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Abstract—This paper presents an open-source benchmark tool
for anomaly detection in program behaviour, using program
counter (PC) and instruction type information. It is introducing
anomalies in artificial way, allowing for fine-grained evaluation
with adjustable sliding window sizes and preprocessing config-
uration. The usage of the benchmark, including demonstrated
data collection, does not require any additional hardware other
than a standard computer. The benchmark uses the output
of llvm-objdump program to focus on non-library code which
allows for rapid evaluation of various detection methods with
different configurations. The proposed tool extracts features
derived from processor’s PC and instruction type information
and then utilizes the features to identify abnormal behavior using
4 different anomaly detection algorithms. New detection methods
can be easily incorporated into the benchmark, which provides a
solid foundation for evaluating novel, previously unseen methods
against methods we selected for our experiment.

Index Terms—anomaly detection, machine learning, bench-
mark, program counter

I. INTRODUCTION

From the early days of computing, security was not always
the top priority when designing programming languages and
computer systems. As computers became ingrained into the
daily lives of the masses, this became a source of problems
and increased demand for both: people who attempt to protect
computer systems and people who tried to attack these.

Conventional approaches at securing computer systems in-
clude antivirus software, CPU modes and access policies (e.g.
non-executable stack), software compartmentalization [1], [2],
secure versions of programming language functions (e.g. C
functions with “ s” suffix like sscanf s), stack canaries, ad-
dress space layout randomization [1].

However, these approaches mitigate attacks rather than ad-
dress why such attacks are possible. Capability Hardware En-
hanced RISC Instructions (CHERI) [3] security enhancement
attempts to address it by ensuring that memory is used only for
the purpose the programmer designed it. While CHERI offers
groundbreaking security during the execution of a legitimate
program, it does not offer any guarantee that the program
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being loaded is, in fact, legitimate. For this reason, mission-
critical computer systems may be equipped with an additional
security layer that may take into account the system’s expected
behavior (derived dynamically and/or statically) and contin-
uously monitor program behavior, looking for a deviation
from baseline. Optimally such a security system should be
implemented as an internal (to minimize the risk of tampering)
hardware module separated from the monitored system (to
avoid being compromised when the system is compromised
[4]). Hardware design, implementation, and evaluation all
take time and effort. Before an anomaly detection method
is implemented in hardware, it may be useful to test its
effectiveness using a software model. The benchmark tool
presented in this paper attempts to provide means to do that
in a relatively simple way.

All detection methods presented in this work generate
a baseline program profile in safe environment, and then
compare it against behaviour exhibited by the system in
potentially unsafe environment. It is assumed that anomalous
behaviour is any kind of behaviour unseen during training.
This approach implies that the detection system has to be
trained before it can be used. Additionally, it must have full
branch coverage during training, in other words enter every
possible path (otherwise program parts unseen during training
may be wrongly classified as anomalies as mentioned by Feng
et al. [5]). On the other hand, this approach allows to detect
previously unseen (zero-day) attacks [6].

The benchmark tool presented in this paper uses PC values
and corresponding instruction types for program profiling, pri-
marily because these were easily obtainable from the QEMU
emulator. In the past, various other attributes were used for
program profiling. Sekar et al. [7] used sequences of system
calls and corresponding PC, respectively constituting edges
and states of a finite-state automaton (FSA). Feng et al. [5]
used the difference between non-matching return addresses
present on stack (virtual path) at the entrance of neighbouring
system calls, a method called VtPath. In [8] Lu and Lysecky
used worst case (WTEC) and best case (BTEC) execution
time of basic blocks. In their later work [6] this method was
referred to as “lumped timing model” (due to large WTEC
and BTEC difference stemming from process scheduling and
system interrupts) and compared against improved versions



