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Abstract—Solar photovoltaic (PV) power generation is one of 

the most important sources for renewable energy. However, PV 

power generation is entirely dependent on the amount of 

downward solar radiation reaching the solar cells. This is 

determined by uncertain and uncontrollable meteorological 

factors such as temperature, humidity, wind speed, and direction, 

as well as other factors such as topographical characteristics. Good 

solar radiation prediction models can increase energy output while 

decreasing the operation costs of photovoltaic power generation. 

For example, in some provinces in China, PV stations are required 

to upload short-term online power forecast information to power 

dispatching agencies. Numerous AI, statistical, and numerical 

weather prediction models have been used in many real-world 

renewable energy applications, with a focus on modeling accuracy. 

However, there is a need for Explainable AI (XAI) models that 

could be easily understood, analyzed, and augmented by the 

stakeholders. In this paper, we present a compact, explainable, 

and lifelong learning metaheuristic-based Interval Type-2 Fuzzy 

Logic System (IT2FLS) for Solar Radiation Modeling. The 

generated model will be composed of a small number of short IF-

Then rules that have been optimized via simulated annealing to 

produce models with high prediction accuracy. These models are 

updated through a life-long learning approach to maximize their 

accuracy and maintain interpretability. In the process of lifelong 

learning, the proposed method transferred the model's knowledge 

to new geographical locations with minimal forgetting. The 

proposed method achieved good prediction accuracy and 

outperformed on new geographical locations other transparent 

and black-box models by 13.2% as well as maintaining excellent 

generalization ability. The resulting models have been evaluated 

and accepted by experts, and thanks to the generated 

transparency, the experts were able to augment the models with 

their expertise, which increased the models' accuracy. 

 

Index Terms—Solar Energy, type-2 fuzzy systems, XAI. 

I. INTRODUCTION 

enewable energy is the foundation of any energy 

transition that aims to achieve net-zero emissions and 

meet future energy demands [1]. According to the 

annual report of the International Energy Agency 

(IEA), renewable power capacity additions are on track to set 

new records in the coming years, led by solar PhotoVoltaic (PV) 

power generation. For example, more than half of all renewable 

energy expansion in 2021 came from solar PV alone, followed 

by wind and hydropower [1]. The global trend toward solar 

energy is driven by the fact that the Sun is an inexhaustible 

source of energy capable of meeting all of humanity's energy 

requirements [2].  

Solar PV power generation is entirely dependent on the 

amount of downward solar radiation over solar cells, which is 

determined by uncertain and uncontrollable meteorological 

factors such as temperature, humidity, wind speed, and direction, 

as well as other factors such as topographical characteristics. 

Consequently, the power output of a PV system fluctuates over 

time due to the variable nature of environmental factors [3]. Good 

solar radiation prediction models can lower the operating and 

maintenance costs of photovoltaic power generation. For 

example, in some provinces in China, photovoltaic power 

stations are required to upload short-term online power forecast 

information to power dispatching agencies 0–3 hours in advance. 

Some stations are fined as much as $14 million each year for 

missing power assessments [4]. From an operational standpoint, 

solar radiation forecasting up to 2 hours in advance with a 

granularity of 30 seconds to 5 minutes is associated with ramping 

events and operational variability, whereas solar radiation 

forecasting one to six hours in advance with an hourly granularity 

is associated with load following forecasting [5]. 

Numerous AI, statistical, and numerical weather prediction 

models have been used in many real-world renewable energy 

applications, with a focus on modeling accuracy [6]. Black-box 

models such as neural networks [7], support vector regression 

[8], Gaussian process regression [9], and recently, deep learning 

models [10] have all been used to predict solar radiation. 

Comprehensive reviews of the applications of AI models in 

predicting solar radiation from an application perspective were 

presented in some studies, such as the reviews reported in [11] 

and [12]. On the other hand, fuzzy logic systems [13], and 

decision trees [9], [14] have an advantage over black-box models 

because domain experts can easily comprehend them and 

therefore evaluate, modify, and improve them based on their 

knowledge.  

The lack of a transparent and interpretable process that yields 

model results is highlighted by many experts in different 

application domains as a barrier to the widespread adoption of 

AI models [15]. The presence of explainability can increase the 

level of trust between domain experts and AI models, allowing 

for more productive interactions. The significance of the 

model's explainability for the solar radiation prediction problem 

can be seen from a variety of perspectives. Firstly, 

understanding the relationship between surface solar 

radiation and its influencing factors is one of the most 

important requirements from an expert's perspective when 
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evaluating model outputs [16]. In addition, due to the dynamic 

nature of solar radiation and underlying weather variables that 

differ from one location to another, in many situations, experts 

must modify the trained models to account for a new location 

characteristic to transfer the models to predict for other 

locations instead of training new models. Another reason is the 

lack of representative long-term ground data sets for many 

locations, which hinders the trained model's ability to capture 

uncommon scenarios. For instance, severe dust storms may 

occur once every few years but have a significant impact on the 

solar radiation level. It is imperative that an expert can 

add/delete/modify rules to an explainable model to capture 

these instances. The advantage of scientifically related 

numerical weather prediction (NWP) models over many black-

box AI models in terms of explainability and traceability of a 

given prediction output is preferred or even required by domain 

experts to increase confidence in the prediction outcome and 

reduce potential losses. Furthermore, the lack of interpretability 

may limit subsequent solar operations deployments such as 

model predictive control (MPC) [17]. 

In this paper, we present a fully explainable and transferable 

type-2 fuzzy logic system to predict hourly solar radiation. The 

generated model can be easily understood, analyzed, and 

augmented by the experts and various stakeholders. The 

proposed system aims to achieve good prediction accuracy of 

hourly global solar radiation with a small set of short fuzzy rules 

so that the generated linguistic model is highly interpretable and 

transferable to similar locations. The model implemented a life-

long learning approach, which allows it with the ability to learn 

and fine-tune its rules without the need to repeat the whole 

training process for each new location. The system was 

evaluated with real-world data sets for nine locations in Saudi 

Arabia with distinct climatic and topographical characteristics.  

The paper is organized as follows: Section II reports on 

related background, while the proposed system is presented in 

Section III. The experiments and results are discussed in 

Section IV while the conclusions and future work are reported 

in Section V. 

II. RELATED BACKGROUND 

A. XAI for Solar Energy Prediction 

Some work in the literature has tried to produce interpretable 

AI models for solar prediction where [17] applied a model for 

predicting solar radiation based on a graph convolutional network 

(LSTM). The interpretability of the prediction process in terms 

of temporal and spatial dependencies was improved using the 

attention mechanism and the graph neural network. In [18], Light 

Gradient Boosting (LightGBM), which is based on decision 

trees, was used to predict global solar radiation. Then, 

Permutation Feature Importance (PFI) and Shapley Additive 

Explanations (SHAP) were used to get the explanation features 

in terms of feature importance. The latter method, known as 

feature importance, is widely used for explaining predictive 

machine learning algorithms. In order to estimate the global solar 

radiation, this approach seeks to determine the most relevant 

meteorological variables [18]. The work in [10] tried to build an 

interpretable deep learning framework in which the 

convolutional neural network (CNN) works as a trainable feature 

extractor and the support vector regressor (SVR) works as a 

global solar radiation predictor. This approach, which tries to 

explain predictions partially without clarifying the mechanism by 

which models function, is referred to as a "post-hoc" 

interpretation [19] cannot be fully understood, analyzed, and 

augmented by domain experts. 

Mamdani fuzzy logic systems, on the other hand, are fully 

understandable in their structure and mechanism and can 

incorporate the expert's opinion into the prediction process rather 

than relying on post-processing and other techniques. Previous 

work [20], did employ TSK fuzzy logic systems for modelling 

photovoltaic array as well modeling solar radiation. However, 

they did not tackle the problems addressed in this paper related 

to the generation of compact Explainable AI models that can be 

easily analyzed and augmented by the expert and which are 

capable of lifelong learning and can be ported between various 

geographical locations since TSK models are not explainable 

[21]. 

B. A Brief Overview on Simulated Annealing 

Simulated annealing (SA) is one of the most widely used meta-

heuristic search methods for tackling combinatorial problems. 

