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A B S T R A C T   

Gully erosion can incur on- and off-site impacts with severe environmental and socio-economic consequences. 
Semi-automated mapping provides a means to map gullies systematically and without bias, providing infor
mation on their location and extent. If used temporally, semi-automated mapping can be used to quantify soil 
loss and identify soil loss source areas. The information can be used to identify mitigation strategies and test the 
efficacy thereof. We develop, describe, and test a novel semi-automated mapping workflow, gHAND, based on 
the distinct topographic landform features of a gully to enhance transferability to different climatic regions. 
Firstly, topographic heights of a Digital Elevation Model are normalised with reference to the gully channel 
thalweg to extract gully floor elements, and secondly, slope are calculated along the direction of flow to 
determine gully wall elements. As the gHAND workflow eliminates the need to define kernel thresholds that are 
sensitive towards gully size, it is more scalable than kernel-based methods. The workflow is rigorously tested at 
different gully geomorphic scales, in contrasting geo-environments, and compared to benchmark methods 
explicitly developed for region-specific gullies. Performance is similar to benchmark methods (variance between 
1.4 % and 14.8 %). Regarding scalability, gHAND produced under- and over-estimation errors below 30.6 % and 
16.1 % for gullies with planimetric areas varying between 1421.6 m2 and 355403.7 m2, without editing the 
workflow. Although the gHAND workflow has limitations, most markedly the requirement of manually digitising 
gully headcuts, it shows potential to be further developed to reliably map gullies of small- to large-scales in 
different geo-environments.   

1. Introduction 

Gully erosion is a form of channelised water erosion associated with 
the severe degradation of land and water resources (Wen et al., 2021; 
Wilkinson et al., 2015). Despite gully erosion occurring in many parts of 
the world, in all climate zones (except polar) (Castillo and Gómez, 
2016), there remains a lack of large-scale datasets regarding gully 
location and extent (Vanmaercke et al., 2021). Such datasets alone will 
help to identify areas where mitigation and rehabilitation measures are 
imperative. However, these datasets will be even more useful on a 

temporal scale as further insight can be gained on how control factors 
impact gully erosion morphology, dynamics, and rates, in addition to the 
efficacy of conservation measures. 

Due to time and labour constraints, traditional methods delineating 
gully extents in the field (Perroy et al., 2010) or from remote imagery 
interpretation (Osumgborogwu et al., 2022) seldomly extend to large 
geographic extents. In cases where large-scale gully inventories were 
captured, they usually remain a snapshot in time with no subsequent 
coverage (e.g., Mararakanye and Le Roux, 2012). 

Recently, due to technological advancements, (semi-)automated 
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methods mapping gullies have been proposed (Table 1). Although 
different (semi-)automated methodologies exist, viz., traditional pixel- 
based (including statistical), object-orientated, and machine learning, 
the fundamental input data used to extract gully perimeters consist of 
spectral properties (d’Oleire-Oltmanns et al., 2014; Phinzi et al., 2021), 
Digital Elevation Models (DEM) (Chen et al., 2023; Brecheisen and 
Richter, 2021; Walker et al., 2020), or a combination of the aforemen
tioned (Bokaei et al., 2023; Codru et al., 2023). 

In terms of data inputs, DEMs are ideally suited because they can be 
used to discern distinct gully landform elements. Gullies are generally 
persistent elongated features consisting of locally low-positioned flat 
floors enclosed by short and sharp sloped sidewalls (Castillo et al., 2014; 
Thwaites et al., 2022). These local terrain differences are typically 
exploited by predetermined search window sizes (Table 1). Examples of 
the predetermined window sizes include Evans and Lindsay (2010) 
using an edge detection method, passing a mean filter subtracted from 
the DEM, to map gully sidewalls, where the area between the edges was 
then interpolated; Johansen et al. (2012) employed a min/max bright
ness filter to detect gully edges as the initial step in mapping gullies in 
their study area; Castillo et al. (2014) calculated a z-score normalisation 
statistic to identify gully floor and wall elements separately before 
joining and refining the classification; Korzeniowska et al. (2018) and 
Francipane et al. (2020), using a roughness index, and Walker et al. 
(2020), calculating elevation percentiles for various DEM derivatives. 

Exploiting local terrain differences in a DEM to (semi-)automatically 
map gullies provides reliable results (Table 1) and should be transferable 

since it is based on extracting the typical gully morphology. However, 
determining the optimal window size remains challenging irrespective 
of the statistic or terrain derivative calculated for input. Evans and 
Lindsay (2010) suggested that the window size needs to be a function of 
the gully width under investigation. Under-estimating window sizes will 
likely result in noise, hindering detection, while over-estimating will 
conceal edge effects (Evans and Lindsay, 2010). Window sizes are thus 
sensitive to scale and are likely not able to detect gullies of varying 
geomorphic scales if used unedited. 

Aerial and satellite imagery inputs can overcome scalability issues of 
DEM approaches, as probing reflectance values to (semi-)automatically 
map gullies do not require predefined windows (Liu et al., 2022; Mar
arakanye and Nethengwe, 2012). Reliable results have been obtained 
(Table 1) and should be scalable. However, the (semi-)automated 
mapping of gullies remains challenging due to the different spectral 
responses constituted by bare soil (wet and dry), vegetation, and 
possibly water, all of which can be found within the confines of gullies 
(Taruvinga, 2008). Phinzi et al. (2021) and Vrieling et al. (2007) also 
found significant differences in gully detection accuracy considering 
images from different seasons. These findings indicate that the trans
ferability of unedited (semi-)automated methods using spectral reflec
tance remains doubtful. 

Height Above Nearest Drainage (HAND) is a terrain derivative that 
normalises elevation in a DEM according to drainage, providing local 
flow path heights to the nearest stream (Nobre et al., 2011). The local 
height of a pixel is a permanent property reflecting drainage potential 

Table 1 
Recently proposed methods to map gully erosion (semi-)automatically.  

Author Method Fundamental inputs† DEM search 
window used 

Average accuracy‡

Vrieling et al., 2007 Traditional 
pixel 

Satellite imagery (15 m–30 m; visible and 
shortwave infrared) 

– Over prediction: 28.0 %; Under prediction: 43.2 % (*) 

Evans and Lindsay, 2010 Traditional 
pixel 

DEM (2 m) Yes Width error: 2.39 m 

Shruthi et al., 2011 Object based DEM (0.5 m), satellite imagery (1 m–4 m; 
visible and near infra-red) 

No Over prediction 0.9 % (calculated from total areas only: 
reference vs predicted) 

Mararakanye and 
Nethengwe, 2012 

Object based Satellite imagery (10 m; visible) – Over prediction: 56 %; Under prediction: 2.4 % (*) 

Castillo et al., 2014 Traditional 
pixel 

DEM (various) Yes Total error (over + under prediction): 17.2 % 

d’Oleire-Oltmanns et al., 
2014 

Object 
orientated 

Satellite imagery (0.6 m; visible) – Over prediction: 16.0 %; Under prediction: 38.0 % (*) 

Korzeniowska et al., 2018 Traditional 
pixel 

DEM (1 m) Yes Over prediction: 32.2 %; Under prediction:22.8 % (*) 

Rijal et al., 2018 Traditional 
pixel 

DEM (1 m) Yes Over prediction: 14.0 %; Under prediction: 17.0 % (*) 

Vallejo-Orti et al., 2019 Traditional 
pixel 

DEM (12 m) Yes Over prediction: 66.1 %; Under prediction: 33.8 % (*) 