that incorporated multi-range timing, hardware performance
counters (instruction cache misses, data cache misses), and
utilized one-class support vector machine (SVM). Arora et al.
[9] used PC values and instruction types to verify whether the
program follows the control flow graph (CFG) at function-
to-function and basic-block-to-basic-block levels, additionally
they pre-computed hashes of code sections and compared
them with hashes computed during processor execution, which
was done by Kanuparthi et al. [10] as well (in both cases
resulting in a small performance overhead, <= 2%). Abbas
et al. [4] chose hardware performance counters (HPC) with
the most stable values (instruction cache misses, data cache
misses, branch prediction misses, number of call instructions)
and used their total counts during complete program runs to
train SVM classifier. Krishnamurthy et al. [11] periodically
collected HPC readings from multi-threaded processor (at 1
kHz sampling rate) and used sliding window approach, where
HPC values within windows of multiple temporal lengths are
used to generate a vector of input features to SVM classifier.
Yoon et al. [12] counted how many times each type of system
call occurred during complete program runs, and used such
obtained system call frequency distributions (SCFD) as an
input to clustering algorithm which outputted multiple decision
boundaries. Shu et al. [13] partitioned the program by function
calls and recorded function call frequencies for each caller.
In our previous work [14], PC values collected at clocks per
instruction (CPI) peaks were supplied to a self-organising map
(SOM) classifier.

Several detection-time choices can be distinguished among
methods presented in previous studies. Some performed de-
tection after the end of complete execution [4], [12], which
simplifies the task of behaviour modelling but does not allow
to detect intrusions shortly after they happen. Some studies
performed detection upon calls/returns of system-calls and
regular functions, as well as entrances/exits of basic blocks [5],
[7]–[10], [13], or by using a sliding window approach where
detection was performed following every N-number of events
[15] or every time interval [11], in all those cases the detection
is harder but allows to react to intrusions in reasonable time.
In this work we use a sliding window approach.

In this work we contribute an open source benchmark
tool, incorporating a semi-automated method of generating
a dataset suitable for quantitative analysis using fine-grained
data point labelling and evaluation. We further present the
results of an experiment undertaken with the proposed tool,
comparing novel anomaly detection algorithms against the
direct sequence match method (ngrams). Additionally, we
demonstrate a method of collecting low-level CPU information
without the need to use dedicated hardware.

II. BENCHMARK TOOL OVERVIEW

The proposed benchmark tool consists of the main compar-
ison script responsible for training and evaluating algorithms
(customizable by GUI, see Fig. 1, or a configuration file),
and additional parsing/extraction scripts used to transform raw
QEMU trace files into low volume CSV files containing PC

Fig. 1. Benchmark tool GUI.

values and instruction types, suitable to be used as input of
evaluated algorithms. The benchmark tools was designed with
consideration of challenges associated with program intrusion
detection. It provides an option to use relative PC values,
anticipating that the system may load a program at different
address each time. The diversity of program behaviour and
large volumes of collected data prolong the training time,
which may take hours, days or even months [13]. By recog-
nizing “.text” section address range of programs to focus on
non-library code execution, we reduced collected data volumes
30 times, allowing to train and test more methods with various
configurations in shorter time. Obtaining ground truth labels
that indicate when exactly an anomaly occurs during program
execution is a challenge, this benchmark introduces anomalies
artificially, by directly modifying data points (e.g. PC values,
instructions) collected from baseline program runs. This way
it can obtain labels for each data point, allowing for fine-
grained evaluation as opposed to coarse-grained evaluation
where labels are assigned to whole program runs. Fig. 2
illustrates the workflow used to undertake our experiment,
“III. Experimental Setup” section describes it in more detail,
including the use of aforementioned scripts.

III. EXPERIMENTAL SETUP

A. Program choice and trace collection

The baseline program traces were collected by using qtrace
utility ( qtrace -u exec ./program ) of QEMU emulator run-
ning CHERI-RISC-V [16]. The program “stack-mission.c”, a
CHERI adversarial mission called “Exploiting an uninitialized
stack frame to manipulate control flow” [17]) was ran 10 times
with varied user inputs, presented in Table I.



B. Trace parsing

1) Qtrace output: Despite simplicity of the stack-mission
program, each collected trace log file contained around 74
megabytes of text, the trace of the stack-mission program
being only a tiny part of it. A parsing script was used to
extract PCs and instruction types (presented in Table II) from
the relevant part (starting at the “main” function entry, and
ending at “main” function return) of the trace log file.