The formulation for solving combinatorial optimization 

problems with simulated annealing can be illustrated as follows 

[22]: suppose S is a finite set of states, and C is the cost of each 

state in S. Combinatorial problems can be solved by searching the 

state space for the pair (𝑆, 𝐶) with the lowest cost. SA creates the 

starting sequence of states 𝑁 = 𝑁0 from an initial state 𝑆0 and an 

initial "temperature" 𝑇0. The temperature is reduced after 

conducting a series of iterations, such as a nonstationary Markov 

Chain [23]. If a candidate state's cost is lower than the present 

state's cost, then it is accepted. There is still a threshold 

probability 𝑃𝑟𝑜𝑏𝑇(𝑆𝑗) at a specific temperature 𝑇𝑘 at which the 

new candidate state 𝑆𝑗  will be accepted if its cost is higher than 

the cost of the current state 𝑆𝑖 as follows: 

𝑃𝑟𝑜𝑏𝑇(𝑆𝑗) = {
1                                  𝑖𝑓 𝑓(𝑠𝑗) ≤  𝑓(𝑠𝑖) 

 𝑒𝑥𝑝 (
𝑓(𝑠𝑖)−𝑓(𝑠𝑗)

𝑇𝑘
)     𝑖𝑓 𝑓(𝑠𝑗) > 𝑓(𝑠𝑖)    

    (1) 

 

Combinatorial minimization is the optimization of functions 

with several different discrete configurations and a finite number 

of solutions in the combinatorial neighborhood, as opposed to the 

continuous case, which has an infinite number of solutions. In the 

context of fuzzy logic systems optimization, fuzzy rules and 

variable selection processes are classified as combinatorial 

optimization, while the adaptation of continuous values of 

certain membership function parameters is classified as 

continuous optimization.  

C. Lifelong learning and model transfer  

In many instances, it is preferable to construct a framework for 

lifelong (long-term) learning that can handle continuous batch 

learning of data sets, particularly when model transfer is required. 

These systems should evolve and modify their structure 

dynamically to accept new information and be capable of 

incremental online adaptation [24]. Life-long learning can be 

combined with online learning for additional advantages. In 

addition to the ability of the model to learn incrementally, the 

model must maintain knowledge retention, which means being 

resistant to the catastrophic forgetting problem and capable of 
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refining prior experience when acquiring new information [25]. 

Another issue that might arise with lifelong learning of fuzzy 

logic systems is related to the expansion and redundancy of the 

rule base. When the rule base is derived from data, it may include 

duplicate or unnecessary rules [26]. In the field of solar radiation 

prediction, using some streams, such as online meteorological 

services, it is possible to increase the accuracy of data-driven 

forecasts with the availability of additional historical records 

[27]. The ability to transfer pretrained models to different 

places without the need for intensive training processes or large 

amounts of historical data is another motivation. Nevertheless, 

additional precautions should be taken when using pretrained 

models because of the complexity of the solar radiation problem, 

which involves different complex patterns across locations. For 

instance, the analysis for the prediction of a pretrained model on 

a subset of the available data, if it already exists, can be used by 

weather experts to modify, or add new rules to handle specific 

patterns. When the system's rule base expands, it may be useful 

to implement rule base pruning mechanisms to remove/prune 

redundant or less relevant rules that contribute less to the system's 

performance [24].  

III.  THE PROPOSED LIFE-LONG LEARNING XAI 

METAHEURISTIC-BASED TYPE-2 FUZZY SYSTEM FOR 

SOLAR RADIATION MODELLING  

The proposed method encompasses the following five main 

stages: 

1- Initial rule identification using Wang-Mendel (WM) 

method. 

2- Rule selection using Simulated Annealing (SA).  

3- Linguistic variable selection in each rule using SA 

(rule length reduction).  

4- Domain expert contribution, including evaluation, 

amendment, and addition of new rules. 

5- Life-long learning and model transfer to adapt the 

model to suit new conditions and locations.  

The following subsections detail these steps, while Fig 1 and 

Fig 3 present flowcharts of the five stages and their main steps. 

 

A. Data Preparation 

The used data in this study is a combined data set for nine 

locations in Saudi Arabia with different topographical 

characteristics. The data is obtained from two available sources: 

solar ground stations and a Numerical Weather Prediction 

(NWP) model. This research made use of ground station data 

from nine Saudi Arabian sites' stations. These stations are owned 

and maintained by the national renewable energy authority [28]. 

The use of the NWP models are needed to cover missing 

variables: dust, cloud cover, and modeled clear-sky Global Solar 

Irradiation (GHI). The first two variables are known to affect the 

level of radiation but are not measured by the available ground 

stations, so they are anticipated by some variables in the NWP 

model. The NWP model used is the fifth generation of 

atmospheric reanalysis of global climate (ERA5) published by 

the European Centre for Medium-Range Weather Forecasts 

(ECMWF) [29]. The ground stations documented the existence 

of uncertainties in the observed records with regard to the data's 

reliability, despite the equipment's routine maintenance and 

calibration. These uncertainties vary from ±2% to ±9% for GHI 

data, which makes the use of type-2 fuzzy logic systems desirable 

to handle the faced uncertainties.  

The target is to predict the next hour's total solar radiation, 

known as global solar irradiation (GHI), which is an observed 

value from ground stations.  

 

 

The inputs are ten weather variables of the current hour related to 

the GHI, which are: 

• the temperature of the air, measured in degrees Celsius. 

• day of the year as a number (from 1 to 366 (leap year)) 

• hour number in a 24-hour period. 

• average wind direction from the north. 

• average wind speed, measured in meters per second. 

• relative humidity percentage. 

• station pressure, measured in millibars. 

• NWP modeled friction velocity refers to the velocity of 

air moving over a surface that generates a force and 

Fig. 2: Saudi Arabia map with case studies' stations (blue font 

=case study 1 (Coastal), red= case study 2 (Desert and High 

Altitude), green=case study 3 (Plain Desert). Source: 

amended from [35].  

 

1.Rule 
identification 
using Wang-

Mendel 
algorithm 

2.Rule number 
reduction using 
meta-heuristic 

search.

3.Rules length 
reduction using 
meta-heuristic 

search.

4.Expert 
contribution to 

rule-base

5.Long-life 
learning and 

model transfer.

Fig. 1. The five stages of the method as part of lifelong 

learning. 
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transfers momentum to the surface, therefore slowing the 

wind. It is used to serve as a leading indicator for dust. 

• NWP modeled total cloud cover, which ranges from 0 to 

1, is the percentage of a grid box that is covered in clouds.  

• mathematically modeled clear-sky GHI for the target 

hour, assuming clear-sky (cloudless) conditions. The 

modeled values are calculated using the mathematical 

function proposed in [30].  

The first seven input variables are obtained from the ground 

stations, while the remaining three variables are estimated from 

the NWP model and a mathematical function. The output is the 

GHI for the next hour in Watt per square meter 𝑊ℎ/𝑚2. The 

predicted period is only during the extended daytime, from 6:00 

a.m. to 19:00 p.m., based on the previous hour's data.  

The combined dataset is then cleaned and verified by 

removing data pairs that have missing values as well as 

converting date and time values to numerical values. The 

availability of ground data for each station starts at a different 

date based on the initial start time of recording. Therefore, the 

training data pairs start from the first available day in 2013. Table 

I displays the ground station specifications as well as the training 

and testing periods and sample percentages. The nine data sets 

are divided into three case studies (of different topographical 

and weather patterns) to evaluate the proposed method for 

lifelong learning, as shown in Table I and Fig. 2. The first case 

study relates to coastal areas, while the second case study 

relates to Desert areas with high altitude and the third case study 

relates to plain desert. The first dataset in each case study is 

fully used for training the model, while the second dataset is 

partially used to improve the trained model. The third dataset in 

each case study is employed for testing (unseen data set) the final 

model.  

