← W3 → W2 → W4 ← W5 → Y, which are de-

fined by chains and a fork and would be otherwise open. The fourth backdoor

path X← W1 ← W2 → W4 ← W5 → Y is already blocked as it contains a collider

W4. Conditioning on W4 will open the path and introduce collider bias in the causal

effect estimation. Lastly, the backdoor path X← U→ Y is open and cannot be

blocked, as it is not possible to condition on a variable that is not measured in

the data. In summary, the backdoor path criterion cannot be fulfilled with the data
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at hand and relative to the assumed data structure, because O = (W3,U) entails

an unmeasured confounder. As result, confounding bias due to the spurious as-

sociation introduced in the causal effect estimation by the open backdoor path

including U is possible.

DAGs will be used throughout this thesis to describe assumptions of the study

data structure and the methods employed to estimate causal effects of interest.

Generally, it is important to keep in mind that DAGs are just as good as the back-

ground information used to draw them and that they make no indication to how

likely or strong potential bias is. It is possible to represent the same research

question with different DAGs, and it might be useful to repeat the analysis for

different DAGs to improve understanding of possible causal effects. [26, 27]

1.6 Randomized and non-randomized studies

Two primary study types are commonly applied in epidemiology: randomized con-

trolled trials (RCTs) and observational studies. [29] Perfect RCTs are considered

to be the gold standard in medical research to quantify causal effects. Their key

features are the comparison of an intervention (e.g. a treatment) of interest with a

control, randomized assignment of individuals to the treatment and control group,

and a form of blinding to hide which treatment has been given, in order to limit

the possibility of bias arising, from participants or those administering the treat-

ment. [1, 2, 3] RCTs prospectively follow the effects of a treatment on individuals

from a well defined starting point forward in time. In its basic form, the parallel

group design RCT, individuals are assigned into the treatment group (X = 1) and

the control group (X = 0). This assignments takes place randomly, meaning inde-

pendent of individuals’ characteristics to ensure balanced characteristics between

groups and the fulfillment of the exchangeability assumption. If the treatment as-

signment is perfectly predicted by randomization, no other variable can have an

influence on X and the causal effect can be estimated consistently without con-

founding bias. [3] Figure 1.4 depicts the DAG for a perfect RCT with R indicating

the randomization decision.
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Figure 1.4: Visualization of a perfect RCT in which R: randomization perfectly

predicts X: treatment group assignment. Hence, no other confounders (W or U)

can influence X. This means that there are no arrows from either U or W into

X, which makes it straightforward to estimate the causal effect X→ Y from their

association.

Perfect RCTs make the assumption of perfect compliance to assigned treatment,

lack of selection bias due to differential follow-up in the course of the trial, and

no confounding after randomization. By design they fulfil the exchangeability as-

sumption and therefore make consistent estimation of the causal treatment effect

possible. [3, 13] If treatment and control protocol are not followed exactly, the RCT

is said to be imperfect. Non-compliance exists when individuals do not receive

the treatment they have been randomized to. It occurs after treatment assignment

an therefore can be affected by participants’ characteristics. In this case a ‘per

protocol analysis’ in which all non-compliant participants are excluded, could lead

to biased treatment effect estimation. Often an ‘intention to treat’ (ITT) analysis

is employed which estimates the effect of assigned treatment, regardless of the

actual treatment received. [25, 30]

Using RCTs to investigate causal effects is not always possible. They might be

not feasible if the exposure studied is not manipulable, or it is unethical or too

expensive to do so. Furthermore, if they are possible, RCTs may need to employ

strict exclusion criteria for participation to ensure the safety of participants. This

might lead to the exclusion of important subgroups, such as older, frailer patients

or pregnant women, which will diminish the generalisability of the study results

and reduce possibility for subgroup analyses. [3, 4, 29]

Observational studies are often employed to overcome these limitations and study

important health research questions in broad patient populations that could not

have been addressed by RCTs. Examples of observational data sources are sur-

33



veys on healthcare providers, censuses, insurance claims records, administrative

records or patients records from healthcare facilities. [4, 5] Many different ob-

servational study designs are possible, and further detailed explanations can be

found elsewhere, for example in Lu [31] or Thiese [32]. In this thesis we focus

on prospective cohort studies for which the participants are observed to have

received either the treatment of interest or the control treatment, and are then

followed up for a given period, at which point their outcome status is measured. A

key feature of all observational study designs is that the exposure is not randomly

assigned, but often treatment choice/ exposure depends on individuals’ charac-

teristics. Due to the lack of randomization of treatment assignment, characteris-

tics between the treatment groups might not be balanced and the exchangeability

assumption not fulfilled. If these characteristics also affect the outcome of inter-

est, estimation of the causal effect of treatment will be influenced by confounding

bias. The presence of confounding and how to account for it is therefore a major

concern for the causal analysis with observational data. As the design of obser-

vational studies cannot rule out the risk of confounding, statistical methods which

aim to adjust for confounding are employed for the estimation of the treatment

effect. In the following, methods which aim to account for measured and unmea-

sured confounders are reviewed. These methods are studied in depth in specific

chapters of this thesis.

Figure 1.5: Summary of key differences between perfect RCTs and observational

studies.

In Figure 1.5 the main difference between RCTs and observational studies is visu-
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alized, which is the assignment to the treatment groups and its consequences for

the comparability of treatment groups with regard to participants’ characteristics.

These are represented by icon colours.

1.7 Evidence-based medicine and triangulation of

causal evidence

Evidence-based medicine (EBM) describes the integration of best research ev-

idence for a particular question with clinical expertise and patient values. [33]

Evidence to guide treatment decisions in clinical practice can be derived from

various data sources and research designs with different strengths and limita-

tions, such as RCTs and observational studies. The evidence pyramid is often

used to order existing research designs into a hierarchy of informative value. One

example of the evidence pyramid is depicted in Figure 1.6 similar to the pyramid

provided by Rosner [34].

Figure 1.6: Example of the evidence pyramid of evidence-based medicine. A

similar pyramid is provided by Rosner [34].

In this hierarchy, evidence from research designs with higher risk of bias are

grouped at the bottom of the pyramid, such as in vitro research, animal research

or editorial/ expert opinions. Higher valued evidence sources regarding rigor and

freedom of bias are organised at the top of the hierarchy. In references to these
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aspects, RCTs are regarded the highest valued source to generate reliable and

unbiased evidence from. Nevertheless, EBM advocates for pluralistic inquiry of

research questions via the integration of evidence from different sources on the hi-

erarchy. [35, 36, 37] As explained above, RCTs have limitations which affect their

feasibility and generalisability for certain research questions. Non-randomized

observational studies are an alternative where RCTs are not possible. Their value

of evidence relies on three key principles: (1) a well-defined target population, (2)

analysis and reporting that includes study results of patients of the cohort and

(3) application of appropriate methodology and statistics regarding data structure

and nature of the research question. [38]

Similar to the idea of integrating evidence from different research designs, the

concept of ‘triangulation’ refers to the strategic use and comparison of multiple

analytical approaches to address one research question. [8, 39] This concept

is applied to strengthen the robustness and transparency of causal analysis. As

explained above, causal analysis relies on often untestable assumptions about

data structure and potential sources of confounding. [8, 40] The analysis can be

strengthened and reliability of the results can be increased by employing different

statistical methods and thereby looking at the research question at hand from dif-

ferent angles. These methods must all estimate the same underlying causal effect

and ideally are subject to different and unrelated sources of bias. Triangulation is

closely related to the concept of consistency of research results. If methods for tri-

angulation are chosen with differing directions of bias, similar estimation results of

the causal effect would give confidence in the evidence reliability. [8, 9, 10] Trian-

gulation is a prospective approach and is most powerful if fundamentally different

methods are chosen for comparison as to ensure that their sources of bias are dif-

ferent, and operate in different directions. This makes it necessary for researcher

to consider and communicate assumptions and limitations of each method explic-

itly and will also foster collaboration between researchers working with different

analytical methods. [8] Although triangulation can be done in a purely qualitative

manner by comparing estimates from different data sources and study designs,

ideas have been developed for the quantitative synthesis of estimation results

within the same study, for example the ‘Triangulation WIthin a STudy’ (TWIST)

framework [11].
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1.8 Methods for estimating causal effects in obser-

vational data

Different analytical methods exists to estimate causal effects from observational

data. They rely on different sets of assumptions and differ in their ability to adjust

for measured and unmeasured confounding. The focus of this thesis lies on the

development and application of a causal treatment effect estimation framework to

derive suitable evidence from observational data and answer important questions

about the safety and effectiveness of type 2 diabetes treatments. Triangulation of

evidence from different analytical methods is a crucial part of this framework in

order to strengthen the causal analyses. In the following, relevant statistical meth-

ods used for controlling measured and unmeasured confounding in observational

research are summarized. The main emphasize will lie on methods addressing

unmeasured confounding, with particular focus given to the Instrumental Variable

method.

1.8.1 Notation

Before introducing relevant statistical methods to estimate the treatment effect

of interest, the necessary mathematical notation is summarized in the following.

This notation will be used throughout this thesis.

We are interested in estimating the causal treatment effect β of the treatment

decision on the outcome of interest. Assume a study population of size N is anal-

ysed, which is itself clustered into J disjoint sets representing treatment decision

making healthcare providers. Provider j treats nj patients, so that N =
∑J

j=1 nj.

Within each provider, the patients’ index, i = 1, . . . , nj, is assumed to coincide with

the order in which they have been treated, from first to most recent. The outcome

of interest for patient i of provider j is denoted by Yji. Likewise, binary treatment

variable Xji denotes whether a patient receives treatment A (Xji = 0) or treatment

B (Xji = 1). Measured and unmeasured confounders are represented by the G-

and M-length vectors Wji = (W1ji, . . . ,WGji) and Uji = (U1ji, . . . ,UMji), respectively.

For the population W and U are matrices of the size N× G and N×M. In the fol-

lowing, the indexes i and j will be omitted from the notation if explanations are not
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specific to certain providers or individuals. Subpopulation sizes for the individuals

treated with X = 1 and X = 0 are NTx and NCt respectively.

1.8.2 Regression adjustment and Propensity score matching

The causal effect β can be estimated consistently by adjusting for all measured

confounders in a multivariable regression, under the NUC assumption. [20] This

estimate is denoted as the ‘Corrected as Treated’ (CaT) estimate in the following

and is defined as:

β̂CaT = Ê[Y|X = 1,W]− Ê[Y|X = 0,W]

and estimated from fitting the multivariable regression

E[Y|X,W] = βY,0 + βCaTX + βY,WW, (1.1)

where W is a N× G matrix that forms a sufficient adjustment set (and therefore

satisfying the NUC assumption) and βY,W is a G× 1 column vector.

Another analytical approach to account for systematic differences between the

treatment groups due to the lack of randomization in observational data is the

propensity score matching (PSM) method. The propensity score is a balancing

score and is defined as the probability of an individual to receive the treatment

conditional on all observed covariates [41, 42]:

πi = Pr[Xi = 1|W].

The true propensity score is not known in observational studies but can be esti-

mated using the data at hand for example by fitting a logistic regression model:

Logit(Pr[X = 1|W]) = βX,0 + βX,WW,

where W is a N× G matrix and βX,W is a G× 1 column vector. Hence, the es-

timated propensity score π̂i is the predicted probability to receive the treatment

derived from fitting this model. With this definition of πi and in a set of individu-

als with the same propensity score, under the NUC assumption the distribution

of measured confounders will be the same between treatment groups. [42] For

example, propensity score matching makes it possible to estimate the ATE by
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forming matched sets of treated and untreated individuals with similar propensity

scores. [41] A summary and explanation of different matching strategies can be

found for example in Austin [42]. In the following studies ‘1-1 matching’ was ap-

plied for which one untreated individual is matched to one treated individual. In

order to find the most similar propensity score for matching ‘nearest neighbour

matching’ is applied, which matches untreated individuals to a treated individ-

ual with the closest propensity score. In case of more than one identical closest

propensity score, an untreated individual is chosen randomly from this subset. Af-

ter this matching process, the treatment effect can be estimated from the matched

data. In order to reduce residual differences in measured baseline characteristics,

regression adjustment can be applied. [42], Therefore, the target treatment effect

can be estimated from the matched sample with the regression model, similar to

model (1.1):

E[Y◦|X◦,W◦] = βY,0 + βPSMX◦ + βY,WW◦,

where the symbol ◦ indicates that this model is estimated in the matched data

only, W◦ is a N× G matrix. Regression adjustment on the matched data can

help increase the precision of treatment effect estimates for continuous outcome

and increase statistical power for continuous, binary and time-to-event outcomes.

[42, 43, 44] A limitation of the approach is that the 1-1 nearest neighbour match-

ing must be applied on a complete case dataset for all measured confounders.

Estimation of πi and βPSM might be therefore biased in case missingness is not

missing completely at random. [45] Additionally, it is possible with this matching

strategy, that not all individuals can get matched which will lead to a loss of infor-

mation. It is also important to reiterate that the estimation of the treatment effect

using propensity score matching is done under the NUC assumption, hence the

method is not able to account for unmeasured confounding. [46] Other related

methods which make use of πi are stratification on the propensity score, inverse

probability on treatment weighting and covariate adjustment on the propensity

score. These approaches were not employed in the following studies, but further

explanations can be found for example in Austin [42], Rosenbaum and Rubin [41]

or Austin and Mamdani [47].
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1.8.3 The prior event rate ratio and difference-in-difference

approach

Standard regression adjustment and PSM utilize data on confounders measured

at baseline/ initiation of the study treatment. It is also possible to adjust for events

occurring before the study treatment, such as experiences of adverse event and

comorbidities. Both approaches work under the NUC assumption and are there-

fore contingent on measured confounders forming a sufficient adjustment set.

The prior event rate ratio (PERR) approach is applied specifically to time-to-event

data from more than one distinct time period to overcome bias due to unmeasured

confounding. It is a suitable approach to estimate causal effects on repeatable,

non terminal outcomes, for example adverse effects such as infections. The out-

come modelled in the prior period and the study period using Cox proportional

hazard models. [48, 49, 50] A visualization of the before-and-after design or self-

controlled design [51] of the PERR method, similar to Lin et al. [49] and Rodgers

et al. [50] is shown in Figure 1.7.

Figure 1.7: Before-and-after design of the PERR approach utilizing data from the

prior and study period, similar to the visualization of Lin et al. [49] and Rodgers et

al. [50]

The prior period starts before and ends with the study treatment initiation. It

is important that neither of the two treatment groups have been exposed to the

40



study treatment in this period. The study period starts with the initiation of the

study treatment of interest or its comparator treatment. The outcome of interest

as well as relevant confounders are measured in both periods. Let Y0 and Y1

denote the time-to-event outcome for the prior period and the study period re-

spectively. Similarly, let W0 and W1 denote the relevant measured confounders in

both periods. The follow-up time in prior and study period expands until the end

of follow-up data of the respective period, occurrence of the outcome of interest

or a censoring event. The idea of the PERR approach is to use the treatment

effect measured for the prior period to capture the degree of unmeasured con-

founding and adjust for it in the estimation of the treatment effect of interest in the

study period. It presumes that the estimated ‘treatment effect’ hazard ratio (HR)

in the prior period reflects the effect of measured and unmeasured confounders

on the outcome, but without any contribution from the actual treatment itself. By

contrast, the study period estimated hazard ratio is assumed to be influenced by

the true (causal) treatment effect, plus the same magnitude of confounding bias

as the prior period. By taking the ratio of the prior and study period hazard ratio

estimates, the PERR estimate:

ĤRPERR =
ĤRprior

ĤRstudy

,

effectively removes confounding bias by cancellation, leaving only the true causal

effect. [48] Typically, ĤRprior and ĤRstudy are the hazard ratios from fitted Cox pro-

portional hazard models of the prior and study outcome regressed on W0 and

W1 respectively. [50] Standard error estimates for the causal estimate are de-

rived via bootstrapping. [48] Due to the non-linearity of Cox models, the PERR

method has been shown to result in attenuated treatment effect estimates. The

PERR-ALT approach and its extension PERR Pairwise have been developed to

overcome this drawback. [49, 52] Important assumptions of the PERR approach

in order to estimate the causal treatment effect consistently are

1. Independence of treatment decision and prior outcome: The treatment

decision X needs to be independent of Y0. This assumption would be vi-

olated if the outcome of interest in the prior period affects the treatment

decision of the study period for example in case of studied adverse effects.

2. Time-invariant unmeasured confounding: This assumption requires the
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effect of U on the outcome Y0 and Y1 to be constant across time conditional

on W0 and W1 respectively.

It has been shown in simulation studies that violation of these assumptions can

lead to biased treatment effect estimates. [52, 53] Further investigations of as-

sumption violations are outlined in Chapter 3. Due to this possibility of bias, it is

important to apply subject matter knowledge to justify the assumptions. [54] Fur-

thermore, it is important to chose the length of both periods with care. It needs

to be long enough to be able to detect Y0 and Y1, while keeping in mind that the

influence of U on the outcomes remains constant for both periods. [50]

For continuous outcomes the difference-in-difference (DiD) approach is analo-

gous to the PERR approach. The treatment effect in the study period is corrected

using the treatment estimate of the prior period. This is operationalized in a re-

gression model for the study outcome, aggregated at treatment group level with

a period-treatment interaction. [55, 56] The causal effect is estimated with the

following model:

E[Y∗|X∗,W∗,P∗] = γ0 + γPP∗ + γX∗X∗ + βDiDP∗ · X∗ + γwW∗ + γWPW∗ · P∗.

Here, X∗ ∈ {0, 1} is a 2N-length treatment indicator variable, P ∗ ∈ {0, 1} is the

period indicator variable of the same length with P∗ = 0 indicating the prior period

and P∗ = 1 the study period. The variables Y∗ = (Y0,Y1)T, W∗ = (W0,W1)T sum-

marize the information of outcomes and measured confounders for both periods

in a vector of the same size. The DiD estimate of the causal treatment effect is the

regression coefficient of the P∗ · X∗ interaction term. [57] Fitting this model also

facilitates the estimation of standard errors, as they can be taken directly from the

hessian matrix.

In Chapter 3 the DiD regression approach will be utilized to estimate the rela-

tive risk an adverse effect for two oral type 2 diabetes treatments. Additionally,

a formal proof of the assumptions outlined above is given in the Appendix of this

Chapter.
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1.8.4 The Instrumental Variable approach

The instrumental Variable (IV) approach addresses measured and unmeasured

confounding in observational data by attempting to create a pseudo-randomized

controlled trial. It does this by utilizing an IV, denoted with Z, which introduces ran-

dom variation in the treatment X. [58, 59] In order for Z to be a suitable or ‘valid’

instrument, three important assumptions about its relationship with the treatment

decision and outcome of interest must be satisfied. Additionally, Z will be re-

garded as a binary variable in this thesis. The DAG in Figure 1.8 summarized the

assumed data structure.

1. Relevance assumption: The instrument Z needs to be strongly associated

with X, as shown in the DAG of Figure 1.8 with the path Z→ X.

2. Exclusion restriction: This assumption requires Z to be independent of Y

given X, W and U and therefore affects the outcome only through the treat-

ment decision. A direct path Z→ Y is therefore shown in red and crossed

out in the DAG.

3. Exchangeability assumption: The instrument Z does not share a common

cause with Y, as depicted by the red and crossed out U→ Z path in the

DAG.

Figure 1.8: DAG depicting the assumed data structure of the Instrumental Variable

method, including the variables X: treatment decision, Y: outcome of interest, Z:

Instrumental Variable, W: measured confounders, U: unmeasured confounders.

For the simple case of a binary instrument, the IV estimate for the ATE of X on Y

is given by

βIV =
E[Y|Z = 1]− E[Y|Z = 0]

E[X|Z = 1]− E[X|Z = 0]
. (1.2)
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[60, 61] That is, the ATE is estimated as the ratio of, the effect of Z on Y and

the effect of Z on X. The idea of the IV method can be related to a perfect RCT

as shown in Figure 1.4, where Z is replaced with the randomization indicator, R.

Here, R also satisfies the three IV conditions described. Under complete adher-

ence to randomisation, R predicts X perfectly and hence no other factors such as

W or U can. In this case, the ATE would simply equal the effect derived from an

ITT analysis. In the IV context, this is equivalent to the numerator in formula (1.2),

since the demoninator is equal to 1. Returning to the RCT, if non-compliance to

the treatment protocol is observed, so that R does not perfectly predict X, the ITT

estimate will be a diluted or attenuated version of the ATE. The IV estimate in (1.2)

overcomes this by dividing the ITT estimate by a denominator that lies somewhere

between 0 and 1, and whose value decreases as the relationship between Z and

X gets weaker. This inflates the ITT estimate so that it remains consistent for the

ATE. For example, if half the patients comply and the denominator is equal to 1/2,

the IV estimate for the ATE scales the ITT estimate up by a factor of 2. [58]

For the estimation of the ATE from observational data using IV methods, the three

assumptions explained above are only sufficient to obtain estimates for the lower

and upper limits of the causal treatment effect. It is possible to test the causal

Null hypothesis as we are able to estimate the ITT estimate, the effect of Z on

Y. If the instrument is valid, it will only have an effect on the outcome through X.

Therefore, the effect of Z on Y should be zero if there is no causal relationship

between X and Y. [58, 62] A forth assumption is needed in order to identify a

point estimate β for the causal effect. Different variations of this fourth assump-

tion have been defined in the literature and their distinction is important for the

interpretation of the estimated effect. [63, 64]

4c. Constant treatment effect: This assumption requires identical (i.e. con-

stant) treatment effects for all patients in the population, which is generally

impossible for dichotomous outcomes and very unlikely for other types of

outcomes. Hence, other less strict formulations have been proposed. [63]

4h. Homogeneity: Under this assumption the ATE in the population can be

identified. It requires that no additive effect modification exists across the

levels of the instrument Z and within the groups of exposed and unexposed.
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[63, 64]

4m. Monotonicity: For this assumption to be fulfilled, the instrument needs to

only affect X in one direction for all patients. In other words, it requires that

the level of X for each patient given Z is a monotonic increasing function of

the level of Z. [65]

The monotonicity assumption is in many studies more plausible and allows for the

estimation of the local average treatment effect (LATE). The LATE is the ATE in

the subgroup of compliers, which are individuals who are treated in accordance

with the level of their IV. [58, 63, 64] In case of binary Z it is possible to create four

compliance groups which are summarized in Table 1.1 for completeness. It is

noteworthy that the group of compliers cannot be identified from the data at hand

of an observational analysis, hence the relevance and practical translation of the

LATE has been questioned. [66] For a binary Z the monotonicity assumption

requires the absence of defiers in the study population. [63, 67]

Compliance group Explanation

Always-taker Individuals who receive Xji = 1 regardless of Zji

Never-taker Individuals who receive Xji = 0 regardless of Zji

Compliers Individuals who receive Xji = 1 in accordance to Zji,

with X
Zji=1
ji = 1 and X

Zji=0
ji = 0

Defiers Individuals who receive Xji = 1 in discordance to Zji,

with X
Zji=1
ji = 0 and X

Zji=0
ji = 1

Table 1.1: Overview of compliance groups with respect to values of Z and the

treatment decision X. Here, both variables are binary.

A common and general procedure to estimate βIV in the case of a continuous

outcome is the so called ‘Two-Stage Least Squares’ (TSLS) approach. [68, 69].

In the case of a binary treatment, the first stage usually comprises a logistic re-

gression model for X adjusting for all measured confounders and the instrument:

Logit(Pr[X = 1|Z,W]) = βX,0 + βX,ZZ + βX,WW. (1.3)

The fitted first stage model is used to predict X given Z and W as X̂. The sec-

ond stage model is the outcome model regressing Y (here: continuous) on the
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predicted values X̂ and the measured confounders:

E[Y|X̂,W] = βY,0 + βIVX̂ + βY,WW. (1.4)

The TSLS estimate for the causal treatment effect βIV is the coefficient of X̂ from

this fitted regression model. [68, 70]. Using a valid IV and given model (1.4) is

correctly specified, the TSLS estimate is consistent under the homogeneity as-

sumption. [71, 72].

An alternative estimation procedure for binary and rare outcomes and binary ex-

posures is the ‘Control Function’ (CF) approach. [73, 74] The approach, as ex-

plained below is recommended as it is robust to heterogeneity in the magnitude

of selection bias with respect to the instrument. [75] For the first stage of the CF

approach the treatment decision model (1.3) is estimated. From the fitted model

the residual ∆̂ = X− X̂ is calculated and used in the second stage model with

Logit(Pr[Y = 1|X,Z,W, ∆̂]) = βY,0 + βY,WW + βCFX + (βY,∆̂ + βY,Z∆̂Z)∆̂.

For this estimation procedure the treatment effect is taken as the coefficient of X.

This estimation procedure is showcased in Chapter 3, when triangulating results

of different estimation methods for the relative risk of experiencing an adverse

effect comparing two commonly prescribed oral type 2 diabetes treatments. In

Chapter 5, causal effects for continuous treatment outcomes and binary adverse

effects were estimated using the TSLS approach only. This is justified, as the

results of TSLS and CF did not differ substantially in the triangulation analysis of

Chapter 3 and with the aim to make this applied study more accessible for the

target audience of clinicians treating people with type 2 diabetes.

Careful consideration is needed in order to find a valid instrument which meets the

above explained assumptions (especially the first three assumptions) and is mea-

sured in the data at hand. A selection of possible IVs that have been proposed in

the literature are: geographic information (e.g. distance to the closest hospital),

time-based characteristics (date of therapy initiation) or historical/lagged variables

(previous therapy as prescribing preference of healthcare provider). The method

of Mendelian randomization uses genetic variants (e.g. single nucleotide poly-

morphisms) as instruments. [55, 76] In consecutive chapters, all IV analyses will
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be conducted using a healthcare provider prescription preference-based instru-

ment. Therefore, in Section 1.8.5 important aspects for the use of this instrument

and the framework under which it can be applied are discussed in more detail.

An important limitation of the IV method is its reliance on assumptions which are

not all testable with the data at hand. Only the relevance assumption can be fully

tested with the first model of the TSLS and CF procedure. The F-statistic for the

coefficient of Z in this treatment decision model gives an indication on how strong

Z is related to X. As a rule of thumb, Z is considered a strong instrument if the

value of this F-statistic exceeds 10. [77] Weak instruments can lead to so called

‘weak instrument bias’ in the estimation of the causal treatment effect. Further-

more, it can lead to an amplification of bias related to other violation assumptions.

[58] The exclusion restriction and exchangeability assumption can not be tested

with the data at hand, as this would require knowledge about unmeasured con-

founders. They can only be falsified with the data at hand and subject matter

knowledge. Additionally, evidence from previous studies can be applied to de-

cide whether these assumptions are realistic for the research question and data

at hand. [58, 63, 64, 70, 78] Violations of these two assumptions lead to bias in

the estimation of the causal effect. [70] One way to partially verify the exchange-

ability assumption using the measured covariates is to tabulate their distribution

across the levels of the proposed instrument. If the measured confounders ap-

pear to be unbalanced when grouped by instrument level, it is likely that Z is also

confounded by U. In this way, the measured confounders are used as proxies for

unmeasured confounders to assess the validity of the IV assumption. However,

unmeasured confounding in observational studies can generally never be fully

ruled out. [64, 70, 79]

1.8.5 Healthcare provider prescription preference as

Instrumental Variable

Healthcare provider prescription preference (PP) has been proposed as Instru-

mental Variable, to exploit variation in prescribing behaviour which cannot be

explained purely by patient demographics that are prognostic for disease, or

regional variation in treatment guidelines. [80, 81] According to the systematic
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review by Widding-Havneraas et al. [59], PP has been increasingly used as In-

strumental Variable in medical research, especially for treatment effect studies

for cancer, cardiovascular diseases and mental health. Strong prescription pref-

erences can be formed for example due to controversial treatment options or if

providers are specialists for a specific treatment (e.g. surgeries). [80] Usually,

the choice of treatment will be determined by an interplay between many factors

which include but are not limited to: the providers subjective preference at a time

given their cumulative experience in practice; patient characteristics, including

their age, sex, comorbidities and contra-indications of any existing medications;

a patient’s insurance that only covers one specific treatment; a strong prefer-

ence coming from the patient given their own experience. [82] Depending on

data availability, provider prescription preference can be defined at three different

levels of healthcare provider: geographical level such as regions [83, 84], facility-

level such as hospitals, clinic or general practice level [85, 86], and on level of

individual physicians/ practitioners [87, 88].

The proxy design and construction methods of the instrument

The preference of a provider for one treatment over another is a continuous vari-

able, to account for the strength of this belief. It is very difficult to measure and

requires a distinct survey design. [67, 89, 90]. Therefore, retrospective cohort

studies with focus on the assessment of treatment effects and adverse risk often

do not incorporate data on the true PP. Usually, for IV studies using preference

based instruments, PP is conceptualized with a surrogate variable. This has been

called the ‘proxy design’, which is represented in Figure 1.9. [58, 59, 91] In this

design, the true underlying provider preference PP is assumed to be a valid IV

and is approximated with the provider’s manifest and observed prescribing be-

haviour utilizing information on X. This proxy variable is used as IV and hence

denoted with Z. In this design, Z does not have a causal relationship with X but

fulfils all IV assumptions described above.
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Figure 1.9: Description of the proxy design. Here PP: true unmeasured provider

preference which is assumed to be a valid IV, Z: proxy variable of PP used as

instrument, W: measured confounder, U: unmeasured confounder, X: treatment

decision and Y: outcome of interest.

Different ways on how to construct a PP based IV with information on X have

been proposed in the literature. In Chapter 4 the different construction methods

are organised into two groups based on their use of the data at hand. Simple

rule-based methods utilize data on treatment decisions only, to reflect on PP and

construct the instrument Z. An often applied rule-based construction method was

proposed by Brookhart et al. [81]. They suggested a binary IV that corresponds

to the most recent prescription for each patient within a provider. Hence, Zji = 1 in

case of Xji−1 = 1 indicates that provider j has a preference for treatment B at the

prescription time of patient i. Furthermore, Zji = 0 in case of Xji−1 = 0 indicates

a prescription preference for treatment A. Model-based construction methods are

the second group of provider preference-based IVs. They use more complex sta-

tistical models to construct Z, taking the data structure of measured confounders

into consideration. Further details and examples of rule-based and model-based

construction methods are given in Chapter 4. As there are different construc-

tion methods available in the literature, Brookhart et al. [92] suggest to chose

the method that appears to be most strongly related to the observed treatment

decision, among those that are unrelated to measured confounders. An addi-

tional aspect that needs to be considered when choosing a suitable construction

method is the fact that PP naturally evolves over time. This aspect should be

ideally reflected in the construction of Z in order for this instrument to be a good

proxy of PP and limit measurement errors. [92] Reasons for change in PP can be

for example evolving experience of the provider, new efficacy and safety informa-
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tion from clinical trials, marketing efforts of pharmaceutical companies or a recent

negative experience with the preferred drug. [92, 93, 94, 95, 96] Furthermore, the

construction methods have different requirements on the data structure, such as

for example the minimum amount of prescription information needed from each

provider in order to calculate Z. Lastly, Ertefaie et al. [97] point out that non-

ignorable missingness is a common occurrence in observational data and can

lead to bias in the treatment effect estimation using a preference-based IV. Chap-

ter 4 represents a comprehensive simulation study of different construction meth-

ods and their performance under the three mentioned data conditions: change in

PP over time, provider size and missing data for measured confounders.

Assumptions of preference-based instruments

For the representation of a preference-based IV it has been assumed so far that

PP is a valid instrument. This requires the IV assumptions as presented in Section

1.8.4 to be fulfilled. A PP-specific explanation of the assumptions are as follows:

1. Relevance assumption: Provider differ in their use of treatment indepen-

dently of patient characteristics.

2. Exclusion restriction: A providers’ use of the treatment is unrelated to the

use of other medical inventions that might influence the outcome.

3. Exchangeability assumption: Patients are assigned to provider indepen-

dently of the their prescription pattern.

4m Monotonicity: If a provider treats a patient with the study treatment, all

providers with a preference equal or higher than the preference of this pre-

scribing provider will also prescribe the study treatment. [92]

As a preference-based IV is most often used under the proxy design, Hernán

and Robins [58] suggest a weaker version of the relevance assumption under

which Z and X have to be associated either because Z causes X or because both

variables share a common cause, such as PP. This assumption suggests that

the treatment decision is partly made due to PP and not only based on guide-

lines or patient characteristics. [80] Therefore, prescribing patterns must still exist

independently of patient characteristics. [88, 98] Boef et al. [90] conducted a
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study looking at survey data from physicians and 8 hypothetical patients, asking

for their treatment decisions. Their study supports that provider preference at

physician level is a determinant of treatment decision as only some variation of

the treatment decisions was explained by physician characteristics or the patient

population. This indicates that the relevance assumption is plausible for physi-

cian’s treatment preference. [90] Ionescu-Ittu et al. [82] conduced a simulation

study to assess the impact of weak preference-based IVs on the performance of

the causal estimates. In this simulation study, strength of the IV is diminished by

increasing the proportion of prescriptions that are independent of the providers

preference. The results showed the application of a preference-based IV helped

to remove bias due to unobserved confounding, but to a possible price of larger

estimation variance. Whether this bias-variance tread-off favours the IV estima-

tion approach compared to standard estimation approaches, will depend on the

strength of the IV. [82]

The exclusion restriction will be violated if PP for one treatment is linked to the

prescription of another treatment that also affects the outcome. For example,

Lousdal [70] describes a study evaluating side effects for different treatments in

which providers are found to prescribe nausea-relieving medications together with

chemotherapy, as the studied treatment. In this case the preference-based IV will

not be independent of Y as nausea is a side effect of chemotherapy. Another

study by Newman et al. [99] assessing the treatment effect of phototherapy on

hyperbilirubinemia in newborns discovered that the preference-based IV on hos-

pital level was correlated to the treatment of infant formula. As infant formula is

also a treatment for hyperbilirubinemia, the IV influenced the outcome through

another path than the phototherapy use. Bias due to violation of this assumption

can be accounted for by creating additional treatment categories related to the

combination of treatments. Hence, IV methods can be used to estimate the effect

of each treatment category. [92]

The exchangeability assumption will be violated if patients chose their healthcare

provider based on the prescription preference, or if specialist provider with a pref-

erence for one drug would see sicker patients. Tabulating the distribution of the

measured confounders grouped by the levels of the IV would reveal unbalanced
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groups. [64, 92, 100, 101] For the studies by Rassen et al. [100] and Bidulka

et al. [83] it is assumed that a violation of this assumption in these two cases is

unlikely or minimal if patients where seen by their usual primary care doctors. In

their analysis, Davies et al. [88] assess this assumption by estimating risk dif-

ferences of each measured confounding factor by patients’ prescription X and by

measures of their IV using robust standard errors clustered by provider. Addi-

tionally, the authors reported percentage reduction in the Mahalanobis distance,

a summary measure of the total covariance imbalance, grouped by the levels of

the IV and treatment decision. The authors found less covariate imbalance when

grouped by the IV. [88] Davies et al. [91] propose to assess this assumption us-

ing negative control populations. A negative control population is a population

that has a similar confounding structure than the study population but was not

exposed to the treatment of interest. In a study using provider preference as IV,

a negative control population can for example comprise patients that have been

seen by the same healthcare provider who prescribed the treatment of interest

to patients of the study population. The negative control patients were seen by

the healthcare provider for an unrelated reason and therefore were not eligible to

receive the treatment of interest. Is the IV associated to the outcome in the nega-

tive control population, this suggests that there is another mechanism with which

the IV is related to the outcome other than through the treatment of interest. This

could be for example an unmeasured common cause. [91]

Hernán [58] defined the monotonicity assumption for a continuous instrument

using information on PP. The assumption requires that if a provider treats a pa-

tient with the study treatment, all provider with a preference for X = 1 equal or

higher than the preference of this prescribing provider will also prescribe the study

treatment. This assumption might be reasonable if patient characteristics can be

combined into one single dimension, such as a propensity score, on which the

provider bases the prescription decision. [67] But in reality, it is likely that provider

use multiple patient characteristics for their treatment decisions and place differ-

ent emphasis on these characteristics. Provider also might need to make treat-

ment decisions against their preference due to patient characteristics such as

risk factors and comorbidities. This could be an explanation why assumption 4m

fails to hold as treatment decisions would not be ordered in alignment with the
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providers’ prescription preference. [65, 67] Furthermore, as preference-based

IVs are usually binary proxy instruments for the underlying and continuous pre-

scribing preference, this assumptions is generally implausible. [58] Small et al.

