
Modelling and Analysis of FPGA-based MPSoC
System with Multiple DNN Accelerators

Cong Gao, Xuqi Zhu, Sangeet Saha, Klaus D McDonald-Maier and Xiaojun Zhai
University of Essex, Colchester, United Kingdom

{cg21670, xz18173, sangeet.saha, kdm, xzhai}@essex.ac.uk

Abstract—Deep Neural Networks (DNNs) have been widely
applied in many fields for decades, and a standard method for
deploying them on embedded systems involves using accelerators.
However, due to the resource constraints of embedded systems,
improving energy and computing efficiency becomes one of the
research challenges in this domain. DNN model optimization
and NAS (Neural Architecture Searching) are commonly used to
strengthen the DNN model running efficiency on an embedded
system. However, because the system’s runtime workloads are
varied in practical situations, to further improve the computing
efficiency of the system at runtime, real-time hardware and
software design space exploration is required to ensure the
system is running at the optimal time state at runtime. This
paper presents a comprehensive modelling and analysis approach
for the performance data (e.g., latency, energy consumption,
accuracy, etc.) collected from an AMD-Xilinx heterogeneous
MPSoC platform equipped with multiple DNN accelerators.
The results demonstrate that the relationships between accuracy
loss, hardware performance, and model size are significantly
correlated. Furthermore, an appropriate hardware and software
configuration could be obtained by giving constraints at runtime.

Index Terms—FPGA, Heterogeneous embedded systems, MP-
SoC, Deep Neural networks, Edge computing, Energy efficiency

I. INTRODUCTION

With the growth of depth and complexity of the intercon-
nections, the Deep Neural Networks (DNN) obtains increasing
inference accuracy on complex tasks, such as image classifi-
cation and speech processing [1]. The GPT [2] demonstrates a
considerable model with billions of parameters that can answer
sophisticated questions like humankind. However, achieving
excellent inference performance relies on significant compu-
tational resources and vast amounts of data [3].

DNN-based AI applications show attractive potential across
a wide range of fields. Especially for edge computing, the
millions of edge equipment generate enormous data every
second [3]. The conventional solution is to adopt cloud ser-
vices to support a part or all of the inference mission. But
given the massive growing throughput from the edge and the
demands of sensitive data security, deploying AI applications
on edge devices is an alternative solution [3]. However,
the considerable run-time computational resources cost is an

This work is supported by the UK Engineering and Physical Sciences Re-
search Council through grants, EP/V034111/1, EP/X015955/1, EP/X019160/1
and EP/V000462/1. For the purpose of open access, the author has applied
a Creative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising.

inevitable challenge for employing DNN on resource-limited
edge equipment. Also, with the fast-growing amount of edge
computing equipment, energy costs related to carbon dioxide
emission are an essential issue to consider.

To implement DNNs on resource-constrained embedded
systems with lower energy costs, pruning and quantizing are
mostly adopted optimization methods to discard redundant
operations from the model and release computational resources
[3], [4]. Modifying the network structure and the data structure
with an acceptable accuracy loss on the embedded system
can reduce the models’ size, and the hardware budget will
reduce simultaneously. Furthermore, the inference tasks can
be executed on resource-limited edge devices with tolerable
accuracy loss by deploying the optimized network.

The other approach, Neural Architecture Searching (NAS),
finds neural networks compatible with given hardware instead
of optimizing the existing network [5]. Recently, the OFA
(once for all) framework proposed by [6] has become one
of the most successful NAS solutions, allowing developers to
find an optimal network among 2 × 106 sub-networks for a
specific hardware platform.

Both NAS and network optimization concentrate on soft-
ware implementation and neglect to optimize the hardware
since most conventional edge devices use fixed hardware
architecture. To optimize hardware, the Application Specific
Integrated Circuit (ASIC) and Field-Programmable Gate Array
(FPGA) are introduced [4]. Compared with ASIC, FPGA
is more flexible because of its programmable architecture
ability. This ability makes FPGA an affordable solution for
rapid technology evolution. In addition, the Dynamic Partial
Reconfiguration (DPR) technology [7] makes it possible to
adopt run-time optimization strategies to reallocate computing
resources and memory access paths in the FPGA platform. [8]
proposed a convolution processing unit by employing DPR
to achieve adaptive precision in the run-time. In contrast,
an application-level resource scheduling strategy provided by
[9], [10] uses DPR to accelerate DNNs and achieve higher
performance against a constrained resource budget.