B. First Stage: Initial rule identification using Wang-Mendel  

The initial rule base identification is obtained using the WM 

algorithm. Firstly, each input variable (𝑥1, 𝑥2, … 𝑥𝑛) domain is 

partitioned into three gaussian type-1 fuzzy sets denoted by 

linguistic labels (𝐿𝑜𝑤,𝑀𝑖𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ). The domain for each 

variable is bound by the minimum and maximum values of each 

variable in the training pairs. Since the gaussian fuzzy set has 

nonzero membership, there will be one vertex in the middle of 

the region with a membership value of 1, and the other two 

vertices will have membership values approaching 0 at the 

middle of the two adjacent regions. The standard deviation for 

each gaussian fuzzy set is chosen heuristically to achieve this 

condition. Each output variable domain 𝑦  is partitioned into 

seven type-1 gaussian fuzzy sets denoted by linguistic labels 

(𝑉𝑒𝑟𝑦𝐿𝑜𝑤, 𝐿𝑜𝑤, 𝐿𝑜𝑤𝑒𝑟𝑀𝑖𝑑𝑖𝑢𝑚,𝑀𝑖𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ𝑒𝑟𝑀𝑖𝑑𝑖𝑢𝑚, 
𝐻𝑖𝑔ℎ, 𝑉𝑒𝑟𝑦𝐻𝑖𝑔ℎ).  
After the input/output domain partitioning, we employ the 

second step to generate a number of type-1 fuzzy rules from the 

numerical data pairs following the WM approach described in 

[31]. The membership function of each fuzzy set is converted as 

an interval type-2 gaussian fuzzy set with uncertain means and a 

unified standard deviation determined by the following formula: 

𝑓(𝑥) = 𝑒𝑥𝑝−{
𝑥−𝑚

2𝜎
}
2

 , 𝑚 ∈ [𝑚1, 𝑚2]   (2) 

TABLE I  

CASE STUDIES AND SITES DATA SETS DETAILS.  
Case 

Study   
Purpose Site Latitude Longitude 

Elevation 

(meter) 
Training dates / samples Testing dates / (samples)  

1 

Training (Stages 1-4) Jeddah 21.49 39.24 75 29/5/2013-28/5/2014 (5109) 29/5/2014-31/12/2014 (3038)  

Partial training (Stage 5) Al-Qunfuthah 19.15 41.08 20 05/09/2013-04/09/2014 (5025) (partially) 05/09/2014-31/12/2014 (1652)  

Independent Testing Duba 27.34 35.72 45 - 26/07/2013-31/12/2014 (7335)  

2 

Training (Stages 1-4) Timaa 27.61 38.52 844 24/7/2013-23/7/2014 (5109) 23/7/2014-31/12/2014 (2254)  

Partial training (Stage 5) Al-Qassim 26.35 43.77 688 03/06/2013-02/06/2014 (4526) (partially) 03/06/2014-31/12/2014 (2944)  

Independent Testing Riyadh 24.71 46.68 668 - 16/01/2014-31/12/2014 (9897)  

3 

Training (Stages 1-4) Al-Ahsa 25.34 49.59 170 29/5/2013-28/5/2014 (4965) 29/5/2014-31/12/2014 (3038)  

Partial training (Stage 5) Al-Uyanah 24.9 46.4 779 14/01/2013- 13/01/2014 (5109) (partially) 14/01/2014-31/12/2014 (4928)  

Independent Testing Hafr Al-baten 28.33 45.96 383 - 06/10/2014-31/12/2014 (1204)  

Data   
Preparation

•Data. 
Preparation.

•Combining data 
sets from the 
two sources.

•Cleaning 
process of data 
sets.

•Linking hourly 
data to next 
hour GHI 
output.

•Selection of 
day-time data 
pairs.

Initial rule 
identification 
using Wang-

Mendel 

•Partition of each 
input variable 
domain into 
three fuzzy sets. 

•Partition of each 
output variable 
domain into 
seven fuzzy sets.

•Obtaining WM 
selected rules.

•Examining the 
initial WM 
IT2FLS 
Prediction 
RMSE.

Rules 
selection 
using SA

•Limiting number of 
rules to 50 rules 
randomly.

•Constructing an initial 
IT2FLS using selected 
rules.

•Applying the 
similarity function to 
handle uncovered 
examples.

•Examining first initial 
reduced IT2FLS 
prediction.

•Starting SA 
optimization of rules.

Linguistic 
variables 
selection 
using SA

•Limiting active linguistic 
variables in each rule to 
3 sets randomly.

•Constructing initial 
IT2FLS using selected 
rules and sets.

•Applying a similarity 
function to handle 
uncovered examples.

•Examining the initial 
reduced IT2FLS 
prediction.

•Starting SA search of 
active linguistic 
variables.

Expert 
contribution

•Expert evaluation, 
amendement, 
and addition of 
the found rules.

•Combining SA-
IT2FLS rules with 
expert rules.

•Examining the 
combined rules 
with training data 
sets.

•Examining the 
combined rules 
with the testing 
data sets.

Long-life 
learning and 

model 
transfer.

•Applying the trained 
model on a new dataset.

•Getting the data pairs with 
large absolute errors.

•Repeating the training 
process for the biased 
predicted datasets only.

•Combining original and 
new rules.

•Apply expert contribution.

•Examine new life-long 
learning prediction on 
both sets and the new 
dataset.

Fig. 3. The main steps in the five stages of the method.  

 



5 

Consequently, the upper �̅�𝐴(𝑥) and lower membership 

functions 𝜇𝐴(𝑥) are defined by the following two formulas [32]: 

�̅�𝐴(𝑥) =

{
 
 

 
   𝑒𝑥𝑝−{

𝑥−𝑚1
2𝜎

}
2

                  𝑖𝑓 𝑥 <  𝑚1,                   
 

 1                                    𝑖𝑓 𝑚1 ≤ 𝑥 ≤ 𝑚2,      
     

   𝑒𝑥𝑝−{
𝑥−𝑚2
2𝜎

}
2
                   𝑖𝑓 𝑥 >  𝑚2                   

  

(3) 

𝜇𝐴(𝑥) = 

{
 

 𝑒𝑥𝑝−{
𝑥−𝑚2
2𝜎

}
2

                    𝑖𝑓 𝑥 ≤  (
𝑚1+ 𝑚2

2
),       

 

 𝑒𝑥𝑝−{
𝑥−𝑚1
2𝜎

}
2

                    𝑖𝑓 𝑥 >  (
𝑚1+ 𝑚2

2
)       

(4) 

where , 𝑚 ∈ [𝑚1, 𝑚2] are the two means of the type-2 fuzzy 

set, and 𝜎 is the standard deviation. The area between the upper 

�̅�𝐴(𝑥) and lower membership functions 𝜇𝐴(𝑥) is known as the 

"footprint of uncertainty (FOU)," which allows many types of 

uncertainty to be modeled within. 

The fuzzy logic system processes begin with the fuzzification 

of the input values into their interval type-2 fuzzy sets using the 

membership function defined above. Then, the minimum t-norm 

function is used to combine all the membership grades for all the 

inputs to get firing level values for each rule. As mentioned 

above, the rules at this stage are the ones obtained from the WM 

algorithm. The defuzzification process is carried out using the 

Nie-Tan defuzzification algorithm, which computes the 

defuzzified output value 𝑦(𝑥′) directly using the fired upper and 

lower final antecedent values  𝑓
𝑛
 (𝑥′), 𝑎𝑛𝑑 𝑓𝑛(𝑥′) based on the 

following formula [33]: 

𝑦(𝑥′) =  
∑ 𝑦𝑛 [𝑓𝑛(𝑥′)+𝑓

𝑛
 (𝑥′) ]𝑁

𝑛=1

∑        [𝑓𝑛(𝑥′)+𝑓
𝑛
 (𝑥′) ]𝑁

𝑛=1

  (5) 

The IT2FLS incorporates the similarity function proposed by 

[34]. Similarity functions can be beneficial to handle uncovered 

data pair examples created as a result of when a subset of rules is 

chosen from the full rule base. In this paper, we will employ the 

similarity metrics employed in [34] for determining the rules in 

the rule base that are most relevant to classify newly uncovered 

examples. The proposed method can be used to solve regression-

based problems by using the proposed function to find the rules 

that are most similar to the missed rules. The approach first 

generates a set of fuzzy rules for the revealed example by 

considering positive membership degrees for each variable. 

