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A B S T R A C T   

A numerical investigation into the ultrasound-induced collapse of air bubbles near soft materials, utilizing a 
novel multi-material diffuse interface method (DIM) model with block-structured adaptive mesh refinement is 
presented. The present work expands from a previous five-equation DIM by incorporating Eulerian hyper-
elasticity. The model is applicable to any arbitrary number of interacting fluid and solid material. A single 
conservation law for the elastic stretch tensor enables tracking the deformations for all the solid materials. A 
series of benchmark cases are conducted, and the solution is found to be in excellent agreement against theo-
retical data. Subsequently, the ultrasound-induced bubble-tissue flow interactions are examined. The bubble 
radius was found to play a crucial role in dictating the stresses experienced by the tissue, underscoring its sig-
nificance in medical applications. The results reveal that soft tissues primarily experience tensile forces during 
these interactions, suggesting potential tensile-driven injuries that may occur in relevant treatments. Moreover, 
regions of maximal tensile forces align with tissue elongation areas. It is documented that while early bubble 
dynamics remain relatively unaffected by changes in shear modulus, at later stages of the penetration processes 
and the deformation shapes, exhibit notable variations. Lastly, it is demonstrated that decreasing standoff dis-
tances enhances the interaction between bubbles and tissue, thereby increasing the stress levels in the tissue, 
although the behavior of the bubble dynamics remains largely unchanged.   

1. Introduction 

Bubbles and ultrasounds have been used in a wide variety of appli-
cations in medicine [1]. In medical diagnostics, sonography has utilized 
ultrasounds for decades. The recent introduction of Ultrasound Contrast 
Agents (UCAs), microbubbles encased in lipid or protein layers, has 
enhanced imaging clarity [2]. Unlike traditional bubbles, these UCAs 
emit strong signals when exposed to an ultrasound field, offering tar-
geted visualization around them. In therapeutic contexts, Ultrasonic 
Cavitation (UC) has made significant strides in surgery and drug de-
livery. High-Intensity Focused Ultrasound (HIFU) employs specific 
sound waves to thermally target tumors in cancer treatment [3]. Yet, 
there are safety concerns, including potential tissue damage and unin-
tended tissue heating [4]. A newer approach, histotripsy, circumvent 
these issues by mechanically ablating tissue without heat [5]. Cavitation 
techniques, such as Extracorporeal Shockwave Lithotripsy (ESWL), have 
been in use since the 80 s for kidney stone treatment. For drug delivery, 
UC synergizes with UCAs to enhance drug absorption in tissues, a 

process termed sonoporation [6]. The mechanism, involving pore for-
mation from various stimuli, remains intricate and not entirely under-
stood [7]. Under certain conditions, bubbles exert mechanical stress on 
the membrane, leading to permeabilization [8,9]. Higher acoustic 
pressures can result in microjets that breach the cell membrane [10], 
and shock-membrane interactions further contribute [11]. 

Understanding the complex dynamics between the bubble and the 
surrounding tissue could enhance the therapeutic potential of these 
techniques. However, the multi-physics character of these flows makes 
them difficult to be solved using numerical methods. The Arbitrary 
Lagrangian-Eulerian (ALE) and Immersed Boundary (IB) methods stand 
out as prominent numerical techniques in fluid–structure interactions 
(FSI) [12–14]. The ALE method blends Lagrangian and Eulerian de-
scriptions by deforming the computational mesh in response to struc-
tural movement, thereby offering a flexible approach that 
accommodates both fluid and structural dynamics [15]. On the other 
hand, the IB method employs separate grids for the fluid and the solid, 
wherein the structure is “immersed” in the Eulerian fluid grid. The 
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interaction between the fluid and solid is then prescribed by boundary 
conditions at the interface [16]. However, both methods exhibit limi-
tations, especially in cases of large deformations. For the ALE method, 
large deformations can lead to mesh tangling and reduced mesh quality, 
which consequently demands frequent remeshing [17]. Ensuring mesh 
quality and preventing tangling or distortion, especially under signifi-
cant deformations, are major challenges. The IB method, while being 
versatile for complex geometries, can face challenges in accurately 
representing the structure-fluid interface during large deformations. The 
inherent smearing of the interface and the potential for non-physical 
oscillations in the vicinity of the immersed boundary can sometimes 
affect the solution quality [18]. In contrast, Eulerian methods are more 
suitable for simulating large deformations as they decouple material and 
spatial coordinates. Recent advancements in the formulation of elastic-
ity in the Eulerian frame [19–24] facilitate its application to FSI prob-
lems when combined with a sharp [25] or diffuse interface method [19] 
(DIM) to include multiple materials. Various works have been published 
using Eulerian elasticity with sharp interface methods, utilizing the 
Ghost Fluid Method (GFM) [25–27] or the cut-cell method [28–30]. 
While these approaches preserve sharp interfaces through complex re-
constructions and mixed-cell algorithms they are challenging to imple-
ment especially in the case of adaptive mesh refinement (AMR) and 
introduce non-conservative terms in the case of GFM. Alternatively, a 
number of DIM have been published for multi-fluid flows [31–37] 
applied to bubble dynamics [38–40], droplet fragmentation [35], 
complex thermodynamics [41–43], and cavitation sub-grid models 
[43–48]. In fact, the multi-fluid pressure relaxation model of [33] was 
later used in [19,49,50] to incorporate Eulerian hyperelasticity and 
plasticity However, tracking deformation gradients for numerous solid 
materials is computationally prohibitive. A single deformation tensor for 
multiple materials was proposed in [51], reducing the number of 
equations required to be solved, but sometimes causing significant er-
rors at interfaces of large density gradients. A single conservation law on 
the stretch tensor to track the deformations for any number of solids was 
proposed in [22], which is associated with the Allaire DIM [31]. It was 
then applied to the FSI of reactive fluids and elastoplastic solids [52] as 
well as sliding and void opening problems [53]. The Allaire model used 
in those publications presents a significant shortcoming. It was shown in 
[38] that this DIM is incapable of capturing bubble dynamics relevant to 
the conditions examined in the present work, due to its thermodynamic 
incompatibility. 

