
SENAS: Security driven ENergy Aware Scheduler
for Real Time Approximate Computing Tasks on

Multi-Processor Systems
Krishnendu Guha

Department of Electrical and Computer Engineering
University of Florida, USA

Email: kguha@ufl.edu

Sangeet Saha, Klaus McDonald-Maier
School of Computer Science and Electronic Engineering)

University of Essex, UK
Email: sangeet.saha@essex.ac.uk, kdm@essex.ac.uk

Abstract—Present day real time approximate computing ap-
plications like image and video processing involves execution of
a set of tasks before a certain amount of time or deadline. In
addition to this, present day systems are associated with strict
energy budget that cannot be changed post deployment. The tasks
comprises of a mandatory and optional part. Completion of all
mandatory portions of all tasks before deadline is much more
important than result accuracy in such real time approximate
computing applications. Based on the energy budget, the optional
portions can be executed that determines the quality of service
(QoS) of the system. In ideal scenario, sufficient energy budget
is present that ensures completion of both mandatory and
optional portions in a system with a pre-determined number
of processors. However, if fault or malware attack occurs on
one or more processors, then the system will cease to work and
results may be fatal. In this work, we consider such a scenario
where the processors may be faulty and stop functioning in
post deployment phases or some malware may cause unexpected
delays in processing or may cause unexpected power draining at
runtime that will prevent the system from meeting its deadline.
We propose a Security driven ENergy Aware Scheduler (SENAS)
that works as a self aware agent. Initially, based on the available
energy budget, SENAS determines which task is to be executed
in which processor of a system. At runtime, SENAS constantly
monitors the working of the processors and on detecting any
anomaly in any of the processors, it reschedules its tasks at
runtime by reducing execution of the optional portions of the
tasks and ensuring completion before deadline with high QoS.

Index Terms—Approximate Computation, Energy Aware
Scheduling, Real-time Security, Multi-Processor, Power Draining

I. INTRODUCTION

IN real-time embedded systems, the correctness of the
system not only depends on the precision of the results,

but also on the time at which they are produced. Real-time
applications in today’s real-time embedded systems are often
represented as Precedence-constrained Task Graphs (PTGs).
Specifically, the entire application consists of a collection
of tasks (aka nodes) under precedence constraints and de-
pendencies between tasks [1]. However, power/energy for
such systems is particularly important, as these devices often
depend upon restricted power source such as batteries to
deliver high performance and service quality [2].

This work is supported by UK EPSRC Council through grant number
EP/X015955/1 and EP/V000462/1

For critical systems, approximated results obtained in time
are preferable on accurate results obtained after the deadline.
For example, in a video application, initially an inaccurate,
but acceptable quality image is generated from the received
data. Then, based on the available resources and energy, the
obtained image may be further refined [3]. Thus, Approximate
Computation (AC) approaches [4] can minimize the possibility
of tasks missing their deadline due to the fixed energy budget.

In AC approach, a task is decomposed into a mandatory
part, followed by optional parts [5]. The mandatory part must
be executed entirely to produce an acceptable result, while op-
tional parts will be executed for refining the result. Application
scenarios involve target localization task that is carried out by
an unmanned aerial vehicle [6], [7]. Wei et al. introduce the
concept of AC to handle uncertainties in energy availability
of a real-time system. The idea was to accept approximate
results, when energy budget is limited and continue more
computations to achieve accurate results, if more energy is
available [5]. This work is limited to independent tasks.

Energy aware scheduling of dependent AC tasks are consid-
ered in [8], [9]. Here, authors aimed at DVFS based technique
to make the scheduling energy efficient. However, as DVFS
decreases the supply voltage and frequency to save power, the
transient fault rate / soft error rate of the system significantly
increase [10], which reduce the system’s reliability. In order to
circumvent the problem, Xiang et al. proposed the idea of find-
ing “energy efficient frequency” in a multi-core platform [11].

Present day systems have multiple processors. However,
faults may occur with processors at runtime that may cease
the processor from further functioning. Even malware like
hardware trojan horses may infect the processor hardware
by slowing down the processor speed, eventually affecting
the real time application to miss its deadline [12]. Moreover,
for scenarios where there is a strict energy budget, malware
may cause unwanted power dissipation, which drains the
energy budget of the system and ceases the system from
functioning [13]. These prevent real time systems to complete
their task before deadline. Hence, it is of utmost importance
to deploy self aware security modules that can detect such
anomalies and take appropriate measures at runtime.

The key highlights of this work include:
(i) Analysis of various threats for a real time approximate

computing application, depicted as a PTG.978-1-6654-7355-2/22/31.00 ©2022IEEE

(ii) Development of a scheduling strategy that schedules AC
tasks and determines the amount of optional portions that need
to execute based on availability of energy budget.