Then, all the possible fuzzy rules are extracted by running all the 

possible combinations of the previously matched membership 

functions in the antecedent part only. Then, the following 

similarity function formula is used to determine the similarity of 

fuzzy rules in the rule-base to the set of fuzzy rules for the 

uncovered example SFRU(𝑥𝑝): 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑗
′, 𝑅𝑗

 ) =  ∏ | 1 −
𝑎𝑏𝑠(𝑉(𝑅𝑗𝐾

′ )− 𝑉(𝑅𝑗𝐾
 ))

𝑁𝐿𝐾
|𝑛

𝑘=1   (6) 

 

where 𝑗′ = {1,… . |SFRU(𝑥𝑝)|}, and |SFRU(𝑥𝑝)| is the 

number of rules in the set of fuzzy rules for the uncovered 

example SFRU(𝑥𝑝). 𝑅𝑗
′ is the jth rule in SFRU(𝑥𝑝). 𝑅𝑗

  is the jth 

rule in the rule-base where 𝑗 = {1, . . . , 𝐿}.  n is the number of 

variables, while 𝑁𝐿𝐾  is the number of fuzzy sets (linguistic 

labels) for the kth variable. The function V refers to the integer-

coded location of the kth fuzzy set of the examined rule. This 

function will assign a similarity degree to each rule in the rule 

base for every rule in SFRU(𝑥𝑝). The rule in the rule-base with 

the highest degree of similarity is then assigned to each rule in 

SFRU(𝑥𝑝). In this work, the presented similarity function is 

modified to suit regression-based problems and to handle the 

reduction of the full combination rules to WM selected rules. The 

first amendment is that the chosen gaussian membership 

functions do not return zero membership grades for any value 

within the data range. Hence, a threshold is applied to determine 

when to use the similarity function. The threshold is set to 0.1 in 

this study, meaning that any data pair with maximum firing level 

values of the upper memberships less than or equal to the 

threshold will be passed to the similarity function. Human experts 

can also adjust the level of this threshold to achieve the desired 

level of data pair coverage for the system. However, threshold 

values should be chosen with care to avoid redundancy in 

automatically generated rule bases. In the second amendment, the 

similarity function selects the most similar rule among WM rule-

base as follows: 

1. The data pair is considered one of the uncovered examples 

in the set of fuzzy rules for the uncovered example 

SFRU(𝑥𝑝) if the maximum firing level of upper 

memberships is less than or equal to the similarity 

threshold of 0.1. In this situation, the similarity function 

should be applied. 

2. For each uncovered data pair, find the most similar 

(missing) rule (𝑅′) among the original WM rule base (𝑅).  
Therefore, 𝑅𝑗

  is the 𝑗𝑡ℎ rule in the WM rule-base where 𝑗 =

{1, . . . , 𝐿𝑊𝑀} 𝑖𝑛 𝐸𝑞 (6).   
3. Using the similarity function formula, determine the degree 

of similarity between 𝑅′ and the (50) subset of selected 

rules (50 is the desired number of rules to be present in the 

rule base to maximize the system interpretability, the best 

rules will be found via simulated annealing as discussed in 

the next subsection). The calculation for similarity is based 

on the mean values of the upper and lower memberships in 

this experiment.  

4. The rule with the highest degree of similarity among the 50 

selected rules is chosen for each uncovered data pair. 

5. The uncovered data pair is assumed to have full firing level 

values (1/1) for both upper and lower firing levels in the 

most similar rule. As a result, the consequent parts of the 

most similar rule are calculated with a full firing of upper 

and lower bounds to their consequent output fuzzy sets. 

6. The type-reduction of each uncovered data pair is carried 

out using 50 + 1 = 51 rules. Therefore, the output values 

for these data pairs are calculated using the new set of 

combined rules.  The root mean squared error (RMSE) was 

selected as the prediction error metric during the search as 

follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ (𝑦𝑖 − �̂�)

2𝑁
𝑖=1       (11) 

where 𝑁is the number of samples, 𝑦𝑖  is the system predicted 

value, and �̂� is the observed (target) value.   

C. Rule selection using SA. 

The second stage involves the optimization of the discovered 



6 

WM rules by searching for a small subset of rules within the WM 

rule base of fixed length (to maximize the model interpretability) 

while maximizing the model accuracy. First, an adequate number 

of rules from the WM rule base are selected at random. After that, 

the best set of rules with the smallest prediction error are found 

iteratively through a combinatorial search of SA. In our 

experiments, the fixed number of rules (suggested by the domain 

experts) is set at 50, though any other limited number that enables 

interaction with experts can be chosen. The neighborhood 

representation of the search processes in this stage is formulated 

as combinatorial search optimization. The SA searches for the 

best set of rules by swapping one of the current ones with another 

one from the non-selected WM rule base. The initial temperature 

of the SA is chosen heuristically to be 2, which allows enough 

opportunities to avoid being stuck in local minima. To allow an 

exploration of the search space in the first iterations, the search 

swaps three values at a time during the first three Markov chains 

and one thereafter. To control the annealing process, Markov 

chains are used to reduce the temperature once after 120 

iterations for each chain. The maximum number of Markov 

chains is 50, after which the search terminates. The cooling 

process of the temperature parameter is based on the static 

cooling function of the current Markov chain and the initial 

temperature as follows: 

                                       𝑇𝑚𝑐 = 𝑇0 ∗ 𝐶                        (7) 

Where 𝑇𝑚𝑐  is the temperature value at the current Markov 

chain, 𝑇0 is the initial temperature, and 𝐶 is a cooling constant set 

to 0.85. Therefore, the IT2FLS is updated with the new rule set, 

and the output of the training data set is evaluated at each 

iteration. The SA acceptance mechanism is used, which always 

accepts better states while only accepting worse states randomly 

with a controlled probability. As described in the previous 

section, the similarity function is utilized in the IT2FLS 

calculation process. Therefore, as the search continues, better 

states should be discovered. It is important to note that when the 

search begins with a random set from the WM rule base, the 

objective function may initially appear to worsen. However, an 

adequate search should quickly overcome this issue and locate 

states that are better compared to WM's complete sets of rules. 

The search terminates after 6,000 iterations encapsulated in 50 

Markov chains. 

D. Third Stage: Rule length reduction using SA. 

The third stage involves optimizing the 50 best-discovered 

rules by searching for a small subset of linguistic labels (fuzzy 

sets) in each rule. Initially, a few but sufficient linguistic labels 

are chosen at random for each rule. The optimal set of linguistic 

labels for each rule is then determined iteratively via 

combinatorial search utilizing SA. In this experiment, the number 

of rule antecedents is fixed at three but any other small number 

that enables an adequate interaction with experts is acceptable. In 

this stage, the neighborhood representation of search processes is 

expressed as combinatorial search optimization. The SA searches 

for the optimal set of linguistic labels by exchanging one of the 

current linguistic labels with another from the same rule. The SA 

and IT2FLS configurations are identical to those described in the 

previous stage. At each iteration, the IT2FLS is updated with a 

new set of linguistic labels for the 50 rules, and the output of the 

training data set is measured. Within the IT2FLS procedure, the 

similarity function is still used. When the search begins with a 

random set from the previous stage's rule base, the objective 

function may initially appear to deteriorate. Nevertheless, a 

sufficient search should quickly overcome this issue and identify 

states that are preferable to the sets of rules from the previous 

stage in terms of the objective function. 

E. Fourth Stage: Domain expert contribution 

The goal of this stage is to incorporate domain experts' 

knowledge in various ways. First, experts can examine the best-

found rules identified by the first three stages and assess their 

consistency with their knowledge and scientific observations. 

Then experts can remove and modify existing rules, as well as 

add new ones. Experts can analyze uncovered examples 

separately and provide additional rules as needed. The expert 

should be involved from the beginning, recommending the input 

variables and their level of granularity. Combining a data-driven 

knowledge base with expert knowledge can increase the level of 

trust in a continuously evolving system. Following an expert 

contribution to the current set of rules, the dataset prediction is 

examined using the new combined set of rules. APPENDIX B   

presents a sample of generated data-driven and expert rules, 

while Fig. 4 describes the potential contribution of domain 

experts in each stage.  

 

F. Fifth Stage: Long-life learning and model transfer 

In this stage, the previously trained model is transferred to a 

new dataset for another location with partial training. 

Transferring the model to a location with similar topographical 

characteristics and weather patterns is recommended for better 

results, especially when these characteristics are not included in 

Fig. 4. Domain experts' potential contribution in each 

stage. 

1.Rule 
identification 
using Wang-

Mendel algorithm  

• Add rules. 
• Remove rules. 
• Amend rules. 

 2.Rule 
number 

reduction 
using meta-

heuristic 
search. 

3.Rules length 
reduction 

using meta-
heuristic 
search. 

4.Expert 
contribution 
to rule-base. 

• Add rules and fuzzy sets. 
• Remove Add rules and 

fuzzy sets. 
• Amend Add rules and 

fuzzy sets. 

5.Long-life 
learning 

and model 
transfer. 

• Add rules and fuzzy sets. 
• Remove, and add rules and fuzzy 

sets. 
• Amend, add rules and fuzzy sets. 

• Add fuzzy sets. 
• Remove fuzzy sets. 
• Amend fuzzy sets. 

• Add rules. 
• Remove rules. 
• Amend rules. 
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the first data set. The following are the proposed steps to 

complete this stage: 

▪ S5-A: Evaluate the new dataset using a pretrained fuzzy 

logic system that has previously been trained by the 

previous four stages for another similar or close site. 