Francipane et al., 2020 Object based DEM (1 m) Yes Over prediction:?; Under preditction 7 % (for the training 
area; no statistics for the test area) 

Phinzi et al., 2020 Machine 
learning 

Satellite imagery (1.5 m–5.5 m) – Over prediction: 35.2 %; Under prediction: 15.7 % (*) 

Utsumi et al., 2020 Object based DEM (30 m); satellite imagery (5 m) No Over prediction: 20.0 %; Under prediction: 46.2 % (*) 
Walker et al., 2020 Traditional 

pixel 
DEM (1 m) Yes – 

Brecheisen and Richter, 
2021 

Traditional 
pixel 

DEM (1 m) Yes Over prediction: 6.8 %; Under prediction: 17.7 % (*) 

Phinzi et al., 2021 Machine 
learning 

Satellite imagery (3 m; visible and near 
infrared) 

– Over prediction: 39.3 %; Under prediction: 14.9 % (*) 

Bokaei et al., 2023 Machine 
learning 

DEM (?); aerial imagery (0.05 m) Yes Over prediction: 6.3 %; Under prediction: 31.4 % (*) 

Liu et al., 2022 Machine 
learning 

Aerial and satellite imagery (0.07 m–0.5 m) – Area under receiver operator curve: 0.6; overall accuracy: 
84.8 % 

Chen et al., 2023 Machine 
learning 

DEM (0.5 m) Yes Overall accuracy: 89.8 % 

Codru et al., 2023 Traditional 
pixel 

DEM (5 m); satellite imagery (10 m; visible 
and near infrared) 

No Over prediction:?; Under prediction: 5 % 

† DEM type (surface or terrain) and process means (e.g., LiDAR, stereo-pairs, interpolated from surveyed GPS positions, etc.) not listed. 
‡ Accuracy converted to over and under prediction where possible (gully specific user accuracy was inversed to calculate over prediction; gully specific producer 
accuracy was inversed to calculate under prediction); converted accuracy measured by asterisk (*) next to the accuracy. 
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and can thus be used as a standardised framework to compare hydro
logical properties in different geo-environmental settings (Rennó et al., 
2008). Thus far, HAND has been primarily implemented in flood inun
dation (Garousi-Nejad et al., 2019; Johnson et al., 2019; Liu et al., 2016) 
and groundwater (Miguez-Macho et al., 2020) research. Including 
HAND as an input for (semi-)automated methods could provide a 
technique that extracts gullies from a normalised DEM, which is based 
on its morphology (transferable) and standardised hydrological prop
erties that do not require window sizes (scalable). Since HAND creates a 
normalised DEM, from which gullies would be extracted according to 
standardised properties, it also enhances the possibility of creating a 
procedure that can detect gullies in different geo-environmental settings 
and at geomorphic scales without the need for editing, increasing 
practicality. 

We, therefore, aim to 1) develop a low data-intensive, repeatable, 
scalable, semi-automated methodology, viz. the Gully HAND (gHAND) 
workflow, to map permanent gullies, using the HAND model as the 
primary derivative (which, to the authors’ knowledge, has not been used 
in gully detection strategies); 2) test the scalability of gHAND by map
ping gullies of different geomorphic scales in South Africa (SA) using a 2 
m DEM (GeoSmart Space Pty (Ltd), 2020) developed from aerial imag
ery; 3) test the transferability potential by applying gHAND at sites 
exhibiting different geo-environmental conditions and where different 
DEM products are available; and 4) compare against benchmark semi- 
automated mapping methods. 

2. Study area 

2.1. Regional setting of sites used for development and scalability testing 

The Tsitsa catchment in SA was selected for the initial development 
and scalability testing of gHAND due to extensive gully erosion occur
rence within the catchment (see Fig. 1 for location, Table 2 for the de
scriptors variables, and Fig. 2 for the aerial extent of the eight selected 
gullies). All the gullies exhibit a dendritic planform, except for one 
small-scale linear gully(1) (Fig. 2b; subindex denotes gully identifiers as 
per Table 2). Gully dimensions in terms of length along the main 
channel, maximum width, and planimetric area vary by a factor of 50. 

The Tsitsa River is approximately 200 km long (Le Roux, 2018), with 
its confluence in steep topography into the Mzimvubu River. Upstream 
of the confluence, undulating plains are found, whereafter, the catch
ment becomes steeper again as the river approaches the Drakensberg. 
The aerial extent of the Tsitsa catchment is approximately 4927 km2, 

located between 30◦46′51″S and 31◦29′15″S latitude and 27◦56′13″E and 
29◦13′43″E longitude (Fig. 1a). The climate is sub-humid, with the mean 
annual rainfall ranging between 625 mm in the lower plains and 
increasing to 1327 mm in the mountainous upper catchment (Le Roux, 
2018). The natural vegetation is predominantly from the Grasslands 
biome region. However, the Savanna biome is also present in the 
southwestern catchment (Mucina and Rutherford, 2006), where thorny 
acacia trees have encroached on the grassland area. The main land use in 
the catchment is communal grazing, with smaller pockets of commercial 
maize and plantations. Relicts of past water and soil conservation 
measures of previous commercial crop farming is present in the 
communal grazing areas. The geology is primarily of sedimentary strata, 
with large parts of the catchments underlaid by the Tarkastad and 
Adelaide subgroups of the Beaufort formation and Elliot group (Burger, 
2013). The aforementioned sedimentary strata have been linked to 
derive duplex soils (soils that exhibit a strong texture contrast between 
surface soil and subsurface soil, mostly from translocation of clay; see 
Fey, 2010) with high dispersion, closely linked to high erosion suscep
tibility (Laker, 2004). 

2.2. Regional setting of sites used to test transferability 

Five gully sites were selected to test the transferability of gHAND (see 
Fig. 1 for location, Table 2 for the descriptors variables, and Fig. 3 for the 
aerial extent of the five selected gullies). Site selection was made ac
cording to data availability, whether the site exhibited a contrasting 
climate compared to the Tsitsa catchment, and preferably where gully 
detection approaches based on topographical attributes were applied 
previously. 

A continuous gully was selected in Córdoba, Spain (Fig. 3a; the same 
gully as Castillo et al., 2014). The region has a Mediterranean climate, 
and the topography consists of rolling hills. The gully is located along 
the main drainage line of adjoining crop fields, exhibiting a dendritic 
shape (length along the main channel is 662 m; maximum width is 20.6 
m, and the planimetric area is 14067.5 m2). 

In Australia, a continuous gully was selected in the Herbert catch
ment near Innot Springs (Fig. 3b; the gully is in the Great Barrier Reef 
catchment, approximately 400 km from one of the sites Walker et al., 
2020 conducted a semi-automated detection approach). The area has a 
subtropical monsoon climate with strong seasonal rainfall patterns 
(Bartley et al., 2003). The gully is located on native pasture (estimated 
from Bartley et al., 2003) and is linear with a singular headcut (the main 
channel length is 202.7 m; the maximum width is 12.9 m; and the 

Fig. 1. Location of the sites testing the scalability and transferability of the Gully HAND detection workflow.  
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planimetric area is 1530.1 m2). 
In SA, two discontinuous gullies in contrasting regions were selected. 