(iii) Development of a self aware runtime security mecha-
nism that detects anomaly in processors at runtime and takes
appropriate measures to ensure completion before deadline.

(iv) Development of a low overhead SENAS (Security
driven ENergy Aware Scheduler) that performs (ii) and (iii),
which maximizes QoS in the available energy budget.

This paper is organized as follows. System model is dis-
cussed in Section 2, while Section 3 depicts the threat model.
The proposed mechanism is presented in Section 4. Section
5 deals with experimentation and result analysis. Finally, the
paper concludes in Section 6.

II. SYSTEM MODEL
A. Processor Model

This work assumes a homogeneous multi-processor em-
bedded processing platform. This comprises m processors,
denoted as V = {v1, v2, ..., vm}. Each processor has Nl

discrete frequency levels, denoted as L0, ..., LNl
. Each level

Lj can be characterized by Lj : vj , pj , fj , j ∈ 1...Nl), which
represents voltage, average power, and frequency, respectively.
B. Task Model

We model a real-time application (A), as a precedence
constrained Directed Acyclic Graph (DAG) G = (T,E),
where T is a set of tasks (T = {Ti | 1 ≤ i ≤ |T |}) and E is a
set of directed edges (E = {⟨Ti, Tj⟩ | 1 ≤ i, j ≤ |T |; i ̸= j}),
representing the precedence relations between distinct pairs of
tasks. An edge ⟨Ti, Tj⟩ refers to the fact that task Tj can begin
execution only after the completion of Ti.

Moreover, we have considered approximate computation
tasks in this paper. Each task Ti (1 ≤ i ≤ N) is logically
decomposed into a mandatory part with execution requirement
of Mi and an optional part with execution requirement of
Oi. Each task has to execute Mi units in order to provide
acceptable result. Execution of the optional part Oi can be
started only after the completion of mandatory part Mi. The
execution length li of task Ti can be defined as :

li = Mi +Oi × µ (1)

where, µ denotes the ratio of the optional part, which is
being executed and varies between 0 and 1. Thus, µ = 1
denotes that we execute the entire Oi units and we will
achieve maximum possible accurate result. It is further as-
sumed that a task Ti may have ki different versions; that is,
Ti = {T 1

i , T
2
i , . . . , T

ki
i }. The energy Eni consumed by task

Ti of length li can be defined as [14]:

Eni = Peff × li (2)

III. THREAT MODEL

A. Stoppage of working of a processor
This may occur either due to a fault at runtime or due to an

inserted malware like hardware trojan that stops its operation.
This is diagrammatically depicted in Fig. 2 (b) for the example
presented in Fig. 2 (a).

T
1

T
2

T
4

T
5

T
3

T
6

D
Dag

Critical Path

T
1

2
T

2

2

........ T
k2

2

Available Versions

Selected

version

K
2
 * 1

Fig. 1: The Task Graph

Fig. 2: Threat Model

B. Unwanted delay in task execution
This may occur either due to aging of the processor hard-

ware or due to malware. These prevent the real time system
from completing their tasks before deadline. This is shown in
Fig. 2 (c) for the example presented in Fig. 2 (a).

C. Excessive power draining
Unwanted delay as discussed before will definitely cause ad-

ditional power draining. However, adversaries may intention-
ally implant power dissipating circuitry that may be present
in parallel to the main circuit. These may not have any effect
on the timing but if unnoticed, will cause excessive power
dissipation and ultimately drain the energy budget of the
system. If energy budget of the system is drained in initial or
mid stages, then tasks at the bottom of the PTG will not have
enough energy to complete their execution. This is depicted
in Fig. 2 (d) for the example presented in Fig. 2 (a).

IV. PROPOSED METHODOLOGY

In this work, we propose development of SENAS that
contains two modules. A scheduling module and a security
module. The scheduling module is associated with mapping
appropriate task versions to the processors, based on available

Algorithm 1: Task Scheduling in Processors as per
Available Energy Budget

Input:
i. lζii : Execution length of the selected ζthi version of Ti

ii. Eζi
i : Energy requirement for Ti’s ζthi version

iii. DDag: Deadline of the task graph.
iv. Ordered set of tasks, τ
Output: Generated Schedule

1 /*........................... Initialization......................................*/ /*
Let FP denote the set of processors currently available for
execution; */

2 Initialize FP = V ;
3 ∀ vi ∈ FP , Set LDi= FALSE; /* Initialization, LDi : A

flag which is set to FALSE if the Processor is available for
execution; TRUE, otherwise, initially all processors are free
*/

4 /*...........TASK MAPPING & EXECUTION..............*/
5 for t = 0; t ≤ Ddag AND (τ & ENG BGT) ̸= NULL;

t++ do
6 for each available processor in parallel do;
7 if ∃ Tj ∈ τ | All predecessors of Tj have finished their

execution AND FP == NULL then
8 if ENG BGT ≥ Eζi

i then
9 Select processor(s) vi with LDi == FALSE ;