[65] distinguish this deterministic monotonicity assumption (assumption 4m(d)) as

explained above from the less strict stochastic monotonicity assumption (assump-

tion 4m(s)). It requires that the instrument needs to be related to X monotonically

across subjects within strata of a sufficient set of measured and unmeasured

confounders that are common causes of X and Y. The exact formulation of this

assumption depends on the definition of the IV. [65, 90] It is generally not pos-

sible to verify monotonicity as we cannot observe which prescription an already

treated patient would have been prescribed by another provider. Results from

an IV analysis using preference-based IVs should be therefore interpreted with

caution. [67] One possible way to assess this assumption is to survey healthcare

provider about their treatment decisions on the same set of patients. This survey

framework can make it possible to study the compliance group distribution in the

target population and give insight into whether the treatment decisions are made

in alignment with the monotonicity assumption. This assessment is specific to the

study population and the definition of the instrument. Boef et al. [90] and Swan-

son et al. [67] conducted an assessment of assumption 4m using this survey

framework and a preference-based IV. Boef et al. [90] used matrix plots visual-

izing the prescription pattern of the study treatment over providers and for each

patient. The results showed that the prescription patterns were not consistent

with assumption 4m(d). Their assessment of assumption 4m(s) was dependent

on the specific construction methods of Z which utilized the treatment decision of

the most recent patient. [92] The results showed that the probability of receiving

the study treatment was higher or equal for all patients if the previous patient was

also prescribed the study treatment. Form this, the authors concluded that the IV

as defined by Brookhart et al. [92], was related in the same direction for all cases

and the assumption 4m(s) was therefore not falsified. [90]

The above explanations and cited studies show, that the application of preference-

based IVs relies on strict assumptions and the treatment effect results can be dif-

ficult to interpret. For studies using preference-based IVs the assumptions should

be therefore assessed carefully using the proposed statistical methods and sub-
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ject matter knowledge.

1.9 Conclusion

Evidence from observational studies has the potential to contribute towards an-

swering cause-and-effect questions in medical research. Crucial for the quality of

observational evidence is the use of appropriate methods for the estimation of the

treatment effect of interest. Methods need to by employed that mitigate the risk of

bias due to confounding. Regression models adjusting for measured confounders

and the propensity matching method are able to estimate the treatment effect un-

der the no unmeasured confounding assumption. Other methods which addition-

ally address unmeasured confounding are the difference-in-difference approach

and the Instrumental Variable approach. All introduced methods rely on different

parts of the data at hand and data structure assumptions. Potential bias in the

treatment effect estimation might origin from violations of different assumptions.

This makes the collection of estimation approaches interesting to be explored in

an triangulation framework. This idea is developed further in Chapter 3.

Furthermore, the Instrumental Variable method utilizing variation in prescriber

preferences requires additional considerations, as this instrument is rarely mea-

sured in observational studies. Instead a proxy variable for prescriber preference

is often used, for which different construction methods are proposed in the lit-

erature. The choice of construction methods for the proxy variable should aim

to reduce measurement error of the true underlying prescription preference and

relies on data aspects, such as possible changes of preference over time, miss-

ing data or the amount of available prescription data per provider. A more in

depth analysis of the Instrumental Variable approach based on the proxy design

for provider prescription preferences and different data conditions is outlined in

Chapter 4.
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Chapter 2

Introduction to type 2 diabetes

research
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2.1 Introduction

This chapter provides an introduction to diabetes research and discusses impor-

tant aspects of the management of type 2 diabetes (T2D) in clinical practice. The

number of people with diabetes is rising worldwide and its treatment causes a high

financial burden on healthcare systems. [102, 103, 104] The majority of patients

live with T2D. [105] The treatment of T2D is complex and clinicians need to make

individualized treatment decisions based on patient preferences and their circum-

stances for example regarding comorbidities. [106] One newer treatment class

for T2D are Sodium-glucose Cotransporter-2 Inhibitors (SGLT2is). Agents of this

class act by inhibiting the reabsorption of glucose in the kidney in case of excess

plasma glucose concentration which leads to increased excretion of glucose in

the urine. [107, 108, 109] They have been prescribed more often since their intro-

duction in 2013. Furthermore, recent treatment guidelines changes have opened

prescription of this class to a wide patient population, due to strong RCT evidence

of cardiorenal benefits and low risk of hypoglycaemia. [110, 111] It is these ben-

efits that make SGLT2is especially interesting in older adults, for example over

70 years, which is an important subpopulation encompassing the majority of T2D

patients. [112]

Nevertheless, knowledge of the risk and benefit profile of SGLT2is for older adults

is limited as clinical trials employ strict exclusion restrictions and do not represent

the heterogeneous group of older T2D patients adequately. [113] Chapter 1 in-

troduced the idea of integrating evidence from observational research in health

research and the use of causal inference methods to mitigate the risk of con-

founding bias in the estimation of treatment effects. In this chapter, these ideas

will be developed further to undermine how evidence from real-world data can

help close the knowledge gap of current T2D treatment guidelines and give fur-

ther insights in the risk and benefit profile of SGLT2is, especially in the important

patient population of older adults.

Chapter 3 and Chapter 4 will outline application case studies of a causal inference

framework analysing the risk of genital infections, a well known adverse event of

SGLT2is. Chapter 5 represents a causal observational study on the safety and
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effectiveness of SGLT2i regarding important treatment outcomes and adverse ef-

fects that are potentially associated with SGLT2i and especially dangerous for

older individuals with T2D. For all studies, a T2D cohort from the Clinical Practice

Research Datalink is utilized. This real-world database of primary care records

from UK general practitioners is explained in more detail in the following.

2.2 Epidemiology, pathophysiology, diagnosis and

complications of diabetes

Diabetes is a complex, chronic and progressive metabolic disorder, mainly clini-

cally characterized with increased blood glucose levels (hyperglycaemia) and with

an inherent risk of micro- and macrovascular complications. [114] The number of

diabetes cases worldwide is rising and it is considered to be one of the major

global epidemics of the 21th century. [102] It was estimated that in 2021 537

million people were affected by this disorder with projected numbers rising rapidly

to 783 million people by 2045. T2D makes up over 90% of diabetes cases world

wide. [105] In the UK 3.9 million people live with T2D and 2.4 million people have

an increased risk of T2D due to increased blood glucose levels. [115] Treatment

of this disorder and its complications causes a high financial burden on health-

care systems. It is estimated for example that diabetes care accounts for 10% of

the UK National Health Service (NHS) expenditures and will rise up to 17% by

2035/2036. [103, 104]

The cause of T2D is mainly unclear but its development is driven by two fac-

tors that affect metabolic balance: a defect in the insulin secretion by pancre-

atic β-cells, and insulin resistance when insulin-sensitive tissues are unable to

respond to insulin effectively. [105, 116, 117] Type 1 diabetes (T1D) on the

other hand is a chronic autoimmune disorder and is characterised by the de-

struction of β-cells and absolute insulin deficiency. [118] Insulin is an essential

hormone needed to allow glucose from the blood stream to enter the body’s cells

in order for it to be converted into energy or stored. Insulin deficiency or resis-

tance can lead to hyperglycaemia which can cause damage to peripheral tissues

such as the cardiovascular and nervous system, kidneys, retina, and liver when
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left unchecked. Common potential complications include cardiovascular disease

(CVD), diabetic retinopathy, nerve damage (diabetic neuropathy), kidney dam-

age (diabetic nephropathy), and liver fibrosis as a late emerging complication.

[105, 119] Known risk factors for the development of T2D are overweight and

obesity, family history and genetic predisposition, ethnicity and age. [105, 117]

T2D is diagnosed in primary care in the UK with a blood test and the measure-

ment of Haemoglobin A1c (HbA1c). This is a summary estimate of blood glucose

levels over approximately 3 months. Diabetes is diagnosed in case of an HbA1c

level of 48 mmol/mol (6.5%) or higher. In case of a diabetes diagnosis, T2D is

diagnosed based on the exclusion of T1D and other rare forms of diabetes for ex-

ample due to clinical features at presentation, additional autoantibody testing, or

response to treatment. [120, 121] Besides hyperglycaemia, symptoms of unde-

tected diabetes are for example polyuria, polydypsia and polyphagia, unexplained

weight loss, frequent fatigue, and excessive thirst. As these symptoms often have

gradual development they can remain unnoticed or might get disregarded, which

might delay diagnosis. [105, 122]

2.3 Treatment of type 2 diabetes

The main focus of T2D management and treatment is the achievement and main-

tenance of adequate blood glucose control in order to avoid or delay diabetes

specific complications. [106] UK, EU and US treatment guidelines recommend

an HbA1c target of 58 mmol/mol (7.5%) for most individuals, but HbA1c targets

should be individualized based on patient specific aspects such as individual’s

preferences, comorbidities, or risks from polypharmacy. [106, 111, 123, 124]

Initial actions include patient education about beneficial life-style changes, such

as exercise, weight management and dietary advice. [106] As first-line treat-

ment to achieve blood glucose management, usually Metformin (MFN) is rec-

ommended, except in case of contraindication. If agreed on blood glucose tar-

gets are not achieved, healthcare provider have the option to intensify treatment.

A detailed overview of non-insulin glucose-lowering oral medications are given

in Davies et al. [106] including aspects such as primary mode of action, ad-
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vantages and disadvantages such as adverse effects (AEs). In short, the ma-

jor non-insulin oral medication classes for treatment intensification are Sulfony-

lureas (SU), Thiazolidinediones (TZD), glucagon-like peptide 1 agonists (GLP-1),

Dipeptidyl peptidase-4 Inhibitors (DPP4i) , and Sodium-glucose Cotransporter-2

Inhibitors (SGLT2i). Treatment classes are comprised of several drugs, but will be

referred to on class level if not stated otherwise. These treatment options differ

in their mode of action, costs, safety profile and performance with respect to a

range of health outcomes. [106]

International and UK guidelines have been updated recently and now give drugs

within the SGLT2i class a prominent position in the treatment intensification path-

way and as first-line treatment (if MFN is contraindicated). [110, 111] This up-

date was made on the base of strong RCT evidence concluding that SGLT2is

reduce the risk of chronic kidney disease (CKD) progression and CVD outcomes

which was found to be independent of glycaemic control. [107, 108, 109] Ac-

cording to the guidelines, all patients with chronic heart failure or established

atherosclerotic CVD, as well as patients with high risk of CVD, measured with

a Cardiovascular Risk Score (QRISK2) of 10% or higher/ elevated lifetime risk,

are eligible for treatment intensification with SGLT2i. [111, 124] This opens pre-

scription of SGLT2i to a large T2D patient population. Indication of this treatment

class is however avoided in cases where patients have increased risk of dia-

betic ketoacidosis (DKA) or CKD. CKD is indicated with the glomerular filtration

rate (eGFR) of the kidney, and different thresholds are applied for different drugs

within the SGLT2i class. In subsequent analyses outlined in this thesis a conser-

vative threshold of eGFR < 45mL/min/1.73m2 will be used as exclusion criteria to

identify patients with CKD. If there is no clear indication for SGLT2i, or SGLT2i

is contraindicated, other recommended second-line treatments are DPP4is, SUs

and TZDs. [111, 125]

Since the introduction of SGLT2i (first approved in 2013) and the more recent

guideline changes (update of NICE guidelines in 2022) SGLT2i prescriptions have

increased. [106, 126, 127, 128] A recent cross-sectional study by Bidulka et al.

[129] found that despite this increase, SGLT2i prescribing patterns are not yet

following the guidelines regarding their suitability for patients with established
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atherosclerotic CVD. They found that people with prevalent CVD had a lower

probability to be prescribed SGLT2i compared to patients without CVD. Barriers

for the uptake of SGLT2i prescriptions from clinicians perspective are safety con-

cerns and a lack of understanding of the benefit of SGLT2i, which could lead to

patients not receiving SGLT2i even though they would benefit. [130] This stresses

the importance of investigating the risk and benefit profile of SGLT2is thoroughly.

Application studies presented in this thesis will therefore focus on important safety

concerns and effectiveness analysis of this drug class.

2.4 Type 2 diabetes in older adults

Demographic changes worldwide mean that older people are the fastest growing

segment of society. The rapid increase in obesity has in turn lead to a substan-

tial increase in the rate of older people living with T2D. [112] In 2021, it was

estimated that the diabetes prevalence was the highest in people aged 75–79

years. [131, 132, 133] Although not fully elucidated, many etiologic reasons are

suspected to affect organ systems and tissues during the aging process, that will

increase diabetes risk. [113] Examples of possible age-related factors are re-

duced insulin activity and deterioration of insulin secretory capacity, changes in

body composition which favour the accumulation in adipose tissue, the increase

use of medications which increase hyperglycemic propensity, or hormonal dys-

regulation and inflammation. [113, 134, 135, 136]

There is no universally agreed age-definition for the term ‘elderly’ or older adults.

One distinction made is between ‘young-old’, 65-80 years old and ‘old-old’, 80

years of age or older. Even though this distinction is too simplistic to base clinical

decisions on. [113, 131] Often, the somewhat arbitrary criteria of the age of 60

or 65 years has been applied as a cut-off for older adults, referencing the age of

retirement in many developed countries. [137] Furthermore, this group of T2D pa-

tients have been described as heterogeneous as they present with a broad range

of characteristics regarding comorbidities, functional abilities, life expectancy, and

socioeconomic status. [138] How diabetes presents in older patients is also het-

erogeneous and a major factor for distinction is the age at which the disease de-
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veloped. Individuals diagnosed at middle-age show for example increased fasting

hepatic glucose production and insulin resistance, as well as an abnormal insulin

response to glucose load. Patients who were diagnosed with diabetes later in life

often have normal hepatic glucose production and older, lean patients are less

insulin resistant. [131, 139]

Treatment of T2D in older patients is complex due this heterogeneity and treat-

ment decisions need to include considerations about life expectancy, functional

status, age-related changes in physiology (e.g. Sarcopenia) and in pharmaco-

dynamics. Also, varying degrees of treatment adherence in this patient group

complicate T2D management, for example due to cognitive impairment, social

isolation, depression, or anxiety. [133, 140, 141] For this patient group it is

crucial to individualize treatment decisions and focus on the avoidance of hy-

poglycaemia as well as adverse effects. Simpler and safer treatment regimens

should be preferred to lower the burden of care and achieve better tolerance.

[113, 133, 142, 141]

Clinicians treating older T2D patients face a lack of guidelines for this specific

group as guidelines mostly rely on evidence from RCTs. But clinical trials in older

adults are sparse as individuals over the age of 65 are often excluded due to

comorbidities. Also, trials are not designed to take the diverse functional sta-

tus in this patient group into account. [113, 140, 143] Hence, majority of the

clinical trial data establishing risk profiles, glycaemic targets, and therapeutic in-

terventions for people with T2D are not applicable for large segments of the older

patient population. In light of the high heterogeneity of this patient group and the

lack of guidelines for individualized treatment decisions, there is a need for strong

evidence-based data to find ways for treating older individuals with T2D. [113] Ob-

servational studies including older patients can provide insights that are needed

to close this knowledge gap. Strengths of this study type have been explained in

Chapter 1 and the following section focuses on an explanation of how real-world

data can provide valuable evidence for T2D treatment guidelines.
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2.5 The place of real-world evidence in treatment

guidelines

Optimal prescribing and the choice of intensification treatment for T2D manage-

ment requires a full understanding of the agents risks and benefits. Evidence-

based treatment guidelines are an important tool for clinical practice that supports

informed decision making. Traditionally, these guidelines are based on evidence

about the efficacy and safety from RCTs. This evidence is especially important

for newer drug classes such as SGLT2i and DPP4i. [114, 144] But, as introduced

in Chapter 1, RCTs have drawbacks that limit their application to answer certain

issues clinicians face in their real-life practice and their generalisability to a wider

patient population. In Figure 2.1 a summary of important limitations of RCTs and

their consequences is given with a focus of related issues to diabetes research.

[145, 146, 147, 148, 149]

Figure 2.1: Relevant limitations and their implications of evidence of RCTs in

diabetes research.

Practical issues of RCTs are that they are costly and because of this, their dura-

tion is often severely time-limited. It is therefore not possible to study all clinically

relevant diabetes end-points which are often rare or end-stage outcomes and de-
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velop long-term, such as microvascular outcomes (e.g. retinopathy, nephropathy,

or neuropathy). [144, 145] Often, RCTs are also not suitable to address ques-

tions and issues clinicians encounter in their practice. In order to find optimal

choice for treatment intensification, clinicians are faced with multiple options of

active treatments they need to compare. Efficacy and safety trials on the other

hand are often designed on the base of placebo comparisons. [148] Addition-

ally, RCTs traditionally focus on hard end points such as physiological measures

and disease incidence, but for the treatment of T2D, guidelines emphasise the

importance of patient preferences and considerations regarding their quality of

life. [147] A major limitation of RCTs to guide treatment decisions is the lack of

applicability of trial results on real-life clinical practice. RCTs are conducted under

strict study-protocols and artificial circumstances regarding follow-up of partici-

pants and adherence incentives, which are implausible in real-life clinical practice.

[145, 147] Furthermore, they often apply strong exclusion restrictions regarding

factors such as age, comorbidities or T2D duration, and hence, select a homo-

geneous study population. This population does not reflect the heterogeneous

population of T2D patients as seen by clinicians in real-life. [145, 5, 150] For

example, a study on the representatives of T2D patient population in large trials

of glycaemic control found that trial participants where younger at age of diagno-

sis compared to the population of individuals with T2D in the UK. [151] Another

study found a lack of generalisability for the outcome of cardiovascular benefits of

SGLT2i as found in the EMPA-REG OUTCOME trial. [152] When studied in real-

world data, the results were only applicable for a small population of individuals

with T2D. [153] Lastly, sample sizes of RCTs are usually too low for analysis of

important subgroups due to underrepresentation, such as the T2D population of

older adults, for example above 65 or 70 years. [154] RCT evidence also focuses

mostly on average results, which are not always suitable to help clinicians to make

individualized treatment decisions. [145] Young et al. [155] performed a system-

atic review of meta-analysis studies, RCTs and observational analysis evaluating

clinical and biological features associated with treatment effect heterogeneity for

SGLT2i and GLP-1. The study concluded that limited evidence is available to re-

flect on treatment effect heterogeneity in patient subgroups, which is likely due to

methodological limitations of published studies.
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Due to these shortcomings, it is often not sufficient to make treatment decisions

in clinical practice based solely based on RCT evidence. An opportunity for the

formulation of treatment guidelines based on a wider spectrum of evidence is to

integrate real-world evidence (RWE). RWE is derived for example from longitu-

dinal patient-level data that is not necessarily collected for a specific research

purpose. Sources can be electronic healthcare records (EHR) collected by a

physician in healthcare setting, insurance claims databases, electronic devices/

software applications or registries. [144, 146] The level of evidence RWE pro-

vides depends on many aspects such as data quality, suitability of the data for

a specific research question, the rigorous application of the study design, and

the choice of appropriate methods for analysis. The latter aspect will invariably

refer to the use of a suitable causal inference method as explained in Chapter 1.

[144, 156] If all of these aspects are considered appropriately, RWE can reveal in-

sights in comparative effectiveness of treatments under real-world circumstances

regarding for example patient behaviour and healthcare practice and the man-

agement of a wide range of treatment setting.

With a larger sample size and less restrictive inclusion criteria study populations

of real-world data can be more representative, which leads to better generalis-

ability of RWE. Additionally, higher statistical power makes it possible to close

knowledge gaps about important subgroups of T2D patients and enables the de-

velopment of guidelines for individualized treatment of people with T2D. [144]

RWE is commonly used in comparative effectiveness and safety studies. Exam-

ples of such studies in T2D research are McGovern et al. [157] or Patorno et al.

[158] for the study of the safety profile of SGLT2i compared to DPP4i or GLP-1, as

relevant comparisons of possible treatment intensification options. Gregg et al.

[144] advocate to address the valid concerns of RWE by focusing on reproducibil-

ity and transparency and suggest recommendations for standardized reporting

of studies based on real-life data. These entail for example the publication of

study protocols before analysis, open discussion of methodological criticisms and

permitting replication of the research by making the study data available. [144]
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2.6 Current evidence on the effectiveness and safety

of Sodium-glucose Cotransporter-2 Inhibitors

SGLT2is belong to the novel class of medication for blood glucose management

and have been prescribed increasingly over the last years. [126, 127] Addition-

ally, recent changes in treatment guidelines have supported the prescription of

SGTL2i for a broad range of people with T2D. [111, 124] These changes were

based on evidence of large-scale clinical trials showing that SGLT2is promote

cardiorenal protection, reduction of blood pressure, and weight loss independent

of glycaemic control. [159, 160, 161] SGTL2is’ mode of action operates indepen-

dently of insulin by inhibiting the reabsorption of glucose in the kidney in case of

excess plasma glucose concentration. This leads to increased excretion of glu-

cose in the urine (glycosuria), a mechanism that is associated with weight loss, as

well as a reduction in arterial blood pressure due to osmotic diuresis. [162, 163]

Furthermore and due to their mode of action, SGLT2is benefit from a reduced

hypoglycaemic risk, which is an important advantage for the treatment of older

adults with T2D compared to other drug classes with insulin dependent mode of

actions. [133, 140] Agents included in the SGLT2i class available in many coun-

tries are Canagliflozin, Dapagliflozin, Empagliflozin, and Ertugliflozin. [163]

SGLT2is have well recognized risks that should be considered to optimize the risk-

benefit ratio of individualized treatment decisions. [164] Some of the AEs of main

concern, especially for the patient population of older adults, are genital infections

(GI) and AEs related to diuresis and volume depletion. They are more common

in older adults and can lead to confusion and other sequela. [165, 166, 167]

Optimal prescribing of SGLT2is in the older patient group requires a full under-

standing of their risks and benefits but only sparse data is available for patients

over 65 years. For example, the average age of two large-scale safety trials on

SGLT2i, the EMPA-REG OUTCOME trial and DECLARE-TIMI 58 was 63 (±9)

years and 63.9 (±6.8) years in the treatment groups respectively. Their results

might therefore not be applicable to the real-world population of older adults with

T2D. [154] Furthermore, trial studies suffer from small sample sizes for older pa-

tients and therefore the results might suffer from potential outlier effects. [165]
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Observational studies on this patient population are rare and mostly apply analy-

sis methods which do not account for unmeasured confounding. In the following,

evidence on the efficacy and effectiveness as well as the safety of SGLT2is for

the general patient population and older T2D patients is summarized.

2.6.1 Important treatment effects

Two main outcomes to study the efficacy and effectiveness of SGLT2i are the

reduction of blood glucose levels HbA1c, and weight. Besides blood glucose

control, achieving a normal weight in individuals with T2D is one of the most

important treatment objectives. Already modest weight loss between 5% and 10%

can reduce the risk of diabetes-associated complications and significant weight

loss can even potentially resolve the disease. [160, 168] Weight loss has also

been investigated as mediator to CVD risk reduction. [160, 169, 170]

Blood glucose control

Evidence of clinical trials for different agents of SGLT2i confirms HbA1c reduction

of 4.4− 12.1 mmol/mol or 0.4− 1.1%. Furthermore, it was found that the reduc-

tion of achieved HbA1c depends on baseline HbA1c, agent and dose. [171, 172,

173, 174] Placebo controlled trial analyses for older T2D patients showed effi-

cacy for SGLT2i in older patients. [175, 176] But another pooled analysis found

no difference in efficacy between older and younger patients. [165] More relevant

comparisons to guide treatment decisions are between active treatments, as this

reflects the necessary choices clinicians have to make in clinical practice. When

compared to DPP4i for example, it was found that SGLT2i lead to higher relative

effectiveness with a larger reduction in HbA1c. [177] Recent findings of a treat-

ment selection algorithm developed in observational data and validated with trial

data also suggest that relative effectiveness of SGLT2i (versus DPP4i) depends

on age. [178]

Weight loss

Large-scale clinical trials have shown that SGLT2i reduces body weight. [152,

179] The initial decrease of body weight on SGLT2i can be ascribed to the caloric
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loss based on glucose excretion and the loss of body water due to osmotic diure-

sis. [160] The degree of weight loss on SGTL2i has been found to vary across

the agents within this treatment class. A meta-analysis of 38 trials concluded for

placebo controlled trials average weight loss between 2.66 kg and 1.8 kg depend-

ing on the agent. When compared to active comparator treatments (MFN, SU and

DPP4i), SGLT2i also showed higher weight loss benefits. [161]

2.6.2 Adverse effects

An increase in urinary glucose excretion due to SGLT2i initiation also leads to a

concurrent increase in urinary output, attention must therefore be paid to the oc-

currence of osmotic symptoms such as dehydration and genital infections. [180]

Other potential AEs might be rare but life-threatening such as DKA. Lastly, falls

and amputations are considered in this summary. Not all trial evidence identi-

fied these AEs for SGLT2is, but further insights about possible connection with

SGLT2i initiation is crucial, as they can have severe consequences on the quality

of life of T2D patients, and might be more common in older adults. Recent evi-

dence suggest increased risk for short-term treatment discontinuation of SGLT2i

in older adults, which is a proxy for tolerability of the treatment. [178]

Osmotic diuresis-related adverse effects

Genital infections are well-recognized AEs of SGLT2is due to induced glyco-

suria. [164] They were found to be the most common AEs in clinical trials, but

were generally mild to moderate and did not lead to discontinuation of SGLT2i.

[152, 164, 179, 181, 182] These results have been confirmed by observational

studies including a broader range of T2D patients. Furthermore, female gender

and a history of genital infection previous to SGTL2i initiation have been found

to be risk factors for this adverse effect. [157, 183] The observational study by

Goldman et al. [154] on the safety profile of SGLT2i in T2D patients 75 years

or older utilized safety reports from the US Food and Drug Administration (FDA)

global database and reported sex-adjusted odds ratios. The study did not find

risk differences between the age groups regarding genital infections. But results

from this study are not given as true incidences because the number of patients

exposed to the drugs are not known. The incidence rate of adverse effects in the
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older patient population could therefore still be higher. [154]

Other osmotic diuresis-related AEs are volume depletion, micturition control and

urinary frequency. Volume depletion can lead to dehydration due to osmotic di-

uresis. Furthermore, it can lead to postural dizziness and orthostatic hypertension

which can be of special concern for older patients with kidney disease or those

on loop diuretics. [162, 164] Trial evidence confirmed that volume depletion are

more common on SGTL2i (canagliflozin and empagliflozin) [152, 179] and fur-

ther study results with placebo controlled trial data indicate an increase in events

for older patients [165, 184, 185]. The retrospective, pharmacovigilance study of

the FDA’s global database of safety reports showed that dehydration was signif-

icantly more common in patients initiating SGLT2i but no difference between the

age groups of younger and older patients (≥ 75 years) was detected. [154] Little

studies are available on urinary frequency, but patients may present with frequent

urination or overactive bladder syndrome following the initiation of SGLT2i. Es-

pecially, daytime frequency has been shown to be increased in patients without

previous overactive bladder syndrome. In patients with established overactive

bladder previous to SGLT2i initiation quality of life and overactive bladder was not

negatively affected according to a before–after comparative study. [180]

Diabetic ketoacidosis

DKA is a rare but serious complication of diabetes and can be life-threatening.

It is characterized by ketonaemia, acidaemia and hyperglycaemia, even though

raised blood glucose levels do not always need to be present. [186, 187] The

mechanism with which SGLT2i might cause DKA is not fully elucidated but might

be a consequence of SGLT2is noninsulin-dependent glucose clearance, hyper-

glucagonemia, and volume depletion. [164, 188] Older patients may have long-

duration diabetes and thereby a low residual insulin secretion, a condition that

is known to increase the risk of DKA. Furthermore, individuals from this patient

group may present more frequent acute complications such as infections which

are also recognised to increase the risk of DKA. [162] Reports of a possible asso-

ciation between SGLT2i and DKA has prompted the FDA [189] and the European

Medicines Agency (EMA) [190] to issue warnings for this treatment class. The
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suspected association between SGLT2i initiation and DKA has not been con-

firmed in large-scale clinical safety trials such as the EMPA-REG OUTCOME tri-

als [152] or CANVAS [179]. Real-life evidence for example from a large claims

database of commercially insured patients in the US showed significant associa-

tion in a relative risk study comparing SGLT2i with DPP4i and the application of

PSM. Adjusted hazard ratios (HR) for the treatment group with 180 days follow-up

was 2.2 [CI 95% 1.4, 3.6]. But average age in this study was low with 54.8 ±9.4

for individuals on SGLT2i and 54.4 ±10.8 for individuals on DPP4i. [191] Another

register based study comparing SGLT2i and GLP-1 also showed a significantly in-

creased relative risk for DKA, even though it remained a rare outcome. [192] The

observational study by Goldman et al. [154] focused on a comparison of older

and younger patients and did find an increased risk in both groups but no group

differences. Further studies on DKA risk of SGLT2is are needed to fully judge

the possibility of an association. SGLT2i should be avoided for patients with risk

factors for ketoacidosis and needs to be stopped in case of a DKA event. Fur-

thermore, SGLT2i should not be started again immediately after a DKA event as

reports indicate reoccurring DKA events after continuation of SGLT2i. [162, 166]

Further adverse effects

Falls are generally a concern for diabetic patients as they can lead to disabili-

ties and a lower quality of life. Additionally, older individuals with T2D are of in-

creased risk of falling for example due to greater impairments in posture and gait.

[193, 194] Events of falls, especially for older adults, may also be caused due to

dehydration and dizziness, when initiating SGLT2i. [154] Studies including falls

as AE outcome are rare, but a disproportionality analysis of SGLT2i compared

to other non-insulin antidiabetic drugs from FDA safety reports found slightly el-

evated sex-adjusted reporting odds ratio. Results of this study showed no differ-

ence between the younger and older patient group (≥ 75 years). [154]

Another potential AE of SGLT2i are amputations. Lower extremity amputations

(leg, foot, and toe) have been reported most often in connection with SGLT2i.

The risk of amputation for patient initiating SGLT2i is still unclear and study results

are heterogeneous for different agents in this treatment class. [162, 164, 195] In

69



the CANVAS trial a significant association of Canagliflozin with amputations was

found, with the highest absolute risk in patient with history of amputation and pe-

ripheral vascular disease. [179] An association was not found for Empagliflozin in

the EMPA-REG OUTCOME trial. [152] Based on reports of the CANVAS trial, the

FDA [196] issues a warning for Canagliflozin and the EMA [197] issues a warning

for all SGLT2i agents. Some observational studies also found increased risk of

amputations when comparing SGLT2i with DPP4i [198] and one study compar-

ing SGLT2i with GLP-1 [199] found that amputations were more apparent in the

group of patients older than 65 years and in patients with baseline CVD. In clinical

practice SGLT2i should be prescribed with caution to patients with risk factors of

amputations, for example older patients or patients with vascular disease, diabetic

foot ulcer, or previous amputations. [162]

2.7 Profile of the Clinical Practice Research

Datalink

The RWE dataset used for the applied research in this thesis comes from Clinical

Practice Research Datalink (CPRD), a large longitudinal patient level database of

anonymised EHR which have been collected in routine primary care practice by

general practitioners in the UK. Data has been collected since 1987 from patients

registered at general practices (GPs) on aspects relevant for health care research

such as diagnoses, symptoms, prescriptions, referrals, tests, demographics, and

behavioural factors. [200] This large high-quality research database is well suited

for effectiveness and safety studies of T2D treatments as it provides represen-

tative population data with comprehensive capture of risk factors and outcomes.

[201] CPRD includes 11.3 million patients from 674 GPs, 4.4 million of which are

currently alive. This means that around 6.9% of UK population are covered by

CPRD. The patient population has been found to be representative of the UK

general population regarding age, sex and ethnicity. [200]

Another benefit besides its size and representativeness of CPRD is the enrich-

ment of the database through data linkages from secondary care, disease specific

cohorts and mortality records. Data linkage is available for 75% of English GPs,
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which make up 58% of GPs participating in CPRD. Linkage to other data sources

is done by the Health and Social Care Information Center as third party. Linked in-

formation includes hospital data from the Hospital Episode Statistics (HES), mor-

tality data including causes of death from the Office for National Statistics (ONS),

deprivation data such as the Index of Multiple Deprivation and Townsend score,

and disease registries, for example the National Cancer Intelligence Network and

the Myocardial Ischaemia National Audit project. [200, 202] This enrichment of

the primary care EHR will provide a more all-encompassing picture of individual

patient care pathways. Furthermore, CPRD data is subjected to over 900 quality

checks which cover integrity, structure, and format of the data. [202]

Aspects that are important to consider when using CPRD data for health research

is missing data in the primary care records which are manually recorded by gen-

eral practitioners. Furthermore, some conditions which can be treated with over-

the-counter medication or home remedies will not be recorded in CPRD, but might

be important in order to correctly identify outcomes of interests. Human errors in

the process of data entry and misclassifications are also possible. Lastly, GP IT

systems might vary and coding between GPs and over time might therefore not be

the same. [202] Furthermore, as prescriptions in CPRD data are not randomized,

it is essential to employ suitable causal inference methods as outlined in Chapter

1 to minimize the risk of confounding bias in the treatment effect estimation.