One of these gullies is located close to Montagu, in the semi-arid Karoo, 
with a mean annual rainfall of 231 mm (Schulze et al., 2006) (Fig. 3c; in 
proximity to the gully of Olivier et al., 2022). The topography is nearly 
flat, and the current land use is conservation-orientated with free- 
roaming game. The gully is classified as frontal, as the head scarps 
have been significantly modified by gabions placed at the incision point, 
in addition to older gabions in proximity, which have failed. The main 
channel length is 134.7 m, the maximum width is 20.7 m, and the 
planimetric area is 2008.0 m2. 

The second discontinuous gully is located in southwestern SA, in the 
wheat-growing region of the Swartland of the Western Cape (Fig. 3d). 
The area has a Mediterranean climate with a mean annual rainfall of 
469 mm (Schulze et al., 2006). The topography consists of rolling slopes, 
with most of the natural shrub (renosterveld) removed for crops. The 

dendritic gully is found along the main drainage line of adjoining fields 
(the main channel length is 1285.0 m; the maximum width is 20.9 m; 
and the planimetric area is 23246.8 m2). Soil and water conservation 
works significantly impact gully morphology, resulting in an almost 
structured expansion as first order gully channels extend behind sys
tematically spaced contour banks. 

A continuous gully was selected at Krumhuk, Namibia (Fig. 3e; the 
same gully as Vallejo-Orti et al., 2019). The region is semi-arid, with the 
mean annual rainfall ranging from 250 mm to 350 mm. The gully is 
located in nearly flat topography, and commercial grazing is the main 
land use. The gully morphology exhibits extensive lateral erosion of the 
sidewalls in the form of rills and smaller gullies, lowering the slope of the 
historically sharp-sloped gully walls and resulting in the loss of the 
distinct original gully channel morphology. The channel widths extend 
up to 152 m wide (Vallejo-Orti et al., 2019), with the landscape seem
ingly transitioning to a badlands landform. 

Table 2 
Gully characteristics at sites where gully HAND was developed and tested in terms of scalability and transferability.  

Site Coordinates Climate (according 
to Köppen Geiger 
climate 
classification) 

Land use Scale† Local 
slope 
(in %) 

Length of 
main 
channel (in 
m) 

Maximum 
width (in 
m) 

Planimetric 
area (in m2) 

Mitigation 
strategies 

x y 

Development and testing scalability 
Tistsa 

catchment, 
South 
Africa  

28.474  − 31.194 Cwb (Subtropical 
highland) 

Communal 
grazing 

Small(1)  9.0  183.3  18.6  1619.0 – 

Tistsa 
catchment, 
South 
Africa  

28.638  − 31.105 Cwb (Subtropical 
highland) 

Communal 
grazing 

Small(2)  10.2  121.3  10.6  1421.6 – 

Tsitsa 
catchment, 
South 
Africa  

28.467  − 31.191 Cwb (Subtropical 
highland) 

Communal 
grazing 

Medium(1)  8.1  430.9  34.3  12135.6 – 

Tistsa 
catchment, 
South 
Africa  

28.613  − 31.074 Cwb (Subtropical 
highland) 

Communal 
grazing 

Medium(2)  5.6  241.9  25.5  4827.1 Contour banks (on 
abandoned 
agricultural fields) 

Tsitsa 
catchment, 
South 
Africa  

28.788  − 31.202 Cfb (Oceanic and 
Subtropical 
highland) 

Communal 
grazing 

Large(1)  3.2  2142.8  39.4  70246.7 Contour banks (on 
abandoned 
agricultural fields); 
dam at headcut 

Tistsa 
catchment, 
South 
Africa  

28.821  − 31.169 Cfb (Oceanic and 
Subtropical 
highland) 

Communal 
grazing 

Large(2)  4.2  1881.5  37.2  38042.3 Contour banks (on 
abandoned 
agricultural fields); 
dam at headcut 

Tistsa 
catchment, 
South 
Africa  

28.637  − 31.129 Cwb (Subtropical 
highland) 

Communal 
grazing 

Colossus(1)  4.2  3236.7  121.3  355403.7 Contour banks (on 
abandoned 
agricultural fields) 

Tsitsa 
catchment, 
South 
Africa  

28.664  − 31.238 Cwb (Subtropical 
highland) 

Communal 
grazing 

Colossus(2)  2.9  5113.2  208.9  425403.7 Contour banks (on 
abandoned 
agricultural fields); 
dam at headcut 

Testing transferability to other sites, including the use of different DEMs 
Herbert 

catchment, 
Australia  

145.184  − 17.721 Cwa (Subtropical 
monsoon) 

Commercial 
grazing 

Small  3.7  202.7  12.9  1530.1 – 

Cordoba, 
Spain  

− 4.604  37.837 Csa (Hot summer 
Mediterranean) 

Commercial 
crops 

Medium  7.2  662.0  20.6  14067.5  

Swartland, 
South 
Africa  

18.759  − 33.278 Csa (Hot summer 
Mediterranean) 

Commercial 
crops 

Medium  6.0  1285.0  20.9  23246.8 Contour banks 

Montagu, 
South 
Africa  

20.626  − 33.730 Bsk (Cool semi arid) Conservation Medium  1.4  134.7  20.7  2008.0 Gabions at 
headcuts inlcuding 
failed gabions in 
proximity to 
headcuts 

Krumhuk, 
Namibia  

17.096  − 22.734 Bsh (Hot semi-arid) Commercial 
grazing 

Large  1.6  698.3  152.0  66019.3 – 

† Gully scales are defined in terms of its planimetric area and thresholds were set as follow: small-scale < 2500 m2; medium-scale 2500 m2–25,000 m2; large scale 
25,000 m2–250,000 m2; and colossus scale > 250,000 m2. Gullies are ordered according to scale, and thereafter its longitude. 
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3. Materials and methods 

3.1. Datasets 

In SA, GeoSmart Space Pty (Ltd) (2020) created a 2 m national DEM 
(known as DEMSA2) from aerial imagery (spatial resolution of 0.5 m), 
augmented by SRTM data in flatter terrain, covering approximately 96 
% of SA. The gHAND workflow used the 2 m DEM as input for the sites in 
the Tsitsa catchment and the Swartland, SA (Table 3). The same aerial 
imagery used in generating the 2 m DEM was used as a base map to 
digitise reference gully datasets manually. 

In Montagu, SA, a 0.07 m DEM was created using commercial 

software (AgiSoft Metashape Professional 1.8.1 (Agisoft LLC, St. 
Petersburg, Russia)). Imagery captured from a DJI Mavic 3 equipped 
with a 4/3 CMOS Hasselblad camera was used as input for creating the 
DEM. A reference dataset was digitised from the same imagery used as 
input into Agisoft Metashape Professional 1.8.1 (Agisoft LLC, St. 
Petersburg, Russia). 

In Córdoba, Spain, a 0.06 m DEM was created using commercial 
software (Pix4D) from photogrammetric methods (see Castillo et al., 
2014 for more detail). A differential Global Positioning System (dGPS) 
with cm accuracy was used to map the gully perimeter by the change-in- 
slope criterion. The dGPS points were taken in-field on the flight date 
and used as a reference boundary for the gully feature. 

Fig. 2. Gully sites in the Tsitsa catchment, South Africa, which were used to develop and evaluate the scalability of the Gully HAND workflow: a) location of the eight 
gully sites overlaying a slope raster; b and c) small-scale gullies;); d and e) medium-scale gullies; f and g) large-scale gullies; h and i) colossus-scale gullies (aerial 
imagery was retrieved from the Department of Rural Development and Landform, available at http://www.cdngiportal.co.za/cdngiportal/). 