10 Set PLi = TRUE /* Set vi to busy; */
11 Map Tj in processor vi;
12 Tej = t /* Set current time t as the execution

start time of Tj*/
13 BDi= l

ζj
j ; /* start execution of Tj ; BDi: an

integer variable denoting Busy Duration which
holds the remaining time required to finish the
current task in vi */

14 FP = FP \ vi; /* Remove vi from set FP */

15 else
16 Move to next smaller version (with lower Oi

and go to step 9

17 else
18 BDi = BDi-1; /* Decrement remaining time */
19 if (BDi == 0) then FP = FP ∪ {vi}; /* Add vi to

the set of free (available) processors */
20 LDi = FALSE; * Set vi back to free; */
21 FT = FT ∪ Tj /* Add Tj to set FT of finished

tasks */
22 τ = τ \ Tj ; /* Delete Tj from set τ */

ENG BGT = ENG BGT − E
ζj
j ; /* Reduce

the consumed energy from the avilable budget */

energy budget at that time. The security module continuously
monitors the working of the processors at runtime and on
detecting any anomaly, calls the scheduler module to develop
a fresh schedule based on available energy at that time. Fig. 3
shows a block diagram of the mechanism.

A. Task Scheduling with respect to Energy Budget

Algorithm 1 assigns tasks to all the nodes, if there exists
enough processors and energy budget. Then it only considers
nodes / tasks once all of its parent’s nodes, i.e. Predecessors,
have completed their executions. However, before assigning
any task, the energy constraint is checked, and if fails, the
algorithm tries to assign the lowest version of the task (with

Fig. 3: Block Diagram
Algorithm 2: Runtime Security Mechanism

Input: Monitored Timing/ Power Data from Sensors,
Recorded Timing/ Power Data

Output: Mark processor faulty/ normal
1 for Task Ti executing in Processor Vi do
2 if Monitored Power Dissipation > Recorded Power

Dissipation then
3 Mark Processor Vi faulty;
4 Execute Algorithm 1 with the remaining tasks on

remaining unfaulty processors;

5 else if Monitored Time > Recorded Time then
6 Mark Processor Vi faulty;
7 Execute Algorithm 1 with present and remaining tasks

on remaining unfaulty processors;
8 else
9 Scenario is normal and proceed with next task execution

as per schedule;

smaller Oi). A task (say, Tj) mapped to a processor (say, vi)
will keep running until the task’s execution requirement is met.
The variable BDi represents the remaining execution need of
Tj in vi, and after Tj completes its execution, BDi becomes
zero. A task will be added to the set FT and deleted from τ
once its execution is complete. The above processes of task
mapping and execution continues iteratively till all tasks in τ
complete their executions, deadline DDag is encountered or
the given energy budget is exhausted.

B. Runtime Security

1) Anomaly Detection: Anomaly refers to the threats dis-
cussed in Section 4. These are detected based on two param-
eters, timing and power.

Based on Timing Detection based on the parameter timing
is effective to detect faults, aging and intentional delays. The
security module monitors the start time and end time for a
particular task in a processor. If the observed execution time
is greater than the recorded worst case execution time, then it
flags the processor as affected.

Based on Power Though enhanced power dissipation is
associated with intentional delayed execution or unintentional
aging, however, power monitoring is utmost essential in sce-
narios where the power dissipating circuitry is not a part of
the main circuitry and is in parallel. This causes unintentional
excessive power dissipation and drains the energy budget of

Fig. 4: Graphical Analysis (a) Effect of scheduling on QoS based on energy supply factor (b) Success rate with respect to
optional part (c) Success rate with respect to additional energy budget

Fig. 5: Threat Mitigation
the system. The security module checks whether the observed
power dissipation is more than the recorded worst case power
dissipation. If so, then it flags the processor as affected.

2) Ensuring Security: If a processor is flagged, then it
recalls the scheduler, which computes a fresh schedule for
unaffected processors within the remaining energy budget.

Mitigation of timing related attacks is depicted in Fig.5(a),
while that of power related attacks is depicted in Fig. 5(b), for
the example considered in Threat Model.

V. EXPERIMENTATION AND RESULTS

A. Experimentation
We have considered a large number of applications, which

comprises several tasks. The mandatory and optional portions
of the tasks are varied for experimentation.

B. Results
1) Results related to scheduling that maximizes QoS:

We have used task graphs for free (TGFF) [15] to generate
task graphs. We assumed that Eh denotes the total energy
required to execute all the tasks with their highest version.
In our experimental study, the supplied energy is defined as
Es = η × Eh, where, η denotes the energy supply factor and
varies from 1 to 0.6.