Two CPRD datasets, CPRD Gold (download July 2019) and CPRD Aurum (down-

load November 2020) will be used in this thesis to study the effectiveness and

safety profile of SGLT2i. The CPRD Aurum dataset also includes data linkages

to the described data sources. The T2D cohorts were built using a published

protocol. [203] Individuals with T2D were identified using the presence of a di-

agnostic code for diabetes and the prescription of one or more glucose lowering

medications. T1D and other types of diabetes where excluded. Individuals with

possible T1D were identified if their age was less than 35 at diagnosis, their only

treatment was insulin or insulin was initiated 1 year after diagnosis. Other dia-

betes forms such as gestational diabetes and monogenic diabetes were identi-

fied with indicative diagnostic codes. For this identification process, the date of

diagnosis was defined by the earliest date of a diabetes diagnostic code, indica-
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tion of glucose lowering medication, or glycated hemoglobin (HbA1c) ≥ 6.5% (48

mmol/mol). Individuals were also excluded if their first diabetes indicator date fell

within 3 months of practice registration, as their date of diagnosis was uncertain.

[157, 203] Diagnosis of comorbidities, adverse effects and treatment prescriptions

were identified using diagnosis codes. Lists for these codes were developed by

a clinician with expertise in clinical code list development for research. The uti-

lized code lists are published at: https://github.com/Exeter-Diabetes/CPRD-

Codelists. Further description of the datasets will be given in more detail in the

respective chapters.

2.8 Conclusion

The management of T2D is complex and requires clinicians to take many factors

about individual circumstances and preference of patients into account. Treat-

ment guidelines are based mainly on RCT evidence about the efficacy and safety

profile of treatment choices. SGLT2i is an important treatment class due to its

weight loss benefit and cardiorenal protective effects. Prescribing of SGLT2i has

increased in recent years and after recent treatment guideline changes a large

proportion of T2D patients have become eligible for this treatment class. More in-

formation about the safety profile for SGLT2i are needed especially for the patient

population of older adults, as possible AEs associated with SGLT2i could have

severe consequences for this patient group. RWE needs to be integrated into

the decision making process of clinicians, as RCTs have limitations regarding for

example the under-representation of patient subgroups such as older adults, and

are not able to answer all questions clinicians face in real-life practice in particular

regarding the risk of less common AEs. CPRD provides a rich data source to gain

RWE on the effectiveness and safety for comparisons of T2D oral agents relevant

in clinical practice. But in order to derive high quality RWE from this observational

data, adequate causal inference methods need to be employed.

72



Chapter 3

Triangulating Instrumental Variable,

confounder adjustment and

difference-in-difference methods

for comparative effectiveness

research in observational data

Laura M. Güdemann, John M. Dennis, Andrew P. McGovern, Lauren R.

Rodgers, Beverley M. Shields, William Henley & Jack Bowden

on behalf of the MASTERMIND consortium

Planned submission in: BMC Medical Research Methodology,

for the special issue on causal inference and observational data

Pre-published at: https://arxiv.org/abs/2202.09164

73



Author contribution

LMG and JB conceived and developed the methodological framework, with the

constant supervisory support of BMS, LRR and JMD. APM provided invaluable

clinical insight for the applied analyses in Section 3.6 and WH provided useful

insight on the assumptions required by DiD regression. LMG conducted the anal-

ysis and drafted the original version of the paper which all authors helped to edit.

All authors read and approved the final version of the manuscript.

74



3.1 Abstract

Observational studies can play a useful role in assessing the comparative effec-

tiveness of competing treatments. In a clinical trial the randomization of partici-

pants to treatment and control groups generally results in well-balanced groups

with respect to possible confounders, which makes the analysis straightforward.

However, when analysing observational data, the potential for unmeasured con-

founding makes comparing treatment effects much more challenging. Causal

inference methods such as Instrumental Variable and prior event rate ratio ap-

proaches make it possible to circumvent the need to adjust for confounding fac-

tors that have not been measured in the data or measured with error. Direct con-

founder adjustment via multivariable regression and propensity score matching

also have considerable utility. Each method relies on a different set of assump-

tions and leverages different aspects of the data.

In this paper, we describe the assumptions of each method and assess the impact

of violating these assumptions in a simulation study. We propose the prior out-

come augmented Instrumental Variable method that leverages data from before

and after treatment initiation, and is robust to the violation of key assumptions.

Finally, we propose the use of a heterogeneity statistic to decide if two or more

estimates are statistically similar, taking into account their correlation. We illus-

trate our causal framework to assess the risk of genital infection in patients pre-

scribed Sodium-glucose Cotransporter-2 Inhibitors versus Dipeptidyl peptidase-4

Inhibitors as second-line treatment for type 2 diabets using observational data

from the Clinical Practice Research Datalink.

Keywords: causal inference, unmeasured confounding, triangulation, Instrumen-

tal Variable method, prior event rate ratio approach

75



3.2 Introduction

The gold standard approach for evaluating the efficacy of treatments is a random-

ized controlled trial (RCT). Due to strict specifications of RCTs with regard to blind-

ing and randomization of treatment assignment, causal conclusions about the

treatment’s effect on patient outcomes can be drawn without the need to adjust

for prognostic factors, since they should be well-balanced across trial arms. This

remains true even if the trial is affected by non-adherence, and non-adherence is

predicted by the aforementioned prognostic variables. [6]

Observational data, for example from electronic healthcare records, provide vital

means for assessing the comparative effectiveness of commonly prescribed med-

ications with similar indications. Since these data are collected as part of routine

care, treatment assignment is not randomized. This opens up the possibility that

treatment choice (or the extent of treatment received) and patient outcomes may

be simultaneously predicted by common variables, which could bias the analysis

because of a lack of balance across treatment groups, in contrast to the adher-

ence affected RCT setting previously discussed. This phenomenon is referred to

as ‘confounding’ and we will refer to such common factors as confounders from

now on. [6, 5, 204]

Standard causal inference methods such as stratification, multivariable regres-

sion or propensity score matching make it possible to analyse observational data

and draw causal conclusions as long as all confounders can be accurately mea-

sured and appropriately adjusted for. [6] For example, Dawwas et al. [205] used

propensity score matched data for a retrospective cohort study for a compar-

ative risk analysis of cardiovascular outcomes in people with type 2 diabetes

(T2D) initiating Dipeptidyl peptidase-4 inhibitors (DPP4i) versus Sodium-glucose

Cotransporter-2 Inhibitors (SGLT2i) therapy. Another example using standard

causal inference methods is McGovern et al. [157] who used multivariable Cox

regression and propensity scores to define important clinical groups of people

with T2D initiating either DPP4i or SGLT2i, with high risk of genital infection.

Failure to measure and appropriately adjust for all confounders can bias the es-
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timation of the true causal effect of treatment on the outcome of interest. Two

causal inference approaches which circumvent the problem of unmeasured con-

founding are the Instrumental Variable (IV) and the prior event rate ratio (PERR)

method. The IV approach addresses confounding by substituting each patients’

observed treatment with a predicted treatment. This prediction is made using a

variable (the instrument) that is assumed to be independent of any confounders

and only affects the outcome through the treatment. Randomization to a treat-

ment group within a RCT is perhaps the best example of an IV, and can therefore

be used to adjust for non-adherence. [6, 55, 206] Because of this, IV analyses

using observational data are generally equated with the creation of a pseudo-

randomized controlled trial. Examples of IVs for observational data include geo-

graphic information such as the distance to the nearest health facility [207], germ

line genetic information [208] or healthcare providers’ preference for a particular

treatment [92]. In this paper we will subsequently construct an IV of this latter

type.

The prior event rate ratio method is an alternative quasi-experimental approach

which leverages data at two time points. Specifically, the outcome must be mea-

sured in the ‘prior’ period before initiation of treatment and then in the ‘study’ pe-

riod after treatment has commenced. [50] The treatment effect is first estimated

in the prior period by (somewhat paradoxically) regressing the prior outcome on

the study period treatment indicator. This is assumed to capture the degree of

unmeasured confounding in the treatment effect subsequently estimated in the

study period, which can then be subtracted out to de-bias the analysis. The ap-

proach relies on the assumption of time invariant unmeasured confounding across

both time periods. For related reasons it is necessary that a patient’s outcome

in the prior period does not influence the allocation of the study period treatment.

Furthermore, the prior and study event of interest should be of the same nature

and non-terminal, such as death. [49, 50]. The PERR method is generally ap-

plied to time-to-event data, but is directly analogous to the method of difference-

in-difference (DiD) regression in the case of continuous or binary outcomes.

Figure 3.1 shows a causal diagram illustrating the possible relationship between:

the outcome in the prior and study periods (Y0 and Y1 respectively); the treatment
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indicator (X); an IV (Z); measured confounders of treatment and outcome in both

periods (W0 and W1 respectively); and unmeasured confounders (U). The mea-

sured and unmeasured confounder are summarized in matrices of sizes N× G

and N×M respectively. In this diagram, the assumptions related to variable rela-

tionships of both the DiD (analogous to PERR) and IV approaches are satisfied,

but the ‘no unmeasured confounder’ assumption underlying a direct adjustment

strategy is not.

Figure 3.1: Causal diagram showing the relationship between Y0, Y1, X, U, W0

and W1 in the case where both the IV and DiD assumptions are satisfied. The

estimates and assumptions are explained in detail in Section 3.3.

In this paper we consider the joint application of direct confounder adjustment, IV

and DiD approaches for estimating the causal effect of treatment using observa-

tional data. In Section 3.3 we give a more detailed description of each method

and introduce a heterogeneity statistic to decide if two or more estimators are suf-

ficiently similar. In Section 3.4 we assess the performance of these approaches

in a detailed simulation study. In Section 3.5 we consider an extension of the

standard IV approach using pre- and post-treatment outcome data that can be

used in scenarios where the assumptions of both the standard IV and DiD ap-

proaches are violated. The method utilizes an interaction term of the instrument

(Z) and the outcome variable measured before treatment initiation (Y0), as new

Instrumental Variable. Hence, the method is able under to allow for an influence

of Y0 on X and Z on Y1. We call this extension the prior outcome augmented

Instrumental Variable method (POA-IV). In Section 3.6 we apply our methods to

routinely collected healthcare records to assess the causal effect of SGLT2i com-

pared to DPP4i as second-line therapy on the risk of genital infections, exploiting

variation in healthcare provider prescribing habits to construct an IV. We conclude
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in Section 3.7 with a discussion and point to further research. Source code for

this research for all simulations and the application case study in this paper is

available at https://github.com/GuedemannLaura/POA-IV.

3.3 Methods

We are interested in estimating the comparative effectiveness of two treatments

(X = 1 compared to X = 0) on outcome Y1 using observational data. The target

of this analysis is a hypothetical estimand:

β = E[Y1|X = 1]− E[Y1|X = 0] (3.1)

That is, the difference in expected outcomes if all patients could receive treatment

level 1 compared to treatment level 0. For simplicity, we will assume in this section

that the outcome of interest is continuous, with the extension to binary outcomes

discussed in Section 3.3.4.

3.3.1 The ‘as Treated’ and ‘Corrected as Treated’ estimate

In a RCT with complete adherence to the assigned treatment, hypothetical esti-

mand β could be consistently estimated using the ‘as Treated’ estimate, by com-

paring the average outcome across both treatment groups. Using the potential

outcome notation, let YXi=x
1 i denote the outcome of patient i if assigned treatment

level Xi = x and Tx, Ct referring to treatment group and control group respectively.

The as Treated estimate can be written as:

β̂aT = ȲX=1
1 i∈Tx − ȲX=0

1 i∈Ct,

with Ȳ denoting the sample average. Complete adherence could be illustrated

in Figure 3.1 by letting Z represent the randomized treatment assignment and

removing all arrows into X from W0, W1 and U, so that only the Z→ X arrow

remains. Difficulties emerge when calculating the as Treated estimate with obser-

vational data, because treatment assignment is not randomized or controlled by

the researcher. It is then possible that factors exist which simultaneously affect

(or confound) the treatment assignment and the outcome. This would lead to an

imbalance across the treatment groups with respect to W0, W1 and U and the es-

timate β̂aT will consequently be biased due to confounding.
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If all confounding factors are known and can be appropriately measured and ad-

justed for - which we call the ‘no unmeasured confounder’ (NUC) assumption - a

‘Corrected as Treated’ (CaT) estimate that is additionally adjusted for these fac-

tors can consistently estimate β. Returning to Figure 3.1, if the NUC assumption

held so that U was absent from the diagram it would be sufficient to adjust for W1

since W0 only affects Y1 through W1 and the CaT estimate would be

β̂CaT = Ê[Y1|X = 1,W1]− Ê[Y1|X = 0,W1]. (3.2)

This could be estimated from fitting the following multivariable regression of Y1 on

X and W1 as

E[Y1|X,W1] = βY1,0 + βCaTX + βY1,W1W1,

where βY1,W1 is a G× 1 column vector and W1 a matrix of size N× G.

3.3.2 The Instrumental Variable estimate

In many settings the NUC assumption may be thought unreasonably strong. The

Instrumental Variable (IV) method offers a means for circumventing the problem

of unmeasured confounding to consistently estimate the hypothetical estimand. It

works via the construction of a pseudo-randomized controlled trial using a vari-

able Z which needs to fulfil the following three assumptions in order to be a valid

IV:

• IV1: Z is associated, or predicts X;

• IV2: Z is independent of Y1 given W0, W1, X and U;

• IV3: Z and Y1 do not share a common cause.

IV1 is often referred to as the relevance assumption and the Z− X relationship

can be empirically tested from a regression of X on Z. The assumption would be

invalidated if this association is weak, with an F-statistic of at least 10 often used

as a threshold for good strength of an IV. [77] Assumption IV2 is also referred

to as the exclusion restriction and requires Z to only influence Y1 through X but

not directly. IV3, the exchangeability assumption, requires that Z and Y1 are not

80



themselves confounded. [68, 70]

As explained in Chapter 1.8.4, the IV estimate for β can be estimated as the ratio

of the Y1 − Z association and the X− Z association for a binary IV and continuous

outcome with no adjustments for covariates made:

β̂IV =
Ê[Y1|Z = 1]− Ê[Y1|Z = 0]

Ê[X|Z = 1]− Ê[X|Z = 0]
. (3.3)

In order to enable consistent estimation of hypothetical estimand (3.1) using (3.3),

we additionally make the homogeneity assumption that the average treatment

effect is constant across both levels of the IV Z, at each level of the treatment

[206]:

E[Yi(X = 1)− Yi(X = 0)|Z = 1,X = x] = E[Y(X = 1)− Y(X = 0)|Z = 0,X = x].

A more general method for IV estimation with a continuous outcome that allows

for multiple IVs and covariate adjustment is Two-Stage Least Squares (TSLS)

[68]. To implement TSLS with a single IV Z and the measured confounder W1,

we first fit a logistic regression model for X given Z and W1:

Logit(Pr[X = 1|Z,W1]) = βX,0 + βX,ZZ + βX,W1W1 (3.4)

where βX,W1 is a G× 1 column vector and W1 a matrix of size N× G. The esti-

mated coefficients of this model are then used to predict X given Z and W1 as X̂,

which is then itself regressed on Y1 and W1 in a second-stage model:

E(Y1|X̂,W1) = βY1,0 + βIVX̂ + βY1,W1W1 (3.5)

The coefficient of X̂ is then taken as the TSLS estimate [70]. Using a valid IV, the

TSLS is consistent under the homogeneity assumption and additionally that the

covariates are correctly modelled in (3.5) [71, 72].

3.3.3 Difference-in-difference estimate

An alternative approach to adjust for unmeasured confounding is the difference-

in-difference (DiD) estimate. It can be applied to continuous and binary outcomes

and is conceptually equivalent to the prior event rate ratio (PERR) method typi-

cally applied to time-to-event outcomes [55]. Borrowing the terminology of the
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PERR approach, DiD estimation leverages data from two periods: the prior pe-

riod before drug initiation and the study period after drug initiation. For the estima-

tion of the treatment effect in the study period, the treatment effect measured for

the prior period is used to capture the degree of unmeasured confounding. The

method presumes that the treatment effect measured in the prior period reflects

the composite effect of measured and unmeasured confounders on the outcome,

if none of the participants receive any of the study treatments in the prior pe-

riod. [48, 49, 50, 209] Once estimated, it can then be subtracted from the X− Y1

association (or the as Treated estimate). This approach relies on the following

assumptions:

• DiD1: Y0 does not influence the treatment decision X directly

• DiD2: the effect of U on the outcome is constant across time conditional on

W0 and W1. [50, 49]

Previous studies show that the DiD method is biased in case of the violation of

assumption DiD1 [54, 210] and DiD2 [52]. A formal proof that these assumptions

are sufficient for identification of hypothetical estimand (3.1) is given in Appendix

3.2. In Figure 3.1 assumption DiD1 is satisfied and throughout all presented stud-

ies we assume that DiD2 is satisfied.

For continuous outcomes the DiD estimate can be calculated by subtracting the

results of two linear regressions from the prior and study period:

β̂DiD = Ê[Y1|X = 1,W1]− Ê[Y1|X = 0,W1]

−(Ê[Y0|X = 1,W0]− Ê[Y0|X = 0,W0]).
(3.6)

The DiD estimate can also be calculated for a sample of N individuals via the

following single regression model:

E[Y∗|X∗,W∗,P∗] = βY,0 + βY∗,P∗P∗ + βY∗,X∗X∗ + βDiDP∗ · X∗+

βY∗,W∗W∗ + βY∗,W∗P∗W∗ · P∗.
(3.7)

Here, X∗ ∈ {0, 1} and P∗ ∈ {0, 1} are 2N-length treatment and period indicator

variables and the variables Y∗ = (Y0,Y1)T, W∗ = (W0,W1) summarize the infor-

mation of outcomes and covariates for both periods in a vector of the same size.
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The regression coefficients of the P∗ · X∗ interaction term is taken as the DiD esti-

mate. [57] Fitting this model facilitates the easy extraction of a standard error for

the DiD estimate directly from the hessian matrix.

The DiD method utilizes only two outcome measurements before and after treat-

ment initiation and can be viewed as a simple special case of an interrupted time

series analysis, which incorporates data from multiple time points within a for-

mal longitudinal model [211, 212, 213, 214]. Due to the limited availability of

repeated outcome and confounder measurements to two periods (before and af-

ter treatment initiation) in our data and our focus on triangulating findings across

methods, we restrict our attention to the DiD approach in this paper.

3.3.4 Extension to binary outcomes

In case of a binary outcome the comparative treatment effect can be estimated

using the CaT, IV, CF and DiD models using logit or probit models, instead of

linear regressions for continuous outcomes. Whilst TSLS is the standard tool

for IV analysis with continuous outcomes, the control function (CF) method is

typically used for binary outcomes. This method can accommodate linear and

non-linear associations between the IV and treatment and between the treatment

and the outcome [68, 75]. For the first stage model and continuous outcomes the

IV is regressed on treatment and all measured confounders, as shown in model

(3.4). From this regression the residual ∆̂ = X− X̂ is calculated and used in the

second stage model with

Logit(Pr[Y1 = 1|X,Z,W1, ∆̂] = βY1,0 + βY1,W1W1 + βCFX

+ (βY1,∆̂
+ βY1,Z∆̂Z)∆̂.

(3.8)

We will use both the standard IV and CF approaches for IV analyses in this chap-

ter.

When employing logistic regression models for the CaT, IV, CF and DiD models,

for our purposes we prefer to extract the treatment estimate as a risk difference,

or an Average Marginal Effect (AME) [206]. For example, in the case of the CF

estimate, after fitting model (3.8) to obtain estimates for its constituent parame-

ters, the AME is calculated as the difference in average predicted probabilities
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when X is fixed at 1 and 0 respectively:

β̂CF =
1

N

N∑
i=1

{
P̂r[Y1 = 1|X = 1,Z,W1, ∆̂]− P̂r[Y1 = 1|X = 0,Z,W1, ∆̂]

}
In R, this can easily be done using the margins() package [215]. Choosing

a scale that is collapsible makes it more straightforward to compare estimates

across different methods which use different covariate adjustment sets. Non-

collapsible measures of associations differ in magnitude over levels of measured

confounders when adjusted versus not adjusted for measured confounders. [6]

Even if their respective assumptions are all satisfied, using a non-collapsible scale

such as an odds ratio could mean that the underlying causal estimands of two

methods are in fact distinct. [216]

3.3.5 Similarity statistic

In order to assess the similarity of the estimates, after taking care to estimate

them on the same scale and whilst accounting for their correlation, we use a

generalized heterogeneity statistic [217] of Cochran’s Q [218] of the form

Qe = (β̂e − β̂IVW,e)Σ̂−1
e (β̂e − β̂IVW,e)

T (3.9)

where

• e is the set of estimates, for example {CaT, IV,DiD};

• β̂e is a vector of all estimates in e with s-th entry β̂es;

• β̂IVW,e is the inverse variance weighted average of all estimates in e;

• Σ̂e is the covariance matrix for β̂e, approximated by a non-parametric boot-

strap;

• β̂IVW,e is calculated using wes the inverse variance of the corresponding esti-

mate and

β̂e =

∑
s∈e wesβ̂es∑

s∈e wes
.

Under the assumption that all estimates in e are targeting the same underlying

quantity, Qe is asymptotically χ2
ne−1 distributed, ne indicating the number of esti-

mates in the set e. This assumption is rejected at level α if Qe > χ2
ne−1(1− α)
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and the estimates are assumed not to be similar. Equation (3.9) can therefore

be used to assess the extent of agreement across estimators and, by extension,

the validity of the assumptions that they rest on. This approach can be seen as

a generalisation of the causal triangulation framework for uncorrelated estimates

described in Bowden et. al. [11]. We showcase an application of the Qe in Section

3.4.3.

3.4 Simulation Study

In this section we employ a Monte-Carlo simulation to study the performance of

the CaT, IV (TSLS and CF) and DiD estimates in scenarios where their specific

assumptions are variously satisfied and violated. The simulation was conducted

in R Studio (version 4.1.2) and the set-up is motivated to a degree by the applied

analysis in Section 3.6.

3.4.1 Simulation set up

Across 1000 independent simulations, data is generated for N = 5000 patients

grouped into J = 50 clusters, with each cluster representing a healthcare provider

(e.g. a general practitioner). The full data generating models are summarized in

Appendix 3.1 but the main features are now described. The treatment group indi-

cator X and the outcome variables, Y0 and Y1 are simulated as binary variables, in

each case representing the presence or absence of a binary adverse event. The

true treatment effect, quantified on the risk difference scale, β = 0.1. Therefore,

the average causal effect of treatment 1 versus 0 is a 10% increase in adverse

event risk. Further information on the chosen parameter values can be found in

the additional provided material at https://github.com/GuedemannLaura/POA-IV.

Treatment and outcome variables are allowed to depend in principle on: mea-

sured confounders, W0 and W1; one unmeasured confounder U (normally dis-

tributed); and the IV Z (simulated as a binary variable). Specifically, Z is con-

stant at the healthcare provider level, and therefore conveys information about

providers’ preference to prescribe one treatment over the other. Here it is as-

sumed that provider preference is known and no proxy variable construction is
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needed.

Figure 3.2 summarizes the 8 scenarios implemented in the simulation. In sce-

nario 1, the NUC, IV and DiD assumptions are all satisfied. In scenarios 2-4, the

NUC assumption is satisfied, but certain IV and DiD assumptions are violated.

Specifically, in Scenario 2, the DiD1 assumption which requires X to be indepen-

dent of Y0 is violated. This could be, for example, because the occurrence of an

adverse event in the prior period influences the providers’ treatment decision in

the study period. In scenario 3, IV2 (exclusion restriction) is violated. This could

for example represent the case where providers’ preference for treatment is as-

sociated with their tendency to record adverse events. Previous knowledge about

adverse events for a specific treatment could easily give rise to this effect. Both

the IV2 and the DiD1 assumptions are violated simultaneously in scenario 4. In

scenarios 5 to 8 unmeasured confounding is present (NUC violated) although it

is constant over the two time periods. In addition to the unmeasured confound-

ing, the DiD1 and IV2 assumptions are violated in scenarios 6 and 7 respectively.

In Scenario 8 the NUC, IV2 and DiD1 assumptions are all violated. The eight

scenarios are illustrated using causal diagrams in Figure 3.2. The CaT, IV, CF

and DiD estimates were calculated by fitting the models listed in Table 3.1 using

logistic regression in tandem with the margins() package [215], as described in

the previous section. As IV2 is violated in scenarios 3, 4, 7 and 8, Z becomes a

measured confounder of Y1. Is it therefore included in the CaT and DiD model for

these scenarios.
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Estimate Fit

CaT β̂CaT Y1 ∼ X + W1

IV β̂IV First stage model: X ∼ W1 + Z

Second stage model: Y1 ∼ X̂ + W1

CF β̂CF First stage model: X ∼ W1 + Z

Second stage model: Y1 ∼ X + W1 + ∆̂ + ∆̂ · Z

DiD β̂DiD Y∗ ∼ P∗ + X∗ +∗ P · X∗ + W∗ + W∗ · P∗

Table 3.1: Summary of the models for CaT, IV, CF and DiD fitted in the simula-

tion. For scenarios 3, 4, 7, 8 Z is included in the DiD and CaT model as measured

confounder.
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3.4.2 Simulation results

Simulation results are summarized for all 8 scenarios in Table 3.2. Specifically,

we use the 1000 CaT, IV, CF and DiD estimates to calculate the: bias, and mean

squared error (MSE); the mean empirical standard error (SE) arising directly from

the model fits; coverage rate of 95% confidence intervals (CI) and the type 1 error

(T1E) rate when rejecting the null hypothesis of no causal effect at the 5% sig-

nificance level. In order to assess the type 1 error simulation calculations were

executed with β = 0. The most efficient and unbiased method for each scenario

is highlighted in Table 3.2 in bold. Figure 3.3 shows the distribution of the CaT,

IV, CF and DiD estimates over all simulation runs. Additional simulation results

including the Monte Carlo standard error estimates of the performance measures

as described in Morris et al. [219], are given in Appendix 3.3.

For scenario 1, we confirm that the CaT, IV, CF and DiD estimates are all un-

biased for the hypothetical estimand β, and the CaT estimate is most efficient.

The coverage and T1E rates for all estimates are close to their nominal levels. In

scenario 2, the DiD estimate is systematically biased and consequently has poor

coverage and T1E. Since a non-zero Y0 − X relationship does not affect the CaT,

IV or CF approaches, they estimate the treatment effect without bias, with the

CaT being the most efficient. In scenario 3, which was intended to showcase the

impact of IV2 assumption violation only, the IV and CF estimates are biased and

their coverage/T1E rates are also adversely affected. The diagram for scenario

3 in Figure 3.2 reveals that due to the direct effect of Z on Y1, Z is an additional

confounder, which must be included in the regression models for the CaT and

DiD estimates. The results for the CaT and DiD estimates therefore include Z as

measured confounder. Again, the CaT estimate is the most efficient in this sce-

nario. In scenario 4 both the IV and DiD assumptions are violated and Z becomes

a measured confounder for Y1 again. Results of the CaT and DiD estimates ad-

ditionally adjusted for Z as a confounder show that only CaT remains unbiased in

this scenario.

For scenario 5 to 8, unmeasured confounding was implemented. Consequently,

the CaT estimate is biased and displays lower coverage and higher T1E com-
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pared to the IV, CF and DiD estimates, as expected. Comparing the latter two, the

DiD estimate is the most efficient unbiased effect measure in scenario 5. When

the DiD1 assumption is also violated in scenario 6, its estimate is again biased

and shows very low coverage and high T1E rates. Only the IV and CF estimates

remain unbiased. Similar to scenario 4, in scenario 7 the DiD estimate will be

only biased if Z is not included in the model. The CaT estimate on the other hand

remains biased due to the unmeasured confounding. In scenario 8, the identi-

fying assumptions of all three methods are violated. Consequently, none of the

methods are able to estimate the treatment effect without bias. This scenario may

very well represent the reality of a given analysis setting. For this reason in Sec-

tion 3.5 we discuss an extension of the standard Instrumental Variable method

that can give consistent estimates for the causal effect under a different set of

assumptions.
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Figure 3.3: Distribution of estimation results for the CaT, IV, CF and DiD method

for all simulation scenarios.
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CaT IV CF DiD

Scenario 1

Bias 0.313 -0.0117 0.0616 0.251

SE 0.0685 0.121 0.121 0.0988

MSE 0.0478 0.146 0.146 0.0981

Coverage 94.1 95.2 95 93.4

T1E 6 5.7 5.5 5

Scenario 2

Bias 0.411 -0.0345 0.0951 -20.2

SE 0.0697 0.125 0.125 0.0956

MSE 0.0502 0.156 0.157 4.17

Coverage 95 95.2 95.2 0

T1E 5.3 4.8 4.8 100

Scenario 3

Bias 0.134 12.8 12.9 -0.002

SE 0.0687 0.121 0.121 0.0958

MSE 0.0473 1.78 1.8 0.0916

Coverage 94.2 8.1 8 94.3

T1E 4.6 94.9 94.8 6.3

Scenario 4

Bias 0.261 12.6 12.7 -21.6

SE 0.0685 0.135 0.135 0.102

MSE 0.0475 1.77 1.8 4.78

Coverage 96.4 13.9 12.9 0

T1E 4.7 88.3 88.4 100

Scenario 5

Bias 3.72 -0.169 0.111 0.436

SE 0.0625 0.134 0.133 0.0868

MSE 0.177 0.178 0.177 0.0771

Coverage 53.4 95.2 94.7 95

T1E 45.4 5.9 5.9 4.8

Scenario 6

Bias 3.77 -0.16 0.184 -18.2

SE 0.0649 0.135 0.135 0.0935

MSE 0.184 0.182 0.182 3.39

Coverage 55.4 96.4 96 0

T1E 38.5 5.6 5.6 100
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CaT IV CF DiD

Scenario 7

Bias 3.8 15.9 16.2 0.205

SE 0.0631 0.14 0.14 0.0894

MSE 0.184 2.72 2.82 0.0803

Coverage 55.5 6.2 5.2 94.6

T1E 45.3 96.5 96.8 5.1

Scenario 8

Bias 3.6 15.5 15.9 -19.5

SE 0.0682 0.141 0.141 0.0958

MSE 0.176 2.61 2.72 3.9

Coverage 60.4 7.4 6.5 0

T1E 39.4 94.8 95.1 100

Table 3.2: Bias, standard errors (SE) and mean squared error (MSE) (all × 100);

coverage and type 1 error (T1E) rate (both expressed as a percentage based on

a 95% confidence interval and 5% significance threshold) for the estimates CaT,

IV, CF and DiD and for all scenarios.

3.4.3 Similarity statistic performance

As proof of concept for the Qe statistic explained in Section 3.3, we repeat simu-

lation scenario 1, 2, 3 and 5 with 500 simulation runs. In each simulation run, Qe

is calculated using 500 non-parametric bootstraps. Table 3.3 shows the rejection

rates (in %) when testing if the CaT, CF and DiD estimates are similar at the 5%

level using all three pairwise comparisons.
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e H0 rejected (%) 95% CI

Scenario 1

CaT, CF 7.4 5.11; 9.7

CaT, DiD 6.4 4.25; 8.55

CF, DiD 6.4 4.25; 8.55

Scenario 2

CaT, CF 6.0 3.92; 8.08

CaT, DiD 100.0 100; 100

CF, DiD 100.0 100; 100

Scenario 3

CaT, CF 96.2 94.52; 97.88

CaT, DiD 4.4 2.6; 6.2

CF, DiD 87.8 84.93; 90.67

Scenario 5

CaT, CF 18.2 14.82; 21.58

CaT, DiD 40.8 36.49; 45.11

CF, DiD 4.0 2.28; 5.72

Table 3.3: Rejection rates and 95% confidence intervals (in %). Results are

shown for all pairwise combinations of the estimates.

In Scenario 1 all three estimators target the same true estimand β. Although we

see a small degree of type 1 error inflation, rejection rates for each test are reas-

suringly low. In scenario 2 the data is generated without unmeasured confound-

ing, but the DiD1 assumption is violated. Therefore the DiD estimator targets a

distinct estimand from the CaT or CF approaches, which themselves target the

same estimand. This is indeed reflected by the test results, where we observe

100% power to detect a difference between the DiD estimate and either the CaT

or CF estimates and a low power of 6% to distinguish the CaT and CF estimates

themselves. In Scenario 3 (where only the CaT and DiD estimates are truly sim-

ilar) and Scenario 5 (where only CF and DiD estimates are truly similar) the Qe

statistic exhibits comparable performance. In scenario 5 we can only reliably de-

tect that the DiD and CF estimates are similar but we do not have enough power

to detect the differences with the CaT estimate. This might be because the bias

due the violation of the NUC assumption is relatively small as well as the true

difference in estimates.
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3.5 The prior outcome augmented Instrumental

Variable method

In this section we introduce the prior outcome augmented Instrumental Variable

(POA-IV) estimate which aims to overcome the limitations of the DiD and standard

IV estimate by leveraging data from both the prior and study period. Specifically,

we look to leverage an interaction between the prior outcome Y0 and the original

IV Z to form a new IV. This general technique to use interaction terms has been

successfully applied in several different contexts in recent years. For example to

disentangle direct and indirect effects in a mediation analysis [220], to allow for

violation of the homogeneity assumption in a non-adherence affected RCT [206],

and to adjust for bias due to pleiotropy in Mendelian randomization [221]. The

POA-IV estimates follows the same idea as the mentioned studies using interac-

tion terms as instruments.

The treatment effect, βPOA−IV can be estimated using a slightly modified TSLS

approach. In the first stage model, treatment assignment X is regressed on Z and

W1, but also on Y0 and the interaction term Y0Z as the new IV:

Logit(Pr[X = 1|Z,W1,Y0]) = βX,0 + βX,ZZ + βX,W1W1+

βX,Y0Y0 + βX,Y0ZY0Z.
(3.10)

By including Y0 in the first stage model, the estimate acknowledges that the treat-

ment decision can be affected by previously measured outcomes such as drug

specific adverse events or other outcomes in the prior period. Fitted values from

regression model (3.10), X̂, are then used in the second stage model:

E[Y1|X̂,W1,Y0,Z] = βY1,0 + βPOA−IVX̂ + βY1,W1W1 + βY1,ZZ + βY1,Y0Y0, (3.11)

to furnish a causal estimate for X whilst additionally controlling for any direct ef-

fects of Z and Y0 on Y1. The interaction term βX,Y0Z in model (3.10) would be

present in our setting if a provider only shows a prescription preference in situa-

tions where the patient has already experienced an event of interest in the prior

period or, more generally, if the strength of preference varies across levels of Y0.
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As it serves as a new IV we require that

• POA-IV1: the interaction term βX,Y0Z is non-zero and strong (in order to avoid

weak instrument bias. [220]);

• POA-IV2: Z and Y0 (and hence X̂ in model (3.11)) are independent of U.

To implement the approach using the CF model for binary outcomes (which we

refer to as POA-CF), we again fit model (3.10) to the data to give X̂. From this we

calculate the residual ∆̂ = X− X̂, and then fit the second stage regression model

Logit(Pr[Y1 = 1|X,W1,Y0,Z, ∆̂]) = βY1,0 + βPOA−CFX + βY1,W1W1+

βY1,ZZ + βY1,Y0Y0 + (βY1,∆̂
+ βY1,Z∆̂Z)∆̂,

(3.12)

before estimating the causal effect on the risk difference scale using the margins()

package [215] as before. The performance of both the POA-CF and equivalent

standard IV method (referred to as POA-IV) are explored in the next section.