G. Olivier et al.                                                                                                                                                                                                                                  
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Fig. 3. A multi-directional hillshade and aerial image showing topographical detail captured in the varying DEM spatial resolutions and the aerial extent of the gully 
sites used to evaluate the transferability of the gully HAND workflow: a) Córdoba, Spain with an input DEM of 0.06 m (Castillo et al.,2014; satellite imagery courtesy 
of Google Earth (21/7/2018)); b) Herbert catchment, Australia with an input DEM of 0.5 m (Geoscience Australia National Elevation Data Framework, available at 
http://www.ga.gov.au/elvis/); c) Montagu, South Africa with an input DEM of 0.7 m; d) Swartland, South Africa with an input DEM of 2 m (GeoSmart Space Pty 

G. Olivier et al.                                                                                                                                                                                                                                  
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In the Herbert catchment, Australia, arial flights from 2018 were 
flown to collect LiDAR data with a target density of 16 points per square 
meter (Geoscience Australia National Elevation Data Framework, 
available at https://www.ga.gov.au/elvis/). Aerial imagery from the 
same flight, supported by a multi-directional hillshade, was used to 
digitise a reference dataset manually. 

In Krumhuk, Namibia, a 12 m TanDEM-X was acquired from a 
TerraSAR-X DLR mission in January 2015 (see Vallejo-Orti et al., 2019 
for further details). A reference dataset was initially derived in the field 
with a Global Navigation Satellite System in 2018. The reference dataset 
was subsequently refined using 0.5 m Pleiades imagery captured in 
December 2016 to reduce potential errors due to the temporal variance 
between the DEM and reference datasets (Vallejo-Orti et al., 2019). 

3.2. gHAND procedure 

The gHAND workflow is based on two detection variables, viz., 
HAND and slope. The first step to derive HAND requires a conditioned 
DEM to extract drainage pathways. The HAND method developed by 
Rennó et al. (2008) uses a breaching method like the one from O’Cal
laghan and Mark (1984) to eliminate sinks. Once sinks are removed, the 
D8 flow approach (O’Callaghan and Mark, 1984) is applied to identify 
Local Drain Directions (LDD). The D8 flow approach is deemed suitable 
as lateral movement along a flat plane would have little impact on the 
final HAND pixel value (Nobre et al., 2011). The drainage pathways are 
established by defining contributing area and geomorphic curvature 
thresholds to identify the river headwater (Rennó et al., 2008). 

The initial steps to calculate gully drainages following gHAND is 
similar to HAND. Input DEMs are hydrologically corrected in ArcGIS 
10.6.1 (Environmental Systems Research Institute (ESRI), Inc., Red
lands, CA, USA) using the depression filling method from Planchon and 
Darboux (2002). Subsequently, LDD is acquired from the D8 flow 
approach. The upstream drainage areas of gullies vary significantly ac
cording to local environmental factors (Poesen et al., 2003; Vanmaercke 
et al., 2021); therefore, using a singular contributing threshold to 
determine gully headcuts was assumed invalid. Instead, a rapid 
approach to map gully headcuts as point features from aerial photos, 
enhanced with a multi-directional hillshade, is followed. Gully drainage 
pathways are defined using the digitised points as a weighted input. 

Once drainage pathways are established, the second step is nor
malising the DEM according to its derived drainage pathway (Fig. 4). A 
drainage connectivity raster is calculated by grouping all pixels to its 
nearest local drainage point. HAND is calculated for each pixel by sub
tracting its elevation value from its grouped outlet point (Nobre et al., 

2011). Drainage pathways will, therefore, be zeroed as they are sub
tracted from themselves, implying a flat topographic reference without 
any gravitational drainage potential (Rennó et al., 2008). Pixels that are 
adjacent to the drainage pathway and on the hillslope will yield a value 
associated with the vertical height to its nearest drainage pathway. 

Subsequently, gHAND uses a (Geographic Object-Based Image 
Analysis) GEOBIA segmentation approach to identify gully floor and 
wall elements from HAND and slope values. Due to topographical gully 
floor oscillations, gully floor elements are expected to have near-zero 
HAND values. Gully wall elements are identified by steep slopes along 
the flow path and further constrained by HAND. GEOBIA segmentation 
was selected as it has outperformed exclusive pixel-based approaches in 
extracting gully features because of the ability of the object-orientated 
approach to extract data regarding shape, proximity, and neighbour
ing relationships (Francipane et al., 2020). The multi-resolution seg
mentation process creates objects from a bottom-up approach that 
groups pixels according to the relative homogeneity within the input 
variables (Blascke, et al., 2014). 

The scale parameter controls the allowable variance of homogeneity 
and is based on a combination of shape and colour properties (in our 
case, the HAND and slope values) and compactness (how closely related 
the shape is to a circle) (Trimble Germany GmbH, 2023). Due to gullies 
mostly exhibiting linear morphologies, emphasis was placed on shape 
(0.8), and compactness was reduced to 0.4. Larger scale parameters 
yield larger objects and vice versa (Karydas and Jiang, 2020). Gullies are 
predominantly linear, following drainage lines, although exceptions 
such as alluvial amphitheatre gullies also exist (Shellberg and Brooks, 
2012; Thwaites et al., 2022). Therefore, a smaller scale parameter was 
desirable, given the 2 m DEM resolution. A trial-and-error calibration 
was conducted on a medium-scale gully, whereafter a scale parameter of 
4 was selected (see supplementary material, Table A1, which showed 
larger objects resulting in higher over-estimation errors). To allow the 
scale factor to transition with changing spatial resolution, we employed 
a simple division process: 

Sf ∼ =
Sf
Sres

(1)  

where Sf is the original scale factor of four, established for the 2 m DEM, 
Sres is the spatial resolution of the new input DEM, and Sf~ is the 
calculated scale factor to be used during multi-resolution segmentation 
for the given DEM. However, a minimum scale factor of 2 was used for 
coarser spatial resolutions. 

The complete gHAND workflow and associated threshold settings are 
described in Table 4. Parameter sensitivity analysis was conducted 

(Ltd), 2020, aerial image retrieved from the Department of Rural Development and Land Reform, available at http://www.cdngiportal.co.za/cdngiportal/); e) 
Krumhuk, Namibia with an input DEM of 12 m DEM (Vallejo-Orti et al., 2019; satellite imagery courtesy of Google Earth (23/10/2021)). 

Table 3 
DEM data for all sites.  

Site Source Parent data from 
which the DEM is 
derived 

DEM 
type 

Spatial 
resolution 

Vertical 
accuracy 

Horizontal 
accuracy 

Semi-automated detection 
method 

Córdoba, Spain Castillo et al., 2014 implemented 
commercial software Pix4D 

Aerial imagery Surface 0.06 m 0.23 m 0.09 m NorToM (Castillo et al., 
2014) and gHAND 

Herbert catchment, 
Australia 

LiDAR collected for Reef Trust, by 
Atlass Aerometrex, with CSIRO as the 
project manager 

LiDAR Terrain 0.5 m 0.2 m 0.8 m gHAND 

Montagu, South 
Africa 

By Author UAV aerial Surface 0.7 N/A N/A gHAND 

South Africa (all 
sites, except 
Montagu) 

GeoSmart Pty (Ltd) Primarily aerial 
imagery 

Surface 2 m 0.5 m 1 m gHAND 

Krumhuk, Namibia DLR (German Aerospace Center) Satellite imagery Surface 12 m 2 m 10 m IMR, SMPF, and MPCA ( 
Vallejo-Orti et al., 2019) 
and gHAND  

G. Olivier et al.                                                                                                                                                                                                                                  
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regarding the placement of manually digitised gully headcuts (see sup
plementary material, Figs. A1 and A2) and DEM spatial resolution (see 
supplementary material, Fig. A3). 