▪  S5-B: Perform Stages 1, 2, and 3 to find the best limited set 

of rules to handle a selected subset of bad predicted data 

pairs and therefore add them to the rule-base. The data pairs 

chosen should have the greatest prediction errors in both the 

first and second data sets. This can be accomplished by 

filtering prediction errors using a predetermined absolute 

error threshold. The chosen threshold is problem-dependent 

and related to the allowable level of error by experts. The 

number of new rules chosen in this experiment should be 

small compared to the first rule-base to preserve the 

performance and consistency of the original rule base where 

possible. The added number of rules is limited in our system 

to only 12 rules. The training process is expected to be quick 

at this stage because the number of rules and data sets is 

limited. Domain experts may modify the newly discovered 

rules or add new site-specific rules either before or after this 

step. We then combine the new subset-related rules with the 

pretrained set of rules to form a combined rule-base that 

should represent an adequate modeling of the two datasets 

(for the first two sites). Then, using the combined set of 

rules, evaluate all data pairs for the second site as well as the 

first site.  

▪ S5-C: Apply Stage 4, in which domain specialists may 

analyze the prediction of the new added or combined rule-

base and contribute as necessary. Experts may revise 

previous rules or add general rules applicable to both sites. 

This step may marginally increase the cumulative prediction 

error when a site-dependent rule or a rule to handle the 

minority of cases is added (rare scenarios).  

▪ S5-D: Apply a pruning process to remove rules that may 

degrade prediction after subsequent rule-combining 

processes. The process starts iteratively by removing a rule 

each time from the last version of the rule-base and 

reevaluating the combined training sets (the first set and 

the second minimal set). Then, a rule is eliminated if its 

removal improves the prediction. The simple pruning 

process is repeated until there is no further improvement. 

Using the new combined set of rules, testing data pairs 

from the first and second sites as well as any new data sets 

can be evaluated.  

At this point, an IT2FLS should reach a general state 

acceptable for predicting new similar data examples. The fifth 

stage can be repeated whenever a new batch of different data 

sets arrives. The model can be moved to new locations by 

repeating the Stage 5 steps. Table II presents the rules and the 

relevant reductions as detailed in the next section.  

IV. EXPERIMENTS AND RESULTS  

The system was evaluated with real-world data sets from nine 

locations in Saudi Arabia with distinct climatic and 

topographical characteristics.  The experiments are divided into 

three case studies, each with 3 sites' datasets, as shown in Table 

I. In each case study, the first site data set is used to train the 

proposed system in the first four stages, followed by the training 

of a small subset of the second site dataset to build lifelong 

learning capabilities, and finally testing on a totally independent 

third site dataset. To show the impact of each stage, an 

evaluation of both training and testing data sets is carried out 

after each stage.  

 

 

 

TABLE II 

THE NUMBER OF RULES, RULE REDUCTIONS, AND LINGUISTIC VARIABLES DURING THE FIVE STAGES 

(LV=LINGUISTIC VARIABLE). 
Case Study 1 

Stage S1 S2 S3 S4 S5A S5B S5C S5D 

Selected Rules 579 50 50 52 52 64 65 63 

WM Rules + Expert Rules 597 597 597 581 581 891 892 892 

All Combinations Rules  59049 59049 59049 59049 118098 118098 118098 118098 

Selected LVs in Rules 5790 500 150 156 156 192 195 189 

All Combinations LVs  590490 590490 590490 590490 1180980 1180980 1180980 1180980 

Rule Reduction % 99.02% 99.92% 99.92% 99.91% 99.96% 99.95% 99.94% 99.95% 

Case Study 2 

Stage S1 S2 S3 S4 S5A S5B S5C S5D 

Selected Rules 753 50 50 52 52 64 66 65 

WM Rules + Expert Rules 753 753 753 755 755 1304 1306 1306 

All Combinations Rules  59049 59049 59049 59049 118098 118098 118098 118098 

Selected LVs in Rules 7530 500 150 156 156 192 198 195 

All Combinations LVs 590490 590490 590490 590490 1180980 1180980 1180980 1180980 

Rule Reduction % 98.72% 99.92% 99.92% 99.91% 99.96% 99.95% 99.94% 99.94% 

Case Study 3 

Stage S1 S2 S3 S4 S5A S5B S5C S5D 

Selected Rules 867 50 50 53 53 65 67 66 

WM Rules + Expert Rules 867 867 867 870 870 1569 1571 1571 

All Combinations Rules  59049 59049 59049 59049 118098 118098 118098 118098 

Selected LVs in Rules 8670 500 150 159 159 195 201 198 

All Combinations LVs 590490 590490 590490 590490 1180980 1180980 1180980 1180980 

Rule Reduction % 98.53% 99.92% 99.92% 99.91% 99.96% 99.94% 99.94% 99.94% 
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TABLE III 

CASE STUDY 1 PREDICTION ERROR RESULTS FOR 

FIRST SITE (STAGES S1-S4).  
Stage S1 S2 S3 S4  

M
e
tr

ic 

Metric 

Stats 
Wang-Mendel 

Rule-base 

selection 

Linguistic 

Variables 

selection 

Expert 

contribution 
 

Site - 

Sample 

1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 
 

R
M

S
E

 

Mean 178.8 
182.1

0 
77.94 77.15 70.55 63.33 71.10 62.80  

Min 178.8 182.1 76.92 76.04 69.17 60.98 69.87 60.90  

Max 178.8 182.1 78.83 78.51 71.82 65.10 72.42 64.55  

rR
M

S
E

 

Mean 38.27 37.91 17.58 16.82 15.95 13.88 16.08 13.76  

Min 38.27 37.91 17.42 16.46 15.64 13.36 15.80 13.35  

Max 38.27 37.91 17.75 17.14 16.21 14.28 16.35 14.16  

M
B

E
 

Mean 19.32 9.46 -0.25 -12.12 1.32 -7.72 6.22 -2.78  

Min 19.32 9.46 -2.96 -14.93 0.64 -12.06 5.32 -7.11  

Max 19.32 9.46 3.58 -6.27 3.08 -3.91 7.65 0.44  

 

 

TABLE IV 

TABLE V 

"CASE STUDY 2 PREDICTION ERROR RESULTS FOR 

FIRST SITE (STAGES S1-S4).  
Stage S1 S2 S3 S4  

Metric - 
1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 
 

R
M

S
E

 

Mean 206.7 196.7 83.56 71.26 73.43 61.77 73.42 61.61  

Min 206.7 196.7 81.83 68.86 69.48 56.56 69.47 56.45  

Max 206.7 196.7 84.73 74.87 75.13 64.59 75.13 64.39  

rR
M

S
E

 

Mean 40.49 38.80 17.44 15.46 15.24 13.26 15.24 13.23  

Min 40.49 38.80 17.12 15.04 14.45 12.13 14.45 12.12  

Max 40.49 38.80 17.72 16.33 15.56 13.82 15.57 13.79  

M
B

E
 

Mean 15.59 37.37 -0.37 7.10 -0.66 8.81 -1.76 8.03  

Min 15.59 37.37 -4.58 4.13 -2.70 4.96 -3.87 4.23  

Max 15.59 37.37 6.85 16.10 1.51 11.08 0.49 10.28  

CASE STUDY 1 PREDICTION ERROR RESULTS FOR 

FIFTH STAGE (ALL SITES). 