3.5.1 Simulation study

We now showcase the ability of the POA-IV and POA-CF estimate in comparison

to the CaT, IV, CF and DiD estimates under conditions in which the latter three

approaches are biased. The simulation is therefore an extension of the simulation

described in Section 3.4. The left side of Figure 3.4 clarifies how the data for

each scenario is generated. For scenario 1 and 2 of this simulation study the

prior outcome Y0 is generated without unmeasured confounding. Additionally, in

scenario 2 Y0 has a direct effect on the study outcome of interest Y1. Scenario

3 is the same as scenario 8 of the simulation in Section 3.4. Further information

about the data generation models are outlined in Appendix 3.4.

3.5.2 Simulation results

The results of scenario 1 in Table 3.4 and the right side of Figure 3.4 show that the

POA-IV and POA-CF are able to estimate the true causal risk difference (10%)

without bias and similar efficiency to the standard IV estimate. All other methods

compared in this simulation exhibit bias. This is also the case for scenario 2 in

which Y0 exerts a direct effect on Y1. For this scenario Y0 was included in the
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Figure 3.4: Left side: DAG representing the data generation for each scenario of

the simulation. Right side: Distribution of the estimation results.
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outcome models as measured confounder. Coverage rates of the POA-IV and

POA-CF are around 95%. The bias of the IV and CF approach in all scenarios

stems from a relatively large effect of Z on Y1. Scenario 3 of this simulation is

the same as scenario 8 described in Section 3.4. All previously applied methods

exhibited noticeable bias. As Y0 is confounded with U in this scenario, POA-IV

as well as POA-CF are biased too. From the results of this simulation the bias

is much smaller than the bias of CaT, IV, CF and DiD, but it would increase in

case of a stronger effect of U on Y0. Additional information on the Monte Carlo

simulation errors are given in Appendix 3.5.

CaT IV CF DiD POA-IV POA-CF

Scenario 1

Bias 3.72 18.6 18.9 -23.9 0.369 0.636

SE 0.0615 0.129 0.129 0.101 0.15 0.136

MSE 0.176 3.62 3.73 5.82 0.225 0.188

Coverage 52.8 0.4 0.4 0 94.4 95.2

T1E 44.4 99.4 99.4 100 5.9 5.9

Scenario 2

Bias 3.71 18.7 19.1 -22.2 0.219 0.527

SE 0.0613 0.135 0.135 0.0974 0.15 0.15

MSE 0.175 3.69 3.85 5.02 0.227 0.228

Coverage 53.6 0.6 0.5 0 95.7 95.6

T1E 45.7 99.3 99.4 100 4 4.2

Scenario 3

Bias 3.85 19 19.3 -27.1 0.428 1.59

SE 0.0629 0.131 0.131 0.0998 0.149 0.131

MSE 0.187 3.77 3.9 7.45 0.225 0.196

Coverage 50.7 0.3 0.3 0 95.5 92.8

T1E 48.9 99.7 99.7 100 6 6.2

Table 3.4: Bias, standard errors (SE) and mean squared error (MSE) (all × 100);

coverage and type 1 error (T1E) rate (both expressed as a percentage based on

a 95% confidence interval and 5% significance threshold) for the estimates CaT,

IV, CF, DiD, POA-IV and POA-CF and for all scenarios.
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3.6 Application to type 2 diabetes patients in

Clinical Practice Research Datalink

In addition to lifestyle modification, treatment for type 2 diabetes (T2D) primar-

ily focuses on the management of blood glucose, with different glucose-lowering

oral agents available. Metformin (MFN) is recommended as first-line medical

therapy by major T2D clinical guidelines [124, 222], but if glucose control de-

teriorates, additional second-line or further treatments are prescribed. Sodium-

glucose Cotransporter-2 Inhibitors (SGLT2i) and Dipeptidyl peptidase-4 Inhibitors

(DPP4i) are two widely used second-line medication classes in the UK and US

[127, 223], and there is considerable interest in using observational data to estab-

lish the comparative benefits and risks of the two therapies in ‘real-world’ settings

and for a broad spectrum of patients. [224] Whilst SGLT2is have some benefits

beyond blood sugar lowering (including reducing the risk of cardiovascular dis-

ease) they may be associated with increased risk for genital infection. [124]

We used routine data from the Clinical Practice Research Datalink (CPRD Gold,

download July 2019) to examine the risk of genital infections for people with T2D

initiating SGLT2i (NTx = 1966) compared to DPP4i (NCt = 4033) during 2016-2019

as second-line treatment after MFN. [200, 203] CPRD is a rich source of pri-

mary care data for observational health research. This database includes ap-

proximately 6.9% of the UK population and patients are considered to be repre-

sentative with regard to age, sex and ethnicity. [200] Studying the efficacy and

tolerability with routine practice data makes it possible to understand the risks

and benefits of medication use in a large and truly representative population in

contrast to clinical trials which are performed on a population restricted by factors

such as age or diabetes severity. [225, 226]

All individuals in the study cohort initiated MFN as first-line treatment and have

not been prescribed insulin over the complete follow-up time. Additionally, only

individuals who initiated DPP4i or SGLT2i as second-line treatment were included

in the analysis. The prior period is observed from start of the initiation of MFN until

just before the start of the second-line treatment (SGLT2i or DPP4i). The average
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follow-up time in this period was 3.66 years. Therefore, the study period starts

with the initiation of the second-line treatment until one of the following-censoring

reasons: end of follow-up data (30th of June 2019), discontinuation of second-

line treatment or start of the other comparison treatment (e.g. individual started to

take SGLT2i as second-line treatment and added DPP4i at a later point in time).

The average follow-up time of the study period was 1.44 years.

The baseline characteristics of the cohort are summarized in Table 3.5, for the

two periods before and after initiation of second-line treatment. In the prior period

151 (2.5%) genital infections are recorded, 45 (2.3%) and 106 (2.6%) for peo-

ple on SGTL2i and DPP4i respectively. In the study period 139 (2.3%) people

experience an infection, 96 (4.9%) on SGLT2i and 43 (1.1%) on DPP4i. Genital

infection is therefore a rare outcome. Data was also extracted on patients’ gen-

eral practice membership, in order to use it as an IV within the standard and prior

outcome augmented IV approach.

The outcome, defined as ≥ 1 genital infection in a given period, was coded as

a binary variable and modelled using logistic regression. Causal estimates are

reported on the risk difference scale (in %) as described in Section 3.3.4.

For our analysis we applied the six causal estimation strategies introduced in

Sections 3.3 and 3.5 to estimate the population averaged effect of taking SGLT2i

versus DPP4i on infection risk. Additionally, we applied the CaT estimator on a

propensity score matched dataset (PSM) using the R package MatchIt() with 1-1

nearest neighbour matching with replacement. [227] Approximately two-thirds of

the data was matched. The balance diagnostic statistics are summarized with a

love-plot in Appendix 3.6 and show that the matching procedure has improved the

balance of the treatment groups. This plot also gives a list of the variables which

was used for the matching procedure. Furthermore, the CaT and DiD method

were applied including Z as measured confounder to avoid bias in case the exclu-

sion restriction of the IV method is not met, which cannot be verified with the data

at hand. [70] Y0 was included as a measured confounder in all models for Y1 as

it has been found in previous studies that prior infections are associated with the

risk of experiencing an infection in the study period. [157] The βCaT estimate was
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obtained from a multivariable logistic regression adjusted for all baseline charac-

teristics measured at second-line treatment initiation, as listed in Table 3.5. The

βDiD estimate was obtained using logistic difference-in-difference regression and

also adjusted for the baseline characteristics at initiation of first- and second-line

treatment. Standard IV, CF and the prior outcome augmented IV approaches

were fitted to the data using the methods previously described, with adjustment

for the same set of baseline covariates in the first and second stage models.

3.6.1 Construction of the Instrumental Variable

As prescription prevalence of both drug classes increased dramatically after 2015

and regional differences in prescribing patterns in the UK exist [126, 127], the IV

Z constructed for this analysis aims to convey information about providers’ prefer-

ence to prescribe SGLT2i over DPP4i. Preference-based IVs have been proposed

when it is assumed that providers prescription preference varies or a substantial

variation in practice pattern can be observed. [92, 80] Hence, for the estimation

of βIV, βCF, βPOA−IV and βPOA−CF, we constructed a binary IV for patients treated

by each respective provider as proposed by Brookhart et al. [92]. As the prescrip-

tion preference is unobserved, a proxy variable is constructed using the observed

prescription behaviour of each provider. Further information about this proxy de-

sign can be found for example in Davies et al. [91] or Widding et al. [59]. The

healthcare provider is assumed to have a preference to prescribe SGLT2i over

DPP4i depending on the most recent prescription at each point in time. The pa-

tient data of the first patient treated within each provider was excluded from the

analysis as the IV could not be calculated for this patient. As SGLT2i and DPP4i

are newer drug classes and started to be prescribed as second-line treatment

more often after 2014 [127, 223], we allowed for an initial period in which prefer-

ence could develop. Therefore, data of individuals initiating second-line treatment

from 2016 onwards is analysed. Furthermore, we use an IV which makes it pos-

sible to account for changes in prescription preferences. [92] A similar approach

of using clinical commissioning group prescribing history as preference-based IV

has been proposed to evaluate T2D treatment by Bidulka et al. [83].
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Prior period Study period

Variable DPP4i SGLT2i DPP4i SGLT2i

HbA1c (mmol/mol) 70.57 (19.3) 72.43 (19.75) 69.85 (15.27) 73.95 (16.01)

BMI (kg/m2) 33.24 (6.33) 36.35 (6.8) 32.45 (6.38) 35.8 (6.7)

eGFR (ml/min/1.73m2) 85.03 (19.74) 92.7 (18.2) 83.18 (22.86) 93.08 (18.75)

Age (years) 61.09 (10.97) 55.26 (9) 65.02 (11.58) 58.61 (9.24)

T2D duration (years) 2.3 (3.01) 1.84 (2.59) 6.21 (4.36) 5.17 (3.6)

Gender

female 41.04% 60.99%

male 58.95% 39.01%

Prescription year

2016 30.17% 18.81%

2017 30.83% 31.56%

2018 28.61% 34.42%

2019 10.39% 15.21%

Table 3.5: Baseline data on CPRD T2D cohort for prior and study period and for

patients on DPP4i (NCt = 4033) or SGLT2i (NTx = 1966) as second-line treatment.

Values are shown in mean (standard deviation) unless otherwise stated.

3.6.2 Results

The results of the causal analysis are given in Table 3.6 and Figure 3.5. All

methods estimate a positive causal effect suggesting that genital infection risk is

higher if all people initiated SGLT2i compared to DPP4i. The POA-IV and POA-

CF causal estimates are not significantly different from zero at or below the 5%

significance threshold. The POA-IV and POA-CF estimate the causal effect with

large uncertainty compared to all other approaches and consequently its 95%

confidence interval crosses the null. Although the POA-IV and POA-CF estimate

can deal with a direct effect of the prior outcome Y0 on future treatment X, it

assumes no unmeasured confounding between Y0 and X. Including Z in the DiD

and CaT model does not result in a big change of the estimation results in this

application case study.
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Figure 3.5: Estimated treatment effect for all estimates and their 95% confidence

intervals.

Method Estimate 95% CI SE p-value

CaT 3.22 2.27, 4.16 0.49 3.10× 10−14

CaT with Z 3.06 2.1, 4.01 0.49 2.08× 10−12

PSM 3.95 2.57, 5.33 0.72 5.72× 10−10

IV 5.42 2.36, 8.48 2.42 0.0003

CF 4.71 1.18, 8.24 2.77 0.008

DiD 3.91 2.6, 5.21 0.66 7.46× 10−10

DiD with Z 3.98 2.64, 5.32 0.67 1.16× 10−9

POA-IV 1.65 -9.65, 12.96 6.81 0.77

POA-CF 4.69 -6.72, 16.11 6.79 0.42

Table 3.6: Estimation results on risk difference scale (in %), standard error, and

p-value of the estimated treatment effect.

Table 3.7 summarized the strength of the IVs measured with the F-statistic of the

coefficient of each IV from the first stage regressions of each respective method.

[77] IV and CF as well as POA-IV and POA-CF use the same first stage regres-

sion model and the results of the IV strength are therefore summarized in the

same row. The instrument strength of Z for the IV and CF approach is strong with

F-statistic values greater than 10 but Y0Z does not seem to be a strong instrument

for the POA-IV and POA-CF approach. This helps to understand the poor results
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of the two methods which estimate the treatment effect with much higher uncer-

tainty than all other methods applied in this study. Furthermore, it is plausible that

Y0 is confounded by U which will also lead to biased results for the POA-IV and

POA-CF.

Models Instrument F-statistic

IV and CF Z 345.42

POA-IV and POA-CF Y0Z 0.61

Table 3.7: Strength of the Instrumental Variables measured with the F-statistic

of Z (for IV and CF) and Y0Z (POA-IV and POA-CF) from the corresponding first

stage regression models.

3.6.3 Results of the similarity statistic

We now apply our Qe statistic analysis to the set of estimators to assess their

similarity. Table 3.8 shows the Qe statistic for a selection of estimator sets. The

pairwise correlation of all estimates calculated over 500 bootstrap samples is

summarized in Figure 3.10 in Appendix 3.7. Interestingly, the test statistic for the

closely related CaT and PSM estimates as well as for the POA-IV and POA-CF

estimates reveal they are not sufficiently similar even though their values are very

close. This is explained by their very high correlation, which Qe adjusts for. IV and

CF are identified as sufficiently similar even after accounting for their correlation.

All other selected combinations which do not include CaT or PSM and POA-IV or

POA-CF together show that the estimates are statistically similar.
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e Qe statistic χ2 value (df) p-value Test decision

CaT, PSM 9.721 3.841 (1) 0.0018 not similar

IV, CF 0.093 3.841 (1) 0.761 similar

POA-IV, POA-CF 9.086 3.841 (1) 0.0026 not similar

CaT, CF, DiD, POA-CF 2.848 7.815 (3) 0.4157 similar

PSM, CF, DiD, POA-CF 0.343 7.815 (3) 0.9517 similar

CaT, IV, DiD, POA-IV 4.101 7.815 (3) 0.2508 similar

PSM, IV, DiD, POA-IV 1.367 7.815 (3) 0.7132 similar

Table 3.8: Test results of the heterogeneity test with Qe statistic and 95% confi-

dence.

3.7 Summary and conclusion

In this paper we propose a framework for the application of several causal in-

ference methods to assess the comparative effectiveness of two treatments in

observational data. This included ‘standard’ confounder adjustment approaches

such as multivariable regression and propensity score matching, difference-in-

differences and IV estimation. The assumptions of each approach were de-

scribed, and a simulation was used to assess the impact of violating necessary

assumptions on the estimators’ performance. Building on the work of Bowden et.

al. [11], we proposed the use of a similarity statistic to formally assess the level

of agreement between sets of estimates that can account for their underlying

correlation. We hope this statistic could be a useful tool when attempting to tri-

angulate findings from a set of distinct causal estimation strategies going forward.

We illustrated the application of these methods using routinely collected data on

people with T2D, to assess the relative safety of SGLT2i compared to DPP4i as

second-line therapies on the risk of genital infection. Our heterogeneity analysis

showed good agreement between all causal estimates except the PSM/ CaT and

POA-IV/POA-CF approaches. In future work, we plan to apply the same causal

framework to model alternative T2D outcomes such as HbA1c and other clinically

important adverse events. We also plan to extend the approach to fit alternative

models that allow for causal effect heterogeneity, so that they may be used in
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personalised medicine. [228] Furthermore, the applied analysis showcased how

triangulating estimation results with different methods can help to identify implau-

sible results and give further insight in possible assumption violations. Additional

work still needs to be done about which estimation results final reports should

focus on. Possible strategies could be to only focus on similar estimates or to

combine the results.

We proposed the use of the POA-IV/ POA-CF method which is able to leverage

an interaction between the prior period and the IV accounting for a possible direct

effect of the IV on the outcome and a direct effect of previous outcome events

on the treatment decision. Our simulations show that this approach is robust and

leads to reliable results in scenarios in which key assumptions of the DiD and the

IV approaches are violated, as long as the prior outcome-future treatment relation-

ship does not suffer from unmeasured confounding. Furthermore, our simulation

in Section 3.5.1 showed that POA-IV and POA-CF were less biased than CaT,

DiD, IV and CF even if Y0 was confounded by U. As future work we hope to better

understand when this will be the case.

As further research, we plan to develop a rigorous hierarchical testing procedure

for performing a similarity analysis across an arbitrary number of estimates, whilst

controlling the overall family wise error rate. Another approach for combining IV

and DiD approaches has been proposed by Ye et al. [229]. The ‘instrumented

DiD’ purports to offer robustness to time-varying unmeasured confounding and

therefore offers utility as an additional estimator within a triangulation analysis.
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3.8 Appendices

Appendix 3.1 Data generation models of the first simulation

study

Data for the first simulation described in Section 3.4 was generated under the

models listed below. The DAG in Figure 3.6 visualizes the data structure of the

simulation explained in Section 3.4 as well as the mechanisms with which the

simulation scenarios are implemented.

β = 0.1

Zij ∼ Bern(0.5)

W0i ∼ N(0, 1)

W1i = γW1,W0
W0i + γW1,εεW1i

εW1i ∼ N(0, 1)

Ui ∼ N(0, 1)

Y0i ∼ Bern(γY0,0 + γY0,UUi + γY0,W0
W0i)

Xi ∼ Bern(γX,0 + γX,ZZij + γX,UUi + γX,W0
W0i + γX,W1

W1i + γX,Y0
Y0i)

Y1i ∼ Bern(γY1,0 + γY1,UUi + βXi + γY1,W1
W1i + γY1,ZZij)

Figure 3.6: Causal DAG consistent with the data generation of the simulation

outlined in Section 3.4.
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Appendix 3.2 Proof for DiD assumptions

Figure 3.7: A simplified parameterised causal diagram to accompany the DiD

proof argument below.

The parameterised causal diagram in Figure 3.7 indicates a similar structure to

that in Section 3.2 but without measured confounders W0 and W1 for simplifica-

tion. Removing the individual subscript i for convenience, assume the following

models for Y0, X and Y1:

Y0 = γY0,UU + εY0 (3.13)

X = γX,UU + γX,Y0
Y0 + εX (3.14)

Y1 = βX + γY1,UU + εY1, (3.15)

where β represents the causal effect that DiD is attempting to estimate. The

estimand targeted by a regression of Y1 on X is therefore

Cov(Y1,X)

Var(X)
=
βVar(X) + γY1,UCov(X,U)

Var(X)
, (3.16)

and the estimand targeted by a regression of Y0 on X is therefore

Cov(Y0,X)

Var(X)
=

Cov(γY0,UU + εY0,X)

Var(X)
. (3.17)

Putting (3.16) and (3.17) together, DiD estimand can be written as

Cov(Y1,X)

Var(X)
− Cov(Y0,X)

Var(X)
= β + (γY1,U − γY0,U)

Cov(U,X)

Var(X)
− γX,Y0

Var(εY0
)

Var(X)
. (3.18)

From (3.18) we see that that the DiD estimand is equal to β when γY0,U = γY1,U

(DiD2 assumption) and either γX,Y0
is zero (DiD1 assumption), or that Var(εY0

) = 0

.
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Appendix 3.3 Results of Monte Carlo standard errors of the first

simulation study

For the simulation of Section 3.4 the Monte Carlo standard errors (MCSE) calcu-

lated based on Morris et al. [219]. The results are given in the table below for the

performance measures: bias, mean squared error, coverage and type 1 error.

CaT IV CF DiD

Scenario 1

MCSE(bias) 0.0685 0.1207 0.1209 0.0988

MCSE(MSE) 0.002 0.0064 0.0064 0.0041

MCSE(coverage) 0.7451 0.676 0.6892 0.7851

MCSE(T1E) 0.751 0.7332 0.7209 0.6892

Scenario 2

MCSE(bias) 0.0697 0.1251 0.1252 0.0956

MCSE(MSE) 0.002 0.0071 0.0072 0.1291

MCSE(coverage) 0.6892 0.676 0.676 0

MCSE(T1E) 0.7085 0.676 0.676 0

Scenario 3

MCSE(bias) 0.0687 0.1208 0.1209 0.0958

MCSE(MSE) 0.0021 0.0522 0.0529 0.004

MCSE(coverage) 0.7392 0.8628 0.8579 0.7332

MCSE(T1E) 0.6624 0.6957 0.7021 0.7683

Scenario 4

MCSE(bias) 0.0685 0.1346 0.1345 0.1021

MCSE(MSE) 0.0022 0.0507 0.0518 0.148

MCSE(coverage) 0.5891 1.094 1.06 0

MCSE(T1E) 0.6693 1.0164 1.0126 0

Scenario 5

MCSE(bias) 0.0625 0.1336 0.1332 0.0868

MCSE(MSE) 0.0047 0.0078 0.0078 0.0033

MCSE(coverage) 1.5775 0.676 0.7085 0.6892

MCSE(T1E) 1.5744 0.7451 0.7451 0.676

Scenario 6

MCSE(bias) 0.0649 0.1348 0.1349 0.0935

MCSE(MSE) 0.005 0.0078 0.0078 0.1045

MCSE(coverage) 1.5719 0.5891 0.6197 0

MCSE(T1E) 1.5387 0.7271 0.7271 0
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CaT IV CF DiD

Scenario 7

MCSE(bias) 0.0631 0.1397 0.1399 0.0894

MCSE(MSE) 0.0049 0.0805 0.0835 0.0036

MCSE(coverage) 1.5715 0.7626 0.7021 0.7147

MCSE(T1E) 1.5741 0.5812 0.5566 0.6957

Scenario 8

MCSE(bias) 0.0682 0.1412 0.141 0.0958

MCSE(MSE) 0.0046 0.0768 0.0803 0.1205

MCSE(coverage) 1.5466 0.8278 0.7796 0

MCSE(T1E) 1.5452 0.7021 0.6826 0

Table 3.9: Monte Carlo standard errors (MCSE) of the performance measures of

all estimates and all scenarios of the simulation outlined in Section 3.4. All results

are multiplied with 100 and rounded to 3 significant figures.
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Appendix 3.4 Data generation models of the second simulation

study

For the simulation demonstrating the POA-IV and POA-CF estimates the data

was generated using the same strategy as for the simulation explained in Section

3.5.1, except for X and Y1. The data generation models are shown below and

Figure 3.8 shows the DAG explaining the mechanisms with which the simulation

scenarios are implemented.

β = 0.1

Zij ∼ Bern(0.5)

W0i ∼ N(0, 1)

W1i = γW1,W0
W0i + γW1,εεW1i

εW1i ∼ N(0, 1)

Ui ∼ N(0, 1)

Y0i ∼ Bern(γY0,0 + γY0,UUi + γY0,W0
W0i)

Xi ∼ Bern(γX,0 + γX,ZZij + γX,UUi + γX,W0
W0i + γX,W1

W1i+

oooooγX,Y0
Y0i + γX,Y0Z · Zij · Y0i)

Y1i ∼ Bern(γY1,0 + γY1,UUi + βXi + γY1,W1
W1i + γY1,ZZij + γY1,Y0

Y0i)

Figure 3.8: Causal DAG consistent with the data generation of the simulation

outlined in Section 3.5.1
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Appendix 3.6 Balance statistic for propensity score matched

data

The propensity score matching procedure matched 100% of the 1966 individuals

treated with SGLT2i. Therefore, overall 67.43% of all individuals in the data were

matched. No records were discarded for the matching procedure. The love plot in

Figure 3.9 shows that the matched data improved the balance of groups based on

the absolute standardize mean difference. The matching process was employed

using the baseline characteristics shown in the figure measured at first-line treat-

ment initiation and years of second-line treatment initiation as this covariate has

no effect on the treatment effect.

Figure 3.9: Love plot of the original and propensity score matched data.
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Appendix 3.7 Pairwise correlations for all applied estimates in

the application case study

Correlation plot shows the pairwise correlation of all estimates using 500 boot-

strap samples as explained in Section 3.6. Estimates of the CaT and PSM as

well as the estimates of the POA-IV and POA-CF are highly correlated.
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Figure 3.10: Correlation plot of all bootstrapped estimates of the application case

study.
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Appendix 3.8 Results of sex-stratified application case study

Additionally to the application case study outlined above, the triangulation analy-

sis was repeated on sex-stratified cohorts. Results of the sex-stratified analysis

are given in Figure 3.11. A previous study using propensity score matching and

CPRD has found that female-gender is a risk factor for experiencing genital infec-

tions after the initiation of SGLT2i (versus DPP4i). [157] The results summarized

in Figure 3.11 show slightly elevated but not significantly different risk for women

on SGLT2i for most methods except POA-IV and POA-CF. Reasons for the differ-

ing results compared to other estimates could be that Y0 is confounded by U, as

explained in Section 3.6. Furthermore, all IV and CF estimates show similar risk

for genital infections on DPP4i and SGLT2i with the wider 95% CI encompass-

ing 0. The estimates of CaT and PSM do not take unmeasured confounding into

account, but are supported by the very similar DiD results.

Figure 3.11: Estimation results of the sex-stratified analysis.
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4.1 Abstract

The Instrumental Variable approach provides a possibility to address bias due to

unmeasured confounding when estimating treatment effects using observational

data. As instrument prescription preference of individual healthcare providers

has been proposed. Because prescription preference is hard to measure and

often unobserved, a surrogate measure as proxy, constructed from available pre-

scription data, is often required for Instrumental Variable analysis. Different con-

struction methods for this proxy measure are possible, such as simple rule-based

methods which make use of the observed treatment patterns of each provider,

or more complex model-based methods that employ formal statistical models to

explain the treatment behaviour by taking the data structure of measured con-

founders into consideration. The choice of construction method relies on aspects

such as data availability within provider, missing data in measured confounders,

and possible changes in prescription preference over time.

In this paper we conduct a comprehensive simulation study to evaluate different

construction methods for proxy measures of provider prescription preference un-

der different data conditions, including: different provider sizes, missing covariate

data, and provider preferences that change over time. We additionally propose

a novel model-based construction method that utilizes a mixed effect model with

a random intercept for provider ID and a random slope for prescription time, to

address between provider differences and change in prescription preference si-

multaneously. All presented construction methods are exemplified in a case study

analysing the relative glucose lowering effect of two type 2 diabetes treatments in

observational data, to showcase their different data requirements and to triangu-

late estimations results.

Our study shows that Instrumental Variable methods using provider preference

can be a useful tool for causal inference from observational health data. The

choice of construction method should be driven by the data condition at hand.

Our proposed method is capable of estimating the causal treatment effect with-

out bias in case of sufficient prescription data per provider, changing prescription

preference over time and non-ignorable missingness in measured confounders.
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4.2 Introduction

When comparing the relative effectiveness of treatments in observational data,

the Instrumental Variables method (IV) provides a possibility to address bias in

the estimation of treatment effects due to unmeasured confounding. The ap-

proach aims to create pseudo-randomized treatment assignment based a suit-

able instrument for which three main assumptions are necessary. The chosen

instrument must strongly predict the treatment decision, be independent of un-

measured confounders and should only affect the outcome through influencing

the treatment decision. Korn and Baumrind [80] proposed to utilize healthcare

provider prescription preference (PP) as an IV. This instrument has been widely

applied in health research areas such as in comparative effectiveness studies for

cancer, cardiovascular diseases and mental health. [59]

Preference-based IVs have been constructed at three different healthcare provider

levels in the literature: regional [83], hospitals, practices (or other institutions) [86],

or at the individual physician level [88]. In order for PP to be a valid instrument,

prescription habits must differ across providers in a manner that cannot be purely

explained by patient characteristics which are prognostic for the studied disease,

or regional variation in treatment guidelines. Provider preference must also be

unrelated to the use of other medical interventions that might influence the out-

come. Lastly, it is necessary that patients are assigned to provider independently

of their prescription pattern. [80, 92]

In most routine clinical databases, the reason underlying a treatment decision is

not systematically recorded, meaning the true prescription preference of a health-

care provider for one treatment over another is unknown. It is also likely to be a

non-binary and evolving variable, representing the strength of a provider’s belief

in what constitutes the best treatment option for a patient at a particular point in

time. Surveys have been designed in order to elicit PP information [67, 90] but it

remains a difficult quantity to accurately and unbiasedly measure. [89] Therefore,

comparative effectiveness studies based on observational data typically do not

incorporate data on true provider preference of one drug over the other. In most

IV studies using preference-based instruments, PP is instead substituted with a
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proxy variable that is somehow estimated from the data. This is referred to as the

‘proxy design’ [58, 59, 91] which is represented in Figure 4.1. Here, PP is depicted

as valid but unmeasured instrument. It is approximated with the variable Z which

utilizes provider’s manifest and observed prescribing behaviour to reflect on PP.

The outcome variable, measured and unmeasured confounders are denoted with

Y, W and U respectively.

Figure 4.1: Causal diagram of the proxy design. The true underlying provider

preference is not measured but instead approximated with the proxy variable Z.

Different methods to construct the instrument have been proposed in the liter-

ature. These can be differentiated into two general groups: simple rule-based

methods that utilize subsets of the observed treatment decision data to derive Z

at the point a given patient is treated; and more complex methods derived from fit-

ting formal statistical models to the full data (encompassing treatment decisions,

outcomes and measured confounders). When multiple proxy construction meth-

ods for Z are available, Brookhart et al. [92] suggest to chose the one that appears

to be most strongly related to the observed treatment decision, among those that

are unrelated to measured confounders. [92] This is motivated by the desire to

minimise the measurement error of Z measuring PP and makes the consideration

of additional aspects about prescription preferences necessary.

The prescribing preferences of providers undoubtedly contain a dynamic aspect

due to the accumulating personal positive or negative experience with administer-

ing a drug over time, as well as external factors such as treatment guidelines from

health authorities, marketing activities of pharmaceutical companies, and efficacy

and safety information from clinical trials. [92, 93, 94, 95, 96] Abrahamowicz et al.

[93] propose a construction method for Z that aims to identify if a provider changes
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preference and at what point in time the change took place. If such a change point

is identified, Z is constructed separately for patients treated before and after the

change. [93] Clearly, when implementing a particular model-based method, it is

necessary to ensure that sufficient data per provider is available to support it. [92]

Valid IV estimates generally also depend on including treatment effect confounders

that are associated with the instrument in the analysis. Missing data are com-

mon in observational studies and often dealt with by complete case analysis or

applying imputation methods. These strategies can lead to bias in the IV esti-

mates, in case of non-ignorable missingness for which the missingness depends

on the unmeasured value itself or other unobserved variables. [45, 97, 230] In

this challenging setting, Ertefaie et al. [97] propose a model-based method for

constructing Z and show using theoretical arguments and a simulation study that

the method is capable of producing unbiased treatment effect estimates.

The aim of this study is a state of the art evaluation of the performance of differ-

ent construction methods of preference-based instruments with respect to these

three data structure aspects and a focus on the more complex model-based ap-

proaches. Additionally, we propose an extension of the method by Ertefaie et al.

[97] to accommodate non-ignorable missingness as well as possible change in

prescription preference. In Section 4.3 methods for constructing the proxy vari-

able Z for PP are described, with a focus on the model-based approaches. In

Section 4.4, the performance of these methods is evaluated in a simulation study

which allows for a change in prescription preference, different data availability

and different missingness mechanisms for measured confounders. In Section 4.5

all construction methods of Z are applied to primary care data from the Clinical

Practice Research Datalink (CPRD) for a comparative effectiveness study com-

paring two oral type 2 diabetes (T2D) agents - Sodium-glucose Cotransporter-2

Inhibitors (SGLT2i) versus Dipeptidyl peptidase-4 Inhibitors (DPP4i) - on their abil-

ity to lower blood glucose levels (HbA1c mmol/mol). Lastly, Section 4.6 concludes

the main points of the simulation and application case study and highlights limita-

tions as well as further research possibilities.
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4.3 Constructing preference-based Instrumental

Variables

In this section we give an overview of the possibilities for constructing a provider

preference proxy variable seen in the literature. We categorize them into two

groups based on their use of data on treatment behaviour and measured con-

founders. Simple rule-based approaches make use of the observed treatment

patterns of each provider, while more complex model-based methods use formal

statistical models to explain the treatment behaviour, additionally taking the data

structure of measured confounders into consideration. The latter category of con-

struction methods focuses on important aspects of preference-based IVs such as

possible change in PP over time and the existence of non-ignorable missingness

in confounder data. We will focus predominantly on the latter model-based case

in the simulation study and application case study of Section 4.4.

4.3.1 Notation

We assume a study population of N patients, who are clustered into j = 1, . . . , J

disjoint sets representing distinct treatment decisions. Provider j treats i = 1, . . . , nj

patients, so that N =
∑J

j=1 nj. Within each provider, the patients’ index i is as-

sumed to coincide with the order in which they have been treated, from first to

most recent. The outcome of interest for patient i of provider j is denoted by

Yji. Likewise, binary treatment variable Xji denotes whether a patient receives

treatment A (Xji = 0) or treatment B (Xji = 1). Confounders are classified as ei-

ther measured or unmeasured, and are represented by the G- and M-length vec-

tors Wji = (W1ji, . . . ,WGji) and Uji = (U1ji, . . . ,UMji), respectively. Let the variable

PPji represent the true underling preference for treatment B over treatment A of

provider j at the point they treat patient i. We assume that provider preference sat-

isfies the instrumental variable assumptions, either marginally or conditional on

Wji. Finally, let Zji represent a data-derived estimate for PPji which will be used

as a proxy measure. In the following sections, the indexes i and j will be omitted

from the notation if explanations are not specific to certain providers or individuals.

A visual summary of how each method constructs the IV Zji within a hypotheti-
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cal provider j is provided in Figure 4.2 for the rule-based methods and in Figure

4.3 for the established model-based approaches. Their respective x-axes denote

the i = 1, . . . , nj patients treated by provider j in sequential order. Prescription

decisions Xji are given on the y-axes and indicated with a x symbol. The true un-

derlying provider preference PPji is indicated by the solid line. The corresponding

derived instrument is marked with a circle. Shaded areas indicate which treat-

ment data is utilised in the derivation of the respective Zji. It also clarifies for

which patients Zji cannot be calculated.

Constructing Z is a means to an end, the end being to perform an IV analysis

to overcome confounding between observed values of X and Y. Throughout this

paper we will implement this analysis within the classic Two-Stage Least Squares

(TSLS) framework by doing the following:

1. Use data W and X to derive instrument Z;

2. Regress: X on Z and W to obtain a predicted value X̂;

3. Regress: Y on X̂ and W to obtain an estimate for the causal effect of re-

ceiving treatment A (X = 0) versus B (X = 1) on the outcome

The focus of this section is on different methods for performing step 1.