In the design stage, considering hardware and neural net-
works, a so-called co-design design flow is widely used in an
edge computing system. Researchers propose methodologies
to design an optimal hardware design with a particular neural
network [11]–[13]. However, in a practical edge computing
scenario, the system’s workload can be varied due to the un-
certainty of the input environment parameters. Taking a traffic



ZCU102Search Pool

Power

Acc

FPS

N
etw

o
rk

s
A

rch
itectu

res
N

etw
o
rk

s
A

rch
itectu

res

Compiled 

Model

Accelerator 

Configuration 

File 

Network

Architecture

Search Strategy

Benchmark

Fig. 1. Overview of the experiment setup

control system as an example, the input varies significantly
in terms of the number of vehicles and pedestrians, a fixed
optimal solution would either be too energy-intensive or fail to
meet the desired time latency. Therefore, the optimal solution
needs to adjust its computing resources according to the input
loads to improve energy efficiency.

In such real-time scenarios, a single optimal solution is
often insufficient, and dynamic solutions are thus needed.
A large amount of design work is required beforehand. An
adaptive scheme to schedule the hardware configuration and
corresponding neural network model meeting an essential
latency requirement and achieving better energy efficiency is
critical.

This paper aims to find the hardware and neural network
model pair from various configurations based on required
time constraints. This optimal pair costs less energy while
meeting the time constraint in a specific application/scenario.
To achieve that, a modelling and analysis approach to show the
relationships between accuracy loss, hardware performance,
and scale of a DNN model is set up based on the data collected
from experiments on the AMD-Xilinx ZCU102 MPSoC. These
models can be later used to determine an optimal choice for
achieving better computing and energy efficiency at runtime.

II. EXPERIMENT OVERVIEW

This section mainly explains the experiment setup for ob-
taining various hardware and software metrics (e.g., power
consumption, processing speed, model accuracy, etc.) of mul-
tiple DNN accelerators running on an FPGA-based MPSoC
System. The ultimate goal is to help us to analysis an
optimal pair under various constraints. Fig. 1 represents the
overview of the experimental setup for the data collection
flow. First, a sub-model is selected and deployed using one
of the hardware configuration settings from the predesigned
model and hardware configuration pool, considered a model-
hardware pair. Each pair is then tested on hardware using
the same image classification benchmark. During the test,
we record the processing speed, model accuracy and power
consumption, and every 60s, the model and hardware are
reconfigured at runtime. The hardware reconfiguration uses the
DFX technology (dynamic function exchange), where only the
hardware accelerators in the Reconfigurable Partition (RP) are

configured. The rest of the systems are running as normal,
with a minimal distribution of the processing pipeline.

A. Experimental platform and DNN hardware accelerator

This experiment uses an AMD-Xilinx ZCU102 platform
equipped with Zynq UltraScale+ MPSoC (XCZU9EG). For
the DNN hardware accelerator, we use the Deep Learning Pro-
cessing Unit (DPU), a soft IP core to enable deep learning con-
sumer design and set up AI projects on AMD-Xilinx FPGA.
The DPU IPs are formed with different settings, detailed in
the data sheet [14]. In this paper, we configure 7 sets of DPUs,
each consisting of two same DPU configurations. The resource
utilization for each set of DPU configurations is presented
in Table. I. The hardware design is implemented using Vitis
(2022.1) and Xilinx Runtime Library (XRT) (2022.1).

B. DNN models

OFA is a neural architecture search (NAS) technique for
efficient model design proposed by [15], which provides a
possible way to produce many submodels from a large “super-
network” that contains multiple sub-networks with different
widths, depths, and resolutions. The OFA uses pruning and
scaling techniques to generate a family of smaller, more
efficient sub-networks tailored to specific tasks. With an ad-
justable parameter on depth, width, and kernel size, it can
produce nearly 2 × 106 sub-networks based on one super-
network. In this paper, we use the OFA to produce 7 versions
of Resnet50 with different FLOPs (Floating Point Operations).
Combining them with 7 different DPU architectures will test
7 × 7 = 49 different configurations. To compile the DNN
models on the target hardware platform, we use Vitis AI (2.5)
[16].

III. MODELLING AND ANALYSIS

In this section, a comprehensive comparison and modelling
analysis is performed for the obtained experiment data, where
the relationship between model, hardware, and processing,
energy consumption are carefully explored by analyzing the
data from different points of view.

A. Model accuracy and Flops

In our experiment, around 50 submodels are generated
from the super-network via the OFA algorithm, as shown in
Fig.2(f). Normally, a bigger model can achieve better accuracy



B512 B800 B1152 B1600 B2304 B3136 B4096
Architecture

300

400

500

600
FP

S

1 w 3 w 5 w 7 w

M318
M328
M339
M386
M419
M435
M449

(a)

M318 M328 M339 M386 M419 M435 M449
Model

200

250

300

350

400

450

500

550

600

650

FP
S

1 w 3 w 5 w 7 w

B512
B800
B1152
B1600
B2304
B3136
B4096

(b)

200 250 300 350 400 450 500 550 600 650
FPS

3

4

5

6

7

8

Po
w

er
 (w

)