3.3. Limited threshold editing of gHAND 

Although we aimed to identify a method that could be scalable and 
used without editing for a range of gully sizes, we decided to minimally 
tweak gHAND for the colossus scale gully to establish whether detection 
accuracy improvement could be made. Threshold changes were made 
based on local knowledge and shown in Table 4. 

3.4. Accuracy assessment 

The gHAND segmented mapping results were evaluated by 
measuring the dissimilarity between gHAND-derived and reference 
polygons (like Castillo et al., 2014) from 

EO =

∑
|Hi − ri|

RAi
(2)  

EU =

∑
|ri − Hi|

RAi
(3)  

Etot= |Eo| + |Eu| (4) 

Fig. 4. Normalising the DEM according to Height Above Nearest Drainage (HAND) to highlight the distinct morphology of a gully channel: a) DEM values of a DEM 
with the flow direction coded by blue arrows; b) pixel values are grouped according to its nearest outlet; c) HAND is calculated by subtracting DEM pixel values from 
the height value of its nearest outlet (after Nobre et al., 2011); d) graphical illustration of how gully HAND uses HAND to identify the gully floor (in blue) and uses 
slope, constrained by HAND, to identify sharp sloped gully walls (in red). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Table 4 
The gully HAND workflow and thresholds.  

Process 
classification †

Software 
application 

Step Output Description Environment setting Tool used 

Pixel-based ArcGIS 10.1.6 1 Conditioned DEM Fill sinks  Fill (Spatial analyst)   
2 Additional flow 

direction and slope 
Calculate the flow 
direction and Drop 
Raster slope 

Dinf method; include DropRaster as 
output, which is the slope along the flow 
path 

Flow direction (Spatial analyst)   

3 Gullied drainage Generate a multi- 
directional hillshade  

Open window analysis. Select the 
conditioned DEM and add the 
hillshade function – select multi- 
directional     

Digitise gully headcuts 
as points 

Upon completion edit the ID field – Set 
all to 1 

Editor     

Rasterise the digitised 
points 

Set processing extent to DEM (output 1); 
snap raster to DEM; copy spatial 
resolution from DEM 

Feature to Raster (Conversion)     

Reclassify NoData to 
zero values  

Reclassify (Spatial analyst)     

Calculate the flow 
direction 

D8 flow approach Flow direction (Spatial analyst)     

Calculate the weighted 
flow accumulation 

Use the rasterised gully headcuts 
(output 2) as weight raster input 

Flow accumulation (Spatial analyst)     

Create a binary stream 
network  

Reclassify (Spatial analyst)   

4 HAND Calculate the height 
above nearest drainage 

- Stream raster: Output 3 
- Surface raster: Output 1- Flow 
direction raster: Output 2  
(Dinf) 
- Flow distance type: Vertical- Flow 
direction type: Dinf 

Flow distance (Spatial analyst) 

Object-based Ecognition 
Developer 9 

5 Generate and classify 
gully elements 

Create meaningful 
objects from 
homogenous pixels 

Equal weighting for Drop Raster (output 
4) and HAND (output 5); Scale 
parameter: 4, Shape factor: 0.8; 
Compactness factor: 0.4 

Multiresolution segmentation     

Use a threshold 
approach to identify the 
gully floor 

Use “Low_HAND” threshold at image 
object level 

Multi-threshold segmentation     

Merge gully floor 
elements  

Merge region     

Remove all objects 
containing NoData 
values 

Use HAND < 0 Assign class     

Use a threshold 
approach to identify 
gully wall candidates 

Use “Heigh_HAND” and “Bluff_DropR” 
thresholds at image object level 

Multi-threshold segmentation     

Combine gully wall 
candidates  

Merge region     

Shrink gully wall 
elements to off-set 
overprediction 

One iteration Pixel-based object resizing     

Merge gully wall 
candidates  

Merge region     

Merge gully floor and 
gully wall candidates  

Assign class   

6 Refining gully 
network 

Grow the merged gully 
candidates 

One iteration Pixel-based object resizing     

Merge objects  Merge region     
Fill any holes found 
within the classification 

Set the area smaller than “Isle_Hole” and 
ensure that the gap is surrounded by 
gully candidates (relative border = 1) 

Assign class     

Merge objects  Merge region     
Smooth gully candidate 
objects 

One iteration (shrink) Pixel-based object resizing     

Remove any dangling 
phantom gully branches 

Set minimum threshold “Min_Phan” 
with objects below set to unclassified 

Assign class   

7 Export gully 
classification 

Save the mapped gully  Export vector layer 

Threshold settings  Standard  Colossus Edited    
Low_HAND 
High_HAND 
Bluff_DropR 
Isle_HoleMin_Phan 

0.5 m 
6 m 
25 % 
200 m2 

200 m2 

1 m 
10 m 
25 % 
400 m2 

400 m2   
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where Eo is the over-estimation representing the total area of polygon 
segments derived from gHAND that is outside the perimeter of the 
reference polygon, Eu represents the under-estimation of the gHAND 
mapped polygon by finding the total area of reference polygon segments 
that exceed the predicted gullied polygon by gHAND, Etot is the com
bined error of Eo and Eu, Hi is the calculated area of the i-th polygon 
segment mapped by gHAND, ri is the area of the i-th reference polygon 
segment, and RAi is the total gullied area according to the i-th reference 
polygon. 

The HAND and slope pixel values for all errors (over- and under- 
predicted areas) were extracted to identify the primary building block 
causing gHAND mapping errors. Additionally, aerial imagery of areas of 
erroneous mapping was extracted to identify specific gully process, 
morphology, or landscape elements resulting in errors. 

Besides evaluating the mapping errors in isolation, additional vali
dation of gHAND was conducted by comparing its performance with 
benchmark methods, viz., NorToM in Spain (Castillo et al., 2014) and 
IMR, SMPF, and MPCA methods in Namibia (Vallejo-Orti., 2019). These 
benchmark methods were explicitly developed for region-specific gul
lies; therefore, comparing gHAND to them provides a more compre
hensive evaluation of the transferability potential of gHAND. 

4. Results 

4.1. Testing scalability: Gully mapping in the Tsitsa catchment, SA 

Fig. 5 shows the areal errors incurred by the gHAND workflow for 
gullies increasing in geomorphic scales. The lowest error was recorded 
for medium-scale(2) (total error: 18.6 %), while the most significant 
error occurred from mapping the largest colossus-scale(2) gully network 
(total error: 52.1 %). Comparable results with a total error variance 
<8.4 % were obtained for the remainder of the gullies despite their 
planimetric area varying by two orders of magnitude. Under-estimation 
error is the highest contributor to total error (10.8 %–48.9 %), except for 
the small-scale(1) gully. Fig. 6 shows that the total areas predicted by 
gHAND are lower than the reference dataset. The lower calculated areas 
would assume that under-estimation is likely to be caused by gully 
morphology, process, and scale, and mostly not the poor extraction of 
drainage pathways that artificially shift the gHAND mapped gully, 
which would have caused similar area extents coupled with large under- 
estimations. Over-prediction errors are <16.1 % and are inverse to 
geomorphic gully scales. 