A few numerical studies have been published on the topic of bubble 
collapse or oscillation near soft materials. In [54] investigated bubble 
oscillations near a fluid–fluid interface utilizing a Boundary Integral 
Method (BIM), highlighting that depending on the density ratio, bubbles 
could either gravitate towards or be repelled from the interface. The 
authors of [55] expanded the previous work by adding elasticity to the 
interface, unveiling the emergence of mushroom-shaped bubbles. This 
phenomenon was experimentally substantiated in [56]. Following in 
[57] investigated shock-induced bubble jetting in proximity to viscous 
fluids, concluding that increased tissue viscosity can significantly reduce 
jet penetration depth. In [58] studied shock bubble interaction near soft 
and rigid boundaries modeled as fluids during lithotripsy using an 
improved Ghost Fluid Method (GFM). The impulse from the bubble’s 
collapse was linked to tissue displacement, potentially causing tissue 
damage or stone fragmentation. In [40] studied the potential injury 
mechanisms in shockwave lithotripsy in blood vessels utilizing a multi- 
fluid DIM, discovering that as bubble confinement increases, so do the 
pressures and deformations on the vessel wall. In [59] utilized a free 
Lagrangian method to investigate the impingement of high-speed liquid 
jets resulting from shock-induced collapsing bubbles. Their findings 
showed that these jets exerted such significant compression on 
aluminum that it led to both pitting and plastic deformation. The au-
thors of [60] investigated bubble shapes and maximum jet velocity 
when subject to an ultrasound forcing near different soft materials using 
BEM with linear elasticity. In [61] studied the ultrasonic forcing of a 

UCA bubble above a tissue layer with rigid backing using a BIM. The re- 
expansion of the toroidal bubble could separate the tissue layer from the 
rigid backing, a mechanism identified as “peeling”. In [62] utilized a 
two-dimensional Finite Element Method (FEM) to analyze bubble–-
blood–vessel interactions, showing that vessel constraints can shift a 
bubble’s resonance frequency, causing asymmetric oscillations and 
inducing potentially damaging shear stress on the vessel wall. The study 
emphasized the role of the bubble’s resonance frequency and ultrasound 
contrast agent shell elasticity in these dynamics. In [63] utilized a BEM 
to investigate microbubble dynamics in elastic micro-vessels under ul-
trasound forcing. Their findings highlighted that when the bubble and 
vessel’s radii are comparable, the ultrasound forcing can cause the 
bubble to elongate within the vessel, forming counter jets that deform 
the vessel wall. In [64] investigated the impact of a shockwave on a 
bubble near various solid materials and the effect of the acoustic 
impedance on the shockwave emissions and liquid jet strength. They 
utilized a partitioned approach where the fluid was solved using a 
compressible multi-fluid solver and the solid using a FEM solver. Lastly, 
the work of [65] utilized an Eulerian multi-material DIM [49] with AMR 
to investigate the hock-induced bubble collapse near solid materials 
during lithotripsy. Their findings highlight the importance of the bubble 
standoff distance on the shapes of the bubble and of the tissue. While 
these studies provide valuable insight into the bubble dynamics: 
collapse pressure, liquid jet velocities, and shape of the bubble; very 
little focus if any has been placed on the stresses developed in soft 
materials. 

In the present work, the aim is to provide a comprehensive study of 
the ultrasound-induced collapse near soft materials with a focus on the 
mechanical loads experienced by the material. Firstly, a novel model 
based on the five-equation DIM [37] is outlined, augmented by the ki-
nematic equations of the stretch tensor [22]. Unlike the previously 
published Eulerian hyperelasticity models of [19,23,50,66] the current 
model only uses a single kinematic equation to track deformations. 
Moreover, these previous publications utilized the HLLC Riemann solver 
where the shear waves were modeled as a contact discontinuity. 
Therefore, the shear waves are unnecessarily diffusive. Here, the HLLD 
Riemann solver presented in [22,67] was utilized, which introduces a 
family of slow waves used to model the shear waves. Furthermore, un-
like [22], the DIM used in the present work is thermodynamically 
compatible and thus capable of capturing bubble dynamics. A block- 
structured AMR with local time-stepping was utilized to accurately 
solve the different scales of the multi-material flow and preserve the 
sharpness of the interfaces and waves. Secondly, a comprehensive 
analysis of mechanical loads experienced by the soft material is pre-
sented by visualizing and integrating the maximum and minimum 
principal stress and the maximum shear stress. Finally, the potential for 
material failure is identified by looking at the highest maximum prin-
cipal stress areas. Thus, the contributions of the present work are 
threefold: (a) a novel DIM model for multi-material simulations with 
AMR, (b) an understanding of the mechanical loading of the tissue under 
ultrasound-induced collapse, and (c) the potential areas of material 
failure and thus, tissue injury. 