B512
B800
B1152
B1600
B2304
B3136
B4096

M318M328M339M386M419M435M449

(c)

(d) (e) (f)

Fig. 2. The scatter plots for different dimensions, models, hardware, and performance. (a) Power and FPS for different hardware architectures (Model view);
(b) Power and FPS for different DNN Models (Architecture view); (c) FPS and power consumption for different models and architectures (Performance
view); (d) FPS, power consumption and accuracy of different models and architectures (3D Performance view); (e) DFX configuration times for different
architectures; (f) FLOPs and accuracy comparison of DNN models

TABLE I
ZCU102 UTILIZATION WITH DIFFERENT SETTINGS OF DPUS

Hardware LUT Register Block RAM DSP
Setting (%) (%) (%) (%)

B512× 2 19.64 12.6 15.79 9.37
B800× 2 21.69 15.01 19.74 13.17
B1024× 2 24.86 17.53 22.81 18.25
B1152× 2 23.74 17.28 26.54 17.62
B1600× 2 28.03 21.46 27.63 25.87
B2304× 2 30.74 25.11 36.18 34.76
B3136× 2 34.09 29.08 45.61 44.92
B4096× 2 38.06 35.85 55.92 56.35

in Fig.2(f). However, many points (models) also have better
accuracy but with a smaller size when compared with points
nearby. This is mainly because the model size was not set as
the primary network searching criteria.

B. Cost of run-time reconfiguration

With the technology of DFX, hardware settings can be
reconfigured in real-time to achieve an adaptive DNN-based
hardware system according to the environment. However, it

takes ms level time latency to achieve the reconfiguration
work, and the cost is varied based on the type of different
hardware settings. The time cost mainly depends on the
size/scale of the reconfigured region and bitstream. By using
the XRT(Xilinx Runtime) API, the reconfigured program can
be quickly compiled and run on the processing system. The
time cost for each hardware setting switch is measured,
recorded, and presented in Fig. 2(e).

C. Fixed model & hardware configurations

In Fig. 2(a), each line represents the FPS results obtained
from different DPU architectures using the same DNN model
(e.g. M318, M328, etc.). For example, M318 means a DNN
model contains 318M FLOPs. In this experiment, we applied
different DNN models on different DPU architectures and
recorded the FPS and power consumption as shown in Fig.
2(a). In this figure, each circle represents the power con-
sumption and FPS results during the benchmark testing. The
diameter of each circle distinguishes values of the power con-
sumption, the larger diameter is, the more energy is consumed.
In general, using the same neural network model, allocating



more hardware resources will increase the data processing
speed at the cost of more power consumption.

In Fig. 2(b), while analyzing the issues in another di-
mension, hardware, each line represents a set of hardware
configurations. With the same hardware setting, a larger DNN
model will take more time to process, but it may achieve better
accuracy with a slight cost on power consumption.

D. Discussion

Hardware configurations and model sizes are two major
factors that have positive impacts on the FPS but they will
cost more energy. Usually, a model with large FLOPs con-
tains more parameters and a more complex architecture, thus
normally resulting in a larger model size; Also, because the
model utilises more calculation resources, it takes more time
to process the data resulting in a lower FPS. However, there
exist some special cases, for example, the size of model M328
is smaller than the M318, which results in a higher FPS.

E. Optimal hardware-model selection

To achieve the necessary processing speed and accuracy
while minimizing power consumption, it is important to select
the most suitable hardware-model combination. This selection
should be optimal for the desired outcome. For example, a
practical real-time DNN-based video processing application
on edge devices has a basic requirement for the processing
speed of real-time video processing tasks, and it also wants to
achieve better energy efficiency.

In Fig. 2(c), a single circle represents one set of hardware
and DNN models combination. We can consider the dataset
as mapping relationships below:

(Modelx, Hardwarey)←→ (Power, FPS)

(Modelx)←→ (Accuracy)

Each set of model-hardware combination links to a set of
power and FPS metrics, and each model has an accuracy value:

Powerx,y, FPSx,y = f(Modelx, Hardwarey) (1)
Accuracyx = g(Modelx) (2)

One of our objectives is to select the appropriate set of models
and hardware combinations to minimise power consumption
and achieve minimal FPS requirements with a relatively less
cost on accuracy loss when switching to a small size of DNN
model. In order to mathematically formulate the problem,
we define the following variable Zx,y which becomes 1 if
the (x, y) is selected. so, with the variable Zx,y , the optimal
searching strategy can be described in the following equations
set:

Minimize Powerx,y × Zx,y ∀x, y (3)

subject to:

FPSx,y × Zx,y ≥ FPStarget ∀x, y (4)
DFx,y × Zx,y ≤ DFtarget ∀x, y (5)

where:

DFx,y =
Accuracyx −Accuracyx−1

Powerx,y − Powerx−1,y−1
(6)

DFtarget =
Accuracymax −Accuracymin

Powermax − Powermin
(7)

IV. CONCLUSION

While deploying DNNs on edge devices, reducing energy
costs is an essential issue that needs to be solved. As for
the uncertainty of the real-time environment parameters, the
system’s workload varies; Then, an adaptive edge computing
embedded platform will select a suitable hardware and DNN
model combination to fulfill the targeted requirement. In this
paper, modelling and analysis are established based on the
experiment setup, which can be used to find an optimal
hardware and model combination to achieve a relatively lower
energy cost when satisfying the time latency and accuracy
of the system at runtime. The hardware and model selection
methods are still limited, so optimal decisions can be easily
selected according to a predefined optimisation scheme. Our
future work will vastly increase the diversity of hardware and
model configurations, and develop a multi-parameter searching
algorithm, in order to predict optimal hardware and model
settings to achieve better computing and energy efficiency for
accelerating DNN on edge devices.

REFERENCES

[1] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adaptive
deep learning model selection on embedded systems,” ACM SIGPLAN
Notices, vol. 53, no. 6, pp. 31–43, 2018.

[2] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse,
S. Jain, V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou,
G. Krueger, K. Button, M. Knight, B. Chess, and J. Schulman,
“WebGPT: Browser-assisted question-answering with human feedback,”
2021. [Online]. Available: http://arxiv.org/abs/2112.09332

[3] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Con-
vergence of Edge Computing and Deep Learning: A Comprehensive
Survey,” IEEE Communications Surveys and Tutorials, vol. 22, no. 2,
pp. 869–904, 2020.

[4] K. S. Zaman, M. B. I. Reaz, S. H. M. Ali, A. A. A. Bakar, and M. E. H.
Chowdhury, “Custom Hardware Architectures for Deep Learning on
Portable Devices: A Review,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–21, 2021.

[5] L. Tang, H. Li, C. Yan, X. Zheng, and R. Ji, “Survey on neural
architecture search,” Journal of Image and Graphics, vol. 26, no. 2,
pp. 245–264, 2021.

[6] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-All: Train
One Network and Specialize it for Efficient Deployment,” pp. 1–15,
2019. [Online]. Available: http://arxiv.org/abs/1908.09791

[7] M. Nguyen, N. Serafin, and J. C. Hoe, “Partial Reconfiguration for
Design Optimization,” Proceedings - 30th International Conference on
Field-Programmable Logic and Applications, FPL 2020, no. 1, pp. 328–
334, 2020.

[8] D. Cain, O. Eldash, K. Khalil, and M. Bayoumi, “Convolution Process-
ing Unit Featuring Adaptive Precision using Dynamic Reconfiguration,”
7th IEEE World Forum on Internet of Things, WF-IoT 2021, pp. 592–
597, 2021.

[9] Y. Lu, C. Gao, R. Saha, S. Saha, K. D. McDonald-Maier, and X. Zhai,
“Fpga-based dynamic deep learning acceleration for real-time video ana-
lytics,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
13642 LNCS, pp. 68–82, 2022.

[10] C. Gao, S. Saha, Y. Lu, R. Saha, K. D. Mcdonald-Maier, and X. Zhai,
“Deep learning on fpgas with multiple service levels for edge comput-
ing,” 2022 27th International Conference on Automation and Comput-
ing: Smart Systems and Manufacturing, ICAC 2022, 2022.



[11] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “Fpga/dnn co-design: An efficient design methodology
for 1ot intelligence on the edge,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), 2019, pp. 1–6.

[12] X. Zhang, Y. Ma, J. Xiong, W.-M. W. Hwu, V. Kindratenko, and
D. Chen, “Exploring hw/sw co-design for video analysis on cpu-fpga
heterogeneous systems,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 41, no. 6, pp. 1606–1619, 2022.

[13] J. Haris, P. Gibson, J. Cano, N. B. Agostini, and D. Kaeli, “Secda:
Efficient hardware/software co-design of fpga-based dnn accelerators
for edge inference,” in 2021 IEEE 33rd International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
2021, pp. 33–43.

[14] Xilinx, “Dpuczdx8g for zynq ultrascale+ mpsocs product
guide (pg338),” Tech. Rep., 2023. [Online]. Available:
https://docs.xilinx.com/r/en-US/pg338-dpu

[15] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train
one network and specialize it for efficient deployment,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://arxiv.org/pdf/1908.09791.pdf

[16] Xilinx, “Vitis AI User Guide (UG1414),” Tech. Rep.,
2023. [Online]. Available: https://docs.xilinx.com/r/en-US/ug1414-vitis-
ai/Vitis-AI-Overview