TABLE I
USER INPUTS SUPPLIED TO THE STACK-MISSION PROGRAM, AND THEIR

CORRESPONDING TRACE FILES.

stack-mission program keyboard input Collected trace file name
==AA==AA==-=-AA====- normal 1.log
= normal 2.log
AA=-==-AAAA-=AA normal 3.log
=-=—-AA=AA==AAAAAAAA normal 4.log
–=AA==-AA-==AA-= normal 5.log
AA-=AA=– normal 6.log
AA= normal 7.log
AAAAAA= normal 8.log
-=-= normal 9.log
AA– normal 10.log

TABLE II
THE CONTENT OF NORMAL 1.CSV FILE

11FB2, addi
11FB4, sd
11FB6, sd
11FB8, addi
11FBA, mv
11FBC, sd
11FC0, sw
11FC4, auipc
11FC8, jalr
11FE8, addi
11FEA, sd
11FEC, sd
(... around 700 more lines)

2) Focus on “.text” section only: Only the trace from the
execution of “.text” section was taken into account, effectively
ignoring execution of library code (which may not be optimal
when detection system is deployed in real world scenario

{
” t o t a l ” : [

72352 ,
74806

] ,
( . . . )
” main ” : [

73650 ,
73702

] ,
” i n i t c o o k i e p o i n t e r ” : [

73704 ,
73794

] ,
( . . . )

}

Fig. 3. Example part of JSON file containing function ranges from “.text”
program section.

because many attacks may target libraries [5], however this
drastically decreases the number of extracted values, decreas-
ing testing time and allowing to test relatively large number
of heavy-computation models with different configurations
[7]). In case of “normal 1.log” trace file, extracting PC and
instructions from “.text” section only results in 2942 values,
as opposed to 92047 values that would be extracted if “.text”
section only restriction didn’t apply.

3) Workflow: After compilation of the stack-mission pro-
gram, llvm-objdump was ran for it and the output was stored
in a file containing disassembly of each section of stack-
mission executable. A script was used to extract function
ranges from that file (the beginning and ending addresses)
from each function within “.text” section as well as the whole
“.text” section itself. Resulting json file contains functions
names as keys and their minimum and maximum PCs (ranges)
as values (including one special “total” key of which range
encapsulates the whole “.text” section).

Obtaining such json file allowed to extract desired values
from the trace log files.

C. Dataset overview

Each of 10 baseline program runs used for training were
copied 10 times, resulting in 100 copies. Then a single
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Fig. 2. Experimental setup overview.



anomaly was introduced in each copy by setting a random
section (with variable length) of PC to random values within
program range (see Fig. 4), and replacing instructions within
the same region to other random instructions. Such artificial
introduction of anomalies is not perfectly representing real
world attacks, however it allows to generate ground truth labels
and use fine-grained evaluation as a result.

Fig. 4. A section of a program containing a single anomaly. Each dot
represents a single relative PC value. Red area of the plot indicates discrep-
ancy between the baseline PCs (collected with qtrace) and anomalous ones
introduced artificially.

D. Pre-processing
Various pre-processing options are available through GUI

or the configuration file. In this study the following options
were used:

1) Relative program counters: A program can be loaded at
different addresses, meaning that previously collected values
may not match. For that reason the benchmark has an option
to make PC values relative to their preceding value.

2) Non-jump instructions filter: PC changes equal to the
size of a single instruction do not bring much value to
the quality of program profiling nor anomaly detection. The
benchmark has an option to remove such data points and leave
only those that are a result of branching (e.g. due to function
calls, returns and conditional statements like “if” or “switch”).

3) Sliding window size: In configuration file we can specify
a comma-separated list of window sizes that will be used to
repetitively train and test detection models.

According to Sekar et al. [7] the number of ngrams grows
exponentially with N (window size), however this seems not

to be the case in our dataset as shown in Fig. 6. Lack of
exponential growth in our case may be resulting from the
simplicity of the chosen program and the fact that loops take
large portion of its execution, both leading to low sequence
variety.
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Fig. 6. The number of unique sequences (ngrams) found in the training
dataset, in relation to window size.

4) Appending statistical features to sliding windows: Op-
tionally we may append statistical features to each sliding
window based on values they contain. Such features include:
mean, standard deviation, the number of jumps, mean jump
size.

5) Appending instruction IDs to sliding windows: After
loading the dataset, the benchmark assigns an ID to each
instruction type found in the dataset (e.g. addi=0, auipc=2,
beq=3...). This way these instructions can be supplied to
detection methods that expect numerical input.