The remainder of the paper is organized as follows. The governing 
equations, the thermodynamics closure, and the constitutive model for 
the solid are presented in Section 2. The numerical methods utilized are 
described in Section 3. Benchmark cases to assess the accuracy of the 
model are compared with the present contribution in Section 4. In 
Section 5, a detailed description of the ultrasound-induced bubble 
collapse near a soft material is provided, and then an analysis of the 
effect of the shear modulus, the initial bubble radius, and the standoff 
distance on the deformation is presented. Finally, in Section 6 the 
findings of the paper are summarized. 

2. Governing equations 

The non-conservative seven equation model of [68] is known to be 
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the most general and complete diffuse interface model able to capture 
complex wave patterns. Indeed, this full disequilibrium model considers 
each phase to have its own pressure, velocity and temperature. The time 
scales of these variables at equilibrium conditions are modeled by source 
terms. However, since the time scales for equilibration are small, it leads 
to stiff source terms, making its numerical resolution challenging. To 
overcome this, in this work, a reduced model is used by applying stiff 
mechanical relaxation leading to the well-known five-equation model of 
[37] with a single pressure, velocity, and deviatoric strain in the mixture 
regions. The multi-component flow model is extended with a kinematic 
equation for the elastic stretch tensor incorporating Eulerian hyper-
elasticity. In the limit of 2 materials, the model results in a non- 
conservative volume faction equation, two mass, one momentum, one 
energy conservation equations, and in addition, nine non-conservative 
elastic stretch equations. The resulting model can accurately simulate 
fluid–structure interactions for any number of material interfaces and 
can exhibit complex wave patterns where both acoustic and stress waves 
are captured. In this paper, the focus is placed on ultrasound-driven 
bubble collapse near soft materials at time scales where inertial forces 
dominate. Hence, the effect of surface tension, viscosity, mass transfer, 
and phase transition are neglected, see [69–71] for justification. For l =
1,⋯,N materials: 

∂
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, (1)  

where the scalar fields αi, ρi, ui, E are the volume fraction, the density, 
the velocity, and the total energy, σ the stress tensor, Ve the symmetric 
left unimodular stretch tensor. The compression and expansion of each 
phase in the mixture region are modeled by K(l)

∂uk
∂xk 

where: 

K(l) = α(l)

(
ρc2

p

ρ(l)c2
(l)
− 1

)

(2)  

with the pressure equilibrium speed of sound [34], a generalization of 
Wood’s speed of sound expressed as: 

cp =

(

ρ
∑N

l=1

α(l)

ρ(l)c2
(l)

)− 1
2

(3)  

The mixture total energy is: 

E = e+ |u|/2 (4)  

where e is the mixture specific internal energy and u is the velocity 
vector. The following mixture rule for the internal energy applies: 

e =
∑N

l=1
Y(l)e(l)(ρ(l), p,B) (5)  

where e(l) are the specific internal energies of each phase, Y(l) are the 

mass fractions of each phase, B = FTF is the unimodular part of the left 
Cauchy Green strain tensor and F is the unimodular deformation tensor. 
The mass fractions of each phase are given by: 

Y(l) =
α(l)ρ(l)

ρ (6)  

The specific internal energy e for each material is defined by an equation 

of state (EoS) and a constitutive law where the hydrodynamic and elastic 
contributions are separated [23] with the following form: 

e(l)
(
ρ(l), p,B

)
= eh

(l)

(
ρ(l), p

)
+ es

(l)

(
ρ(l), B

)
(7)  

The hydrodynamic part eh
(l) depends only on the density and pressure 

while the elastic part es
(l) depends on the density and strain tensor. A 

major advantage of this additive decomposition is the decoupling be-
tween the two contributions. The pressure is only defined by the hy-
drodynamic energy and the deviatoric stress tensor is only defined by 
the elastic energy. The stiffened gas EoS is used for the hydrodynamic 
energy: 

p(l) =
(

γ(l) − 1
)

ρ(l)e(l) − γ(l)p∞,(l) (8)  

where γ(l), and p∞,(l) are parameters of the EoS. The speed of sound of 
each material is defined as: 

c2
(l) =

γ(l)(p + p∞,(l))

ρ(l)
+

4
3

μ(l)

ρ0(l)
(9)  

The elastic energy is subject to the choice of the strain energy density 
function. The Neo-Hookean model was chosen here as it is a popular 
non-linear constitutive relationship used in biomedical applications to 
model tissue: 

es
(l)

(
ρ(l),B

)
=

μi

2ρ0i
(I1 − 3) (10)  

where I1 is the first invariant of the unimodular left Cauchy Green strain 
tensor defined as: 

I1 = tr(dev(B) ) (11)  

with dev(B) = B − tr(B)I is the matrix deviator and tr(B) is the trace. The 
Cauchy stress tensor is derived from the constitutive law: 

σ =
2
J

B
∂W
∂B

(12)  

where J = det(F) is the Jacobian of the deformation tensor. For a Neo- 
Hookean constitutive law, the Cauchy stress tensor can be expressed 
as follows: 

σ = − pI +
ρμ
ρ0

dev(B) (13)  

where p is the mixture pressure, ρ is the mixture density, ρ0 is the initial 
mixture density of the materials and μ is the mixture shear modulus. The 
above formulation of the stress tensor allows modeling of both solids and 
fluids. For the latter, the shear modulus is zero, thus resulting in a 
spherical stress tensor and no elastic energy contribution. The mixture 
density is defined according to the mixture rule: 

ρ =
∑N

l=1
α(l)ρ(l) (14)  

The saturation constraint equation is required to evaluate the volume 
fraction of the phases: 