Stage 5A 5B 5C 5D 

M
e
tr

ic 

M
e
tr

ic
 

S
ta

ts 

First 

Pre-

traine

d 

Model 

Combined 

Rule-bases 
Expert Contribution 

Final Pruned 

Combined Model 

S
ite

 - 

S
a

m
p

le 
2nd - 

Train 

2nd - 

Train 

2nd - 

Test 

2nd - 

Train 

2nd - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Test 

2nd - 

Test 

3rd - 

Test 
R

M
S

E
 

Mean 79.89 80.98 80.95 80.00 75.83 78.75 68.01 65.53 75.38 78.88 

Min 75.68 77.59 76.41 76.55 72.41 76.08 65.24 63.41 70.48 72.37 

Max 88.81 86.75 85.65 85.45 79.74 82.09 72.95 66.80 78.95 83.38 

rR
M

S
E

 

Mean 18.31 18.40 19.55 18.08 18.03 17.53 14.59 14.26 18.29 17.08 

Min 17.34 17.67 18.52 17.35 17.29 16.97 14.06 13.79 17.04 15.66 

Max 20.39 19.70 20.41 19.32 18.63 18.12 15.35 14.49 19.20 18.17 

M
B

E
 

Mean -14.73 -8.89 -19.4 6.87 -0.47 20.98 10.39 -0.30 -11.7 -22.1 

Min -21.73 -11.24 -21.1 3.98 -4.04 14.89 0.16 -11.7 -21.3 -34.2 

Max -9.28 -6.71 -17.68 9.46 2.43 26.63 17.55 9.22 -0.80 -14.2 

 

Different metrics recommended for the solar radiation prediction 

problem are used to analyze the results to provide a clearer 

understanding of the results' accuracy. In addition to Root Mean 

Square Error (RMSE), relative Root Mean Squared Error 

(rRMSE) and Mean Bias Error (MBE) are also employed as 

metrics. Although RMSE is advantageous for evaluating the 

system accuracy, MBE is used to highlight the average model's 

bias and thus can reveal the under-estimation or over-estimation 

characteristics of the prediction models. The rRMSE illustrates 

the prediction errors relative to the values of GHI. In addition to 

RMSE, which was defined above, the following metrics have 

corresponding mathematical formulas: 

              𝑟𝑅𝑀𝑆𝐸 =  
√
1

𝑁
 ∑ (𝑦𝑖−�̂�)

2𝑁
𝑖=1    

1

𝑁
∑ �̂�𝑁
𝑖=1

 ∙ 100                  (8) 

          MBE =
1

𝑁
 ∑ (𝑦𝑖 − �̂�)

𝑁
𝑖=1                             (9) 

 where 𝑁 is the number of samples, 𝑦𝑖  is the system predicted 

value, and �̂� is the observed (target) value. The results are 

detailed in Tables III, IV, V, VI, VII, and VIII, where each 

case's results are separated into two tables, with the first table 

displaying the impact of each stage from Stages 1–4 and the 

second table displaying the impact of the fifth stage in each 

site's dataset. To show the structure of the proposed system, 

Table II shows the reduction levels of the rule-base during the 

five stages and Appendix A shows a sample of the final rules. 

Fig. 5 depicts an example of a contour map illustrating the 

coverage of the final rule base of the model's ten inputs. An 

example of generated input and output fuzzy sets is drawn in 

APPENDIX B.  

The results analysis aims to answer the following questions: 

i. Has the training in Stages 1-4 resulted in an explainable 

model with an acceptable level of prediction accuracy for 

the first site? And to what extent has each stage contributed 

to the system's performance? 

ii. Did the Stage 5 training improve the prediction of a 

different second site over the pretrained first site model? 

And to what extent has each step in Stage 5 contributed to 

the resulting system's performance? 

iii. Considering the explainability and design restrictions of the 

final model, is the final model capable of predicting the third 

site dataset, which is an entirely new dataset, with an 

acceptable level of accuracy relative to benchmark models?  

The first question: Has the training in Stages 1-4 resulted 

in an explainable model with an acceptable level of 

prediction accuracy for the first site? And to what extent 

has each stage contributed to the system's performance? 

a. First Stage: Initial rule identification using 

Wang-Mendel  

 The first stage of generating an initial set of rules for the first 

site using WM resulted in a relatively large set of rules compared 

to the subsequent stages (Table II), where (579, 753, and 867) 

rules were generated for the three case studies respectively. 

However, these figures represent a very high reduction in the rule 

base from 59049 potential rules (minimum 98.53% reduction). 

The generated rules introduced relatively high prediction errors 

(Tables III, V, VII) compared to subsequent stages, with an 

average RMSE of (178.8, 206.7, and 194.7) for the training sets 

and similar results for the testing results. 
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TABLE X 

PERCENTAGE OF IMPROVEMENT IN PREDICTION 

ERRORS FOR THE SECOND SITE TESTING DATA SETS 

AFTER PERFORMING STAGE 5'S STEPS. 

Site Case Study 1 - Site 2 
Overall 

S5B-S5D 

Stage S5B S5C S5D  

RMSE 

Mean -1.33 6.33 0.60 5.65 

Min -0.96 5.24 2.67 6.87 

Max 3.56 6.89 1.00 11.10 

rRMSE 

Mean -6.76 7.78 -1.43 0.14 

Min -6.82 6.65 1.43 1.71 

Max -0.08 8.71 -3.06 5.84 

Site Case Study 2 - Site 2 
Overall 

S5B-S5D 

Stage S5B S5C S5D  

RMSE 

Mean 23.03 0.32 3.30 25.81 

Min 22.63 0.36 4.39 26.29 

Max 21.67 0.11 1.98 23.31 

rRMSE 

Mean 27.14 0.29 3.37 29.80 

Min 27.22 0.32 4.29 30.57 

Max 25.83 0.07 1.76 27.19 

Site Case Study 3 - Site 2 
Overall 

S5B-S5D 

Stage S5B S5C S5D  

RMSE 

Mean -0.61 1.78 0.74 1.91 

Min 4.03 0.73 0.44 5.16 

Max -0.73 2.62 -1.04 0.89 

rRMSE 

Mean 4.43 2.35 0.24 6.90 

Min 8.26 1.30 -0.10 9.36 

Max 5.02 3.25 -1.62 6.62 

 Average rRMSE 

Improvement 
Mean 8.27 3.47 0.73 12.28 

TABLE VI 

CASE 2 PREDICTION ERROR RESULTS FOR FIFTH STAGE 

(ALL SITES). 

Stage 5A 5B 5C 5D 

M
e
tr

ic 

- 
2nd - 

Train 

2nd - 

Train 

2nd - 

Test 

2nd - 

Train 

2nd - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Test 

2nd - 

Test 

3rd - 

Test 

R
M

S
E

 

Mean 95.22 90.81 73.29 90.62 73.06 77.83 63.90 63.57 70.65 92.68 

Min 90.01 87.23 69.64 87.02 69.39 73.95 59.71 60.21 66.34 87.25 

Max 97.79 93.15 76.60 93.03 76.51 80.35 66.44 65.82 75.00 95.66 

rR
M

S
E

 

Mean 20.64 19.74 15.04 19.70 15.00 16.15 13.72 13.68 14.49 19.86 

Min 19.59 18.99 14.26 18.95 14.21 15.29 12.63 12.84 13.60 18.76 

Max 21.18 20.20 15.71 20.18 15.69 16.74 14.39 14.33 15.42 20.45 

M
B

E
 

Mean 15.40 6.71 -2.77 5.67 -3.50 -11.9 -2.26 6.66 5.24 19.90 

Min 12.38 1.89 -8.49 0.83 -9.22 -16 -6.33 -6.91 0.89 14.67 

Max 18.56 13.50 5.92 12.44 5.18 -8.06 2.46 11.19 13.67 26.90 

 TABLE VII 

CASE STUDY 3 PREDICTION ERROR RESULTS FOR FIRST 

SITE (STAGES S1-S4). 

Stage S1 S2 S3 S4 

Metric - 
1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Train 

1st - 

Test 
 

R
M

S
E

 

Mean 194.7 199.95 84.65 76.49 76.15 67.85 77.18 67.13  

Min 194.7 199.95 82.31 73.73 74.60 65.20 75.52 64.66  

Max 194.7 199.95 87.66 81.03 77.50 70.75 78.63 69.91  

rR
M

S
E

 

Mean 40.45 39.80 18.59 16.02 16.58 14.02 16.79 13.84  

Min 40.45 39.80 18.12 15.55 16.21 13.48 16.39 13.34  

Max 40.45 39.80 19.19 16.86 16.89 14.64 17.14 14.44  

M
B

E
 

Mean 22.72 8.90 -3.84 -13.34 2.52 -7.51 3.83 -6.38  

Min 22.72 8.90 -6.19 -19.10 1.35 -10.04 2.73 -8.88  

Max 22.72 8.90 -0.63 -9.69 4.20 -4.20 5.43 -3.17  

 

TABLE VIII 

CASE 3 PREDICTION ERROR RESULTS FOR FIFTH STAGE 

(ALL SITES). 