It can be observed that QoS increases with energy factor η.
This is because higher values of η result in correspondingly
higher energy supply and thus increases the possibility of
achieving successful execution of more optional portions.

2) Results related to security: Success rate (SR) is the
parameter considered for analyze the effectiveness of our
proposed methodology. SR is the percentage ratio of the
total number of real time applications that can complete
within deadline in the available energy budget among the total
number of applications considered for experimentation. SR is
analyzed over percentage of optional portions in an application
and additional energy budget in an application.

Analysis of SR over percentage of optional parts is depicted
in Fig. 4 (b). In general, success rate varies proportionally
to the percentage of optional parts in an application. This
is because lower is the mandatory portions, which has to be
completed to ensure success of an application. Thus, with low
percentage of optional parts, SR is quite low, but with increase
of optional parts, SR steadily increases and stabilizes at the
end, as depicted in the figure.

Analysis of SR with respect to additional energy budget
is shown in Fig. 4 (c). With increase in energy budget, SR
increases exponentially and reaches the ideal scenario when
additional energy budget is almost 75%. This is because
the additional energy can be effectively used to execute the
mandatory parts, which determines the SR, while normal
energy can be used to execute the optional parts.

VI. CONCLUSION

Present day real time applications are AC in nature like
image and video applications. In these, deadline is much
more important than accuracy. If energy and time is available,
results can be refined to ensure accuracy. Vulnerabilities may
occur when tasks of such an real time approximate computing
application is mapped to a multi processor system. The various
types of threats related to timing and power is highlighted in
this paper. We propose a real time scheduler that optimizes
QoS for a set of tasks and processors. Additionally, we propose
a self aware security module that detects vulnerability at
runtime and uses the scheduler to ensure completeness of
application before deadline.

REFERENCES

[1] G. L. Stavrinides and H. D. Karatza, “Scheduling multiple task graphs
with end-to-end deadlines in distributed real-time systems utilizing
imprecise computations,” Journal of Systems and Software, vol. 83,
no. 6, pp. 1004–1014, 2010.

[2] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, “Energy-efficient
scheduling for real-time systems based on deep q-learning model,” IEEE
Trans. on Sustainable Computing, vol. 4, no. 1, pp. 132–141, 2017.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Mejı́a-Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE Transac-
tions on Computers, vol. 50, no. 2, pp. 111–130, 2001.

[4] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[5] T. Wei, J. Zhou, K. Cao, P. Cong, M. Chen, G. Zhang, X. S. Hu, and
J. Yan, “Cost-constrained qos optimization for approximate computa-
tion real-time tasks in heterogeneous mpsocs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 9, pp. 1733–1746, 2017.

[6] X. Wang, J. Liu, and Q. Zhou, “Real-time multi-target localization from
unmanned aerial vehicles,” Sensors, vol. 17, no. 1, p. 33, 2017.

[7] R. Venkatagiri, K. Swaminathan, C.-C. Lin, L. Wang, A. Buyukto-
sunoglu, P. Bose, and S. Adve, “Impact of software approximations
on the resiliency of a video summarization system,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2018, pp. 598–609.

[8] L. Mo, A. Kritikakou, and O. Sentieys, “Energy-quality-time opti-
mized task mapping on dvfs-enabled multicores,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2428–2439, 2018.

[9] L. Mo, A. Kritikakou, and O. Sentieyss, “Approximation-aware task
deployment on asymmetric multicore processors,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), 2019, pp.
1513–1518.

[10] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management
of energy-aware real-time systems through task replication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp.
813–825, 2016.

[11] Y. Xiang and S. Pasricha, “Fault-aware application scheduling in low-
power embedded systems with energy harvesting,” in Proceedings of
the 2014 International Conference on Hardware/Software Codesign and
System Synthesis. ACM, 2014, p. 32.

[12] K. Guha, D. Saha, and A. Chakrabarti, “Self aware soc security to
counteract delay inducing hardware trojans at runtime,” in 30th Inter-
national Conference on VLSI Design and 16th International Conference
on Embedded Systems, VLSID 2017, Hyderabad, India, January 7-11,
2017. IEEE Computer Society, 2017, pp. 417–422.

[13] K. Guha, A. Majumder, D. Saha, and A. Chakrabarti, “Dynamic power-
aware scheduling of real-time tasks for fpga-based cyber physical sys-
tems against power draining hardware trojan attacks,” J. Supercomput.,
vol. 76, no. 11, pp. 8972–9009, 2020.

[14] R. Bonamy, S. Bilavarn, and F. Muller, “An energy-aware scheduler for
dynamically reconfigurable multi-core systems,” in 2015 10th Interna-
tional Symposium on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC). IEEE, 2015, pp. 1–6.

[15] K. Vallerio, “Task graphs for free (tgff v3. 0),” Official version released
in April, vol. 15, 2008.