∑N

l=1
α(l) = 1 (15)  

3. Numerical methods 

The system of basic equations described above is hyperbolic and can 
be cast into semi-conservative form to be solved by a Godunov-type 
scheme [72]: 
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where q is the vector of state variables, Fk are the vectors of fluxes in the 
respective directions x, y, z, snon− cons is the vector of non-conservative 
source terms, and sg is the vector of geometrical source terms. The 
vector of state variables, vectors of fluxes, and non-conservative source 
terms are expressed as: 
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The geometrical source term is defined as: 
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(18)  

where β = 1 when the coordinate system is axisymmetric and β = 2 
when the coordinate system is spherical. After spatially integrating the 
conservation law (16) by taking the volume integral and applying the 
divergence theorem we obtain the finite volume discretization: 

dqi,j,k

dt
=

1
Δxi

[
Fx

i− 1/2 − Fx
i+1/2

]
+

1
Δyj

[
Fy

j− 1/2 − Fy
j+1/2

]

+
1

Δzk

[
Fz

k− 1/2 − Fz
k+1/2

]
+ si,j,k

(19)  

The cell-averaged vector of state variables and the face-averaged vectors 
of fluxes are defined as: 

qi,j,k =
1

Vi,j,k

∫∫∫

Ii,j,k

q(x, y, z, t)dxdydz (20)  

Fi+1/2,j,k =
1

ΔyjΔzk

∫∫

Ai+1/2,j,k

F(x, y, z, t)dydz (21)  

The fluxes at the cell faces are computed using an approximate Riemann 
solver. The Harten, Lax, and van Leer (HLL) Riemann solver and its 
derivatives, are solutions for wave propagation problems. The HLL 
method uses a wave configuration that separates three constant states 
and assumes that wave speeds can be estimated from these initial states. 
The HLL-contact (HLLC) scheme expands on this by handling four states 
separated by a contact discontinuity. However, this does not accurately 

represent the conditions in solids where additional families of charac-
teristics related to shear wave speeds exist. The HLLD approach used 
here [22,67] accounts for this by introducing the concept of multiple 
slower waves between the fastest waves and the contact discontinuity. 
The piece-wise linear MUSCL reconstruction was used on the primitive 
variables to reconstruct the states at the faces to avoid spurious oscil-
lations at the material interfaces [39,73]. 

3.1. Temporal integration 

After the spatial derivatives are approximated, a semi-discrete sys-
tem composed of ordinary differential equations in time is obtained 
where a two-step time integration was applied [74] resulting in a 
second-order temporal integration: 
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i,j,k +

1
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(22)  
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⎟
⎠ (23)  

where L is the right-hand side of ( 19), and n is the timestep index. The 
timestep size Δt is determined using the acoustic-based Courant–Frie-
drichs–Lewy (CFL) number. 

3.2. Adaptive mesh refinement 

The numerical methods used in this work have been developed and 
implemented within the AMReX framework [75,76]. This is a C++

based framework that allows for solving partial differential equations 
using block-structured adaptive mesh refinement algorithms. In [77] 
structured adaptive mesh refinement (AMR) method was used to solve 
the hyperbolic system detailed below utilizing adaptive refinement in 
space and time. The computational mesh is broken down into logically 
rectangular sub-grids where cells have the same resolution. The sub- 
grids, also called patches, are organized into a hierarchy of embedded 
levels. The lowest resolution grids at level 0 spans across the entire 
computational domain. A refinement criterion is utilized for generating 
finer levels from the coarser ones at a user-defined interval of timesteps. 
Cells at level l are rl-times finer than at level l − 1 with Δxl = Δxl− 1/rl and 
Δtl = Δtl− 1/rl where rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1. A subcycling-in- 
time approach was utilized where the coarse grid solution is advanced in 
time ignoring the finer levels. Then the finer levels are advanced 
recursively while using the coarser levels as boundary conditions. At the 
coarse–fine interfaces, the ghost cells are determined using conservative 
linear interpolation in space and time. The solution on the coarse grids 
needs to be corrected by the finer levels to ensure global conservation. 
Therefore, once a fine level has reached the same physical time as the 
coarser level a synchronization step is applied. The volume averages of 
the coarse cells are corrected to be equal to the volume averages of the 
finer cells. Additionally, the area and time-weighted fluxes at the coar-
se–fine interfaces are also corrected by the sum of the fine fluxes. 

4. Validation and verification 

In this section, verification studies against well-known benchmark 
cases are presented. To showcase the numerical model’s ability to cap-
ture bubble dynamics, we simulate the collapse of a spherical gas bubble 
in an infinite water medium at different pressure ratios. Additionally, to 
evaluate the accuracy of the model to predict fluid–solid interactions 
and wave transmission across material interfaces, a semi-analytical 
wave propagation case is conducted. Finally, the bubble-ultrasound 
interaction is validated through an ultrasound-bubble-rigid wall inter-
action case. 
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4.1. Spherical bubble collapse 

A common benchmark case for multi-phase flow solvers is the 
comparison against the Keller-Miksis equation [38,78,79]. The effects of 
surface tension and viscosity are ignored. Two cases are presented, 
corresponding to a low pf/pb = 20 and a high initial pressure ratio pf/

pb = 353; for the former a grid convergence study was also performed. In 
both cases the initial bubble radius R0 = 1mm where the domain size 

L = 50R0. Spherical coordinates with β = 2 as detailed in Eq (18) and a 
base mesh of 512 cells in the radial direction have been employed. A grid 
convergence study was conducted, and it was found that 2 levels of 
refinement is sufficient to match the Keller-Miksis solution. At the center 
of the bubble, a symmetry boundary condition was used. At the far-field, 
an outflow boundary condition was imposed. The pressure is initialized 
uniformly inside the bubble and gradually increases in the water me-
dium according to [38]: 

Fig. 1. Temporal evolution of the normalized bubble radius over normalized time for both spherical bubble collapse cases. (a) Low pressure ratio pf/pb = 20 with 3 
different AMR grids. (b) High-pressure ratio case pf/pb = 353 with 2 levels of refinement. 