Introducing local knowledge in the form of thresholds for the 
colossus scale gully lowered total error by 12.5 % (colossus-scale(2)) and 

14.6 % (colossus-scale(1)), respectively. The unedited gHAND produced 
a total error of 22.5 % for the 355403.7 m2 colossus-scale(1) gully and 
37.5 % for the 425403.7 m2 colossus-scale(2) gully. 

4.2. Testing transferability: Gully mapping in various geo-environments 

Fig. 7 shows the areal errors produced by gHAND at transferability 
sites, which are ordered according to the spatial resolution of the input 
DEM. Total error has a positive relationship with DEM spatial resolution. 
Comparable total errors were incurred at sites with a DEM resolution 
sub-1 m (20.8 %–21.8 %). At Swartland, SA, a total error of 49.8 % was 
incurred by gHAND using a 2 m DEM as input, while a 53.2 % total error 
was calculated for the 12 m DEM at Krumhuk, Namibia. Over-estimation 
errors are the principal contributor to total error for the sub-1 m DEMs 
(between 12.2 % and 14.6 % more than under-estimation). In contrast 
under-estimation errors were the main contributor to total error when 
using the 2 m and 12 m DEM as input in gHAND. 

4.3. Comparison with benchmark workflows in Namibia and Spain 

Fig. 8 compares the areal errors obtained from gHAND with bench
mark methods developed for the site-specific gully topology at Córdoba, 
Spain (Castillo et al., 2014) and Krumhuk, Namibia (Vallejo-Orti et al., 
2019). 

At Córdoba, Spain, the mapping error incurred by gHAND is com
parable with NorToM (Castillo et al., 2014) (Fig. 8a). NorToM used 
different kernel sizes (20 m–60 m) to map the permanent gully at 
Córdoba, Spain optimally. Total errors produced by NorToM ranged 
between 10.8 % and 23.1 %, which is kernel size dependent (mean total 
error of all kernel sizes = 16.5 %). The gHAND workflow incurs a total 
error of 20.8 %, which arises mainly due to an over-estimation error of 
17.7 %. 

At Krumhuk, Namibia, three methods were implemented, namely 
IMR, SMPF, and MPCA (Vallejo-Orti, 2019) (Fig. 8b). The inverse of the 
reported producer and user accuracies reported by Vallejo-Orti et al. 
(2019) was calculated to produce an equivalent over-estimation, under- 
estimation, and total mapping errors for comparison with gHAND. The 
MPCA method produced the lowest total error (60.2 %) of the bench
mark methodologies. gHAND was comparable to the optimal benchmark 
method in Krumhuk, incurring a total error of 53.2 %, which mainly 
resulted from a significant under-estimation error of 47.9 %. 

Fig. 5. Under-estimation, over-estimation, and total errors of the gully HAND workflow for gullies of increasing geomorphic sizes in the Tsitsa catchment, 
South Africa. 
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4.4. Impact of gully morphology and processes on gHAND accuracy 

The gHAND workflow tolerated different gully shapes and channel 
floor oscillations (Fig. 9). The classical V- and U-shape gullies were 
accurately determined by gHAND, showing low errors. The gHAND 
workflow mapped complex gully floor topography with low errors, e.g., 
gully floor undulations below the 0.5 m HAND threshold (Fig. 9a) and 
gully floor fluctuations above the 0.5 m HAND threshold, albeit with 
steep-sloped undulations (Fig. 9b). 

Over-estimation errors by gHAND occurred at gully walls, headcuts, 

and narrow interfluves (Fig. 10). More than 70 % of the over-estimated 
error pixels are above the 25 % slope threshold, while 12.9 % are below 
the 0.5 m HAND threshold (Fig. 10e). Slope commits five times more 
pixels to over-prediction in the gHAND model compared to HAND. The 
most typical error is caused by slope pixels adjacent to gully walls with 
pixel values above 25 % (and above the 0.5 m HAND threshold) (Fig. 10 
a, b). Less frequent errors occur when the slope threshold is below 25 %. 
For example, in Fig. 10c, a narrow interfluve was incorrectly mapped as 
part of the gully, which may have been committed to over-estimation 
from the pixel-based growing step in gHAND (Table 4). Over- 

Fig. 6. A comparison of the total areas obtained from the reference dataset and the gully HAND method for all the gully sites: a) Tsitsa small-, medium-, and large- 
scale gullies; b) colossus-scale gully (edited and non-edited gully HAND); and c) at the transferability sites. 
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estimation errors also occur at pixel values below the slope and HAND 
threshold, where incorrect drainage pathways were extracted and at 
shallow headcuts shallower than 0.5 m, which results in the gHAND 
gully polygon leaching beyond the headcut (Fig. 10d). 

Like the over-estimation errors, under-estimation is also influenced 
by slope, but mostly due to gully walls having a lower slope than the 25 
% threshold (Fig. 11e). However, significant under-estimated areas also 
have slope values larger than 25 % (Fig. 11a, b). In contrast, fewer than 
1 % of pixels underestimated gullies with values lower than the 0.5 m 
HAND threshold. Examples of areas where pixels are omitted to under- 
estimation errors due to being below the 25 % threshold include gully 
floor topography, where an increase beyond 0.5 m occurs at a gradual 
slope, such as at a point bar (Fig. 11c). However, under-estimation can 
also happen in wide gully channels adjacent to the thalweg (Fig. 11d) or 
where subsurface flow has resulted in sagged gully banks or recently 
collapsed pipes (Fig. 12). Under-estimation errors occurred at frontal 
head scarps where overflow has resulted in deep, closely spaced flutes or 
multiple narrow, deep channels with tapered interfluves (Fig. 11d, 
Fig. 13). 

5. Discussion 

5.1. Advantages of gHAND 

Implementing the gHAND workflow has several interrelated advan
tages. Firstly, it uses limited input; secondly, it does not require pre
defined search windows, making the workflow easily scalable; thirdly, it 
discriminates gully dimensions adequately in the presence of water and 
soil conservation techniques; and lastly, it uses measurements associated 
with gully morphology, like those measured in-field. 

In terms of limited input, gHAND only requires a DEM of the study 
area. Moreover, we demonstrated that gHAND could be used from DEMs 
derived from different sources (aerial imagery, LiDAR, and satellite 
imagery), spatial resolutions (although there is a decrease in accuracy 
metrics associated with coarsening resolution) and type (surface and 
terrain), while performing adequately at different geomorphic scales 
and in geo-environmental environments. 

Due to using a normalised DEM in gHAND, the requirement of using 
defined search windows is eliminated, thus presenting a workflow that is 
scale independent. Search windows are typically a crucial strategy in 
(semi-)automated methods using DEMs to extract distinct gully land
forms from their local terrain (Table 1). Although, Castillo et al. (2014) 
argue that calculating z-score statistics from predefined search windows 
creates a scale-independent methodology, its scale dependency is 
evident from: 1) the array of window sizes used and 2) the acknowl
edgement that “landscapes with highly contrasting gully widths might 
require the use of several runs with different window sizes” (Castillo 
et al., 2014: p2013). Contrastingly, gHAND produced a total error of 
<=35 % for gullies with a planimetric area varying two orders of 

magnitude (1421.62 up to 355403.7 m2) when testing scalability in the 
Tsitsa catchment, SA, without the need for editing the workflow. 
Additionally, due to the identification of gullies being strongly associ
ated with low HAND values in proximity to the gully thalweg, gHAND is 
unlikely to experience detection decay in strongly sloped landscapes (as 
demonstrated in the strongly sloping Tsitsa catchment, SA) or where 
significant hillslope noise is present on high resolution DEMs (as 
demonstrated in Córdoba, Spain). 