Stage 5A 5B 5C       5D 

M
e
tr

ic 

- 
2nd - 

Train 

2nd - 

Train 

2nd - 

Test 

2nd - 

Train 

2nd - 

Test 

1st - 

Train 

1st - 

Test 

1st - 

Test 

2nd - 

Test 

3rd - 

Test 

R
M

S
E

 

Mean 93.05 92.46 93.62 93.49 91.95 82.22 72.50 70.23 91.27 96.80 

Min 90.28 86.18 86.64 88.72 86.01 78.78 68.01 66.73 85.63 89.18 

Max 98.03 97.99 98.75 98.24 96.16 86.91 78.51 74.86 97.16 103.7 

rR
M

S
E

 

Mean 20.30 20.01 19.40 20.15 18.94 17.61 14.61 14.29 18.90 22.21 

Min 19.61 18.71 17.99 19.18 17.76 16.95 13.77 13.70 17.78 20.60 

Max 21.47 21.13 20.39 21.08 19.73 18.47 15.68 15.04 20.05 23.56 

M
B

E
 

Mean -5.37 0.99 -12.4 16.22 2.16 19.71 12.05 -0.73 -8.78 1.72 

Min -21.3 -5.61 -18.2 9.68 -3.67 13.66 3.51 -9.11 -14.1 -2.09 

Max 7.15 6.62 -7.06 20.14 5.87 25.84 20.40 13.98 -6.03 9.00 

TABLE IX 

PERCENTAGE OF IMPROVEMENT IN PREDICTION 

ERRORS FOR THE FIRST SITE TESTING DATA SET 

OVER WM RULES. 
Site Case Study 1 - Site 1 Overall 

S2-S5 Stage S2 S3 S4 S5 

RMSE 

Mean 57.63 17.92 0.84 -4.36 63.34 

Min 58.24 19.80 0.14 -4.12 64.53 

Max 56.89 17.09 0.85 -3.49 62.64 

rRMSE 

Mean 55.63 17.48 0.86 -3.65 62.73 

Min 56.58 18.80 0.14 -3.32 63.97 

Max 54.79 16.66 0.88 -2.34 62.14 

Site Case Study 2 - Site 1 Overall 

S2-S5 Stage S2 S3 S4 S5 

RMSE 

Mean 63.78 13.33 0.26 -3.19 69.25 

Min 65.00 17.86 0.19 -6.65 70.88 

Max 61.95 13.73 0.30 -2.22 68.16 

rRMSE 

Mean 60.17 14.22 0.23 -3.41 66.22 

Min 61.24 19.32 0.15 -5.97 68.29 

Max 57.91 15.36 0.27 -3.93 64.62 

Site Case Study 3 - Site 1 Overall 

S2-S5 Stage S2 S3 S4 S5 

RMSE 

Mean 61.74 11.30 1.06 -4.62 63.93 

Min 63.13 11.57 0.83 -3.21 65.73 

Max 59.48 12.68 1.19 -7.08 61.56 

rRMSE 

Mean 59.76 12.47 1.28 -3.23 64.68 

Min 60.93 13.32 1.04 -2.72 66.13 

Max 57.64 13.16 1.40 -4.21 62.80 

Average 

rRMSE 

Improvement 
Mean 58.52 14.72 0.79 -3.43 64.54 
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To answer this question, the first four stages' contributions are 

analyzed separately as follows: 

b. Second Stage: Rule selection using SA. 

The second stage of rule reduction using SA resulted in rule 

bases of only 50 rules (Table II), with 99.92% reduction 

(comparing the 50 rules with the All-Combinations Rules). The 

average improvement in the relative RMSE (rRMSE) 

prediction errors compared to the WM rule bases were high at 

58.52% (Table IX). 

However, up to this stage, it has been very difficult for an 

expert to understand these rules since each rule is composed of 

10 linguistic variables, which is the purpose of the next stage.  

c. Third Stage: Rule length reduction using SA. 

The third stage of rule length reduction (linguistic variables 

selection) utilizing SA resulted in rule bases consisting of 50 

rules with only three linguistic variables per rule. The average 

improvement in relative RMSE prediction errors (rRMSE) was 

14.72 percent beyond the second stage (Table IX). At this stage, 

the rule base is intended to be comprehended by an expert, as it 

consists of a small number of rules with maximum three 

antecedents per rule. In addition, the contour map in Fig. 5 

further illustrates the effects of the variable selection process by 

showing that all ten model inputs were covered with varying 

grades, indicating the validity of the variable selection process. 

d. Fourth Stage: Domain expert contribution. 

In the fourth stage, the expert contribution includes the 

addition of new rules (the expert might choose to have more 

antecedents per rules) after analyzing the prediction behavior of 

the automated rules. Because of their high levels of 

explainability, the models were easily understood, analyzed, 

and augmented by the relevant meteorology experts. For 

instance, the expert discovered in Case Study 3 that the 

automated rules did not account for some fog and dust 

circumstances, resulting in an underestimation of their effects. 

Consequently, the expert proposed adding new rules to cover 

these circumstances (samples of experts' rules are shown in 

Appendix B). An example of an expert added rule to handle a 

dust storm scenario is: 

IF (Day Number is 1st Quadrimester of Year) and (Avg Wind Speed 

is High) and (Relative Humidity is Low) and (Avg Wind Direct is High) 

THEN (Next Hour GHI is Low) 
 Besides this, he described the generated rules from the 

models as "acceptable" and "simple" in general. The first case 

study sites are coastal sites, where he suggested adding rules 

that represent some extreme high and low solar conditions. 

Intriguingly, a small number of expert rules (2 or 3) resulted in 

a marginal improvement of 0.79 rRMSE on average beyond the 

third stage for the three testing datasets (Table IX). The 

significance of the addition of this type of rule can also be 

viewed through the lens of minority case modeling. Due to the 

rareness of these situations, the automated optimization process 

tends to disregard them in favor of rules that represent the 

majority of cases. This behavior is known from previous studies 

in which researchers proposed solutions to handle modeling of 

minorities [34]. In addition, captured data will not cover all the 

needed patterns, and our approach enables to fuse two 

sources of knowledge which are data-driven knowledge and 

expert based knowledge. This approach allows human 

experts knowledge to bridge any gaps from the data driven 

models. 

Previous analysis of the first four stages revealed that each 

stage added extra improvement.  In conclusion, a positive 

answer could be given to the question of whether stages 1-4 

provided a reliable improvement to the XAI model designed 

with assistance from a domain expert. 

 

The second question: Did the Stage 5 training improve the 

prediction of the second site over the pretrained first site 

model? And to what extent has each step in Stage 5 

contributed to the resulting system's performance? 

Following the completion of Stage 5 steps, Table X displays 

the improvement of the prediction rRMSE for the second site 

data sets in the three case studies during the Fifth Stage. These 

steps include the following: evaluating these data sets using the 

pretrained model (5-A), partially training a small number of 

chosen examples from the first and second datasets (5-B), the 

expert's participation (5-C), and the rule pruning process (5-D). 

The overall average results demonstrate that each step produced 

an incremental improvement, and the average improvement 

over the pretrained first site rRMSE prediction is 12.28% 

(Table X). The partial training process in step 5-B contributed 

the most (an average of 8.27% improvement (Table X). 

Interestingly, when small deteriorations appeared in step 5-B 

for case studies 1 and 3, they were recovered in the following 

step by expert-contributed rules. Thus, the Stage 5 training 

improves the Stages 1-4 pretrained model in terms of improving 

the prediction of the second site data set. 

The third question: Considering the explainability and design 

restrictions of the final model, is the final model capable of 

predicting the third site dataset, which is an entirely new 

dataset, with an acceptable level of accuracy relative to 

benchmark models? 

To measure the prediction efficiency over the third site data 

set, which is an entirely new dataset, we compared our results 

against the three main machine learning techniques used widely 

in this area which are Decision Trees, Bilayered Neural 

Networks, Gaussian Process Regression and two deep learning 

models: Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU). The same sample data sets used in 

Stages 1-4 and Stage 5-B were used to train these models. All 

these models, apart from decision trees, are black-box models 

that cannot be explained by nature. As shown in Table XI, the 

proposed system outperformed the reference models by an  

Fig. 5. A contour map of the final rule base coverage of 

the model's ten inputs for Al-Ahsa site. 
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average of 13.2% across all three test samples for best 

obtained RMSEs.  

In addition, the proposed system outperformed the benchmark 

models in two of the three test samples, outperforming them by 

16.4% and 21%, respectively, with the exception of the second 

case study, in which it underperformed by only -0.3%. The 

overall accuracy of the three testing samples in Stages 1-4 was 

very good, taking into account that the proposed system has 

restrictions for the sake of explainability and simplicity. The 

decline in the average prediction accuracy of the benchmark 

models when predicting test samples relative to the accuracy 

levels obtained during training can be attributed to either to 

overfitting or the inability to be tuned with expert opinion for 

the unseen site which are not issues with the proposed system. 