Fig. 2. (a) Wave transmission across fluid/solid interface schematic. (b) Pressure profile of the Ricker wavelet generated from the monopole source. (c) Velocity 
magnitude at t = 3μs. The incident and reflected waves in the fluid, the transmitted stress and pressure waves as well as head waves in both materials are 
clearly captured. 
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p(R) = pf +
R0

R
(
pb − pf

)
(24)  

where pf is the far-field pressure, R is the radial coordinate and pb is the 
bubble pressure. The initial water density is ρwater = 998.2kg⋅m− 3 and 
the stiffened gas parameters are γwater = 4.4 and p∞,water = 6⋅108Pa. The 
initial air density is ρair = 1.225kg.m− 3 and the stiffened gas parameters 
are γwater = 1.4 and p∞,air = 0Pa which results in considering an ideal 
gas. For the first case, an initial low-pressure ratio of pf/pb = 20 is 
considered. The bubble radius is normalized by its initial radius R0 and 
time is normalized by the Rayleigh collapse time [79] expressed as: 

tc = 0.915R0

̅̅̅̅̅̅̅̅̅̅ρwater

pf

√

(25) 

The Keller Miksis solution was solved using Julia [80] and the Dif-
ferentialEquations.jl [81] package with Rosenbrock temporal integra-
tion. In Fig. 1, the bubble radius evaluation is depicted for both cases; 
excellent agreement was found. The low-pressure case was run with the 
base grid, one level, and two levels of refinement. The latter was found 
to fit the solution and hence chosen for the high-pressure case. The 

rebound and minimum radius observed in the high-pressure ratio case 
are smaller due to the compressibility effects. In fact, the present results 
show the capability of the method to capture compression and expan-
sion rates accurately. 

4.2. Semi-analytical wave transmission across a fluid/solid interface 

A semi-analytical wave propagation case is presented as shown in 
Fig. 2a. A 3D domain is utilized where the upper half is the fluid ma-
terial, and the lower half is solid. In the fluid medium, a spherical 
pressure wave is generated from a monopole source, similar to a 
spherical shock emitted by a collapsing bubble. The monopole source is 
standing at a distance H from the planar fluid/solid interface. To vali-
date the results between the semi-analytical solution and the numerical 
results, two sensors R1, and R2 were placed in the fluid and solid me-
dium, respectively. The sensors were placed symmetrically at a distance 
L1 = 2.5mm from the axis of symmetry and at a distance L2 = 1.45mm 
above and below the planar interface. The dynamic pressure was 
recorded at the sensor inside the fluid medium. Additionally, the hori-
zontal and vertical velocities were recorded inside the solid medium. 

The Ricker wavelet was chosen for the spherical pressure wave. The 
wavelet was prescribed as an initial condition in the fluid medium where 
the pressure at a distance r from the source is expressed as: 

p(r) = p0 +
Q(− r/c0)

r
(26)  

Q(s) =
(
1 − 2π2f 2

0 (s + s1)
2 )e− π2 f 2

0 (s+s1)
2

(27)  

with p0 the hydrostatic pressure, c0 the speed of sound of the fluid me-
dium, f0 is the frequency of the wavelet and s1 is a constant that controls 

Table 1 
Thermodynamic and wavelet parameters of the semi-analytical wave trans-
mission problem.  

Ricker wavelet Fluid Solid 

f0(MHz) 1.43 ρf (kg/m3) 1000 ρs(kg/m3) 1995 

s1(μs)  0.85 γf 6.59 γs 3.4 
H(mm)  2.9 p∞,f (MPa) 410 p∞,s(Pa) 4,591,545,000 
p0(MPa)  0.101 μf (Pa) 0 μs(Pa) 10,728,633,195  

Fig. 3. Comparison between the present numerical results and the semi-analytical results of Gar6more3D for (a) the dynamic pressure, (b) horizontal velocity, and 
(c) vertical velocity. 
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the initial position of the wavelet. The parameters used are given in 
Table 1. 

In the presented problem, the maximum dynamic pressure within the 

fluid is two orders of magnitude less than the hydrostatic pressure. Thus, 
we can interpret the impacting wave as a small disturbance, and 
therefore this can be modeled as an acoustic wave propagating through a 
homogenous fluid medium. Under the assumption of linear elasticity 
and isotropy of the solid material, the overall problem can be solved 
analytically by coupling the linear acoustic wave equation with the 
equation of motion for a linear elastic solid. Such an analytical solution 
can be obtained with the Cagniard-de Hoop method [82]. A semi- 
analytical solution was computed using the open-source software, 
Gar6more3D [83]. 

The simulation was carried out in axisymmetric coordinates with β =

Fig. 4. The ultrasound-induced collapse of an air bubble near a rigid wall at a standoff distance Sd = 2.0 R0. Comparison of the present results with the reference 
[84]. (a) Schematic of the ultrasound-bubble-rigid wall problem (b) Temporal evolution of the normalized air volume (c) Temporal evolution of the pressure at probe 
location x/R0 = 0 (d) Temporal evolution of the pressure at probe location x/R0 = 1. 