In terms of soil and water conservation techniques, gHAND seems 
primarily unaffected by their presence. Relic contour banks from 
abandoned cultivated fields and dams placed at headcuts had no effect 
on gHAND in the Tsitsa catchment, SA. Similarly, gabions that altered 
headcut morphology, did not adversely affect gHAND performance at 
gully site in Monatgu, SA. In Swartland, SA, contour banks were present 
on rolling hills of a grain field. Although a total error of 49.8 % was 
calculated, the contour banks had limited impact, only committing small 
over-estimations at a few headcuts that extended behind the contour 
bank due to its shallow depth. 

Lastly, gHAND exploits gully morphology in quantitative measures 
to map gully elements, augmenting transferability. The gHAND work
flow adequately detected V- and U-shaped gullies and was able to extract 
dendritic and linear gullies. An additional advantage of implementing 
thresholds linked to morphology is that they are associated with field 
measurements, enhancing practicality, unlike more obscure measure
ments and statistics with little physical relevance to the actual gully, 
especially when implementing spectral datasets (Phinzi et al., 2020, 
2021; Vrieling, 2007), e.g., 

P(X|wi) =
1

2π|Vi|
1
2
exp[− 1/2(X − Mi)

T V − 1
i (X − Mi)] (5)  

“where X is the pixel’s data vector in all spectral bands, n is the number 
of spectral bands, Mi is the mean vector for class wi, and Vi is the vari
ance-covariance matrix for class wi" from Vrieling et al., (2007:2727). 

5.2. gHAND model disadvantages and study limitations 

Although implementing gHAND has several advantages, it also has 
limitations related to manual input, gully morphology and processes, 
gully area, and the use of proprietary software. 

The gHAND workflow requires gully headcut locations to be manu
ally digitised to allow accurate normalisation of the DEM according to 
HAND. This can introduce user bias and uncertainty. However, a 
sensitivity analysis showed that performance was not severely affected 
by the exact placement of the point to implicate the headcut (supple
mentary material, Fig. A1). Therefore, a rapid mapping process of gully 
headcuts should enable the successful application of gHAND. In some 
regions, gully headcut inventories exist, mapped to assess gully occur
rence and density (Hayas et al., 2017; Vanderkerckhove, 1998). At such 
locations, gHAND can augment findings, but manual digitising is a 
prerequisite in a new study site. It would be beneficial to find a way to 
automate gully headcut identification, or alternatively identify gully 
headcut susceptibility zones (such as implementing the frequently used 
topographic threshold concept; see Rossi et al., 2022; Torri and Poesen, 
2014) in which to search for gully headcuts to be mapped, to make 
regional mapping more feasible. Other semi-automated detection 
methods do not have this limitation (e.g., Castillo et al., 2014; Marar
akanye and Nethengwe, 2012; Vallejo-Orti et al., 2019; Vrieling et al., 
2007; Walker et al., 2020), although spectral methodologies do require 
gully inventory maps to be generated for training purposes (Marar
akanye and Nethengwe, 2012; Phinzi et al., 2021; Taruvinga, 2008; 
Vrieling et al., 2007). 

The degree of error of gHAND was linked to the complexity and scale 
of gully morphology and processes. The lowest error of gHAND occurred 
at Córdoba, Spain, and Herbert, Australia, where the highest spatial 
resolution DEMs were available but also showed low morphological 

Fig. 7. Under-estimation, over-estimation, and total errors of the gully HAND 
workflow recorded at the transferability sites, ordered according to DEM 
spatial resolution. 
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Fig. 8. Comparison of gully HAND error with benchmark methods. Over-estimation and under-estimation errors from gully HAND are superimposed onto a multi- 
directional hillshades from a) Córdoba, Spain, and b) Krumhuk, Namibia, with error statistics for gully HAND and the benchmark methods shown in c). 
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Fig. 9. The gully HAND workflow was able to accurately map various gully floor geometries and gully shapes. Examples are shown at a) Córdoba, Spain, where low 
errors were found in V-shaped channels upstream and complex gully floor topography downstream, where fluctuations stayed below the 0.5 m lower Height Above 
Nearest Drainage threshold; and b) in the Tsitsa catchment, SA, in U-shaped channels and complex channels where gully floors showed fluctuations above 0.5 m, 
although at a steep slope. 
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complexity, with clear and well-defined steep slopes. As the gully scale 
increased towards the colossus scale, complex gully morphology, some 
of which are scale-related, became evident, especially in under- 
estimation errors. Within the gully channel, gradual increases in 
height from the thalweg above 0.5 m resulted in under-estimations, 
which can be process- (e.g., the point bar in Fig. 11e, 12) or scale- 
dependent (Fig. 12). Slumping of gully walls caused by subsurface 
processes or newly gullied pipe collapses (Fig. 12) may yield gully slope 
elements below the 25 % slope threshold set in gHAND, resulting in 
under-estimation errors. Frontal head scarps exhibiting deep, closely 
spaced flutes or multiple narrow, deep channels with tapered interfluves 
(Fig. 11g, 13) were under-estimated. However, it was expected to be 
detected by gHAND due to high slope values. The reason for under- 
estimation is likely due to small areas of low slopes interspersed be
tween the steep slopes (gully floor and the top of interfluves), which 
resulted in the steep slopes becoming dissociated from each other and 
the gully thalweg. Due to the reliance of gHAND on slope to detect wall 
elements and build on the gully thalweg and floor, badlands are 

expected to be poorly mapped by gHAND, as was the case in Krumhuk, 
Namibia. 

Lastly, gHAND used proprietary software, eCognition (Trimble, 
Munich, Bavaria, Germany), to segment the building blocks of gHAND 
into objects. Although gHAND is built on easily understandable metrics, 
costs associated with the software may be an obstacle. Nonetheless, we 
do envisage that gHAND can be implemented at comparable accuracy 
rates by following a pixel-based approach since the main component is 
threshold-dependent, which would make the approach more practical 
for implementation in open-source software such as QGIS (QGIS.org. 
QGIS Geographic Information System. Open Source Geospatial Foun
dation Project). There were also some practical limitations to the study 
itself, as gHAND was tested on an individual gully scale. Further testing 
should be done on catchment scales when multiple gullies are present. 
Still, initial indications suggest that accuracy remains unaffected 
(Olivier et al., 2022), but a practical approach to discriminate gullies 
from rivers is required. Strategies that can be implemented, some of 
which have been used in other gully-mapping methodologies, are 

Fig. 10. Area of over-estimation error by gully HAND symbolised in red on the aerial imagery and cross sections: a and b) over-estimation pixels in proximity to gully 
walls with steep slopes and high Height Above Nearest Drainage (HAND) values, c) over-estimation site exhibiting slopes below the slope threshold and above the low 
HAND threshold; and d) over-estimation exhibiting pixels values below the slope and low HAND thresholds; e) diagram showing in which quadrant the over- 
estimated pixels are found (n = 574168); the location of the insert maps a, b, c, d are also located in the quadrants. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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applying contributing area thresholds (Castillo et al., 2014; Daba et al., 
2003), stream order thresholds (Bartley et al., 2007; Johansen et al., 
2012), or using vector overlay from existing river data (Johansen et al., 
2012; Olivier et al., 2021). An alternative strategy could also be to 
implement a discriminatory width-depth ratio. 