4.3.2 Rule-based approaches

Brookhart et al. [92] proposed to conceptualize Zji with the most recent prescrip-

tion. That is, for each patient i and treated by provider j, Zji = Xji−1. Therefore, Zji

is a binary variable and is calculable for all patients treated by provider j except

the first one. As Zji is constructed using the most recent prior treatment decision,

it can reflect on true changes in provider preference but also random fluctuations

from patient to patient not indicative of a genuine change or trend. [92, 93, 100]

This method will be referred to as IV prevpatient and is visualized in panel A of

Figure 4.2.

A generalisation of this construction method calculates Zji as the proportion of

patients who received a given treatment, say treatment B, among the previous b

treated patients, so that
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Zji =
1

b

i−1∑
d=i−(b−1)

Xjd = bX̄i(b).

This instrument can take on values in the range of 0% and 100% as opposed to

being a binary variable. [98, 100, 231] We refer to this method as IV prevbpatient

by setting b in the following sections equal to 2, 5, and 10. This method can the-

oretically reflect on changes in the providers preference depending on how close

to the time of preference change patient i is treated, but is based on more data.

Clearly Zji cannot be calculated for the first b patients within each provider, which

means that some data is lost. A calculation example for b = 5 is given in panel B

of Figure 4.2.

A closely related variation of this method is to construct Zji using all previous

prescriptions for treatment B, so that:

Zji =
1

i− 1

i−1∑
d=1

Xjd = (i− 1)X̄i(i− 1).

It can be calculated for all patients (except the first) and will be referred to as IV

allprevprop. [92] This method is summarized in panel C of Figure 4.2.

For the previous methods Zji is calculated individually for each patient i within

provider j. Alternatively, all prescription data can be utilized to derive a single

instrument for the provider. This leads to

Zji =
1

nj

nj∑
i=1

Xji = njX̄j = Zj,

which can be calculated for i = 1, . . . , nj and lies between 0% and 100%. This will

be referred to as IV allprop. It is possible to dichotomize Zji and created a binary

instrument with the median [231] or mean empirical value of all practitioners, so

that in the case of the median:

Zji =

0, if njX̄j ≤ Median(n1X̄1, . . . , nJX̄J)

1, otherwise.

These methods will be referred to as, IV alldichmedian and IV alldichmean re-

spectively. A minimum provider size nj,min = 2 is needed to apply this method and
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its dichotomized versions. The methods are represented in panel D of Figure 4.2.

For the estimation of the treatment effect with any given preference-based IV,

the data of patients for which Zji cannot be calculated are excluded. This has

clear implications for the efficiency of each method.

4.3.3 Model-based approaches

We now introduce two model-based approaches to construct Z: the method of

Ertefaie et al. [97] (henceforth the ‘Ertefaie’ method) which fits a multi-level model

and is capable of dealing with non-ignorable missingness in a measured con-

founder; and secondly, the method of Abrahamowicz et al. [93] (henceforth the

‘Abrahamowicz’ method) which tests for and then potentially models a change

point in provider preference over time. We additionally propose an extension of

the Ertefaie method that allows for time trend in provider preference using a mixed

model with a random intercept and slope.

The Ertefaie method

Ertefaie et al. [97] propose a procedure for the estimation of a valid treatment

effect utilizing IVs based on provider preference in the presence of baseline char-

acteristics with non-ignorable missingness. For this approach the set of measured

baseline characteristics is subdivided in Wobs,ji for all confounders fully observed,

and Wmiss,ji denoting all confounders which are not completely recorded for all i.

In the following, Gmiss and Gobs denotes the number of confounders in Wmiss,ji and

Wobs,ji respectively.

The instrument Zji is estimated from a generalized random multilevel model, re-

gressing Xji on Wobs,ji and Wmiss,ji. The model includes the random intercept γ0j

for each provider (provID) and is estimated using a complete case dataset on all

measured confounders:

Logit(Pr[Xji = 1|Wobs,ji,Wmiss,ji, provIDji]) = γ0 + γ0j + γWmiss,ji
Wmiss,ji+

γWobs
Wobs,ji + εji

(4.1)

where γWmiss,ji
and γWobs,ji

are column vectors of sizes Gmiss × 1 and Gobs × 1, and

Wmiss,ji, Wobs,ji are matrices of sizes N× Gmiss and N× Gobs. Ertefaie et al. [97]
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propose to estimate the instrument for provider j based on the relative position of

random intercept γ̂0j in the entire distribution, so that:

Zji = Zj =

1, if (expit(γ̂0j) > expit(Median {γ̂01, . . . , γ̂0J}))

0, otherwise.

The visualisation of this approach in Figure 4.3 (top) shows that each patient

within provider j will receive the same value for Zji and that the instrument can be

estimated for all i in j. The minimum sample size for this construction method can

not be precisely determined from data availability as for the rule-based methods,

but depends on the estimation of the mixed effect model. An often cited rule of

thumb for minimum sample size is Kreft’s 30/30 rule which requires data on at

least 30 provider and 30 patients within each provider. [232] Further discussion

on this can be found for example in Snijders and Bosker [233] or Hox and van de

Schoot [234]. In Section 4.4 the effects of different provider sizes on the estima-

tion performance will be discussed and we employ this construction method as

well as its extension method if a provider treats at least two patients.

An advantage of the Ertefaie method is that, despite the IV derivation being based

on complete case data, the final analysis and TSLS estimation of the treatment

effect is employed on the full data, only using Wobs in the first and second stage

models. The only proviso is that a random intercept and hence Zji can be derived

for a given provider. If in fact there are no complete case individuals in a given

provider, the provider must be excluded from the analysis.

The Ertefaie method relies on three assumptions. The first assumptions requires

missingness to occur at provider level unrelated to unmeasured confounders and

the treatment and at individual patient level, which can be dependent on mea-

sured and unmeasured confounders. This assumption is plausible for studies in

which missingness varies across providers for example due to staff or manage-

ment policies. In a sensitivity analysis the authors show that the approach is still

valid under moderate violations of this assumption. [97] The second assumption

states that the effect of U on X should not vary by provider. As this is not testable

with the data at hand, the authors suggest that it is possible to make an educated

guess by checking whether measured confounders violate this assumption. This
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could be checked with a generalized mixed-effect model to predict the treatment

decision including measured confounders and provID as random intercept and

random slope. Significant random slopes would indicate that this assumption

might be violated. The third assumption (positivity) indicates that each provider

has a non-zero probability in theory of seeing patients with any given observed

characteristics. The authors verify this approach in a simulation study with non-

ignorable missingness in one measured confounder. The treatment effect esti-

mation results are unbiased even in case of non-ignorable missingness and have

lower standard errors compared to standard IV approaches using complete case

or multiple imputed datasets. A sensitivity analysis confirms that the approach can

even deal with ‘high rates’ of non-ignorable missingness. [97] Since the method

makes use of a complex mixed effect model and the prescription data over all

providers simultaneously, it is hard to relate the derivation of Z to the observed

treatment data X in any given provider. Nevertheless, the method is summarized

in panel A of Figure 4.3. When summarizing results in Section 4.4 and Section

4.5 it will be referred to as IV ePP.

The Abrahamowicz method

In order to address concerns about variance inflation when using only one previ-

ous prescription to construct Z, Abrahamowicz et al. [93] propose a more com-

plex modification of IV prevpatient that aims to detect and account for a change in

provider preference over time, yet uses more prescription data to achieve smaller

estimation variance. The procedure is applied for each of the J providers indi-

vidually in the following 4 step procedure. We follow the previous convention by

assuming patients within provider j are ranked by calendar time from 1 to nj.

Step 1: To test if a provider changes preference, a reference no-change model is

estimated from a multivariable logistic regression of Xji with g = 1, . . . ,G measured

covariates.

Logit(Pr[Xji = 1]) = β0 +
G∑

g=1

βgWgji.

From this model the deviance D(0)j for provider j is extracted.

Step 2: This step is applied to test for a change in preference of provider j and is

further split up into three iterations.
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Step 2.1: The difference in prescription proportions for each patient i = 3, . . . , nj − 3

is calculated by subtracting the proportion of Xji = 1 of the ‘later patients’ with k > i

from the proportion of ‘earlier patients’ with k ≤ i:

dji =

∑
1≤k≤i

ij︸ ︷︷ ︸
earlier patients

−
∑

i+1≤k≤nj

nj − i︸ ︷︷ ︸
later patients

.

As this difference in proportions is calculated from the third to the third last pa-

tient treated by provider j, the minimum number of patients needed within each

provider is 5. The provider preference is assumed to be constant across the ob-

served time period if |dji < 0.2| ∀i in i = 3, . . . , nj − 3. For all other provider with

at least one |dji ≥ 0.2| further investigations are conducted to identify possible

change in preference. In the next steps the time of the preference change is iden-

tified.

Step 2.2: A change-time model is estimated for each patient i with |dji ≥ 0.2|:

Logit(Pr[Xji = 1]) = β0 +
G∑

g=1

βgWgji + η1(k > i).

In addition to the no-change model, this model includes a binary variable indi-

cating patients prescribed after i with 1(k > i) = 0 if k ≤ i and 1(k > i) = 1 if k > i.

Note that for the most recently prescribed patient i = nj, 1(k > i) = 0. The ap-

proach will therefore not be able to test for a change in preference directly after

the last prescribed patient of provider j. The parameter η is the average adjusted

difference in the propensity of provider j to prescribe Xji = 1 between ‘earlier pa-

tients’ and ‘later patients’. From the change-time models the deviances Dj(i) are

extracted.

Step 2.3: In order to identify after which prescription a possible change in pref-

erence took place, the optimal change-time model and the time of change i? is

defined as

min(Dj(i) = Dj(i?)).

Step 3: In this step the fits of the no-change model and the optimal change-time

model are compared using the Akaike information criterion, which is calculated as

AIC = deviance +2S, S being the number of parameters estimated in the model.

For the change-time model two additional parameter are estimated, η and the
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optimal change time i?. Therefore, the no-change model is only considered to

have a better fit if

D(0)j < Dj(i?) + 4. (4.2)

Step 4: Providers are identified to not have a change in preference if, as ex-

plained in step 2.1 |dji ≥ 0.2| ∀i in j or if the no-change model is the best fit ex-

plained in step 3. In this case Zji for all patients in provider j are constructed

as IV allprevprop explained in Section 4.3.2. Providers are identified to have a

change in preference if the conditions in step 2.1 and step 2.3 are satisfied. It is

then assumed that the change in preference takes place between i? and i? + 1.

In this case Zji is constructed by firstly subdividing the prescription data into two

subgroups, before and after the change time. The two groups will encompass

patients i = 1, . . . i? and patients i = i? + 1, . . . nj respectively. Following this, Zji is

calculated as IV allprevprop in both subgroups limited to the treatment information

from those subgroups.

Panel B of Figure 4.3 shows a calculation example for Zji, in two cases where

i? is correctly and incorrectly identified. The calculation of Zji for all patients after

the change will depend on the identification of i?. Additionally, the graph points

out that for providers who have a change identified by the method, Zji cannot be

calculated for the two patients i = 1 and i = i? + 1. Lastly, it should be noted that

the identification of a change in preference relies on the assumption that provider

will only change their preference once within the observed time period. When

summarizing results in consecutive sections the method will be referred to as IV

star.

Extension of the Ertefaie method

We propose an extension to the Ertefaie method, IV ePP (rirs), that utilizes a

random intercept random slope model to construct Z. This approach aims to

combine the original strategy for estimating unbiased treatment effects even un-

der non-ignorable missingness for measured confounders and the principle idea

underpinning the Abrahamowicz method to account for the possibility of changing

prescription preference over the observed period, albeit implemented in a more
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straightforward model. Specifically, the instrument Zji is constructed from a gen-

eralized random intercept, random slope model for the treatment decision:

Logit(Pr[Xji = 1|Wobs,ji,Wmiss,ji, provIDji,Tji]) = γ0 + γ0j + (γTj + γT)Tji+

γWmiss
Wmiss,ji + γWobs

Wobs,ji + εji,
(4.3)

where Tji represents a variable indicating the time of prescription and γWmiss
,

γWobs
, Wobs,ji, Wmiss,ji and provIDji are defined as before. From this model the

following fitted values Θ̂ji are derived with the estimated global intercept γ̂0, ran-

dom intercept γ̂0j, the global slope for Tji γ̂T and the respective random slope

γ̂Tj:

Θ̂ji = γ̂0 + γ̂0j + (γ̂T + γ̂Tj)Tji. (4.4)

Finally, the instrument is constructed by applying the following binary transforma-

tion to Θ̂ji:

Zji =

1, if
(

expit(Θ̂ji) > expit(Median
{

Θ̂11, . . . , Θ̂JnJ
,
}

)
)

0, otherwise.

131



Figure 4.2: Visualization of the rule-based preference-based IV construction

methods with corresponding calculation example. Abbreviations used for the

methods are A: IV prevpatient, B: IV prevbpatient, C: IV allprevprop, D: IV all-

prop, IV alldichmean, IV alldichmedian.

132



Figure 4.3: Visualization of the established model-based preference-based IV

construction methods. The Abrahamowicz method is shown with correctly identi-

fied (left side) and incorrectly identified (right side) change time i?. Abbreviations

used for the methods are A: IV ePP, B: IV star.

133



4.4 Simulation study

Several simulation studies investigating different aspects of provider preference-

based IVs can be found in the literature. Ionescu-Ittu et al. [82] assesses the per-

formance of using prescription data of previous patients under varying instrument

strengths. Abrahamowicz et al. [93] and Ertefaie et al. [97] also include sim-

ulations studies showcasing the key feature of their proposed methods, namely

modelling a change in prescription preference and accounting for non-ignorable

missingness.

Our simulation study aims to compare all rule-based and model-based methods

for PP IV construction, but with a specific focus on the two model-based ap-

proaches proposed by Abrahamowicz et al. [93] and Ertefaie et al. [97], as well

as our extension method. Results of the rule-based method are referred to and

are discussed in more detail in Appendix 4.3.

4.4.1 Data generation

Population data is generated for J = 100 providers who treat each 1, . . . , nj pa-

tients in ascending order. The two measured covariates generated for the simu-

lation are W1,ji ∼ N(µW1
, 2) and W2,ji ∼ N(µW2

, 2) with µW1
and µW2

∼ N(0, 0.5) and

additionally, one unmeasured confounder is generated with Uji ∼ N(0, 1). The

outcome of interest, Y, is simulated as a continuous variable with

Yji = γY,0 + βXji + γY,W1
W1,ji + γY,W2

W2,ji + γY,UUji + εY,ji (4.5)

and the true (or causal) treatment effect is fixed at β = 1.

In order to not intentionally bias simulation results in favour of either model-

based method, treatment decision data X were generated under two separate

processes to be congenial for the Abrahamowicz or Ertefaie methods respec-

tively.

Generating X under the Abrahamowicz model

Following Abrahamowicz et al. [93] we simulate the prescription preference of

each provider for a given patient using a binary variable PPji which indicates the
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preference for treatment B (Xji = 1) if PPji = 1. Specifically, our data generating

model for Xji is:

Xji ∼ Bern(γX,0 + βPP,jiPPji + γX,UUji + γX,W1
W1,ji + γX,W2

W2,ji). (4.6)

In order to induce a degree of stochasticity into the variable for PP, we use the

following procedure:

• The initial preference of provider j is simulated with PPinitial,ji ∼ Bern(0.6), so

that 40% and 60% prefer treatment A and B respectively

• Original ‘A preferers’ change to ‘B preferers’ with a probability of 70% for

some 2 ≤ i∗ ≤ nj

• Original ‘B preferers’ change to ‘A preferers’ with a probability of 40% for

some 2 ≤ i∗ ≤ nj

The change time is initially simulated with change time i∗ ∼ U(0.4× nj, 0.7× nj)

∀j and βPP,ji = 0.7. This means that, on average around 57% of providers will

change their preference. As in the original simulation study by Abrahamowicz

et al. [93], we also simulate data under a ‘smooth’ change model. In this case

βPP,ji is simulated using a smooth 3-linear model as follows: the change time i? is

generated as previously but the change takes place over the interval of length Lj

where Lj ∼ U(0.6× nj, 1.2× nj). For A→ B switchers, βPP,ji is defined as

βPP,ji = PPfinal,ji

(
i− i?

Lj

)
∀i? < i < i? + Lj (4.7)

with PPfinal,ji denoting the final preference for treatment B. Also, βPP,ji = 0 ∀i ≤ i?

(patients treated before change time) and βPP,ji = PPfinal,ji ∀i ≥ i? + Lj (patients

treated after change period has ended). For B→ A switchers, βPP,ji is defined

as

βPP,ji = PPinitial,ji

[
1−

(
i− i?

Lj

)]
∀i? < i < i? + Lj (4.8)

with PPinitial,ji denoting the initial preference for treatment B. For patients treated

before and after the change time βPP,ji = PPinitial,ji ∀i i ≤ i? and βPP,ji = 0 ∀i i ≥ i? + Lj

holds respectively. Calculation examples for both provider types are given in Ap-

pendix 4.1.
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Generating X under the extended Ertefaie model

Ertefaie et al. [97] use a mixed effect model with a random intercept to model

provider preference. To compliment this we simulate treatment decision data Xji

using a mixed effect model analogous to Equation 4.3, including both a random

intercept to model different initial preference levels and a random slope to allow

for a change in PP:

Xji ∼ Bern (γX,0 + γX,0j + (γX,T + γX,Tj)Tji + γX,UUji + γX,W1
W1,ji + γX,W2

W2,ji). (4.9)

Here, Tji increases from 1 to 12 in ascending order of i, and one could view these

time points as successive calendar months. The random intercept and random

slope parameters are simulated withγX,0j
γX,Tj

 ∼ N(0,Ω) and Ω =

 σ2
γ0j

σγT0j

σγ0Tj
σ2
γTj

.
The simulation was conduced using R version 4.2.1 and the analysis of each sce-

nario was repeated in 200 simulation runs. R code for the simulation can be found

in https://github.com/GuedemannLaura/ppIV. Results are given for both ways

of modelling the treatment decision in equation’s (4.6) and (4.9).

Table 4.6 in Appendix 4.2 summarises additional information on both data genera-

tion strategies. For both strategies the variances of Yji are similar with Var(Yji) ≈ 7.7

for the simulation generating Xji under the Abrahamowicz model and Var(Yji) ≈ 6.9

for the simulation using the extended Ertefaie model. Though, the proportion of

treated patients (Xji = 1) shows more differences with around 42% for the former

and 56% for the latter simulation strategy.

4.4.2 Scenarios

Three simulation scenarios are chosen to probe different challenges for the anal-

ysis: change in provider preference over time, a variable amount of available

prescription data per provider, and missing data in the measured confounders.

For the first scenario, the number of treated patients per provider is chosen with

nj = 24, 108, 408. The second scenario involves the simulation of missing values

in the measured confounder variable W1 due to different missing mechanisms:
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either missing completely at random (MCAR) or a non-ignorable missing data

mechanism. The latter will be referred to as a missing not at random mechanism

(MNAR). Missingness in W1,ji is indicated with the indicator variable Fji and both

mechanism results in p(Fji = 1) ≈ 40%.

For the MNAR mechanism the missingness is simulated using the same data

generation process as Ertefaie et al. [97]. The mechanism depends on all mea-

sured and unmeasured confounders, the outcome variable and V, the provider

level influence on missing data. The missingness indicator is FMNAR,ji ∼ Bern(ρF,ji),

where

ρF,ji =
exp(γF,0 + γF,W1

W1,ji + γF,W2
W2,ji + γF,UUji + γF,Y ?

ji
Y ?
ji)

1 + exp(γR,0 + γF,W1
W1,ji + γF,W2

W2,ji + γF,UUji + γF,Y ?
ji
Y ?
ji)

× exp(γF,0 + γF,V Vji + γF,V W1
VjiW1,ji + γF,V W2

VjiW2,ji)

1 + exp(γF,0 + γF,V Vji + γF,V W1
VjiW1,ji + γF,V W2

VjiW2,ji)

(4.10)

with Y? denoting the standardized outcome variable and Vji ∼ U(−2, 2). For the

third scenario, the smooth change in preference applied by Abrahamowicz et al.

[93] is employed in place of the abrupt change. Table 4.1 summarizes all sce-

narios and clarifies how they are implemented for each data generation strategy.

The focus of each scenario with a change in parameters is indicated in bold.
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w Data generation of X

w Abrahamowicz model Extended Ertefaie model

Scenario 1

nj

missing data

βPP,ji

change in PPji

type of change

24, 108, 408

no NAs

0.7 ∀j
some j

abrupt

24, 108, 408

no NAs

Scenario 2

nj

missing data

βPP,ji

change in PPji

type of change

408

no NAs, MCAR, MNAR

0.7 ∀j
some j

abrupt

408

no NAs, MCAR, MNAR

Scenario 3

nj

missing data

βPP,ji

change in PPji

type of change

408

no NAs

0.7 ∀j
some j

abrupt and smooth

-

Table 4.1: Summary of the simulation scenarios for the two data generation strate-

gies of X. The focus of each scenario and the corresponding change in parame-

ters is highlighted in bold.

4.4.3 Results

The estimation results of the treatment effect are represented with density plots

in Figure 4.4 and 4.5 for the model-based methods. Results of the rule-based

methods can be found in Appendix 4.3. As useful benchmark results for the IV

estimation, three additional estimates are reported

• An ‘as Treated’ estimate is calculated using a multivariable regression model

for Y on the observed treatment decision variable X adjusted for the mea-

sured confounders only;

• IV(PP) describes the estimate using the true simulated PP as IV. Depending

on the data generation process the PP variable is either explicitly simulated

(Abrahamowicz model) or can be derived with the true value of Θ calculated

with formula (4.4) (extended Ertefaie model) and the true simulated values

for global and random intercept and slope;

• IV(PP) cc is the complete case analysis version of IV(PP).
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As the latter two estimates use the true PP, their results provide useful upper

bounds for the performance of any method that constructs a provider prescription

preference proxy from the data. For all scenarios with NAs, the results of IV(PP)

cc give additional insight in the bias caused by applying a complete case analy-

sis. The ‘as Treated’ estimate is denoted as observational estimate in all result

summaries. Density plots will give insights to the bias and estimation variance

across different construction methods. Further results on the coverage and rela-

tive root mean squared error (RMSE) are given in Appendix 4.4 for all methods.

Besides the estimation performance, Table 4.3 and 4.4 summarize the F-statistic

of the first-stage regression model from the TSLS IV estimation and for the model-

based construction methods. [70] For the rule-based construction methods the

F-statistic tables can be found in Appendix 4.3. This information is valuable when

judging the strength of the instrument as a result from the different construction

methods. Often, the instrument is considered to be a weak instrument in case of

F-statistic values smaller than 10. [77] Table 4.2 and 4.7 summarize the methods

applied in the simulation study and their abbreviations.

Abbreviation Method

Obs. estimate Observational estimate, multivariable regression adjusted for

measured confounders

IV(PP) True simulated PP as IV, utilizing all data in case of

missingness

IV(PP) cc True simulated PP as IV, utilizing complete case data in case

of missingness

IV ePP IV constructed with the Ertefaie method

IV ePP (rirs) IV constructed with our proposed extended Ertefaie method

IV star IV constructed with the Abrahamowicz method

Table 4.2: Summary of the model-based IV construction methods and bench-

marking methods applied in the simulation and their abbreviations.
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Figure 4.4: Estimation results of scenario 1: change in provider size. Panel A:

estimation results for the data generation process using the Abrahamowicz model.

Panel B: estimation results for the data generation process using the extended

Ertefaie model to simulate change in preference. Results are summarized for the

model-based construction methods of Z.

With scenario 1 the first aspect, different amount of available data, is investigated.

The provider sizes are chosen with nj = 24, 108, 408 and estimation results of this

scenario are summarized in Figure 4.4. Panel A shows the estimation results of

the model-based construction methods for the simulation strategy of X simulating

PP. Estimation of the treatment effect is more efficient with larger nj and biased

for smaller provider sizes. This indicates that we need sufficient data for the more

complex models to adequately recover the true PP. For the Ertefaie method and

its extension method, this results could be explained with the application of mixed

effect model. A discussion on sample size requirements for mixed effect models

can be found for example in Snijders and Bosker [233] or Hox and van de Schoot

[234]. As IV(PP) is unbiased for all nj, the treatment effect estimates are very

likely biased due to measurement error when constructing Z as proxy for PP. In

Appendix 4.5 a small simulation study to evaluate the classification performance

of the Abrahamowicz method IV star under different provider sizes is outlined.

The rate with which the algorithm identifies provider with a change in PP correctly

increases between provider sizes nj = 10 and nj = 100. This result underlines im-

proved estimation performance of IV star for nj = 408. F-statistic results summa-

rized in Table 4.3 show that all methods lead to strong instruments. Additionally,
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Table 4.10 in Appendix 4.4 shows that all model-based methods show good cov-

erage in case of sufficient provider size (i.e. nj = 108 and nj = 408).

From Panel B of Figure 4.4 it is noticeable that the treatment effect is generally

estimated with higher estimation variance when the treatment decision is simu-

lated with a mixed effect model. Only IV ePP (rirs) estimates the treatment effect

without bias, given sufficient provider size. IV ePP exhibits only small bias, but

also largest estimation variance, as the model of the first step uses only a ran-

dom intercept to model X. This results underlines the importance of specifying the

model for PP correctly. All F-statistic results show that the constructed instrument

are strong with values larger than 10.

Figure 4.5: Estimation results of scenario 2: missing data mechanisms. Panel A:

estimation results for the data generation process using the Abrahamowicz model.

Panel B: estimation results for the data generation process using the extended

Ertefaie model to simulate change in preference. Results are summarized for the

model-based construction methods of Z.

With scenario 2 the effect on the estimation results due to different mechanism of

missing data is analysed. Comparing the estimation results of IV(PP) and IV(PP)

cc gives an impression of the magnitude of bias that is caused by MNAR versus

no NAs and MCAR when applying a complete case analysis, as done by most of

the construction methods. For both data generation strategies the results make

clear that only IV ePP and IV ePP (rirs) are able to deal with non-ignorable miss-

141



ingness. All other methods exhibit bias. Even though, the estimation results of IV

star are clearly biased, the F-statistic results indicate that this construction method

will lead to a strong instrument. This is a meaningful illustration why testing the

IV assumption and choosing a strong IV should not be the only consideration for

this application and how important it is to investigate missingness in the data at

hand.

Figure 4.6: Estimation results of scenario 3: type of preference change. Esti-

mation results for the data generation process using the Abrahamowicz model.

Results are summarized for the model-based construction methods of Z.

The results of scenario 3 are given for the data generation strategy which simu-

lates a PP variable as explained by Abrahamowicz et al. [93] only, as this simu-

lation strategy offers the opportunity to simulate the change in preference as an

abrupt or a smooth change. All previously explained scenarios are simulated with

an abrupt change for this simulation strategy. The estimation results do not show

much difference between abrupt and smooth change. Furthermore, the F-statistic

results are consistent for both change types. This is not surprising for IV ePP and

IV ePP (rirs) as the methods use a linear random effects model. But the results

give confidence in the construction method by Abrahamowicz et al. [93]. IV star

seems to be capable to find an adequate proxy for PP in case of an abrupt and a

smooth change in preference.
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Scenario 1 Scenario 2 Scenario 3

Provider size (nj) Missing mechanism Type of PP change

24 108 408 no NAs MCAR MNAR abrupt smooth

IV(PP) 27.5 116.94 451.4 451.4 275.46 238.62 451.4 315.26

IV(PP) cc 27.5 116.94 451.4 451.4 275.46 238.62 451.4 315.26

IV ePP 70.98 94.56 195.37 195.37 112.87 83.84 195.37 234.01

IV ePP (rirs) 60.5 155.12 410.79 410.79 243.22 186.92 410.79 398.32

IV star 25.2 68.51 127.99 127.99 103.04 104.31 127.99 151.95

Table 4.3: F-statistic results for the instrument Z from the first stage regression

model of the TSLS approach. The results are summarized for all scenarios. For

this simulation the treatment decision X with the Abrahamowicz model. This table

summarizes the results of all model-based construction methods for Z.

Scenario 1 Scenario 2

Provider size (nj) Missing mechanism

24 108 408 no NAs MCAR MNAR

IV(PP) 705.35 3181.47 12031.13 12031.13 7232.37 6790.5

IV(PP) cc 705.35 3181.47 12031.13 12031.13 7232.37 6790.5

IV ePP 65.53 22.41 20.64 20.64 6.24 3.13

IV ePP (rirs) 37.28 67.2 208.57 208.57 216.5 216.61

IV star 48.95 111.16 147.16 147.16 129.61 374.26

Table 4.4: F-statistic results for the instrument Z from the first stage regression

model of the TSLS approach. The results are summarized for all scenarios. For

this simulation the treatment decision X is generated using the extended Erte-

faie method. This table summarizes the results of all model-based construction

methods for Z.

With regards to the data availability, results of this simulation study show that the

model-based approaches needed sufficient large amount of prescription data to

estimate the treatment effect without bias. For smaller provider sizes, the rule-

based methods were capable of estimating the treatment effect without bias.

These results are discussed in more detail in Appendix 4.3. Only the construction

method by the Ertefaie method and our extension method were able to adequately

estimate the treatment effect in case of MNAR. Whereby, IV ePP showed only

small bias but larger estimation variance compared to IV ePP (rirs). All model-

based methods where able to produce treatment effects with small bias and ac-
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ceptable estimation variance for most of the scenarios with a change in prefer-

ence. The rule-based methods which use all prescription data within a provider

to construct Z did struggle to estimate the treatment effect as they do not reflect

on the change in PP, especially for small provider sizes. Additionally, the type of

change did not seem to make much of a difference for the estimation performance

for all construction methods.

As Uddin et al. [231] and our own simulation study have concluded, the validity of

a preference-based IV strongly depends on the suitability of the data it is applied

to. If possible, treatment effect estimates from multiple constructions should be

derived and their coherence assessed. [231] In keeping with this spirit, in Section

4.5 we apply all of the rule and model-based construction methods discussed thus

far to look at the comparative efficiency of two oral type 2 diabetes treatments.

4.5 Applied analysis: comparative effectiveness

assessment of two treatments for type 2

diabetes

Type 2 diabetes (T2D) is a serious progressive metabolic disorder, characterized

by hyperglycaemia and with an inherent risk of micro- and macrovascular compli-

cations. [114] Treatment mainly focuses on the control of blood glucose measured

by the maintenance of glycated haemoglobin (HbA1c) levels. [126, 235] HbA1c

level management is controlled by lifestyle changes and glucose-lowering agents.

Two increasingly prescribed glucose-lowering agents are Sodium-glucose Co-

transporter-2 Inhibitors (SGLT2i) and Dipeptidyl peptidase-4 Inhibitors. [126, 127]

Although head-to-head RCT data suggest that the average glucose-lowering effi-

cacy of both therapies is approximately similar [236], estimates are derived from

highly selected cohorts which are not representative of the wider T2D population.

This case study aimed to apply different IV methods in a real-world comparative

effectiveness evaluation of the glucose-lowering efficacy of both therapies in an

unselected T2D population. For this analysis different IVs for the preference of

prescribing SGLT2i over DPP4i were constructed and applied. IV construction
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took place at the level of the GP practice in UK routine clinical data. UK routine

clinical data contain key features of direct relevance to the methods discussed

thus far, namely: (1) substantial between practice variation in preference for each

drug even when patient covariates are taken into account; (2) evidence of a trend

in prescription preference in favour of SGLT2i over time; and (3) missing data in

key patient covariates that one would ideally like to adjust for. Figure 4.7 and

4.8 contain further information about the prescription trends between 2013-2020

and the prescription variation of SGLT2i between providers. Figure 4.7 highlights

the increased prescribing of SGLT2i in recent years, which likely reflects their

greater prominence in T2D treatment guidelines due to an accumulation of ev-

idence on their cardiorenal benefits. Each circle in Figure 4.8 represents the

proportion of SGLT2i prescriptions within a provider, relative to all other T2D oral

agent prescriptions. Prescriptions of SGLT2i vary greatly between providers. As

prescription of T2D agents is mostly done by primary care practices in the UK and

not by specialised practices, a clustering of patients with specific characteristics

is unlikely. This gives us confidence that a preference-based IV can be applied

with this data. [80, 92] A similar study on the cardiovascular safety profile of

Sulfonylureas using provider prescription preference with primary care data from

Scotland was conduced by Wang et al. [237]. For this analysis Z was constructed

using IV prevbpatient with b = 10 or all prescriptions of the previous 365 days.
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Figure 4.7: Prescribing trends of T2D oral agents in the study population data in

the years 2013 to 2020. The trends are described by the yearly percentage of

prescription of each agent respectively and relative to all T2D oral agent prescrip-

tions.

Figure 4.8: Prescription variation of SGLT2i between all practices in the study

population. Each circle represents the proportion of SGLT2i relative to all pre-

scriptions of T2D oral agents within a practice. The practices are clustered within

their corresponding region for readability of the plot only.
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4.5.1 Study Population and Data preparation

We used routine data from the Clinical Practice Research Datalink (CPRD) Au-

rum (download November 2021). [200] The study cohort of identified people

with T2D included patients who initiated either SGLT2i (NTx = 77229) or DPP4i

(NCt = 109608) between 2013 and 2020. A protocol on the identification strategy

of people with T2D is explained in Rodgers et al. [203]. CPRD is a large source

of primary healthcare data and encompasses 6.9% of the population in the UK.

Furthermore, it is considered to be representative of the UK population regarding

age, sex and ethnicity. [200] The study cohort comprised people with T2D initiat-

ing either SGLT2i (NTx = 77229) or DPP4i (NCt = 109608) between 2013 and 2020

who had baseline HbA1c 53-120 mmol/mol and had an estimated glomerular fil-

tration rate (eGFR) ≥ 45mL/min/1.73m2. The chosen HbA1c range represents

the lower threshold for glucose-lowering medication initiation in clinical guide-

lines and for severe hyperglycemia. SGLT2i’s were contraindicated in the UK

in individuals with eGFR < 45mL/min/1.73m2 and not licensed for use below this

threshold for the majority of the study period. CPRD data extraction followed our

previously published protocol. [203] Baseline clinical characteristics (measured

confounders) are reported in Table 4.5 for each drug arm, and were included in

the outcome model of 12 month achieved HbA1c (mmol/mol), closest value to 12

months in the 9-15 months after treatment initiation, on unchanged therapy. Each

practice treated on average 132 individuals with either drug over the study period.

A small number of practices treated only 1 or 2 patients with either treatment and

the maximum number of individuals treated by a practice was 1911.