Fig. 5. (a) Schematic of the ultrasound-bubble-tissue problem (b) Temporal evolution of the lithotripter pulse.  

Table 2 
Thermodynamics parameters of the three soft materials.  

Tissue ρ(kg.m− 3) μ(Pa) γ p∞(Pa) 

Liver 1060 1,8⋅103  4.4 599023259 
Gallbladder 1060 8,5⋅104  4.4 616576970 
Bile duct 1060 1,66⋅105  4.4 604328642  
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1 as detailed in Eq (18) to save computational time. The computational 
domains span 8 mm in the axial direction and 16 mm in the vertical 
direction. A symmetry boundary condition was imposed at the center 

axis and outflow boundary conditions at all the other boundaries. The 
base mesh consists of 256 cells in the axial direction and 512 cells in the 
vertical direction. The adaptive mesh refinement was allowed to refine 
up to 2 levels according to the magnitude of the density gradient. A CFL 
number of 0.4 was used to compute the timestep. The thermodynamic 
parameters for the simulation can be found in Table 1. The velocity 
magnitude is shown in Fig. 2a where the incident and reflected waves in 
the fluid, the transmitted stress and pressure waves as well as head 
waves in both materials are clearly captured. The numerical results are 
compared to the semi-analytical solution of Gar6more3D in Fig. 3 where 
an excellent agreement is found. 

4.3. Ultrasound bubble rigid wall interaction 

The ultrasound-bubble rigid wall interaction is validated against 
published results [84]. The case features a 35 MPa lithotripter pulse 
impacting an air bubble of initial radius R0 above a rigid wall at a dis-
tance D. The schematic of the case is shown in Fig. 4a. The computa-
tional domain spans Lx = 5R0 and Ly = 10R0 where R0 = 50μm. To save 
computational time, the simulations were conducted using an axisym-
metric formulation with β = 1 as detailed in Eq (18). The base mesh of 
Nx = 256 and Ny = 512 cells is used, resulting in 131,072 initial cells 
prior to refinement; the corresponding mesh spacing is Δx =

9.76⋅10− 4 mm. Two levels of refinement have been used. The top 
boundary is used to propagate the lithotripter pulse while an outflow 
boundary condition is imposed on the right; the left boundary is the axis 
of symmetry, and the bottom boundary is a slip wall. A CFL number of 
0.1 was imposed to preserve the explicit scheme’s numerical stability. 
The density of the water is initially ρwater = 998.2kg⋅m− 3 while the 
thermodynamic parameters for the water are γwater = 6.59, p∞,water =

4049atm as reported in [84]. The parameters for the air are γair = 1.4, 
p∞,air = 0 which results in considering an ideal gas with an initial density 

Fig. 6. Block-structured adaptive mesh refinement visualization of the 
ultrasound-induced collapse of an air bubble of R0 = 10μm with an initial 
standoff Sd = 1.1R0 near gallbladder. The white outline delimits the blocks. 

Fig. 7. Ultrasound-induced collapse of an air bubble of R0 = 10μm with an initial standoff Sd = 1.1 R0 near gallbladder (a) Temporal evolution of the normalized air 
volume (b) Temporal evolution of the penetration depth of the liquid jet (c) Temporal evolution of the integral of the maximum, minimum principal stress, and 
maximum shear stress. 
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ρair = 1.225kg.m− 3. 
The comparison between the present results and the reference is 

presented in Fig. 4b-d. The temporal evolution of the dimensionless air 
volume and the wall pressure at two probe locations are shown. The 
collapse of the bubble is initiated by the ultrasound impact leading to an 
adverse pressure gradient forming. The pressure elevation due to the 
incoming ultrasound is seen in Fig. 4c-d as the first spike in pressure. The 
following decrease in pressure is the rarefaction wave coming from the 
bubble interface. The ultrasound is reflected off the rigid wall and im-
pacts the bubble a second time precipitating the collapse. The emitted 

spherical shock by the bubble collapse is captured by both probes. The 
results are found to be in excellent agreement with the reference [84] as 
seen in Fig. 4a-d. 

5. Results and discussion 

The objective of this section is to provide a deeper understanding of 
the complex dynamics of the ultrasound-induced collapse of bubbles 
near soft materials. More specifically, the case of an ultrasound-induced 
bubble collapse near tissue-mimicking materials has been simulated; an 

Fig. 8. Ultrasound-induced collapse of an air bubble of R0 = 10μm with an initial standoff Sd = 1.1 R0 near gallbladder at different timesteps. The black isosurface 
separates the three materials and is defined by αk = 0.5. Upper left hand: contour of velocity magnitude. Upper right hand: contour of pressure. Bottom half: contour 
of the maximum principal stress. 
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in-depth explanation of the first case simulated is initially presented, 
followed by cases revealing the effects of shear modulus, bubble radius, 
and the standoff distance on the deformation and stresses developed in 
the deforming soft material. The gas bubble is at mechanical equilibrium 
with the surrounding medium initially. The schematic of the case is 
presented in Fig. 5a: 

The ultrasound shockwave is chosen to be similar to that produced 
by a Dornier HM3 lithotripter where ps = 30MPa is the pulse amplitude, 
α = 9.1⋅105 and ω = 2πf with f = 83.3⋅103Hz. The analytical function 
of the waveform [85] is defined as: 

p(t) = p0 + 2pse− αtcos
(

ωt+
π
3

)
(28)  

where p0 is the atmospheric pressure. The temporal evolution of the 
lithotripter pulse is shown in Fig. 5b. The bubble radii under consider-
ation were chosen to reflect typical bubble sizes in diagnostic and 
therapeutic applications of bubbles in medicine [1,86] where R0 =

10μm, R0 = 5μm, R0 = 2.5μm. Three soft materials have been consid-
ered; their shear modulus spans over 3 orders of magnitude, which 
correspond to three well-characterized tissues [87]: liver, gallbladder, 
and bile duct tissue [88]. The corresponding parameters of the EoS 
utilized to characterize them are summarized in Table 2. 