As can be seen from Table XI, our proposed system 

outperforms the benchmarks over the unseen testing sites by 

13.2% in average while being 100% transparent and 

explainable. This is due to the proposed system ability to be 

adapted using expert opinions to unseen locations while the 

other techniques cannot be tuned via expert rules as they are 

data driven (even for decision trees, it is difficult for the expert 

to make modifications to their structure) and they cannot 

operate in the absence of data as opposed to our system. 

 

The mean MBE results in Tables IV, VI, and VIII of the three 

independent testing samples were -22.1, 19.9 and 1.72. These 

values are very small compared to the scale of GHI values and 

demonstrate the absence of both underestimation and 

overestimation behaviors, which increases confidence in the 

model's generalization capability. Another issue with lifelong 

learning is how much Stage 5 training has resulted in 

catastrophic forgetting of the first site prediction. Despite the 

additional 20–25% of rules added during the fifth stage, the 

average loss in rRMSE is only -3.4% (Table IX), indicating 

very little catastrophic forgetting. This refers to the model's 

excellent generalization ability relative to the benchmark 

problems. For instance, benchmark results demonstrated the 

evolution of errors from very small errors for the first and 

second testing samples to larger errors for the independent 

testing samples (Table XI), indicating that the proposed model 

has better generalization. 

According to the answers to the three questions, the proposed 

model can be used to create models that are: 

I. Simple, interpretable, and interactive with domain experts; 

consequently, enhanced as necessary. 

II. Capable of handling uncertainty using type-2 fuzzy sets 

with relatively accurate modeling. and, Generalizable and 

transferable to new situations through incremental and 

lifelong learning processes which is an important 

functionality in the solar radiation modelling domain 

which cannot be fully achieved via other existing 

technique in the literature.  

V. CONCLUSIONS AND FUTURE WORK 

The presence of explainability and transferability when 

modeling solar energy can increase the level of trust between 

domain experts and AI data-driven models, allowing for more 

productive interactions and better model utilization. In addition, 

it is essential in this domain to transfer explainable models 

between similar locations with the ability to tune such models 

in the absence of any historical data. This capability did not 

exist in the literature prior to our work making it the first work 

to address this major opportunity in the domain of modeling 

solar energy. This paper presents a five-stage transparent 

process to design a compact, explainable, interactive, and 

lifelong learning solar prediction model based on the interval 

type-2 fuzzy logic system (IT2FLS). In the first stage, the 

Wang-Mendel algorithm (WM) is utilized, followed by 

TABLE XI 

COMPARISON WITH SOME BENCHMARK MODELS RMSE RESULTS. 

Case Study Case Study 1 Case Study 2 Case Study 3 Average 

Stage Training S1-S5 Testing Training S1-S5 Testing Training S1-S5 Testing Testing 

Site First Second  Third First Second  Third First Second  Third Third 

Sample Train Test Train Test Test Train Test Train Test Test Train Test Train Test Test Test 

Decision Tree 

(Minimum leaf size of 

4). 

37.64 64.39 37.72 93.55 82.44 34.59 65.41 39.19 55.08 91.96 36.59 62.32 36.58 80.07 92.63 89.01 

Neural Networks 

(Bilayered). 
53.74 55.91 57.53 61.10 68.65 49.28 54.78 52.74 47.33 76.16 50.23 49.91 56.46 67.95 185.23 110.02 

Gaussian Process 

Regression (Squared 

Exponential Kernel). 

46.53 51.16 51.59 59.90 76.50 27.64 52.42 33.94 50.54 85.94 40.12 46.19 49.25 66.92 86.90 83.11 

Long short-term 

memory (LSTM) with 

128 hidden units. 

86.16 71.33 89.94 96.46 98.25 97.67 84.67 98.39 84.42 99.43 92.90 85.55 94.31 100.78 104.14 100.61 

Gated recurrent unit 
(GRU) with 128 

hidden units. 

91.65 77.02 97.27 105.28 106.87 74.54 59.16 77.83 60.69 81.52 86.52 80.65 87.24 92.78 95.82 94.74 

Benchmark Mean 63.14 63.96 66.81 83.26 86.54 56.75 63.29 60.42 59.61 87.00 61.27 64.92 64.77 81.70 112.95 95.50 

Proposed Model Best 

RMSE 
76.08 63.41 76.55 70.48 72.37 73.95 60.21 87.02 66.34 87.25 78.78 66.73 88.72 85.63 89.18 82.93 

Difference (%) -17.0% 0.9% -12.7% 15.3% 16.4% -23.3% 4.9% -30.6% -10.1% -0.3% -22.2% -2.7% -27.0% -4.6% 21% 13.2% 
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optimization processes to select a limited number of rules and 

linguistic variables. The inclusion of domain expert knowledge 

is then employed to evaluate, modify, and add new relevant 

rules to the best-found set of fuzzy rules. In the fifth and final 

stage, the model is converted into a lifelong learning model and 

transferred to new locations. The objective of the system is to 

predict hourly solar energy linked to many solar and weather 

variables. The findings showed that all five stages enhanced the 

modeling accuracy incrementally, resulting in a 

straightforward, explainable, and interactable model that could 

then be improved as necessary. In addition, the model can 

handle uncertainty using type-2 fuzzy sets with reasonably 

accurate modeling (13.2% better than benchmark models for 

unseen geographical locations) and is generalizable and 

transferrable to new situations through incremental and lifelong 

learning processes.  

Future research may concentrate more on the pruning and 

consolidation processes to ensure that the model's core remains 

stable throughout lifelong learning, as well as examining the 

various combinations and the order of the lifelong learning 

processes. It may also investigate methods for making data-

driven fuzzy rules and expert-driven fuzzy rules more 

consistent and avoiding duplication and conflicts. 

 

Source code: https://drive.matlab.com/sharing/9cdf1248-
317c-47ec-85d4-54263674242d 
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APPENDIX A 

AN EXAMPLE OF GENERATED INPUT AND OUTPUT 

FUZZY SETS. 

 

 

APPENDIX B 

SAMPLE OF GENERATED RULES FROM THE 

OPTIMIZATION PROCESS AND ADDED EXPERT 

RULES (A= Automated, E=Expert). 

Rule Source 

If (Day Number is 1st Quadrimester of Year) and (Hour Number 
is Morning) and (Clear Sky GHI is Low) then (Next Hour GHI is 

VERY LOW)  

A 

If (Day Number is 1st Quadrimester of Year) and (Air 

Temperature is Low) and (Cloud Cover is High) then (Next Hour 

GHI is VERY LOW)  

A 

If (Day Number is 1st Quadrimester of Year) and (Avg Wind 

Direct is Low) and (Relative Humidity is High) then (Next Hour 
GHI is VERY LOW)  

A 

If (Hour Number is Noon) and (Friction is Medium) and (Cloud 

Cover is Low) then (Next Hour GHI is High)  
A 

If (Hour Number is Noon) and (Avg Wind Speed is Low) and 

(Cloud Cover is Low) then (Next Hour GHI is High)   
A 

If (Relative Humidity is Medium) and (Cloud Cover is Medium) 

and (Clear Sky GHI is High) then (Next Hour GHI is Medium High)  
A 

If (Relative Humidity is Low) and (Cloud Cover is Low) and 

(Clear Sky GHI is Medium) then (Next Hour GHI is Medium)  
A 

If (Day Number is 1st Quadrimester of Year) and (Hour Number 

is Morning) and (Avg Wind Speed is Low) and (Relative Humidity 

is High) and (Station Pressure is High) then (Next Hour GHI is 
LOW) / Fog Cases 

E 

If (Day Number is 3rd Quadrimester of Year) and (Hour Number 
is Morning) and (Avg Wind Speed is Low) and (Relative Humidity 

is High) and (Station Pressure is High) then (Next Hour GHI is 

LOW) / Fog Cases 

E 

If (Day Number is 1st Quadrimester of Year) and (Avg Wind 

Speed is High) and (Relative Humidity is Low) and (Avg Wind 
Direct is High) then (Next Hour GHI is Low) / Dust Cases 

E 

If (Day Number is 3rd Quadrimester of Year) and (Avg Wind 
Speed is High) and (Relative Humidity is Low) and (Avg Wind 

Direct is High) then (Next Hour GHI is Low) / Dust Cases 

E 

 

 

 

 

 

 

 

 

 

 

 

 