Variable DPP4i SGLT2i

NCt = 109608 NTx = 77229

HbA1c (mmol/mol) 73.2 (14.1) 77.2 (14.8)

BMI (kg/m2) 31.9 (6.58) 33.8 (6.82)

eGFR (ml/min/1.73m2) 87.7 (18.8) 94.8 (15.1)

ALT (U/L) 31.7 (19.4) 34.5 (20.1)

Age (years) 63.0 (12.5) 58.3 (10.5)

T2D duration (years) 9.01 (6.54) 9.84 (6.34)
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Variable DPP4i SGLT2i

NCt = 109608 NTx = 77229

Sex

female 43973 (40.1%) 30022 (38.9%)

male 65635 (59.9%) 47207 (61.1%)

Year of treatment prescription

2013 12651 (11.54%) 1254 (1.62%)

2014 13038 (11.9%) 5537 (7.17%)

2015 14832 (13.53%) 10155 (13.15%)

2016 16704 (15.24%) 11121 (14.4%)

2017 16960 (15.47%) 12398 (16.05%)

2018 16326 (14.89%) 14325 (18.55%)

2019 13969 (12.74%) 15862 (20.54%)

2020 5128 (4.68%) 6577 (8.52%)

Ethnicity

White 84068 (76.7%) 59393 (76.9%)

South Asian 15026 (13.7%) 10963 (14.2%)

Black 5922 (5.4%) 3352 (4.3%)

Other 1647 (1.5%) 1148 (1.5%)

Mixed 1063 (1.0%) 775 (1.0%)

Deprivation 5.91 (2.85) 5.89 (2.86)

Smoking status

Active smoker 17771 (16.2%) 12744 (16.5%)

Ex-smoker 58610 (53.5%) 41860 (54.2%)

Non-smoker 27859 (25.4%) 19451 (25.2%)

Number of concurrent treatments

1+ 11253 (10.3%) 4293 (5.6%)

2+ 63519 (58.0%) 33783 (43.7%)

3+ 34836 (31.8%) 39153 (50.7%)
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Variable DPP4i SGLT2i

NCt = 109608 NTx = 77229

Line of treatment

1+ 2461 (2.2%) 571 (0.7%)

2+ 43887 (40.0%) 14628 (18.9%)

3+ 44498 (40.6%) 21041 (27.2%)

4+ 18762 (17.1%) 40989 (53.1%)

Patients ever taken Insulin

yes 5312 (4.85%) 10691 (13.84%)

Table 4.5: Baseline characteristics of the CPRD T2D cohort for patients starting

DPP4i (NCt = 109608) or SGLT2i (NTx = 77229) after 2013. Values are shown in

mean (standard deviation) unless otherwise stated. Abbreviations: HbA1c (gly-

cated haemoglobin), BMI (body mass index), eGFR (estimated glomerular rate),

measured using the CKD-EPI Creatinine equation (2021), ALT (alanine amino-

transferase), T2D (type 2 diabetes). Furthermore, deprivation was measured

using the English Index of Multiple Deprivation (IMD) decile (1=most deprived,

10=least deprived).

Further data preparation of the study population was needed in order to apply

all construction methods of Z and the TSLS IV estimation approach. For all con-

struction methods a complete case dataset without missingness on the outcome

variable was required. Additionally, for all construction methods other than the

Ertefaie method and its extension method, a complete case dataset on the mea-

sured confounders was essential. In Table 4.18 in Appendix 4.6 an overview of

the structure of missing values in the study population is given. Each construction

method requires a different minimum number of patients treated by each provider

(nj,min). Providers with too little data are excluded from the analysis. A summary

on nj,min together with information about the dataset sizes after exclusion of too

small providers is given in Appendix 4.6 in Table 4.19.
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4.5.2 Results

IV allprevprop

IV prev10patient

IV prev5patient

IV prev2patient

IV prevpatient

IV alldichmedian

IV alldichmean

IV allprop

IV star

IV ePP (rirs)

IV ePP

Observational estimate

-6 -4 -2 0
Difference in HbA1c (mmol/mol)

Figure 4.9: Estimation results of the relative treatment effect of SGLT2i versus

DPP4i on the reduction of HbA1c (mmol/mol). Values smaller than 0 indicate that

SGLT2i has a stronger HbA1c decreasing effect compared to DPP4i. Results are

shown for a multivariable regression analysis (observational estimate) and all IV

estimates employing the construction methods of a preference-based IV.

It was possible to apply all construction methods for the instrument explained in

Section 4.3 in this application case study. Slightly different subsets of the study

population were needed for each construction method due to different require-

ments on complete case data and minimum number of patients treated by each

provider (nj,min). From Table 4.6 it is clear that IV prev10patient used the smallest

dataset for the analysis as this method requires a complete case dataset on the

outcome variable and measured confounders and requires nj,min > 11. Addition-

ally, the data of the first 10 patients treated by each practice were excluded from

the IV estimation as Z cannot be calculated for these patients.

The estimation results for the application case study are given in Figure 4.9

together with 95% confidence intervals (CIs). CIs are taken from the outcome

model, this ignores the uncertainty in the first stage model. All approaches show

a consistently greater HbA1c reduction with SGLT2i compared to DPP4i. Com-

pared with the other approaches, this difference is attenuated using the Erte-
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faie method and our extension method. From the simulation outlined in Section

4.4, we have seen that we can trust these methods to account for non-ignorable

missingness. As in the simulation study we see that our proposed method esti-

mates the treatment effect with slightly more efficiency compared to IV ePP. All

other methods shown in this plot rely on complete case analysis and therefore

use smaller and potentially more selective datasets regarding patient characteris-

tics. Using complete case analysis can lead to bias if the missingness is MNAR.

[45, 97, 230] Hence, it is possible that by using complete case analysis we ex-

clude patients with certain characteristics and therefore overestimate the relative

treatment effect. In Appendix 4.7 the estimation results for the case study are

given for which all IV construction methods are applied to the same complete

case dataset with nj,min > 11. The results show that IV ePP and IV ePP (rirs) still

lead to significantly smaller relative blood glucose benefit estimate compared to

all of IV construction methods. Additionally, the Ertefaie method and its extension

method utilize slightly different outcome models to estimate the treatment effect

(second stage model of the IV estimation) because both methods only include

confounders which are measured for all patients (Wobs, as explained in Section

4.3.3). As the estimation results for IV ePP and IV ePP (rirs) are in agreement,

this might indicate that changing preferences of providers is less of an issue of

concern in this analysis or that provider sizes are large enough for IV ePP to on

average reflect suitably on PP.

4.6 Discussion

In this paper we conducted a state of the art performance analysis of the known

construction methods for a preference-based instrument. With this study we add

to the already existing literature on the performance evaluation of preference-

based IVs [82, 93, 97, 231] by giving a comprehensive overview over all con-

struction methods and evaluating all methods with respect to three important as-

pects: availability of prescription data within a provider, different missing data

mechanisms for missing data in measured confounders and change in provider

preference over time. Additionally, we proposed an extended version of the con-

struction method by Ertefaie et al. [97] which aimed to combined the ability to deal
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with non-ignorable missingness and change in PP using a random intercept and

random slope model for the construction of Z. A simulation study was conducted

using two different data generation strategies, to evaluate the performance inde-

pendent of a specific generation process for X that might benefit certain methods.

Furthermore, all construction methods were showcased with a real life primary

care dataset in a relative effectiveness study of two T2D oral agents. This case

study outlines which data requirements are needed for each method to be applied

to real life data, such as the necessity for complete case analysis, the exclusion

of data due to insufficient prescription data or the inability to calculate a value for

the proxy instrument Z with a specific construction method.

Our results indicate that most model-based and rule-based construction meth-

ods do not have substantial problems in accounting for a change in provider pref-

erence. An exception from this are the rule-based methods which utilized all

prescription information within a provider (IV allprop and its variations) and can-

not reflect on change in preference appropriately. Our extension method models

preference change with a random intercept random slope model. Results of the

simulation study indicate that the method is able to estimate the treatment ef-

fect without bias. Additionally, in the simulation study and application case study

the extension method estimated the treatment effect more efficiently compared

to its original version proposed by Ertefaie et al. [97]. Especially the perfor-

mance of the more complex model-based approaches depend on the availability

of sufficient data per provider. All model-based methods struggled to estimate

the treatment effect without bias in case of small provider sizes. When apply-

ing a model-based method to real life data the available data within providers is

therefore a crucial consideration. More simple rule-based methods such as IV

prevpatient proposed by Brookhart et al. [92] could be considered as alterna-

tive in case of small datasets. The Ertefaie method and our extension method

are capable of estimating the true treatment effect even in case of non-ignorable

missingness in measured confounders. This makes them favorable in many ob-

servational research studies. Both construction methods will still require the use

of complete case datasets based on the outcome variable, which may also lead

to a selection of patients with specific characteristics and therefore a distortion of

the treatment effect. All in all, the application case study showed the usefulness

152



of triangulating results from different construction methods as proposed by Uddin

et al. [231]. In doing so non-consistent results between the IV estimates can be

discussed and sources of bias in the respective study may be discovered. [9]

This study has some limitations which opens possibilities for further research. We

have only tested the Ertefaie method and our extension on one specific mecha-

nism to generate MNAR. With this, missingness was created based on the out-

come variable value, the missing value itself, an unmeasured confounder and

a provider level influence on missingness. We used the same generation pro-

cess for missingness as in the original paper [97]. It would be valuable to test

both methods on different selection models for MNAR missingness to verify our

findings and to explore sensitivity to miss-specification of the missingness model.

Results of the simulation for the rule-based methods are presented in Appendix

4.3 and 4.4. When applying the construction methods to datasets with differ-

ent provider sizes, the F-statistic results show that IV prevpatient and its varia-

tions are weak instruments with F-statistic values smaller than 10. Acceptable

IV strength was only achieved by considering 5 or more previous prescription in

the IV construction and for large provider sizes of nj = 408. Interestingly, the esti-

mation results for these construction methods did not show weak instrument bias

(Figure 4.12) as we would have expected. Further investigations will help to un-

derstand if the F-statistic results might be misleading for this instrument, maybe

due an introduction of serial autocorrelation between Z and X when using previ-

ous prescriptions to reflect on provider preference. For the application case study

we faced some data limitation using CPRD primary care data on the information

available to construct a proxy for provider preference. Only information on the al-

location of patients to practices was used in this analysis as the Staff ID variable

provided in CPRD might not always reflect on the prescribing practitioner but the

person entering the data. In reality, patients will be treated by different physicians

within a practice with different prescription preference. By constructing a proxy

on practice level, information of prescription pattern will be aggregated which will

lead to measurement bias unless all physicians within a practice have the same

preference.

In summary, our study shows that IV methods using provider preference can
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be a useful tool for causal inference from observational health data, with both

model-based and rule-based construction methods of preference-based instru-

ments performing well in our simulation study as long as changes in provider

preference over time are incorporated. Both the Ertefaie method and our pro-

posed extension method are capable of estimating causal treatment effects even

in case of non-ignorable missingness in measured confounders, and are recom-

mended where sufficient data are available.
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4.7 Appendices

Appendix 4.1 Calculation example for the data generation of a

smooth change in prescribing preference

Figure 4.10 and 4.11 show calculation examples of how the smooth change was

simulated based on Abrahamowicz et al. [93] and applied for the simulation study

explained in Section 4.4. Smooth changes for a provider j changing preference

form treatment A to B and vice versa are shown. In these examples provider

j treats nj = 10 patients, and changes preference after the patient i? = 5 was

treated. The change in preference takes place for Lj = 4 periods/ treated pa-

tients and PPfinal,ji = PPinitial,ji = 0.9. The influence of the change on the treatment

decision βPP,ji during the change period is calculated with formulas (4.7) and (4.8)

respectively, as explained in Section 4.4.

Figure 4.10: Simulation of a smooth change for a provider j changing preference

from treatment A to B.
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Figure 4.11: Simulation of a smooth change for a provider j changing preference

from treatment B to A.

Appendix 4.2 Additional information on the data generation

process

Table 4.6 shows additional information on the data generation process for the sim-

ulation study explained in Section 4.4. The left side of this table shows the vari-

ance of the simulated outcome variable Y and the proportion of patients treated

with Xji = 1 (in %) for the simulation strategy using the Abrahamowicz model to

generate X. The right side of the table shows these results for the simulation

which employs the extended Ertefaie model to simulate X.
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Simulation strategy for X

Abrahamowicz model Extended Ertefaie model

Var(Y) p(Xji = 1)× 100 Var(Y) p(Xji = 1)× 100

Scenario 1

nj = 24 7.798 42.788 6.996 56.394

nj = 108 7.778 42.767 6.992 55.825

nj = 408 7.782 42.462 6.991 56.085

Scenario 2

no NAs 7.782 42.462 6.991 56.085

MCAR 7.783 43.74 6.994 56.302

MNAR 7.783 43.732 6.994 56.301

Scenario 3

abrupt 7.782 42.462

smooth 7.776 41.748

Table 4.6: Additional information on the outcome variance and the proportion

of treated patients for both data generation strategies employed in the simulation

explained in Section 4.4.

Appendix 4.3 Simulation results for rule-based construction

methods

In Section 4.4 a state of the art simulation study is described which focuses on

three important aspects to consider when using provider preference-based IVs:

the availability of prescription data for each provider of the study population, miss-

ing data in the measured confounders and possible change in provider preference

over time. Results summary outlined in Section 4.4 focused on the model-based

construction methods of Z. The additional results for all rule-based methods in-

troduced in Section 4.3 are given below. Table 4.7 summarized the rule-based IV

construction methods and their abbreviations.
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Abbreviation Method

IV allprop IV based on all prescriptions (proportion)

IV alldichmean IV based on all prescriptions (dichotomized with mean)

IV alldichmedian IV based on all prescriptions (dichotomized with median)

IV prevpatient IV based on previous prescription

IV prev2patient IV based on previous 2 prescriptions

IV prev5patient IV based on previous 5 prescriptions

IV prev10patient IV based on previous 10 prescriptions

IV allprevprop IV based on all previous prescriptions

Table 4.7: Summary of rule-based construction methods applied in the simulation

and their abbreviations.

Figure 4.12: Estimation results of scenario 1: change in provider size. Panel A:

estimation results for the data generation process using the Abrahamowicz model.

Panel B: estimation results for the data generation process using the extended

Ertefaie model to simulate change in preference. Results are summarized for the

rule-based construction methods of Z.

For scenario 1 and in Panel A, the construction methods which use a subset of

previous prescriptions are unbiased for larger nj as they can reflect on a change

in PP. We do not see and improvement of the estimation variance when including

more previous prescription data in the construction of Z. But the F-statistic results

in Table 4.8 reflects that including more previous patient in the construction of Z
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leads to stronger instruments. Similar results have been shown by Uddin et al.

[231]. They concluded that IV prev10patient outperformed IV prev5patient and

IV prevpatient with regards to strength. In contrast, IV allprop and its variations

cannot reflect on PP because all prescription data within a provider is used simul-

taneously for the construction of Z. The estimation results are biased for nj = 24

and nj = 108. In Panel B, the results for the simulation strategy using the extended

Ertefaie model to simulate X are given. The results show generally larger estima-

tion variance for methods using a subset of previous prescriptions and for smaller

nj. For larger nj the estimation variance look similar over all methods. As for the

first simulation strategy, methods using all prescription information to construct Z

are biased even for larger nj. This results is also reflected in their coverage rates

summarized in Table 4.13.

Figure 4.13: Estimation results of scenario 2: missing data mechanisms. Panel A:

estimation results for the data generation process using the Abrahamowicz model.

Panel B: estimation results for the data generation process using the extended

Ertefaie model to simulate change in preference. Results are summarized for the

rule-based construction methods of Z.

For scenario 2, all model-based construction methods result in biased treatment

effect estimations in case of non-ignorable missingness. These results hold for

both stimulation strategies.
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Figure 4.14: Estimation results of scenario 3: type of preference change. Esti-

mation results for the data generation process using the Abrahamowicz model.

Results are summarized for the rule-based construction methods of Z.

For scenario 3, the estimation results for the rule-based methods are consistent

for both types of change, similarly to the results of the model-based construction

methods. As in scenario 1, we see bias for IV allprop and its variations as they

do not account for a change in preference at all, but the bias is similar for both

change types.
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Scenario 1 Scenario 2

Provider size (nj) Missing mechanism

24 108 408 no NAs MCAR MNAR

IV allprop 75.26 29.05 26.43 26.43 52.03 93.93

IV alldichmean 51.7 18.79 17 17 33.91 62.63

IV alldichmedian 50.16 18.4 16.8 16.8 33.55 63.38

IV prevpatient 8.2 44.95 186.92 186.92 46.36 62.37

IV prev2patient 9.05 45.77 190.14 190.14 41.15 60.2

IV prev5patient 8.12 44.32 156.08 156.08 39.72 65.6

IV prev10patient 7.42 37.61 136.51 136.51 39.07 74.18

IV allprevprop 3.21 10.25 90.62 90.62 39.61 213.96

Table 4.9: F-statistic results for the instrument Z from the first stage regression

model of the TSLS approach. The results are summarized for all scenarios. For

this simulation the treatment decision X is generated using the extended Ertefaie

model. This table summarized the results of all rule-based construction methods

for Z.
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Appendix 4.4 Additional estimation performance results for all

construction methods and all simulation scenarios

In the following additional estimation performance measures for the simulation

study are summarized. Results on the bias, standard error (SE) coverage (in

%) and root mean squared error (RMSE) are given for all scenarios and proxy

measure construction methods.

Method nj Bias SE Coverage RMSE

Obs. estimate

24 1.5552 0.0083 0 1.5596

108 1.545 0.0041 0 1.5461

408 1.5427 0.0026 0 1.5431

IV(PP)

24 -0.0119 0.0236 98.5 0.3331

108 -0.0173 0.0109 98 0.1548

408 -0.0149 0.0061 97.5 0.0867

IV(PP) cc

24 -0.0119 0.0236 98.5 0.3331

108 -0.0173 0.0109 98 0.1548

408 -0.0149 0.0061 97.5 0.0867

IV ePP

24 0.4321 0.0258 74 0.5649

108 0.1196 0.011 96.5 0.1957

408 0.0207 0.0065 95.5 0.0942

IV ePP (rirs)

24 0.3987 0.0285 75.5 0.5664

108 0.1681 0.0111 84 0.2298

408 0.0355 0.0061 94.5 0.0933

IV star

24 0.2462 0.0248 93 0.4281

108 0.1111 0.0119 93.5 0.2007

408 0.0169 0.0064 96 0.0918

IV allprop

24 0.4641 0.0228 71 0.5649

108 0.12 0.0111 95.5 0.1968

408 0.0287 0.0064 94.5 0.0948

IV alldichmean

24 0.3329 0.0241 87 0.476

108 0.0766 0.0112 96.5 0.1759

408 0.0119 0.0066 95 0.0932
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Method nj Bias SE Coverage RMSE

IV alldichmedian

24 0.3259 0.0243 87.5 0.473

108 0.0758 0.0113 96.5 0.1759

408 0.0119 0.0066 95 0.0938

IV prevpatient

0.0022 0.0265 98.5 0.3735

108 -0.0166 0.0119 97.5 0.1691

408 -0.0179 0.0067 97.5 0.0964

IV prev2patient

24 -0.0014 0.0272 98 0.3835

108 -0.0178 0.012 97.5 0.1697

408 -0.0182 0.0067 98 0.0959

IV prev5patient

24 0.0001 0.0302 97 0.4256

108 -0.0166 0.0120 98 0.1699

408 -0.0185 0.0067 98 0.0957

IV prev10patient

24 -0.002 0.0334 97 0.4716

108 -0.0171 0.0123 98 0.1737

408 -0.0175 0.0067 97 0.0965

IV allprevprop

24 0.0012 0.0263 98 0.3717

108 -0.0154 0.0117 97.5 0.1664

408 -0.0173 0.0066 97.5 0.0949

Table 4.10: Summary of performance measures for scenario 1. For this simula-

tion the treatment decision X is generated using the Abrahamowicz model.

Method Missing mechanism Bias SE Coverage RMSE

obs. estimate

no NAs 1.5427 0.0026 0 1.5431

MCAR 1.5508 0.0029 0 1.5513

MNAR 1.6638 0.0032 0 1.6644

IV(PP)

no NAs -0.0149 0.0061 97.5 0.0867

MCAR -0.0143 0.0063 96 0.0893

MNAR -0.0143 0.0063 0 0.0893

IV(PP) cc

no NAs -0.0149 0.0061 97.5 0.0867

MCAR -0.0109 0.0082 96 0.1157

MNAR 1.0428 0.013 96 1.0588
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Method Missing mechanism Bias SE Coverage RMSE

IV ePP

no NAs 0.0207 0.0065 95.5 0.0942

MCAR 0.0712 0.0182 94.5 0.2667

MNAR 0.0402 0.0191 95 0.2729

IV ePP (rirs)

no NAs 0.0355 0.0061 94.5 0.0933

MCAR 0.1206 0.0157 95.5 0.2525

MNAR 0.1063 0.0167 95 0.2586

IV star

no NAs 0.0169 0.0064 96 0.0918

MCAR 0.0518 0.009 95 0.1373

MNAR 1.4479 0.0137 0 1.4607

IV allprop

no NAs 0.0287 0.0064 94.5 0.0948

MCAR 0.0601 0.0085 93 0.1342

MNAR 1.4727 0.0137 0 1.4853

IV alldichmean

no NAs 0.0119 0.0066 95 0.0932

MCAR 0.0349 0.0085 97 0.1253

MNAR 1.386 0.0134 0 1.3988

IV alldichmedian

no NAs 0.0119 0.0066 95 0.0938

MCAR 0.0339 0.0085 97 0.1248

MNAR 1.3856 0.0134 0 1.3985

IV prevpatient

no NAs -0.0179 0.0067 97.5 0.0964

MCAR -0.0117 0.0089 95 0.1256

MNAR 1.1966 0.0132 0 1.2109

IV prev2patient

no NAs -0.0182 0.0067 98 0.0959

MCAR -0.0112 0.0089 95.5 0.1257

MNAR 1.2198 0.013 0 1.2335

IV prev5patient

no NAs -0.0185 0.0067 98 0.0957

MCAR -0.0112 0.0089 95 0.1261

MNAR 1.2689 0.0126 0 1.2813

IV prev10patient

no NAs -0.0175 0.0067 97 0.0965

MCAR -0.0078 0.009 96.5 0.1265

MNAR 1.3157 0.0128 0 1.328
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Method Missing mechanism Bias SE Coverage RMSE

IV allprevprop

no NAs -0.0173 0.0066 97.5 0.0949

MCAR -0.0112 0.0089 95.5 0.1258

MNAR 1.393 0.0134 0 1.4058

Table 4.11: Summary of performance measures for scenario 2. For this simula-

tion the treatment decision X is generated using the Abrahamowicz model.

Method Change type Bias SE Coverage RMSE

obs. estimate
abrupt 1.5427 0.0026 0 1.5431

smooth 1.5483 0.0026 0 1.5487

IV(PP)
abrupt -0.0149 0.0061 97.5 0.0867

smooth -0.0068 0.0064 97.5 0.0903

IV(PP) cc
abrupt -0.0149 0.0061 97.5 0.0867

smooth -0.0068 0.0064 97.5 0.0903

IV ePP
abrupt 0.0207 0.0065 95.5 0.0942

smooth 0.0255 0.0064 95 0.0941

IV ePP (rirs)
abrupt 0.0355 0.0061 94.5 0.0933

smooth 0.046 0.0063 92 0.1002

IV star
abrupt 0.0169 0.0064 96 0.0918

smooth 0.0318 0.0065 95 0.0968

IV allprop
abrupt 0.0287 0.0064 94.5 0.0948

smooth 0.0371 0.0065 93 0.0988

IV alldichmean
abrupt 0.0119 0.0066 95 0.0932

smooth 0.0207 0.0064 97 0.0931

IV alldichmedian
abrupt 0.0119 0.0066 95 0.0938

smooth 0.0213 0.0065 96.5 0.0936

IV prevpatient
abrupt -0.0179 0.0067 97.5 0.0964

smooth -0.009 0.0066 95 0.0936

IV prev2patient
abrupt -0.0182 0.0067 98 0.0959

smooth -0.0086 0.0066 95 0.0929

IV prev5patient
abrupt -0.0185 0.0067 98 0.0957

smooth -0.0083 0.0066 94.5 0.0936
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Method Change type Bias SE Coverage RMSE

IV prev10patient
abrupt -0.0175 0.0067 97 0.0965

smooth -0.0076 0.0066 95.5 0.0936

IV allprevprop
abrupt -0.0173 0.0066 97.5 0.0949

smooth -0.0075 0.0065 9 0.0924

Table 4.12: Summary of performance measures for scenario 3. For this simula-

tion the treatment decision X is generated using the Abrahamowicz model.

Method nj Bias SE Coverage RMSE

obs. estimate

24 0.3568 0.0063 3.5 0.3677

108 0.3664 0.0039 0 0.3705

408 0.3616 0.0027 0 0.3637

IV(PP)

24 -0.0191 0.008 96 0.1138

108 -0.0039 0.0039 94.5 0.0549

408 -0.009 0.002 93.5 0.0303

IV(PP) cc

24 -0.0191 0.008 96 0.1138

108 -0.0039 0.0039 94.5 0.0549

408 -0.009 0.002 93.5 0.0303

IV ePP

24 0.2263 0.3708 92.5 5.235

108 0.293 0.2243 93 3.1779

408 0.1837 0.1109 90.5 1.5754

IV ePP (rirs)

24 0.1751 0.1099 97 1.5605

108 0.1957 0.0726 94 1.0433

408 0.0105 0.044 96.5 0.6201

IV star

24 0.3880 0.0538 95 0.8521

108 0.3638 0.0553 88.5 0.8609

408 0.3506 0.0442 86 0.7155

IV allprop

24 0.5342 0.0394 82 0.7713

108 0.9229 0.0547 78 1.2028

408 0.8371 0.0582 78.5 1.1725

IV alldichmean

24 0.524 0.049 89.5 0.8677

108 0.8589 0.0681 86.5 1.2882

408 0.7379 0.0634 85.5 1.1597
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Method nj Bias SE Coverage RMSE

IV alldichmedian

24 0.5228 0.0483 89.5 0.8583

108 0.874 0.0676 87 1.2934

408 0.7461 0.0652 84 1.1842

IV prevpatient

24 0.0733 0.2228 95 3.1432

108 0.0188 0.0873 96 1.2324

408 -0.0135 0.0529 96 0.7461

IV prev2patient

24 0.071 0.2268 95.5 3.2

108 -0.088 0.1119 95 1.5803

408 -0.017 0.0595 94.5 0.8392

IV prev5patient

24 0.1868 0.3076 96.5 4.3437

108 0.1625 0.0952 96.5 1.3533

408 -0.0259 0.0513 92.5 0.7237

IV prev10patient

24 0.2317 0.4096 96 5.7833

108 -0.1494 0.1164 96.5 1.6494

408 0.0448 0.0558 93.5 0.7888

IV allprevprop

24 -0.0751 0.2498 98 3.525

108 0.2378 0.158 96.5 2.2412

408 0.0382 0.0677 94 0.9563

Table 4.13: Summary of performance measures for scenario 1. For this simula-

tion the treatment decision X is generated using the extended Ertefaie model.

Method Missing mechanism Bias SE Coverage RMSE

obs. estimate

no NAs 0.3568 0.0063 3.5 0.3677

MCAR 0.3664 0.0039 0 0.3705

MNAR 0.3616 0.0027 0 0.3637

IV(PP)

no NAs -0.0191 0.008 96 0.1138

MCAR -0.0039 0.0039 94.5 0.0549

MNAR -0.009 0.002 93.5 0.0303

IV(PP) cc

no NAs -0.0191 0.008 96 0.1138

MCAR -0.0039 0.0039 94.5 0.0549

MNAR -0.009 0.002 93.5 0.0303
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Method Missing mechanism Bias SE Coverage RMSE

IV ePP

no NAs 0.2263 0.3708 92.5 5.235

MCAR 0.293 0.2243 93 3.1779

MNAR 0.1837 0.1109 90.5 1.5754

IV ePP (rirs)

no NAs 0.1751 0.1099 97 1.5605

MCAR 0.1957 0.0726 94 1.0433

MNAR 0.0105 0.044 96.5 0.6201

IV star

no NAs 0.388 0.0538 95 0.8521

MCAR 0.3638 0.0553 88.5 0.8609

MNAR 0.3506 0.0442 86 0.7155

IV allprop

no NAs 0.5342 0.0394 82 0.7713

MCAR 0.9229 0.0547 78 1.2028

MNAR 0.8371 0.0582 78.5 1.1725

IV alldichmean

no NAs 0.524 0.049 89.5 0.8677

MCAR 0.8589 0.0681 86.5 1.2882

MNAR 0.7379 0.0634 85.5 1.1597

IV alldichmedian

no NAs 0.5228 0.0483 89.5 0.8583

MCAR 0.874 0.0676 87 1.2934

MNAR 0.7461 0.0652 84 1.1842

IV prevpatient

no NAs 0.0733 0.2228 95 3.1432

MCAR 0.0188 0.0873 96 1.2324

MNAR -0.0135 0.0529 96 0.7461

IV prev2patient

no NAs 0.0710 0.2268 95.5 3.2

MCAR -0.088 0.1119 95. 1.5803

MNAR -0.017 0.0595 94.5 0.8392

IV prev5patient

no NAs 0.1868 0.3076 96.5 4.3437

MCAR 0.1625 0.0952 96.5 1.3533

MNAR -0.0259 0.0513 92.5 0.7237

IV prev10patient

no NAs 0.2317 0.4096 96 5.7833

MCAR -0.1494 0.1164 96.5 1.6494

MNAR 0.0448 0.0558 93.5 0.7888
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Method Missing mechanism Bias SE Coverage RMSE

IV allprevprop

no NAs -0.0751 0.2498 98 3.525

MCAR 0.2378 0.158 96.5 2.2412

MNAR 0.0382 0.0677 94 0.9563

Table 4.14: Summary of performance measures for scenario 2. For this simula-

tion the treatment decision X is generated using the extended Ertefaie model.
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Appendix 4.5 Simulation study on the classification performance

of the Abrahamowicz method

The Abrahamowicz method aims to determine which provider change their pre-

scription preferences and tries to identify the change time i? for those provider.

Here we present the results of a Monte Carlo simulation study to evaluate the

performance of this approach. The simulation was conducted using R studio

(version 4.2.1). The data generation process is explained in Section 4.4. In 200

simulation runs, study populations of J = 200 providers with nj = 10, 50, 100, 500,

1000 patients are generated. The treatment decision is simulated using model

(4.6). Change in PP is simulated either as abrupt change or as smooth change,

explained in Section 4.4.1 or by Abrahamowicz et al. [93].

The classification performance of the algorithm is assessed with commonly used

measures calculated from the Confusion matrix. This matrix summarizes the

numbers of providers simulated to change PP versus the number of providers

that have been identified to change PP by the algorithm to change PP and is

given in Table 4.15.

Identified

Change No change

Change True positives (TP) False negatives (FN)
Simulated

No change False positives (FP) True negatives (TN)

Table 4.15: Confusion matrix contrasting the number of providers simulated with

and without a change in PP versus the number of provider that have been identi-

fied by the algorithm.

A detailed explanation of the Confusion matrix for binary classifiers and the perfor-

mance measures derived from this matrix can be found for example in Sokolova

and Lapalme [238] and a short summary is given here in Table 4.16.
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Performance measures Formula

Accuracy TP+TN
TP+FN+FP+TN

True positive rate (TPR) TP
TP+FN

True negative rate (TNR) TN
TN+FP

False positive rate (FPR) FP
FP+TN

False negative rate (FNR) FN
FN+TP

Positive predictive value (PPV) TP
TP+FP

Negative predictive value (NPV) TN
TN+FN

Table 4.16: Summary of the performance measures used to assess the classifi-

cation performance of the Abrahamowicz method.

The simulation results for abrupt change are given in Figure 4.15. Here, the

performance measures are summarized in % and as average over all simulation

runs for different numbers of patients treated by each provider.

Figure 4.15: Assessment of the classification performance of the Abrahamowicz

method for a simulated abrupt change.

The overall effectiveness of the classifier approach is measured with the accu-

racy. For the abrupt change and over the different sample sizes nj the accuracy

is on average around 50%. From all provider simulated to have a change in

PPji = 40% are on average identified by the algorithm as indicated with the TPR.
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The TNR states that on average 67% of the provider who are simulated not to

have a change in PP are identified. These results appear to be consistent over

different provider sizes. The PPV reflects on the probability that a provider which

has been identified to change PP also had a change simulated and is on average

around 60% different provider sizes. Equivalently, the NPV is on average around

45%.

For the simulation employing a smooth change in PP as explain in Section 4.4,

the results are visualized in Figure 4.16.

Figure 4.16: Assessment of the classification performance Abrahamowicz

method for a simulated smooth change.

They are consistent with the results of the abrupt change simulation giving con-

fidence that the algorithm does not perform worse if change takes place over a

longer period. On average the accuracy is around 50% with a TPR of 45% and

a TNR of around 65%. The probability to correctly predict provider with a change

and without a change are PPV = 60% and NPV = 45% respectively. The results

stay also consistent over different provider sizes.

Table 4.17 summarized the mean absolute difference (MAD(i?)) between simu-

lated and identified change time i? over all simulation runs, divided by nj and within
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the group of providers correctly identified as changing preference (true positives).

nj

10 50 100 500 1000

MAD(i?)

nj

Abrupt change 0.17 0.26 0.29 0.44 0.47

Smooth change 0.24 0.32 0.37 0.5 0.5

Table 4.17: Mean absolute difference of simulated and identified i?, for the true

positive cases divided by nj.

The results show that relative to the size of the provider nj the precision with which

i? is identified is comparable between the two PP change types.

174



Appendix 4.6 Additional information on the application case

study

A summary of the missing data for the application case study explained in Section

4.5 is given in Table 4.18 for the outcome variable and all measured confounders

with missing values. For most of the TSLS estimation, complete case datasets

are necessary, except for the Ertefaie method and its extension method. Addition-

ally, practices with too little data nj for the respective Z construction method are

excluded from the analysis. Based on the original study population and for each

construction method, a separate dataset is therefore prepared to apply to the IV

estimation procedure.