To save computational time, the simulations were conducted using 
an axisymmetric formulation with β = 1 as detailed in Eq (18). The 
computational domain spans at Lx = 0.25 mm and Ly = 0.5mm. The 
base mesh of Nx = 256 and Ny = 512 cells is used, resulting in 131,072 
initial cells prior to refinement; the corresponding mesh spacing is Δx =

9.76⋅10− 4 mm. Three levels of refinement have been considered, based 
on the refinement criterion. The top boundary is used to propagate the 
lithotripter pulse ( 28) while an outflow boundary condition is imposed 
on the right and lower boundaries; the left boundary is the axis of 
symmetry. To preserve the numerical stability of the explicit scheme, a 
CFL number of 0.1 was imposed in all subsequent simulations. 

With regard to the interaction between the collapsing bubbles and 
the nearby solid material, many studies have been reported 
[46,48,89–92]. Cavitation damage in solid materials primarily stems 
from shock waves and liquid jets produced during the bubble’s collapse. 
The shock waves exert pressure spikes that can lead to fatigue and 
micro-cracking, while the liquid jet’s impact can cause pitting and 
erosion; repeated occurrences can lead to severe degradation of the 
surface. For soft materials, it is generally known that the liquid jet is the 
prevailing mechanism for their damage [92,93]. Biological tissue can be 
damaged through various mechanical loads, including compressive, 
tensile, and shear forces [94]. These forces can lead to different types of 
damage or injury depending on the nature and duration of the applied 
force, and the type of tissue [95]. The type of tissue (e.g., bone, muscle, 
ligament) and the specific mechanical properties of that tissue will 
determine its susceptibility to different types of mechanical forces. For 
example, bones [96] are more resilient to compressive forces but can be 
more vulnerable to tensile and torsional forces. Soft tissues which are 
considered in this paper, like muscles and ligaments might be more 
prone to damage through excessive stretching or tensile forces [97]. The 
specific damage mechanism of bubble collapse for hard materials such 
as metals is widely debated [79]. To further elaborate on the details of 

Fig. 9. Contours of vorticity and maximum principal stress at different timesteps.  

Fig. 10. Numerical schlieren at different timesteps where the red isosurface represents the interface between the three materials. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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this mechanism, the maximum, minimum principal stress and maximum 
shear stress are computed: 

σmax,PS =
σxx + σyy

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σxx − σyy

2

)2
+ σxy

2

√

(29)  

σmin,PS =
σxx + σyy

2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σxx − σyy

2

)2
+ σxy

2

√

(30)  

σMSS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σxx − σyy

2

)2
+ σxy

2

√

(31)  

By visualizing these stresses, the directional nature of the stress state in 
the material and areas of potential material failure can be understood 
and identified. Particularly, areas, where the maximum principal stress 
(tensile) exceeds the tensile strength of the material, are likely failure 
points. 

5.1. Dynamics of the ultrasound-bubble tissue interaction 

In this section we present an in-depth analysis of the ultrasound- 
induced collapse of an air bubble with a radius R0 = 10μm placed 
above a soft material at a standoff distance Sd = 1.1R0 whose properties 
are representative of the gallbladder. The corresponding parameters of 
the EoS utilized to characterize it are summarized in Table 2. In Fig. 6, 
the block-structured adaptive mesh refinement is depicted. 

The temporal evolution of the air volume normalized by its initial 
value is presented in Fig. 7a. The bubble remains at its initial radius until 
the shockwave impacts it leading to the generation of a pressure 
gradient. The temporal evolution of the penetration depth into the tissue 
at the center axis can also be seen in Fig. 7b. From Fig. 7b we can identify 
3 different stages: the collapse stage up to 0.2μs, followed by the 
penetration stage until 0.6μs, and finally the tissue rebound stage where 
the penetration of the liquid jet slows down due to elastic forces. The 
collapse process of the bubble starts 0.15μs, and it reaches its minimum 
radius of around 0.2μs. The tissue is pulled upwards during the first 

Fig. 11. Effect of the shear modulus (a) Temporal evolution of the normalized air volume (b) Temporal evolution of the penetration depth of the liquid jet for 3 
different tissues (c) Integral of the maximum principal stress for 3 different tissues (d) Integral of the minimum principal stress for 3 different tissues (e) Integral of the 
maximum shear stress for 3 different tissues. 
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collapse as evidenced by the negative penetration depth in Fig. 7b. This 
is also shown in Fig. 8b. The temporal evolution of the surface integrals 
of the maximum, minimum principal stress, and maximum shear stress 
over a small area of the tissue were computed and shown in Fig. 7c. We 
observe a slight increase in principal and shear stress at collapse sug-
gesting the emitted shockwave produced a small deformation. Given the 
small acoustic impedance mismatch between the water and the tissue, 
here modeled as gallbladder the stresses produced are rather insignifi-
cant. After the first collapse, the liquid jet starts penetrating the tissue 
where multiple bubble collapses and rebounds are observed Fig. 7a. It is 
during the penetration stage that the tissue experiences the highest 
stresses as depicted in Fig. 7c. The maximum principal stress is observed 
to be approximately double the minimum principal stress around 
0.42μs showing that the tensile forces are much greater than the 

compressive forces. This is an important finding as soft materials like 
biological tissue are more susceptible to tensile damage as explained in 
section 5. In the last stage of this process, the bubble experiences smaller 
collapses and rebounds and on average increases in volume Fig. 7a. 
However, the penetration of the liquid jet has been slowed as can be seen 
by the decrease in slope in Fig. 7b after 0.6μs. 