6) Normalization: The following normalization formula
was used:

73650, addi
73652, sd
73654, sd
73656, addi
73658, mv

...2937 more rows

0, addi
2, sd
2, sd
2, addi
2, mv

...2937 more rows

4, jalr
32, addi
2, sd
4, jalr
-124, addi

...970 more rows

4
32
2
12.67 - mean
16.77 - std
2 - min
32 - max
29 - mean jump size
8
0
14

4, 8
32, 0
2, 14
4, 8
-124, 0

...970 more rows
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Fig. 5. Preprocessing and windowization illustrated using “normal 1.csv” file and window size of 3. This procedure is done for both: baseline dataset, and
testing dataset. Data points surrounding jump instructions are retained during “non-jump filter”, that is why some low relative PC values are still present
despite applying the “non-jump filter”.



x norm = (x−min val)/(max val −min val) (1)

where minimum and maximum values were obtained from
training dataset only.

E. Ground truth labels

A label is generated for every sliding window. The value
of a label can be 0 (baseline), or 1 (anomalous). A window
is labeled with 1 when it contains at least one artificially
modified data point (PC and instruction type). Aside of label,
each window is assigned a set of anomaly identifiers, which
allows to keep track of anomalies that were detected.

F. Detection methods

We evaluated isolation forest [18], one class SVM [19],
and local outlier factor [20], using their implementations from
scikit-learn package. We compared them against a simpler but
space expensive ngrams [15] method, where we stored all
PC combinations that occurred during training with length N
(similarly to FSA [7] method, which operated on system-calls
and is equivalent to ngrams with N = 2).

IV. EVALUATION

A. Main goals

From the perspective of an user who deployed a detection
system in a computer system, two evaluation metrics may be
particularly important. The first metric being the number of
detected anomalies out of all anomalies that took place, and
the other metric being the number of false alarms.

B. Characteristics

One way to evaluate the detection methods would be to
compute confusion matrix based on all windows from the
testing dataset, however that would not provide the first metric
mentioned above. In order to provide the number of detected
anomalies, each sliding window is assigned a set of anomaly
IDs it covers, which means that a single anomaly may be a
part of multiple consecutive windows. An anomaly is counted
as detected when at least one sliding window with specific
anomaly ID is classified as anomalous. Therefore the number
of anomalies in a given program is absolute, in a sense that
it is not affected by factors like sliding windows size. Unlike
the number of anomalies, the number of false positives (sliding
windows wrongly classified as anomalous), is affected by the
sliding window size. That is because the benchmark considers
a sliding window to be truly non-anomalous only when every
PC it contains is non-anomalous (and the number of such
windows is in fact dependent on window size). Multiple
contiguous PC values are treated as a single anomaly.

C. Results

Figures 7-10 present the rates of detected anomalies and
false positives using 4 different methods and 9 different sliding
window sizes. Anomaly detection rate was calculated using the
following formula:

x = detected anomalies/all anomalies (2)

False positives rate was calculated using the following formula
(where “nw” stands for normal windows):

x = nw classified as anomalous/nw (3)

Ngrams was the best performing method, detecting all 100
out of 100 artificially introduced anomalies and having 0 false
positives rate in all tested sliding window sizes.
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Fig. 7. Ngrams results.

From all other methods only the local outlier factor detected
all anomalies without having any false positives (at window
sizes 50 and 125), however at window sizes 3 and 6 it
detected 0/100 and 1/100 anomalies respectively (which was
most likely caused by the lower number of unique training
windows when lower window size was used and the fact that
“contamination” parameter was always set to fixed value of
0.001). These 2 methods did not result in any false positives
at all regardless of window size.
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Fig. 8. Local outlier factor results.

One class SVM resulted in the highest false positives rate
which together with detection rate appears to be negatively
correlated with the sliding window size.
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Fig. 9. One class svm results.

Isolation forest resulted in significantly lower false positives
rate however its detection rate was fluctuating along different
window sizes (with optimal range around 12-25).
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Fig. 10. Isolation forest results.

V. CONCLUSIONS

This paper presented an open-source benchmark tool for
anomaly detection in program behaviour. The benchmark tool
was used to compare performance of 4 different anomaly
detection methods using fine-grained evaluation. High cus-
tomizability of the benchmark allows to test different param-
eter settings of machine learning algorithms, apply different
preprocessing operations (e.g. to decrease data volumes or
simulate varying program load address) and test custom range
of sliding window sizes. Additionally, a method of extracting
program behaviour profiling information excluding library
code was described, which does not require any dedicated
hardware. The benchmark tool is available at [21], which
includes source code, usage instructions and information about
extending the tool to accommodate new anomaly detection
methods. In the future, the benchmark tool may be extended
by incorporating more program profiling features (e.g. timing
information, hardware performance counters) and detection
methods.
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