Variable DPP4i SGLT2i Overall

Achieved HbA1c (mmol/mol) 34087 (31.01%) 30189 (39.09%) 64276 (34.4%)

HbA1c (mmol/mol) 11559 (10.5%) 10379 (13.4%) 21938 (11.7%)

BMI (kg/m2) 5689 (5.2%) 3017 (3.9%) 8706 (4.7%)

eGFR (ml/min/1.73m2) 726 (0.7%) 347 (0.4%) 1073 (0.6%)

ALT (U/L) 7513 (6.9%) 4783 (6.2%) 12296 (6.6%)

Ethnicity 1882 (1.7%) 1598 (2.1%) 3480 (1.9%)

Deprivation 63 (0.1%) 45 (0.1%) 108 (0.1%)

Smoking status 5368 (4.9%) 3174 (4.1%) 8542 (4.6%)

Table 4.18: Summary of missing values in the study population (% of records

missing). The summary shows the outcome variable (achieved HbA1c) and all

measured confounders with missing values.
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Method Data size (N) J nj,min Complete case information

Observational estimate 103611 1403 - complete case on Y and W

SGLT2i: 38.79 %

IV ePP 122556 1407 2 complete case for Y

SGLT2i: 38.38 %

IV ePP (rirs) 122556 1407 2 complete case for Y

SGLT2i: 38.38 %

IV star 101377 1364 5 complete case for Y and W

SGLT2i: 38.95 %

IV allprop 103598 1390 2 complete case for Y and W

SGLT2i: 38.79 %

IV alldichmean 103598 1390 2 complete case for Y and W

SGLT2i: 38.79 %

IV alldichmedian 103598 1390 2 complete case for Y and W

SGLT2i: 38.79 %

IV prevpatient 102208 1390 2 complete case for Y and W

SGLT2i: 39.25 %

IV prev2patient 100818 1373 3 complete case for Y and W

SGLT2i: 39.68 %

IV prev5patient 96712 1358 6 complete case for Y and W

SGLT2i: 40.83 %

IV prev10patient 89979 1326 11 complete case for Y and W

SGLT2i: 42.39 %

IV allprevprop 102208 1390 2 complete case for Y and W

SGLT2i: 38.79 %

Table 4.19: Summary of the data preparation for the respective construction

methods and the IV estimation. The data preparation process results in different

study population sizes (N) and number of providers per dataset (J). Addition-

ally, information on the minimum practice size (nj,min) needed ton construct Z and

information on the complete case dataset construction is given.
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Appendix 4.7 Estimation results of the complete case analysis

The estimation results of the application case study outlines in Section 4.5 are

represented in Figure 4.9. These results are estimated using specific datasets for

each of the construction method for Z that depend on the complete case data and

minimum practice size nj,min required for each of the methods. Only IV ePP and IV

ePP (rirs) do not require a complete case dataset on the measured confounders.

The two methods show significantly different estimation results compared to other

IV methods. The analysis was therefore repeated on a complete case dataset

with nj,min > 11 on which all IV construction methods can be applied. Figure 4.17

summarizes the results of this analysis. It is noticeable that IV ePP and IV ePP

(rirs) still lead to significantly smaller relative treatment effect estimates compared

to all other IV construction methods.

IV allprevprop

IV prev10patient

IV prev5patient

IV prev2patient

IV prevpatient

IV alldichmedian

IV alldichmean

IV allprop

IV star

IV ePP (rirs)

IV ePP

Observational estimate

-6 -4 -2 0
Difference in HbA1c (mmol/mol)

Figure 4.17: Estimation results of the relative treatment effect of SGLT2i versus

DPP4i on the reduction of HbA1c (mmol/mol). Values smaller than 0 indicate that

SGLT2i has a stronger HbA1c decreasing effect compared to DPP4i. Results are

shown for a multivariable regression analysis (observational estimate) and all IV

estimates employing the construction methods of a preference-based IV. Estima-

tion procedures was applied on the same complete case dataset with sufficient

treatment prescription data for all IV construction methods.
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Appendix 4.8 Application case study of Chapter 3 revised

Chapter 3 outlined an application case study evaluating the relative risk of expe-

riencing a genital infection on SGLT2i versus DPP4i for people with T2D initiating

the study treatments as second line treatment. We employed a T2D cohort from

the CPRD Gold (download July 2019) database. Estimation of the treatment ef-

fect of interest for this study was done using conventional estimation methods that

account for measured confounders such as multivariable regression model with

and without propensity score matched data (CaT and PSM respectively). Addi-

tionally, several causal estimation method were employed such as the difference-

in-difference approach (DiD) the Instrumental Variable and Control Function ap-

proach (IV and CF) as well as the proposed prior outcome augmented Instrumen-

tal Variable/ Control Function approach (POA-IV/ POA-CF). As preference-based

instrument for this analysis a proxy variable was constructed based on the method

proposed by Brookhart et al. [92] (IV prevpatient).

In the following, the analysis is revised and amended using the preference-based

instrument construction method by Ertefaie et al. [97]. In the simulation study

outlined in this chapter, the Ertefaie method has been proven to be a robust

alternative in constructing a proxy instrument in case of non-ignorable missing

data and was able to perform well under change in prescription preference over

time. These characteristics of the Ertefaie method are of interest for the revised

analysis, as the cohort data include missingness for the baseline characteristics:

HbA1c (mmol/mol), eGFR (mL/min/1.73m2), and BMI (kg/m2). The study outlined

in Chapter 3 therefore relied on a complete case analysis.

For the analysis with the Ertefaie method, provider who only treat one patient

were excluded. After excluding 17 provider with too little prescription data and

4 provider with no fully recorded patient records regarding baseline characteris-

tics, data from 419 provider was used for the analysis. Average number of pa-

tients treated by each provider was 21. The smallest provider treated 2 patients

and the largest provider 108 patients. In the simulation study outlined in this

chapter, model-based construction methods performed better in case of larger

provider sample sizes. Figure 4.18 and Table 4.20 show the results of the CaT,
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PSM, IV prevpatient, DiD (described in Chapter 3) and the results of the Ertefaie

method, IV ePP for consistency comparison of the estimation results in this trian-

gulation framework. Results are shown on risk difference scale derived using the

margins() package [215] as explained in Chapter 3.

Figure 4.18: Estimation results of the revised application case study outlined in

Chapter 3. Results are shown for the of multivariable regression with and without

propensity score matched data (CaT and PSM), difference-in-difference approach

(DiD), IV approach using the preference-based instrument construction method

proposed by Brookhart et al. (IV prevpatient) and the IV approach using the

Ertefaie method (IV ePP) shown with their 95% confidence intervals.

Method Estimate 95% CI SE p-value

CaT 3.22 2.27, 4.16 0.49 3.10× 10−14

PSM 3.95 2.57, 5.33 0.72 5.72× 10−10

IV prevpatient 5.42 2.36, 8.48 2.42 0.0003

DiD 3.91 2.6, 5.21 0.66 7.46× 10−10

IV ePP 4.17 2.31, 6.03 0.95 5.06× 10−6

Table 4.20: Estimation results on risk difference scale (in %) for the revised

application case study of Chapter 3, standard error, and p-value of the estimated

treatment effect.

The estimation results are consistent for all methods shown in the figure and con-

clude that relative risk of experiencing a genital infection is increased on SGLT2is.
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The Ertefaie method is able to estimate the treatment effect more efficiently com-

pared to the revised results of IV prevpatient which is in line with simulation find-

ings outlined in this chapter. Furthermore, IV ePP is able to estimate the relative

risk with comparable efficiency compared to DiD, CaT and PSM. Table 4.21 sum-

marizes the IV strength of IV prevpatient and IV ePP and show that both instru-

ment lead to an F-statistic greater than 10. This gives confidence for a lack of

weak instrument bias in the estimation results.

Models F-statistic

IV prevpatient 345.42

IV ePP 20.82

Table 4.21: Strength of the instrumental variables measured with the F-statistic

of Z for IV prevpatient and IV ePP from the corresponding first stage regression

models and the revised application case study of Chapter 3.
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5.1 Abstract

Objective

Current type 2 diabetes guidelines recommend an individualised approach to

treatment, but lack evidence based guidance for the heterogeneous patient group

of the older adults, particularly in real world data. We aimed to develop a causal

analysis framework to assess the safety and effectiveness profile of Sodium-

glucose Cotransporter-2 Inhibitors (SGLT2i) in this patient group.

Research design and methods

Routine primary care data from the large Clinical Practice Research Datalink UK

cohort, linked to hospital records, was used to compare the relative risk profile and

relative effectiveness of SGLT2i and Dipeptidyl peptidase-4 Inhibitors (DPP4i).

We analysed treatment and adverse effect outcomes in patients initiating SGLT2i

and DPP4i between 2013 and 2020. Analysis was stratified by age <70 years

(SGLT2i n = 66810, DPP4i n = 76172) and ≥70 years (SGLT2i n = 10,419, DPP4i

n = 33,434). Study outcomes were assessed using the Instrumental Variable

method and a proxy measure of prescription preference as instrument.

Results

There was no evidence of an increased risk of volume depletion, poor micturition

control, urinary frequency, falls or amputation in people over or under 70 years

initiating SGLT2i compared to DPP4i. Risk of diabetic ketoacidosis (DKA) was

increased with SGLT2i in those ≥70 years (relative risk (RR) 3.82 [CI 95% 1.12,

13.03]), but was not observed in those <70 years (RR 1.12 [CI 95% 0.41, 3.04]).

SGLT2i were associated with a similarly increased risk of genital infection in both

age groups (RR 2.27 [CI 95% 2.03, 2.53] for <70 years; RR years 2.16 [RR CI

95% 1.77, 2.63] for ≥70). In those ≥70 years, HbA1c reduction was similar on

both SGLT2i and DPP4i (HbA1c benefit with SGLT2i: -0.3 mmol/mol [CI 95% -

1.6, 1.1]), but was greater with SGLT2i in those <70 years (-4 mmol/mol [CI 95%

-4.8, -3.1]). Weight reduction was consistently greater with SGLT2i compared to

DPP4i in both age groups.
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Conclusions

Causal analysis using large-scale observational data suggests SGLT2is are effec-

tive and generally safe in older adults, but increase risk of both genital infections

and, rarely, DKA. By extending evidence from RCTs to understand the risk and

benefit profile of SGLT2i to older adults with type 2 diabetes, our study supports

careful prescribing of SGLT2i in this important patient population.

5.2 Introduction

Current type 2 diabetes guidelines recommend an individualised approach to

treatment that takes into account patient preferences, comorbidities, risks from

polypharmacy, and the likelihood of benefiting from long-term interventions, [103,

239] but clear guidance on therapeutic strategies for the management of type 2 di-

abetes in older patients, for example over the age of 70 years, is limited. [113] For

the older patients, specific treatment considerations are likely to be needed, due

to increased comorbidities, age-related changes in physiology and pharmacody-

namics, as well as possible increased propensity to adverse medication effects.

Additionally, due to limited life expectancy, long-term glycaemic control benefits

are less relevant than in younger patients. [133, 140]

Under current guidelines, a large proportion of older type 2 diabetes patients

would be recommended SGLT2i due to their cardiorenal benefits, and irrespective

of patients’ glycaemic control. [103] SGLT2is have well described benefits, par-

ticularly cardiorenal and the promotion of weight loss [161, 182, 240, 241, 242],

but also possible risks, which may limit their use for older patients. [113] Well-

established risks of SGLT2is are genital infections and due to their mode of ac-

tion, volume depletion is possible. [164, 182] These side effects could be of

particular concern for the older adults where incontinence, dehydration and dizzi-

ness could have more severe consequences compared with a younger popula-

tion. [133, 165, 166, 167] Additionally, dehydration or dizziness can also lead

to falls in older adults. [154] Further adverse effects of concerns of SGLT2is are

lower limb amputations [164]. Reports of possible association of SGLT2i and DKA

as prompted the FDA [189] and the EMA [190] to issue warnings. DKA is of spe-
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cial concern for older type 2 diabetes patients as they often have long-duration

diabetes causing low residual insulin secretion. Older people may also present

with more frequent acute complications, such as infections, which are additional

risk factors of DKA. [162]

In order to develop targeted guidelines for the management of type 2 diabetes in

older adults, strong evidence-based data are needed. [113] However, guidelines

on glycaemic targets, therapeutic interventions and descriptions of risk profiles

are informed by randomized clinical trials (RCTs), which often exclude individuals

over 65 years due to common comorbidities. This means caution is needed when

extrapolating RCT evidence for this patient group. [113, 140, 143] Most RCTs are

not designed for the older patient population and do not take functional status into

account, so do not represent a real-world population of older type 2 diabetes pa-

tients. [189] Observational studies of older type 2 diabetes patient population are

rare but have the potential to provide insights that cannot necessarily be given by

RCTs. Previous post-hoc RCT analyses [165, 175, 176, 243] have examined risks

in older patients, but have very small sample sizes for this patient subgroup, and

therefore might suffer from potential outlier effects. [165] Also, without detailed

data on patient characteristics, comorbidities and concomitant medications the

results from observational studies may be affected by unmeasured confounding

which can bias treatment effect results. [154]

Given the lack of robust studies, we aimed to examine the relative risks and ben-

efits of SGLT2i in older patients, over 70 years, compared to the most commonly

prescribed second-line diabetes drug class, DPP4i using routine primary care

data. We employ an Instrumental Variable approach, exploiting systematic vari-

ation in practitioners’ prescribing preference as the instrument, to estimate the

impact of receiving SGLT2i compared to DPP4i on a range of adverse effects and

important treatment outcomes, analogous to a randomised controlled trial.
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5.3 Methods

5.3.1 Study design and participants

In this retrospective cohort study, the UK routine primary care data were ac-

cessed from Clinical Research Datalink (CPRD) Aurum (November 2020 down-

load). CPRD is a UK representative sample covering approximately 6.9% of the

population. [200] CPRD Aurum was linked to Hospital Episode Statistics (HES),

Office for National Statistics (ONS) death registrations and patient-level Index of

Multiple Deprivation (IMD). Type 2 diabetes patients were identified according to

a previously published protocol [203] based on the presence of a diagnostic code

for diabetes and the prescription of one or more glucose lowering medications.

Type 1 diabetes and other types of diabetes were excluded. The analysis included

new users of SGLT2i (Canagliflozin, Dapagliflozin, Empagliflozin, Ertugliflozin),

initiating treatment after 1st January 2013 and with an identifiable date of type 2

diabetes diagnosis. The comparison cohort was new users of DPP4i (Alogliptin,

Linagliptin, Sitagliptin, Saxagliptin, Vildagliptin), as these agents represent the

most commonly prescribed drug class after metformin in the UK, and have no

known association with the SGLT2i-associated adverse effects of interest evalu-

ated in this study. All available follow-up data was considered in the analysis up to

the point of data extraction. Patients with a baseline HbA1c outside of the range

53-120 mmol/mol were excluded from the analysis, reflecting on the threshold

for glucose-lowering medication initiation in clinical guidelines and severe hyper-

glycemia. Additionally, patients with renal impairment indicated with a glomerular

filtration rate (eGFR) of less than 45 mL/min/1.73 m2 were excluded, as SGLT2i

was not licensed for use below this threshold for the majority of the study period.

Further exclusion criteria are summarized in Figure 5.1. Our cohort was split into

a younger (<70 years at treatment initiation) and older (≥70 years) population.
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5.3.2 Outcomes

Adverse effects (AE) included in analysis were genital infections, micturition con-

trol, volume depletion and dehydration, urinary frequency, falls, lower limb ampu-

tation and diabetic ketoacidosis. An occurrence of each AE was measured up to

3 years after treatment initiation and censoring of the follow-up time was imple-

mented in case of a discontinuation of the study treatment or start of the com-

parison study treatment. Individuals were therefore followed up until the earliest

of: date of the outcome of interest, discontinuation of the study treatment, start of

comparison study treatment, date of practice deregistration/death, end of study

period, or 3 years. Occurrences of AEs were identified using diagnosis code lists

published at: https://github.com/Exeter-Diabetes/CPRD-Codelists. Genital

infections were identified with either a diagnosis code for a specific genital infec-

tion (e.g. candida vaginitis or vulvo-vaginitis in women, balanitis, balanoposthi-

tis in men), a prescription for antifungal therapy used specifically to treat genital

infections (e.g. an antifungal vaginal pessary), or a non-specific diagnosis of

‘thrush’ with a topical antifungal prescribed on the same day. [157] The diag-

nosis codes to identify amputation AEs were taken from Pearson-Stuttard et al.

[244]. DKA was identified using HES hospitalization data. Treatment outcomes to

assess relative effectiveness of SGLT2i included achieved glycated haemoglobin

(HbA1c in mmol/mol) and weight (kg). These outcome measurements were taken

as the closest recorded value to 12 months post treatment initiation, within a win-

dow of 3 to 15 months.

5.3.3 Covariates

Measured covariates for all outcome models were extracted following our previ-

ous protocol [203] and included general information about patients, such as so-

ciodemographic features (age, sex, ethnicity and deprivation) and treatment his-

tory, important biomarkers as well as history of relevant comorbidities. Biomarker

baseline values are defined nearest to treatment initiation up to 2 years before and

7 days after initiation. Initiation of relevant additional treatments such as diuretics,

have been observed up to 3 months before treatment initiation and comorbidities

have been characterizes to be within 1 year, 1-5 years or >5 to treatment initia-

tion. A summary of all covariates is given in Table 5.1, a cohort description and
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a comprehensive overview of the biomarker and comorbidity definitions are given

here: https://github.com/Exeter-Diabetes/CPRD-Cohort-scripts.

5.3.4 Statistical methods

Unadjusted analysis

In order to contrast causal effect results, absolute risk results for AEs were calcu-

lated form survival models without adjusting for measured baseline characteris-

tics. Furthermore, mean achieved treatment outcomes for both treatment and age

groups were calculated as the sample average of achieved HbA1c (mmol/mol)

and weight (kg).

Causal analysis

When analysing treatment effects from observational data, bias due to confound-

ing by indication is a major challenge. The confounding pre-treatment variables

affect the outcome and the treatment decision simultaneously. As a result, it is

possible that they differ in distribution between patient who received the study

and comparator treatment. [245] Traditional methods such as propensity score

matching can mitigate the risk of bias by adjusting for measured confounders,

but they cannot control for variables that are not recorded in the data which can

lead to unmeasured confounding. [245] With the Instrumental Variable (IV) ap-

proach and given a suitable instrument, treatment effects can be estimated in the

presence of residual or unmeasured confounding without bias. [246] The basic

idea of the IV approach is that a suitable IV is used to extract variation of the

treatment that is free of unmeasured confounding. This variation is then utilized

to estimate the treatment effect. [245] We employ the IV approach proposed by

Ertefaie et al. [97] which makes use of observed treatment behaviour and covari-

ates to construct a proxy for prescription preference. Additionally, the method is

capable of estimating the treatment effect without bias even in the presence of

non-ignorable missingness in covariates. Our analysis did therefore not rely on

a possibly selective complete case dataset. A more detailed explanation of this

approach and a description of the assumed data structure for this study can be

found in the Appendix 5.1.
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All binary AE outcomes were modelled using generalized Poisson regression

with follow-up time (in days) as offset. For the estimation of the treatment ef-

fect of SGLT2i on achieved HbA1c and weight a linear outcome model was used.

Models used in the IV estimation and for all outcomes of interest were adjusted

using slightly different sets of relevant covariates. A summary of all models is

provided in the Appendix 5.2.

Additionally, conventional multivariable regression models utilizing unmatched

and propensity score matched data as well as the Instrumental Variable method

based on the preference-based instrument constructed with the previous prescrip-

tion for each patient are applied to estimate the treatment effects. Comparing the

estimation results of these methods will make it possible to judge the robustness

of the IV method applied in the main analysis. Further details on this triangulation

analysis and discussion of the results are provided in Appendix 5.6.

All analyses outlined in this chapter has been conducted in R Studio (version

4.2.1), online supplementary material including R codes for the estimation of the

outcome models is available here: https://github.com/Exeter-Diabetes/CPRD-

Laura-SGLT2i-in-older-adults.

5.3.5 Sensitivity analysis

As incidence rates were low for volume depletion/ dehydration, micturition control

and urinary frequency, we derived a composite outcome for osmotic symptoms

for the causal analysis. We also constructed a composite outcome for falls and

lower limb fracture. Not all falls might be coded in the CPRD data and lower limb

fractures are often caused by falls. Our code list for lower limb fractures excludes

fractures of the foot but includes hip fractures which are caused 98% of the times

by a fall. [247] As additional sensitivity analysis, censoring was applied in any

case of treatment regime change, meaning we additionally censored patients who

switched or added any other type 2 diabetes treatments other than the study

treatments. We also conducted an analysis using 1 year maximum follow-up time

for AE outcomes to assess short term risks. The analysis was done additionally,
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on a cohort which excluded the second study period of all patients initiating both

study treatments. For the main analysis, these patients contributed with both

respective study periods.

5.4 Results

Figure 5.1 represents a flow chart of the study cohort selection and the applied

exclusion criteria. The study cohort included 186835 study periods from 161825

patients (25010 patients initiated both treatments). There were 142982 study

periods included in the analysis for adults under 70 years (n = 76172 SGLT2i, n =

66810 DPP4i) and 43853 study periods for adults 70 years and older (n = 10419

SGLT2i, n = 33434 DPP4i). Table 5.1 shows the baseline characteristics of the

study population by treatment arm and age group. In the Appendix 5.3 a more

detailed summary of comorbidity history is provided as well as a summary of the

amount of missing data in the respective covariates. Furthermore, the person-

years and average follow-up time (in years) are also summarized for each AE

outcome in the Appendix 5.3.

SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

Age (years) 55.8 (8.83) 74.5 (3.81) 56.7 (8.98) 77.3 (5.37)

Sex

Male 40863 (61.2) 6344 (60.9) 47185 (61.9) 18449 (55.2)

Female 25947 (38.8) 4075 (39.1) 28987 (38.1) 14985 (44.8)

HbA1c (mmol/mol) 77.6 (15.0) 74.8 (13.8) 74.1 (14.5) 71.0 (12.9)

eGFR (ml/min/1.73m2) 97.1 (14.3) 80.4 (12.5) 94.1 (16.4) 73.1 (15.4)

ALT (U/L) 35.6 (20.5) 27.6 (15.2) 34.8 (20.5) 24.9 (14.6)

BMI (kg/m2) 34.2 (6.9) 31.6 (5.8) 32.7 (6.8) 30.0 (5.6)

Weight (kg) 98.9 (22.1) 89.2 (18.3) 94.1 (21.4) 83.3 (17.5)

Insulin ever taken

Yes 57484 (86) 9054 (86.9) 72872 (95.7) 31423 (94)

No 9326 (14) 1365 (13.1) 3300 (4.3) 2011 (6)

T2D duration (years) 9.33 (6.07) 13.2 (6.99) 7.77 (5.7) 11.8 (7.4)

Alogliptin 15088 (19.8) 6901 (20.6)

Linagliptin 14657 (19.2) 10820 (32.3)

Saxagliptin 4507 (5.9) 1725 (5.2)
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SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

Sitagliptin 41281 (54.2) 13717 (41)

Vildagliptin 639 (0.8) 271 (0.8)

Canagliflozin 11307 (16.9) 2177 (20.9)

Dapagliflozin 30253 (45.3) 3701 (35.5)

Empagliflozin 25181 (37.7) 4524 (43.4)

Ertugliflozin 69 (0.1) 17 (0.2)

Number of

concurrent treatments

1 3554 (5.3) 739 (7.1) 5877 (7.7) 5375 (16.1)

2 29891 (44.7) 3892 (37.4) 45043 (59.1) 18475 (55.3)

3+ 33365 (49.9) 5788 (55.6) 25252 (33.2) 9584 (28.7)

Drugline

1 523 (0.8) 48 (0.5) 1404 (1.8) 1057 (3.2)

2 13346 (20) 1282 (12.3) 32001 (42) 11886 (35.6)

3 18475 (27.7) 2566 (24.6) 30650 (40.2) 13847 (41.4)

4+ 34466 (51.6) 6523 (62.6) 12117 (15.9) 6644 (19.9)

Year of

treatment initiation

2013 1127 (1.7) 127 (1.2) 9305 (12.2) 3345 (10)

2014 4971 (7.4) 566 (5.4) 9499 (12.5) 3539 (10.6)

2015 8910 (13.3) 1245 (11.9) 10542 (13.8) 4290 (12.8)

2016 9805 (14.7) 1316 (12.6) 11745 (15.4) 4959 (14.8)

2017 10904 (16.3) 1494 (14.3) 11659 (15.3) 5300 (15.9)

2018 12271 (18.4) 2054 (19.7) 11016 (14.5) 5310 (15.9)

2019 13320 (19.9) 2542 (24.4) 9059 (11.9) 4910 (14.7)

2020 5502 (8.2) 1075 (10.3) 3347 (4.4) 1781 (5.3)

Ethnicity

White 50321 (75.3) 9072 (87.1) 55279 (72.6) 28787 (86.1)

South Asian 10172 (15.2) 791 (7.6) 12576 (16.5) 2450 (7.3)

Black 3086 (4.6) 266 (2.6) 4580 (6) 1342 (4)

Other 1041 (1.6) 107 (1) 1348 (1.8) 299 (0.9)

Mixed 722 (1.1) 53 (0.5) 863 (1.1) 200 (0.6)
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SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

Deprivation index

1 5127 (7.7) 1169 (11.2) 5150 (6.8) 3516 (10.5)

2 5476 (8.2) 1169 (11.2) 5622 (7.4) 3602 (10.8)

3 5673 (8.5) 1134 (10.9) 6212 (8.2) 3633 (10.9)

4 5707 (8.5) 1140 (10.9) 6410 (8.4) 3368 (10.1)

5 6101 (9.1) 1015 (9.7) 6581 (8.6) 3402 (10.2)

6 6679 (10) 1018 (9.8) 7616 (10) 3407 (10.2)

7 7581 (11.3) 1078 (10.3) 8645 (11.3) 3539 (10.6)

8 7691 (11.5) 925 (8.9) 9313 (12.2) 3083 (9.2)

9 8425 (12.6) 908 (8.7) 10570 (13.9) 3067 (9.2)

10 8311 (12.4) 857 (8.2) 10013 (13.1) 2794 (8.4)

Smoking status

Active smoker 11793 (17.7) 951 (9.1) 14803 (19.4) 2968 (8.9)

Ex-smoker 35054 (52.5) 6806 (65.3) 37892 (49.7) 20718 (62)

Non-smoker 17275 (25.9) 2176 (20.9) 19927 (26.2) 7930 (23.7)

Loop diuretics 2428 (3.6) 997 (9.6) 3288 (4.3) 4836 (14.5)

Ksparing diuretics 1185 (1.8) 314 (3) 1507 (2) 1298 (3.9)

Thiazide diuretics 7730 (11.6) 1772 (17) 9312 (12.2) 5916 (17.7)

Immunosuppressants 625 (0.9) 144 (1.4) 838 (1.1) 428 (1.3)

Oestrogens 853 (1.3) 69 (0.7) 950 (1.2) 314 (0.9)

Oral steroids 1579 (2.4) 454 (4.4) 2274 (3) 1993 (6)

Statins 48595 (72.7) 8132 (78) 54851 (72) 25313 (75.7)

ACE inhibitors 28655 (42.9) 4714 (45.2) 31242 (41) 14529 (43.5)

History genital infection

Yes 34577 (51.8) 5277 (50.6) 36903 (48.4) 16432 (49.1)

No 32233 (48.2) 5142 (49.4) 39269 (51.6) 17002 (50.9)

History urinary frequency

Yes 6530 (9.8) 1638 (15.7) 7499 (9.8) 5365 (16)

No 60280 (90.2) 8781 (84.3) 68673 (90.2) 28069 (84)

History micturition control

Yes 6002 (9) 1247 (12) 6866 (9) 5059 (15.1)

No 60808 (91) 9172 (88) 69306 (91) 28375 (84.9)

History volume depletion

Yes 5630 (8.4) 1147 (11) 6369 (8.4) 4548 (13.6)

No 61180 (91.6) 9272 (89) 69803 (91.6) 28886 (86.4)
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SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

History benign

prostatehyperplasia

Yes 2200 (3.3) 1448 (13.9) 2963 (3.9) 5057 (15.1)

No 64610 (96.7) 8971 (86.1) 73209 (96.1) 28377 (84.9)

History lower limb fractures

Yes 4650 (7) 851 (8.2) 4948 (6.5) 3061 (9.2)

No 62160 (93) 9568 (91.8) 71224 (93.5) 30373 (90.8)

History falls

Yes 7907 (11.8) 2376 (22.8) 8921 (11.7) 9300 (27.8)

No 58903 (88.2) 8043 (77.2) 67251 (88.3) 24134 (72.2)

History amputation

Yes 333 (0.5) 51 (0.5) 415 (0.5) 282 (0.8)

No 66477 (99.5) 10368 (99.5) 75757 (99.5) 33152 (99.2)

History diabetic

ketoacidosis

Yes 431 (0.6) 31 (0.3) 367 (0.5) 166 (0.5)

No 66379 (99.4) 10388 (99.7) 75805 (99.5) 33268 (99.5)

History dementia

Yes 153 (0.2) 189 (1.8) 274 (0.4) 1674 (5)

No 66657 (99.8) 10230 (98.2) 75898 (99.6) 31760 (95)

History cancer

Yes 3833 (5.7) 1653 (15.9) 5160 (6.8) 6415 (19.2)

No 62977 (94.3) 8766 (84.1) 71012 (93.2) 27019 (80.8)

History asthma

Yes 13678 (20.5) 1962 (18.8) 14372 (18.9) 6247 (18.7)

No 53132 (79.5) 8457 (81.2) 61800 (81.1) 27187 (81.3)

History COPD

Yes 3684 (5.5) 1223 (11.7) 4692 (6.2) 4411 (13.2)

No 63126 (94.5) 9196 (88.3) 71480 (93.8) 29023 (86.8)

History heart failure

Yes 2437 (3.6) 907 (8.7) 3169 (4.2) 4141 (12.4)

No 64373 (96.4) 9512 (91.3) 73003 (95.8) 29293 (87.6)

History CVD

Yes 13131 (19.7) 3841 (36.9) 15349 (20.2) 14067 (42.1)

No 53679 (80.3) 6578 (63.1) 60823 (79.8) 19367 (57.9)
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SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

History CLD

Yes 8366 (12.5) 959 (9.2) 8093 (10.6) 2243 (6.7)

No 58444 (87.5) 9460 (90.8) 68079 (89.4) 31191 (93.3)

History osteoporosis

Yes 666 (1) 384 (3.7) 75248 (98.8) 31514 (94.3)

No 66144 (99) 10035 (96.3) 924 (1.2) 1920 (5.7)

Table 5.1: Baseline characteristics of the study cohort. Values for continuous

variables are given in mean (standard deviation) and for binary and categorical

variables in n (%). COPD: chronic obstructive pulmonary disease, CVD: com-

posite of myocardial infarction, stoke, revascularisation, ischemic heart disease,

angina, peripheral arterial disease, transient ischemic attack, CLD: chronic liver

disease.

Causal analysis showed increased risk of genital infection for patients ini-

tiating SGLT2i but no differences between the age groups

Results of the relative risk estimate for the AEs of interest are summarized in

Figure 5.2. Genital infections were most often recorded. In younger adults, there

were 12596 events and incidence rates (IR) per 1000 person-years of 102.96 [CI

95% 102.9, 103.02] in those initiating DPP4i and 18493 events (IR 195.81 [CI

95% 195.72, 195.9]) for patients initiating SGLT2i. In older adults, 5406 (IR 95.69

[CI 95% 95.61, 95.77]) events for patients on DPP4i and 2655 (IR 195.35 [CI

95% 195.12, 195.59]) for patients on SGLT2i were recorded. Our causal analysis

shows that initiation of SGLT2i significantly increase the relative risk for genital

infection, but was similar in both patient groups. The relative risk of experiencing

a genital infection with SGLT2i compared to DPP4i was 2.27 [CI 95% 2.03, 2.53]

for the younger adults versus 2.16 [CI 95% 1.77, 2.63] for older adults.

DKA was a rare AE and our causal analysis showed increased risk for older

patients

Only very few DKA events were recorded in the study cohort. 125 events (IR

0.9 [CI 95% 0.89, 0.91]) were recorded for those younger adults initiating DPP4i
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and 255 events (IR 2.13 [CI 95% 2.12, 2.13]) for patients on SGLT2i. For older

adults on DPP4i 112 events (IR 1.75 [CI 95% 1.75, 1.76]) were recorded and

50 events (IR 2.96 [CI 95% 2.93, 2.99]) for patients on SGLT2i. Relative risk

results for DKA was 3.82 [CI 95% 1.12, 13.03] times higher for patients initiating

SGLT2i compared to DPP4i in the patient group of older adults. No significant

difference was found for the younger patient group with RR 1.12 [CI 95% 0.41,

3.04] between patients on SGLT2i or DPP4i. This is on a background of a higher

DKA rate in older adults with type 2 diabetes.

No increased relative risk for patients initiating SGT2i for falls or amputa-

tions was found for both age groups

In the group of younger patients 2992 events of falls (IR 22.08 [CI 95% 22.05,

22.1]) were recorded for patients initiating DPP4i and 2253 events (IR 19.17 [CI

95% 19.15, 19.2]) for patients initiating SGLT2i. For older patients initiating DPP4i

6093 events (IR 106.53 [CI 95% 106.53, 106.7]) versus 1016 events (IR 64 [CI

95% 63.87, 64.12]) initiating SGLT2i were recorded. From our causal analysis no

relative risk increase of falls for both age groups can be concluded with RR 0.86

[CI 95% 0.66, 1.13] for younger adults and RR 0.56 [CI 95% 0.45, 0.7] for older

adults. Also, no significant increase in relative risk was concluded for lower limb

amputations with RR 0.58 [CI 95% 0.22, 1.53] for younger adults and RR 1.14

[CI 95% 0.29, 4.57] for older adults. Lower limb amputation was a rare AE in this

study cohort and therefore, statistical power to test this effect might have been

low. In the younger patient group 192 events (IR 1.38 [CI 95% 1.38, 1.39]) for

DPP4i and 199 events (IR 1.66 [CI 95% 1.65, 1.67]) were recorded. In the older

patient group 117 events (IR 1.83 [CI 95% 1.82, 1.84]) on DPP4i and 34 events

(IR 2.02 [CI 95% 1.99, 2.04]) on SGLT2i were recorded.

Higher relative efficacy was found for SGLT2i, except for glycaemic response

in the older patient group

Causal estimate results for HbA1c response and weight change are shown in

Figure 5.3. For younger adults, there was on average a -4 mmol/mol [CI 95%

-4.8, -3.1] greater reduction in HbA1c with SGLT2i compared to DPP4i. For older

adults, HbA1c response on both drug classes was similar with an average relative
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response of -0.25 mmol/mol [CI 95% -1.63, 1.13]. In contrast, there was a greater

reduction in weight with SGLT2i compared to DPP4i in both age groups, but no

differences between them. Weight difference for younger adults was on average

-2.6 kg [CI 95% -3, -2.3] and -2.8 kg [CI 95% -3.3, -2.3] for older patients.

Unadjusted results showed elevated risk for most AEs and higher effective-

ness of SGLT2i

Results of the unadjusted analysis are summarized for the AE and treatment out-

comes in the Appendix 5.4. The unadjusted absolute risk analysis overall led to

noticeably different conclusions to our causal estimates and showed an increased

absolute risk for almost all AEs for both treatments. Different from the causal anal-

ysis, the unadjusted absolute risk results showed increased risk for all osmotic

symptoms for both treatments and age groups. Unadjusted absolute DKA risk

was 0.67 [CI 95% 0.59, 0.76] on SGLT2i and 0.27 [CI 95% 0.22, 0.32] on DPP4i

for younger adults and 0.9 [CI 95% 0.63, 1.18] on SGLT2i and 0.53 [CI 95% 0.42,

0.63] on DPP4i for the older study population. Furthermore, unadjusted mean av-

erage change results shown a higher reduction in HbA1c (mmol/mol) and weight

(kg) for patients initiating SGLT2i, but age-group differences only for HbA1c.