5.3. Benchmark validation of gHAND 

The accuracy of gHAND was comparable with the benchmark 
workflows at Krumhuk, Namibia and Córdoba, Spain, further validating 
its transferability. 

However, at Krumhuk, the total error incurred by gHAND was 53.2 
%. The overall error was strongly associated with under-estimation 
(47.9 %), which was a result of the gully landform transitioning to a 
badland. The transition is evident from the historic gully walls being 
eroded by rill and gully erosion, resulting in the lateral expansion of 
degraded land, similar to what Boardman et al. (2003) described in the 
Karoo, SA. Steep gully wall elements are thus lost, which are 

compounded by the coarse 12 m DEM. The above reasons are likely the 
cause of the 60.2 % error from the benchmark by Vallejo-Orti et al. 
(2019), as it also relied on extracting gully elements based on slope 
characteristics. 

The NorToM benchmark (Castillo et al., 2014) was more accurate 
than gHAND when considering its optimal window size (total error of 
10.8 % for NorTom vs 20.8 % for gHAND). The gHAND total error is 
mainly from over-estimations (17.7 %). The overprediction is likely due 
to artificial ruggedness from the 0.06 m resolution DEM in proximity to 
gully walls. The NorToM method would have been able to discriminate 
better between the artificial ruggedness at the gully wall perimeter due 
to the application of an additional filter (Castillo et al., 2014 named it 
UNET) to eliminate areas of high slopes beyond the gully landform. 

5.4. Effect of spatial resolution and land use 

Like other methodologies, the gHAND workflow depends on the 
spatial resolution and quality of the derived DEM and to what extent 

Fig. 11. Areas of under-estimation error by gully HAND symbolised in blue on the aerial imagery and cross sections: a and b) under-estimation pixels in proximity to 
gully walls with steep slopes and high Height Above Nearest Drainage (HAND) values, c) under-estimation site exhibiting pixels above the low HAND threshold but 
below the slope threshold, and d) under-estimation area exhibiting pixel values above the slope and below the low HAND thresholds east of the gully thalweg, while 
above the low HAND threshold on the western gully wall; e) diagram showing in which quadrant the under-estimated pixels are found (n = 188252); the location of 
the insert maps a, b, c, d are also located in the quadrants. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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vegetation coverage (also linked to land use) is captured in the DEM 
output. 

Due to the strong dependence of gHAND on drainage pathways and 
the identification of short, steep slopes found at gully sidewalls, the DEM 
spatial resolution impacts performance. Coarsening spatial resolution 
mostly yielded increases in total errors (Fig. 7; supplementary material, 
Fig. A3). Higher spatial resolution DEMs can capture more topograph
ical detail, resulting in a better representation of the actual gully 
morphology, in addition to yielding superior drainage pathway identi
fication (McMaster, 2002). As the spatial resolution coarsens, the under- 
estimation becomes more prevalent in gHAND output, contrasting with 
Castillo et al. (2014). The under-estimation of gHAND may be due to the 
pixel-based shrinking procedure, which was implemented to guard 
against over-estimation from slopes at the gully walls. However, it could 
also be due to the coarsening resolution smoothing topography resulting 
in the reduction or removal of short, steep slope elements (Claessens 
et al., 2005; Deng et al., 2007), resulting in a loss of gully wall candi
dates. The latter is evident from increased under-estimation as the DEM 
resolution coarsens. 

The application of gHAND was constrained to areas where fieldwork 
was conducted in SA and in proximity to areas of application of (semi-) 
automated methods, thus constraining the application of gHAND to 
crops, grazing, and conservation land-uses. The areas exhibited limited 
large vegetation, except for the sites at Herbert, Australia, and 

Swartland, SA. In Herbert, Australia, a terrain model was derived, thus 
eliminating vegetation from the DEM used. In Swartland, SA, where 
vegetation was limited on the crop field but abundant in the gully 
channel, a total mapping error of 49.8 % occurred. It is, therefore, un
likely that gHAND would adequately map gullies in forested areas, 
except if a terrain model is derived, such as in Herbert, Australia. 
Additionally, gHAND may have limitations when applied to urban gul
lies due to complex hydrological features and proximity of built struc
tures, although further testing would be required to confirm this. 

5.5. Uses of gHAND 

Although gHAND interrogates DEMs using a GEOBIA approach, once 
set up, it adequately maps gullies in various environments and 
geomorphic scales. Once the manual mapping of gully headcuts as 
points are completed, gHAND can rapidly map the full gully extents 
without the need for editing the workflow. We envisaged its use to aid 
management strategies as it could be used to identify gully perimeters 
quickly and, when used temporally, can be used to determine areas of 
expansion in need of mitigation, in addition to testing the efficacy and 
lifespans of implemented strategies. 

Fig. 12. An extensive gully system in the Tsitsa catchment showing an actively eroding cut bank, with deposition occurring at a point bar: a) an aerial photo of the 
gully taken by a DJI Mavic 3 Unmanned Aerial Vehicle; b) the collapse of a large sub-surface pipe is evident in the foreground, which is connected to the gully at a 
large outlet at the gully wall-floor interface. Significant deposits can be seen at the outer meander wall as well as a shallow low-sloped collapse adjacent to the cut 
bank (position and direction of photo denoted as b in panel a); c) the significant collapse from scour resulting in undercutting of the gully wall at the outer meander 
gully wall, in addition to grass coverage on the deposited soil at the inner meander bend in the foreground (position and direction of photo denoted as c in panel a). 
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6. Conclusion 

Herein we developed a new semi-automated gully detection strategy, 
gHAND, based on geomorphic measurements associated with gully di
mensions, which we rigorously tested for scalability and transferability. 
The gHAND workflow proposed had small differences in accuracy 
metrics compared with benchmark methods developed for region- 
specific gully forms. Furthermore, the error rate was similar to previ
ous studies for typical gullies from small- to large-scales. The gHAND 
workflow shows adaptability to map gullies at contrasting scales and 
geo-environments, capable of using DEMs derived from different sources 
with various spatial resolutions. There are limitations associated with 
the implementation of gHAND, most notably the need to manually 
digitise gully headcuts. Nevertheless, gHAND shows clear potential for 
catchment- to regional-scale gully detection. Thus, gHAND can be 
implemented to map gullies, providing information regarding their 
location, morphology, and density for various geo-environmental re
gions. The extracted information can further improve our understanding 
of how control factors impact gullying on catchment management to 
regional scales. Because of the ability of the gHAND to extract specific 
gully features and its unbiased repeatability, we envisage that it can also 
be used to monitor gullies temporally. For example, gHAND could be 

implemented to create long-term datasets (>15 years) regarding gully 
evolution when applied to DEMs retrieved at various temporal intervals, 
which are still limited in global gully research. These datasets can help 
identify areas where active gully expansion is concerning or can assist in 
assessing the efficacy of any mitigation measures. 
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feature extraction based on a pan-sharpened multispectral image: Multiclass vs. 
Binary approach. ISPRS Int. J. of Geo-Inf., 9(4), 252. 

Planchon, O., Darboux, F., 2002. A fast, simple and versatile algorithm to fill the 
depressions of digital elevation models. Catena 46 (2), 159–176. 

Poesen, J., Nachtergaele, J., Verstraeten, G., Valentin, C., 2003. Gully erosion and 
environmental change: importance and research needs. Catena 50 (2–4), 91–133. 
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