Results of the sensitivity analyses were similar to the respective main analy-

sis considering composite outcomes for osmotic symptoms and falls/ lower

limb fractures, censoring in case of any treatment regime change, shorter

follow-up time and the exclusion of patients initiating both study treatments

Results of all sensitivity analyses are given in the Appendix 5.5. Results were

similar to the respective main analysis results when using composite outcomes

for the osmotic symptoms and falls/ lower limb fractures or when censoring follow-

up time at any change in treatment regime. Considering a shorter follow-up time

of maximum 1 year did not lead to very different results than the main analysis,

except that the RR results of DKA in the older patient group is not significantly

increased any more. This result indicates DKA events where developed later

following treatment initiation. The sensitivity analysis for which all individuals ini-

tiating both study treatments were excluded led to similar causal estimates for

treatment effect and AE outcomes.
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Figure 5.3: Causal effect estimation results for change in HbA1c (mmol/mol) and

weight (kg). Point estimates represent the difference in outcome with SGLT2i

compared to DPP4i, with negative values representing a greater HbA1c/weight

reduction with SGLT2i over DPP4i.

5.5 Discussion

Our study results give confidence that SGLT2is are generally safe for older type 2

diabetes patients but AEs of concern are genital infections and DKA. Additionally,

our results show that SGLT2i is effective in reducing HbA1c and weight in type 2

diabetes patients who are older than 70 years.

Relative risk for genital infections was generally increased on SGLT2i but was

similar in both age groups. This confirms previous meta-analysis results [181]

and results from an observational study [157], but adds to the studies with a

wider age range as previous studies included too little data on older patients to

draw conclusions for this patient group. DKA is the only adverse effect for which

the relative risk on SGLT2i is elevated in the older population but recorded num-

bers were low. This finding supports the warnings of the FDA [189] and the EMA

[190] and stresses the need to take DKA risk factors into account when prescrib-

199



ing SGLT2i to older patients. [162, 166]

Higher reduction of HbA1c for patients on SGLT2i compared to DPP4i has been

shown in RCTs [248, 249] and meta-analysis [250] and in an observational study

[177]. Older patients were not considered in these studies and average age of

participants was low (56.7, 55.4, 56 and 55.7 years). Our analysis does not show

greater reduction of HbA1c on SGLT2i compared to DPP4i for older patients and

highlights the importance of analysing this group separately. This is likely due

to the association between increasing age and lower eGFR, a known predictor of

attenuated glycaemic response with SGLT2i. [178] Weight reduction after SGTL2i

initiation is confirmed from our results for younger and older patients. Previous

RCT data meta-analysis results comparing SGLT2i and DPP4i showed a weight

reduction of -2.45 kg [95% CI: -2.71, -2.19] [161]. The extent of weight reduction

in our study is similar to these results.

The unadjusted analysis is based on naive calculations without taking differences

of baseline characteristics between the treatment groups or unmeasured con-

founding factors into consideration. The different results compared to our causal

analysis regarding the risk of AEs illustrate the importance of a causal analysis

taking into account measured and unmeasured confounding.

Furthermore, the strength of our comprehensive causal analysis lies in the ap-

plication of the IV method by Ertefaie et al. [97], which addresses possible un-

measured confounding and does not rely on complete case analysis due to miss-

ingness in measured baseline characteristics. The analysis was conducted with

a large real-life primary care dataset linked to hospitalization data, that captures

the most important AEs for SGLT2is with primary and secondary data. This data

provided the unique opportunity to adequately study older type 2 diabetes pop-

ulation as seen in clinical practice. Results of this study have therefore broad

generalizability and can be applied to current clinical practice.

Limitations of this study are that the analysis relies on correct clinical coding of

the AEs, which can be subject to inaccuracies due to miscoding or non-coding.

For example, some under-representation of genital infections might be possible
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as antifungal medication is available over-the-counter and can be treated without

having presented to primary care. Additionally, information about the severity of

the AEs was not available. [157] A limitation of the IV method is that some of the

data structure assumptions made are not testable with the data at hand. Addition-

ally, as prescription preference was not measured in the data, our analysis relies

on a proxy measure, which might be subject to measurement errors. Previous

similar IV analysis assessing relative effectiveness and risk of type 2 diabetes

treatments in the CPRD data have found that the IV assumptions are reasonable

in this setting. [83, 251]

Our study provides important real-world evidence supporting careful use of SGLT2i

in older type 2 diabetes patient population. Considering safety, we establish that

falls, osmotic symptoms, and amputations are not increased in older patients

when treated with SGLT2i. Although risk of genital infections and rare DKA is

increased with SGLT2i in keeping with previous studies, reassuringly there is no

evidence of an excess risk of these adverse effects in the older patient group.

In terms of effectiveness, we demonstrate that SGLT2is are similar in glucose-

lowering efficacy to DPP4i in this age group, with a weight benefit consistent with

that observed in the wider type 2 diabetes population.

5.6 Conclusion

In conclusion, SGLT2i in the older patient population are effective and do not in-

crease relative risk for dehydration, falls or urinary problems. Patients initiating

SGLT2is have a higher relative risk to experience a genital infection compared to

patients initiating DPP4i. Furthermore, DKA is a severe adverse event of concern

in older patients and risk factors such as infections should be assessed before

prescription of SGLT2i. This study provides a valuable causal analysis frame-

work for the study of patient subpopulations which are generally not examined in

randomized controlled trials.

201



5.7 Appendices

Appendix 5.1 The Instrumental Variable approach as applied in

this study

Figure 5.4 represents the assumed data structure of this observational study that

are pertinent to the Instrumental Variable (IV) analysis. Arrows in the graph repre-

sent assumed causal relationships between the variables. The aim of the study is

to estimate the causal effect of receiving SGLT2i versus DPP4i on the outcome(s)

of interest. In particular, we assume that provider prescription preference is a

suitable IV and fulfils the IV assumptions, conditional on a set of measured con-

founders, W. The IV assumptions are: (1) The IV must be strongly associated with

the exposure given W, (2) be independent of unmeasured confounders given W

and (3) not have a direct effect on the outcome of interest given W. [70] Necessary

conditions for the IV assumptions to hold are that (1) between-provider variation

in the use of study treatment exists, (2) patient selection/assignment to a provider

is unrelated to providers’ preference of the study treatment, (3) a providers’ use

of treatment is independent of the use of alternative treatments that affect the

outcome of interest. [80, 81]. The forth assumption of monotonicity is often dis-

cussed in connection with provider preference based IVs and is necessary for the

identification of the point estimate of the treatment effect. This assumption re-

quires that if a provider treats a patient with SGLT2i, all provider with a preference

for SGLT2i equal or higher than the preference of this prescribing provider will also

prescribe SGLT2i. The exact formulation of this assumption depends in the con-

struction of the proxy instrument and might be invalidated because provider have

to treat against there preference, for example due to insurance policies or con-

traindications. Therefore, estimates from provider prescription preference based

IVs need to be interpret carefully.

As provider prescription preference is not directly measured in CPRD, and the

set of measured confounders contains missing data, we use a proxy variable for

it following the approach of Ertefaie et al. [97].
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Figure 5.4: Representation of assumed data structure in this study. Arrows in this

plots indicate assumed relationships between variables. The missing of arrows

indicates assumed lack of relationship. We assume that the variable provider

prescription preference is a valid IV but it is not measured in the data at hand.

Therefore, a proxy variable is derived using the IV approach by Ertefaie et al.

The following non-technical description aims to give interested readers a better

understanding of the steps necessary for the construction of a proxy variable for

provider prescription preference and the estimation of the causal treatment ef-

fects. For a more in depth and mathematical description of the methods, we refer

to the original paper by Ertefaie et al. [97].

The Ertefaie IV approach is conducted in two steps. To apply this approach the

measured confounders/ covariates are grouped into:

• Wobs: all measured confounders that are observed for all individuals in the

data and

• Wmiss: all measured confounders with at least one missing data point.

Step 1 of the method aims to construct a binary proxy IV for provider prescription

preference which will be used as instrument, taking the value 1 when a provider

has a preference for SGLT2i over DPP4i, and 0 otherwise. It is constructed using

a generalized mixed effect model for the treatment decision adjusted for all mea-

sured confounders (Wobs and Wmiss). The model is estimated using a complete

case dataset (i.e. for individuals with complete information on Wobs and Wmiss)

and with a random intercept for provider. From this model the fitted values of
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the random intercept and its empirical distribution is used for the construction of

the instrument. The instrument will take on the value 1 for each provider with an

estimated random intercept larger than the median of all estimated random inter-

cepts, and 0 otherwise. Please note that the instrument can only be calculated

for provider with at least one measured covariate completely measured (Wobs). If

this is not the case, the provider will need to be excluded from the IV analysis.

The second step of the Ertefaie method includes the calculation of the causal

treatment effect with the Two-Stage Least Squares approach for continuous out-

comes and the Two-Stage Predictor Substitution method otherwise. [70] This

estimation step is applied to all individuals in the dataset, but with adjustment for

Wobs only. Specifically, in stage 1, a logit model for the observed treatment deci-

sion is fitted which adjusts for Wobs and the instrument. Thereafter, in stage 2, the

outcome is regressed on the predicted treatment decision and Wobs to estimate

the causal treatment effect. For the continuous treatment outcomes, achieved

HbA1c and weight, a linear outcome model is estimated. In case of binary ad-

verse effect outcomes, we used a Poisson model with follow-up time (in days) as

offset.
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Appendix 5.3 Further study cohort description

SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

History genital infection

Never 32233 (48.2) 5142 (49.4) 39269 (51.6) 17002 (50.9)

< 1 year 8950 (13.4) 1197 (11.5) 10566 (13.9) 3920 (11.7)

1 - 5 year 13114 (19.6) 1890 (18.1) 13717 (18) 5610 (16.8)

> 5 year 12513 (18.7) 2190 (21) 12620 (16.6) 6902 (20.6)

History urinary frequency

Never 60280 (90.2) 8781 (84.3) 68673 (90.2) 28069 (84)

< 1 year 819 (1.2) 178 (1.7) 1170 (1.5) 832 (2.5)

1 - 5 year 2309 (3.5) 598 (5.7) 2802 (3.7) 1969 (5.9)

> 5 year 3402 (5.1) 862 (8.3) 3527 (4.6) 2564 (7.7)

History micturition control

Never 60808 (91) 9172 (88) 69306 (91) 28375 (84.9)

< 1 year 786 (1.2) 180 (1.7) 1087 (1.4) 1024 (3.1)

1 - 5 year 2024 (3) 425 (4.1) 2340 (3.1) 1732 (5.2)

> 5 year 3192 (4.8) 642 (6.2) 3439 (4.5) 2303 (6.9)

History volume depletion

Never 61180 (91.6) 9272 (89) 69803 (91.6) 28886 (86.4)

< 1 year 730 (1.1) 164 (1.6) 960 (1.3) 815 (2.4)

1 - 5 year 1881 (2.8) 398 (3.8) 2173 (2.9) 1551 (4.6)

> 5 year 3019 (4.5) 585 (5.6) 3236 (4.2) 2182 (6.5)

History falls

Never 58903 (88.2) 8043 (77.2) 67251 (88.3) 24134 (72.2)

< 1 year 1128 (1.7) 603 (5.8) 1473 (1.9) 2989 (8.9)

1 - 5 year 2738 (4.1) 902 (8.7) 3224 (4.2) 3634 (10.9)

> 5 year 4041 (6) 871 (8.4) 4224 (5.5) 2677 (8.0)

History amputation

Never 66477 (99.5) 10368 (99.5) 75757 (99.5) 33152 (99.2)

< 1 year 75 (0.1) 6 (0.1) 111 (0.1) 62 (0.2)

1 - 5 year 147 (0.2) 20 (0.2) 182 (0.2) 115 (0.3)

> 5 year 111 (0.2) 25 (0.2) 122 (0.2) 105 (0.3)
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SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

History diabetic

ketoacidosis

Never 66379 (99.4) 10388 (99.7) 75805 (99.5) 33268 (99.5)

< 1 year 61 (0.1) 6 (0.1) 95 (0.1) 66 (0.2)

1 - 5 year 173 (0.3) 15 (0.1) 129 (0.2) 48 (0.1)

> 5 year 197 (0.3) 10 (0.1) 143 (0.2) 52 (0.2)

Table 5.3: Detailed description of potential recurrent comorbidities in the study

population recorded prior to study treatment initiation.

SGLT2i SGLT2i DPP4i DPP4i

< 70 years ≥ 70 years < 70 years ≥ 70 years

(n = 66810) (n = 10419) (n = 76172) (n = 33434)

HbA1c (mmol/mol) 8973 (13.4) 1406 (13.5) 7559 (9.9) 3999 (12)

eGFR (ml/min/1.73m2) 322 (0.5) 25 (0.2) 555 (0.7) 170 (0.5)

ALT (U/L) 4206 (6.3) 577 (5.5) 5354 (7.0) 2158 (6.5)

BMI (kg/m2) 2646 (4) 371 (3.6) 3701 (4.9) 1988 (5.9)

Weight (kg) 1496 (2.2) 215 (2.1) 2370 (3.1) 1440 (4.3)

Table 5.4: Summary of missing data in baseline characteristics of the study pop-

ulation values are given in absolute frequencies in n (%).
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Person-years of follow-up Average follow-up time (years)

Adverse effects

Genital infections 286867.4 1.54 (1.03)

Volume depletion 334448 1.79 (1)

Micturition control 333607.1 1.79 (1)

Urinary frequency 334596.2 1.79 (1)

Falls 326040.4 1.75 (1)

Amputation 339284.1 1.82 (0.99)

DKA 339574.1 1.82 (0.99)

Composite adverse effects

Osmotic symptoms 329345.2 1.76 (1)

Falls + lower limb fractures 339848.6 1.82 (0.99)

Table 5.5: Person-years of follow-up calculated as the total follow-up time and

average follow-up time (in years) of the adverse effects. Values for the average

follow-up time are shown as mean (standard deviation).
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Figure 5.7: Unadjusted analysis results of the average achieved change for treat-

ment outcomes HbA1c (mmol/mol) and weight (kg) after treatment initiation. Es-

timates are shown together with their 95% confidence intervals.
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Appendix 5.6 Triangulation analysis

In addition to the main analysis outlined in this chapter, the relative risks of the

assorted adverse effects and comparative weight and HbA1c benefit are esti-

mated using multivariable regression models with and without propensity score

matched data (MVR and PSM respectively), as well as the Instrumental Variable

method constructing the proxy instrument for prescription preference according

to Brookhart et al. [92] (IV prevpatient). For this Instrumental Variable method

the value of Z for each individual takes on the value of the previous treatment

decision made by the same treating healthcare provider. Since values for this

instrument cannot be calculated for the first treated patient within each health-

care provider, this data needs to be excluded from the analysis. Furthermore, this

IV method relies on a complete case analysis with respect to data for measured

confounders. As this construction method using only one previous prescription

for the construction of the proxy variable, it is capable of accounting for change in

provider preference. [92, 100]

The results for all adverse effects are shown in Figure 5.8 and Figure 5.9 for

all methods including the main analysis results (IV ePP), which are repeated for

comparison. For the osmotic symptoms, the results for MVR and PSM are consis-

tent with the main analysis results and show increased relative risk for SGLT2is

of genital infections in both age groups, but no increased relative risk for poor

micturition control, volume depletion/ dehydration or urinary frequency. Results

for IV prevpatient show much larger confidence intervals compared to any other

estimation method and additionally conclude elevated risk of poor micturition con-

trol and volume depletion/ dehydration for the older patient population. Table 5.7

summarizes the F-statistic results for both IV methods and patient population to

test the strength of both instruments. Both construction methods for a preference-

based instrument lead to strong instruments with F-statistic greater than 10 for all

models. A partial explanation for the larger CI of the IV prevpatient estimate is

the exclusion of data for the first patient of each healthcare provider, but a more

in depth analysis of the significantly elevated risk results for poor micturition con-

trol and volume depletion/ dehydration will be necessary before deriving clinical

conclusions.
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For the adverse effects falls, amputation and DKA the estimation results of MVR,

PSM and IV prevpatient are generally consistent with the main analysis results.

No elevated relative risk for all three adverse effects in neither of the patient

groups can be found. Interestingly, the risk results for the older patient popu-

lation and DKA are not significantly increased for MVR, PSM and IV prevpatient.

Given that DKA is a rare event in the study population and the large CIs of the

IV ePP results, this might be taken as an additional indication that SGLT2i is safe

in the older patient population. Further analysis of the study population would be

helpful in order to understand if the differing results for DKA between the estima-

tion methods origins from the use of a complete case dataset, which all methods

except IV ePP rely on.

Estimation results for HbA1c (mmol/mol) and weight (kg) are given in Figure 5.10

and are generally consistent with the main analysis results. For HbA1c and the

older patient population results of MVR, PSM and IV prevpatient show a larger

achieved reduction for patients on SGLT2i compared to DPP4i, but this reduction

is smaller than for the patient group of younger adults.
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Figure 5.8: Triangulation results for osmotic symptoms adverse effects. Results

are given as relative risk with 95% CIs and summarized for the methods MVR:

multivariable regression, PSM: propensity score matching, IV prevpatient: IV us-

ing preference-based instrument proposed by Brookhart et al., IV ePP: IV using

preference-based instrument proposed by Ertefaie et al. (main analysis)
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Figure 5.9: Triangulation results for falls, amputation and diabetic ketoacidosis.

Results are given as relative risk with 95% CIs and summarized for the methods

MVR: multivariable regression, PSM: propensity score matching, IV prevpatient:

IV using preference-based instrument proposed by Brookhart et al., IV ePP: IV

using preference-based instrument proposed by Ertefaie et al. (main analysis)
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Figure 5.10: Triangulation results for HbA1c (mmol/mol) and weight (kg). Results

are shown with 95% CIs and summarized for the methods MVR: multivariable

regression, PSM: propensity score matching, IV prevpatient: IV using preference-

based instrument proposed by Brookhart et al., IV ePP: IV using preference-

based instrument proposed by Ertefaie et al. (main analysis)
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Patient population

Outcome IV method Younger adults Older adults

Genital infection
IV prevpatient 2749.76 471.22

IV ePP 6569.15 1652.22

Micturition control
IV prevpatient 2759.81 470.79

IV ePP 6576.54 1623.24

Volume depletion
IV prevpatient 2759.81 470.79

IV ePP 6576.54 1623.24

Urinary frequency
IV prevpatient 2759.81 470.79

IV ePP 6576.54 1623.24

Falls
IV prevpatient 2756.97 469.88

IV ePP 6537.15 1631.56

Amputation
IV prevpatient 2756.97 469.88

IV ePP 6537.15 1631.56

Diabetic ketoacidosis
IV prevpatient 2756.97 469.88

IV ePP 6537.15 1631.56

HbA1c
IV prevpatient 2166.46 344.06

IV ePP 5250.48 1437.66

Weight
IV prevpatient 2069.59 328.09

IV ePP 4778.51 1284.11

Table 5.7: F-statistic results for the first stage model of the Instrumental Variable

methods.
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Chapter 6

Discussion
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Summary

The work presented in this thesis demonstrates a causal estimation framework to

derive high quality evidence from observational data valuable to guide effective

treatment decisions for type 2 diabetes management. In the first two chapters the

theory of causal inference, estimation methods employed in this thesis and the

ideas of evidence integration from randomized controlled trials and observational

studies, as well as triangulation were introduced. Limitations of randomized con-

trolled trials and their implications to provide evidence for T2D treatment guide-

lines, especially for the large patient population of older adults are discussed in

detail. As a main conclusion from this discussion, evidence from observational

studies using for example primary care health records from the CPRD database

were presented as an important addition to trial evidence on the benefit and safety

profile of oral T2D treatments in populations that are often not considered in

RCTs. High quality real-life evidence is therefore important to improve individ-

ualized treatment decisions for older T2D patients.

The first study presented a triangulation framework for analysing the consistency

of treatment effect estimates from assorted methods which make use of different

parts of the data at hand and rely on different data structure assumptions. This

included the introduction of the novel prior outcome augmented Instrumental Vari-

able approach and the generalized heterogeneity statistic to decide if two or more

estimators are sufficiently similar for comparison.

The second study presented a comprehensive overview and discussion of the In-

strumental Variable method using provider prescribing preference as instrument

and different construction methods for a proxy instrument. A state of the art sim-

ulation study evaluated the estimation performance of the construction methods

under important data conditions such as change in provider preference over time,

missing data for baseline characteristics and different provider sizes. We also

proposed an extended construction method which demonstrated to be capable to

address change in provider preference over time and non-ignorable missingness

in baseline characteristics.
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On the base of this simulation study, we found a robust and established prescrip-

tion preference-based Instrumental Variable method which was applied to study

the relative safety and benefit profile of SGLT2i compared to DPP4i for the patient

population of older adults (≥ 70 years). This study evaluated important treatment

outcomes and the relative risk for adverse effects which are of concern for older

adults and suspected to be associated with SGLT2i such as osmotic symptoms,

falls, amputations and diabetic ketoacidosis.

This chapter gives an overview of the main findings of this thesis and discusses

the conclusions, implications, limitations and future research potential of each

study.

Chapter 3: Triangulating Instrumental Variable, confounder ad-

justment and difference-in-difference methods for comparative

effectiveness research in observational data

Summary

In this chapter we proposed an estimation framework for the comparative effec-

tiveness of two treatments based on several estimation methods. This included

the explanation of established confounder adjustment methods such as multi-

variable regression models which operate under the no unmeasured confounding

assumption and causal inference methods that address unmeasured confounding

such as the difference-in-difference and the Instrumental Variable method. Em-

ploying these methods in a triangulation framework for observational evidence is

of value to generate high quality observational evidence, as they make use of dif-

ferent parts of the data and rely on different data structure assumptions. The CaT

estimate relies on the adjustment of measured confounding of the study period,

closely measured at time of study treatment initiation. The DiD method utilized

data from the prior and study period and the Instrumental Variable method/ Con-

trol Function approach extracts variation of the treatment variable independent

of confounding using a suitable instrument. We showcased these methods and

their estimation performance under different data conditions in a simulation study

under violations of important assumptions. The scenarios included data gener-
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ation with and without unmeasured confounding, influence of the prior outcome

on the study treatment decision and a direct effect of the instrument on the study

outcome. Furthermore, the prior outcome augmented Instrumental Variable ap-

proach was proposed and the estimation performance of this method was shown

in a simulation study. Building on work by Bowden et al. [11], we introduced the

generalized Qe statistic to formally assess if estimation methods compared in the

triangulation framework target the same underlying quantity.

We showcased the triangulation framework including the POA-IV/ POA-CF method,

and the Qe statistic in an application case study on the relative risk of experienc-

ing a genital infection on SGLT2i compared to DPP4i in a large T2D cohort. This

case study was applied on data from CPRD Gold and included patients initiat-

ing SGLT2i or DPP4i as second-line treatment. As the female gender has been

identified in previous observational studies as risk factors for genital infections

[157], a sex-stratified analysis was conducted applying the assorted estimation

procedures.

Conclusions

Simulation results showed that the POA-IV approach is able to estimate the treat-

ment effect of interest without bias in scenarios where the IV and DiD assump-

tions are violated such that the prior outcome affects the treatment decision and

Z influences the study outcome directly. Thereby, the POA-IV approach relies on

the assumption that the new instrument from the interaction of the prior outcome

and Z is unconfounded and has a strong influence on the treatment decision.

The application case study exemplified the usefulness of discussing the consis-

tency of estimation results from different causal methods in a triangulation frame-

work and shed light on possible sources of bias due to assumption violations

of the POA-IV approach. The Qe statistic was derived using bootstrapping and

showed agreement of all estimation results except for the pairwise comparison

for CaT, PSM and POA-IV, POA-CF. We hope this statistic could be a useful tool

for triangulating findings from a set of distinct causal estimation strategies. Overall

the estimation results showed an increased relative risk of experiencing a genital
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infection on SGLT2i compared to DPP4i. This results supports previous RCTs

and observational evidence. [152, 154, 179] The sex-stratified analysis showed

slightly elevated but not significantly different risk of females on SGLT2i for most

of the estimates except the POA-IV/ POA-CF approach.

Implications

The proposed triangulation framework and Qe statistic are helpful tools to derive

high quality evidence from observational data. Discussing the consistency of

estimation results in this manner provides the opportunity to analyse potential

violations of data structure assumptions of the different estimation methods and

hence a better understanding of the estimation results. This is important to gain

more robust evidence on the benefit and safety profiles of T2D treatments which

is suitable to integrate with RCT evidence for treatment guidelines. Our proposed

POA-IV approach relies on a different set of data structure assumptions as the

DiD and IV/ CF approach and is therefore a valuable addition to the triangulation

framework.

Limitations

The proposed triangulation framework encompasses results of several estimation

methods. Clinicians might find it difficult to interpret conflicting evidence and judge

potential sources of bias from advanced causal inference methods such as the

instrumental variable method. [91] For the application case study outlined in this

chapter, coding errors of the outcome of interest might be possible in CPRD. It is

also possible that not all adverse effects are recorded in the data, as less severe

genital infection are treatable with over-the-counter medications. These adverse

event incidences will not be recorded in primary care data. Furthermore, the study

relies on a complete case analysis, which can result in bias of the treatment effect

estimation in case of a informative selection of the study population. [45]

Subsequent work

To further the development of the proposed triangulation framework, we aim to

develop a rigorous hierarchical testing procedure for performing a similarity anal-

ysis across an arbitrary number of estimates, whilst controlling the overall family
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wise error rate for the correction of multiple testing. It is also possible to extent

this framework by adding other causal inference estimation methods applicable to

the research question and data structure. Qualitative synthesis of estimates are

being developed [8] and further approaches on ways to combine estimates will

make it easier to communicate triangulation results. There is potential to com-

bine estimates to a single more precise estimate, if they are weakly correlated

but appear to be similar, as this gives credence that they are estimating the same

underlying quantity. [11]

The application case study of the triangulation framework can be extended to

different T2D outcomes. Long-term cardiovascular outcomes are of interest to be

studied in observational data, as these outcomes are not well studied in RCTs,

but important to consider for the management of T2D. Recently published obser-

vational studies, as for example Xie et al. [252], have focused on cardiovascu-

lar outcomes but do not employ causal inference methods like the Instrumental

Variable approach to address unmeasured confounding. The application case

study outlined in this chapter was executed using a proxy variable for healthcare

provider prescription preference. The construction method for this proxy variable

was proposed by Brookhart et al. [92] and used the previous prescription as value

for Z. Other methods for the construction of Z are available in the literature and

might be better suited for this analysis. For example, this analysis relies on a

complete case dataset excluding any records with missing information on base-

line characteristics. Ertefaie et al. [97] proposed an construction method for a

preference-based instrument that is able to work with non-ignorable missingness

in covariates without relying on a complete case analysis and could be applied for

this study in order to avoid bias due to informative sample selection.
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Chapter 4: Just what the doctor ordered: An evaluation of

provider preference-based Instrumental Variable methods in

observational studies, with application for comparative effec-

tiveness of type 2 diabetes therapy

Summary

In this chapter we outlined a comprehensive summary of proposed rule- and

model-based construction methods for a provider preference-based instrument

proxy variable and compared their estimation performance in a state of the art

simulation study under different data situations. The scenarios of this simula-

tion study included different provider sizes with respect to treated patients within

each provider, missing mechanism for missingness in measured confounders and

structures of change in provider preference over time. Furthermore, we proposed

a novel model-based construction method that utilizes a mixed effect model with

random intercept of provider and a random slope for prescription time. This

method aims to extend the construction method proposed by Ertefaie et al. [97]

and makes it possible to address non-ignorable missingness in measured con-

founders as well as change in prescription preference over time for the treatment

effect estimation.

All construction methods were showcased in an application case study for the

estimation of the treatment effect of SGLT2i (versus DPP4i) on the reduction of

achieved HbA1c (mmol/mol). We used routine data from the Clinical Practice Re-

search Datalink (CPRD) Aurum (download November 2021) for this case study.

In this chapter we also revised the application case study outlined in Chapter

3, summarized in Appendix 4.8 and applied the Ertefaie method for constructing

a preference-based proxy instrument for the relative risk analysis of experiencing

a genital infection on SGLT2i.

Conclusions

The state-of-the art simulation study showed that the more complex model-based

construction methods require enough data within each provider for good estima-
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tion performance and can lead to biased results in case of small provider sample

sizes. Rule-based methods were able to better accommodate smaller provider

sample sizes. But not all rule-based methods performed well in case of chang-

ing provider preference. The construction methods which rely all previous patient

prescriptions struggled to reflect on the change in preference and their estimation

results were biased. Only the model-based construction method by Ertefaie et al.

[97] and our extension method were able to estimate the treatment effect without

bias in case of non-ignorable missingness. Both methods lead to very similar re-

sults, with our proposed method being slightly more efficient in case of change in

provider preference.

In the application case study, most construction methods lead to similar results

and the analysis confirmed a blood glucose lowering benefit of SGLT2is which is

on average higher compared to DPP4i. The Ertefaie method and our extension

method concluded a lower comparative HbA1c reduction benefit compared to all

other IV methods which did not origin from a selection of patients due to complete

case analysis.

The revision of the application case study outline in Chapter 3 showed similar but

more efficient estimation results when employing the Ertefaie method compared

to the construction method based on one previous prescription.

Implications

The choice of method to construct a proxy instrument for provider prescription

preference should be made under consideration of the data structure including as-

pects such as the possibility of change in preference over time or missing data in

baseline characteristics important for the outcome model. Model-based methods

such as the Ertefaie method and our extension method are robust and suitable

for the causal effect estimation if enough data within each provider is available. It

can be helpful to triangulate estimation results for different model- and rule-based

methods to check possible inconsistencies that could direct towards weaknesses

of certain construction methods.
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Provider preference-based Instrumental Variable analysis have proven to be a

useful tool for investigating the benefit and risk profile of oral T2D treatments.

The established Ertefaie method showed robustly good estimation performance

under different data conditions and should be considered for further causal infer-

ence studies in T2D research.

Limitations

The simulation study outlined in this chapter is limited in the number of presented

scenarios which provides possibilities for further research. The Ertefaie method

and our proposed extension method have only been tested on one non-ignorable

missingness mechanism, as we employed the same data generation strategy

introduced in the original paper. Furthermore, provider sizes was chosen to be

equal for all simulated providers which does not reflect well on real world GP sizes

which can differ greatly, for example by regions. Lastly, the simulation showed

interesting results regarding the rule-based construction methods based on pre-

vious provider prescriptions and their instrument strength which could not be fully

elucidated in this study.

Subsequent work

An example for future studies are the consideration of different data generation

models for non-ignorable missingness to further test the robustness of the Erte-

faie method and our extension method. It will also be interesting to explore the

performance of model-based construction methods in case some smaller provider

are included in the data as this reflects better on the real world situation of GPs.

Additional investigations regarding the rule-based methods which are based on

a subset of previous prescription data are needed to further understand some

of their simulation results. In the simulation outlined in this chapter these meth-

ods showed weak instrument strengths under certain data conditions, but their

estimation results did not show weak instrument bias.
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Chapter 5: Evaluation of the safety and effectiveness of SGLT2

inhibitors in adults over 70 using an instrumental variable ap-

proach: UK population based study

Summary

In this chapter we conducted a causal inference analysis for the comparative

safety and benefit profile of SGLT2i versus DPP4i in the patient population of older

adults 70 years or older. Outcomes of interest for this analysis included adverse

effects which are of concern in the older patient population such as genital infec-

tions, poor micturition control, volume depletion/ dehydration, urinary frequency,

falls, lower limb amputations and diabetic ketoacidosis. Treatment outcomes of

interest are achieved HbA1c (mmol/mol) and weight (kg) 12 months after treat-

ment initiation. The causal analysis was conducted utilizing the IV approach by

Ertefaie et al. [97] with a proxy variable on healthcare provider prescription pref-

erence as instrument to create a pseudo-randomized sample and estimate the

treatment effect under consideration of measured and unmeasured confounding.

The T2D study population was selected from the CPRD Aurum database which is

a large UK primary care dataset. Furthermore, CPRD data was linked to Hospital

Episode statistics and data from the Office for National Statistics on death regis-

trations, as well as patient level Index of Deprivation data. This made it possible

to conduct an in depth study on a multitude of adverse effects potentially related

to SGLT2i with an appropriate sample size of the subpopulation of older patients.

Results of the causal inference study provide high quality observational evidence

which contribute towards closing the gap of spare evidence-based treatment guide-

lines for older T2D patients, due to a lack of RCT evidence from this patient pop-

ulation.

Conclusions

This causal analysis leverages the strengths of the Ertefaie method of construct-

ing a preference-based instrument taking the prescription behaviour and all mea-

sured confounders into consideration to mitigate the risk of measurement errors.

Additionally, the method does not rely on a complete case dataset and has the
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potential to estimate the causal treatment effect without bias, even in case of

non-ignorable missingness. The observational evidence is based on the rich UK

primary care data of CPRD which made subgroup analysis on the important and

large patient population of older adults with T2D possible. The study results give

confidence for the safety of treating older T2D patients with SGLT2is and confirms

the glycaemic and weight loss benefits of this drug class previously found for more

general patient populations in RCTs. Adverse effects of concern are genital in-

fections and DKA. Relative risk for genital infection is increased for patients on

SGLT2is, with similar elevated treatment effect estimates for younger and older

adults. Relative DKA risk is increased for older T2D patients when estimated us-

ing the IV method proposed by Ertefaie et al. [97], but the triangulation results

using IV prevpatient and conventional multivariable regression with and without

propensity score matching did not replicate these results. Furthermore, DKA is a

rare event in this study population and estimation results are based on only a few

cases.

Implications

SGLT2i in the older adults are effective and generally safe regarding adverse

effect of micturition control, urinary frequency, falls and lower limb amputations.

When prescribing SGLT2is to older adults clinicians should consider and evalu-

ate existing risk factors of genital infections and DKA such as previous genital

infections and DKA events.

Limitations

Non coding of adverse effects in primary care data, for example genital infections

treated with over-the-counter treatments is possible which will lead to an under-

representation of weaker adverse effects. Furthermore, the Instrumental Variable

method depends on partially untestable data structure assumptions regarding un-

measured confounders that need to be justified using subject matter knowledge.

As provider prescription preference is not measured in the CPRD data, the In-

strumental variable method applied for the main analysis and the triangulation

analysis rely on utilizing the data at hand to construct a proxy variable for this

preference-based instrument. Therefore, measurement errors for the proxy vari-
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able of prescription preference are possible.

Subsequent work

We developed a robust causal estimation framework for the analysis of patient

subpopulations and with an Instrumental Variable method that is able to estimate

treatment effects in case of unmeasured confounding and non-ignorable missing-

ness in baseline characteristics data. This estimation framework can be applied

to different treatment and adverse effect outcomes of interest for T2D research,

for example long-term outcomes such as cardiovascular endpoints. Furthermore,

the framework can be applied to study treatment outcomes in different ethnicity

patient subpopulation. As previous studies have shown differential ethnic pre-

disposition and pathophysiology of type 2 diabetes [253], observational evidence

for different ethnicity subpopulations are important to improve individualized T2D

treatment.
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