In Fig. 8, the ultrasound-induced collapse near gallbladder is 
depicted for nine different timesteps with a black isosurface separating 
the three materials. The maximum principal stress inside the tissue, the 
velocity magnitude and pressure in the water and air are depicted. In the 
first instance Fig. 8a, the lithotripter pulse already impacted the bubble 
and propagated inside the tissue. Given the very similar acoustic 
impedance between water and gallbladder, the pulse is entirely trans-
mitted inside the tissue. At the distal side of the bubble a rarefaction 
wave propagating outward was generated given the impedance 
mismatch between the water and air phase. 

The dynamic of bubbles during extracorporeal shockwave lithotripsy 
near gelatin was studied in [98] using a 10.2 MPa pulse and millimeter 
sized bubbles. Both the transmission of the lithotripter pulse into the 
gelatin and the rarefaction wave have been experimentally observed. 

In Fig. 8a, the adverse pressure gradient is seen where the distal side 
of the bubble contracted starting the collapse process. The low-pressure 
region at the proximal side of the bubble creates a sink flow where the 
tissue is pulled toward the bubble. 

Although the elongation of the tissue towards the bubble during the 
first collapse has not been observed in [98], it has been documented in 
laser-induced bubbles close to tissue mimicking materials [56,99,100]. 
The limitations in movie resolutions of the experimental setup could be 
responsible. Moreover, the weaker lithotripter pulse and a bigger bubble 
size in their experiment contributes to a weaker collapse, and thus 

resulting in a weaker sink flow. 
The deformation induces stresses in a spherical like shape where the 

stresses are highest right under the bubble and gradually decreases to 
zero further away. Moments before the collapse in Fig. 10b, the liquid jet 
peaks at velocities 1200m/s and the tissue is seen to have been further 
pulled inwards towards the bubble where the maximum principal stress 
has increased by an order of magnitude. The high velocity liquid jet has 
been reported in experiments to be able to perforate membranes like 
aluminum foil [101]. 

To better visualize the shock waves numerical schlieren were plotted 
in Fig. 10 based on the following formula [102]: 

ϕ = exp
(

−
k|∇ρ|

max|∇ρ|

)

(32)  

In Fig. 10a, the water-hammer shock, and the precursor shock right after 
the collapse are seen. Once the liquid jet penetrates the proximal side of 
the bubble a toroidal bubble is observed in Fig. 8c. The subsequent 
collapse of the bubble generates a spherical shock wave traveling out-
ward both in the water and the tissue where small stresses are observed. 
This primary shock is also shown in Fig. 10b. The liquid jet already 
pushed the tissue inward, compressing it in Fig. 8c and started to 
penetrate. The shape of the maximum principal stress has changed 
compared to the pre-collapse phase. The highest maximum principal 
stress at this timestep is observed in the periphery of the impact location 
while compressive forces are seen at the centroid. The liquid jet con-
tinues its inward motion inside the tissue as depicted in Fig. 8d while the 
bubble rebounds and increases in size. Both the bubble and the liquid jet 
are then fully surrounded by the tissue in Fig. 8e where the bubble is 
seen with an elongated shape. A second smaller toroidal bubble is also 
observed. The upper part of the tissue forming a tip and the impact 
location is seen to experience significant tensile forces while the sides 
are seen to be compressed. 

At this point, the toroidal bubble collapses for the second time as 
seen in Fig. 8f, and an upward moving shock is emitted. 

In [98] the shockwave-induced collapse of a bubble near gelatin is 
described. The shock due to bubble collapse is first seen, followed by the 
liquid jet impacting the gelatin and compressing it similarly as in Fig. 8c. 
The maximum principal stress in Fig. 8c shows an inflection point where 
the tissue is not only compressed at the impact point but also experi-
ences tensile forces when moving away from the center. The bubble is 
then observed in [98] to both penetrate the gelatin and rebound while 
the centroid of the bubble is moving downstream which is consistent 
with Fig. 8d. Notably, the primary shock depicted in Fig. 9b and a sec-
ondary shock is observed in [98] although in their experiments it is not 

Fig. 12. Effect of the shear modulus on the shape of the deformation at t = 0.373μs (a) Tri-contours of the liver (b) Tri-contours of the gallbladder (c) Tri-contours of 
the bile duct. 
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clear if the bubble splits into two toroidal bubbles since it is not possible 
to observe inside the gelatin. 

The tip of the tissue is also observed to be retracting downwards 
while the shape of the stresses remains similar to Fig. 8e. In Fig. 9, the 
vorticity magnitude in the two fluid phases and the maximum principal 
stress in the tissue are shown. High vorticity regions are observed along 
the outward tissue walls moments after the secondary collapse as seen in 
Fig. 9a. This vorticity is responsible for deforming the tissue interface 
that was previously planar into a curved shape Fig. 9b. The subsequent 
secondary collapse created 2 toroidal bubbles that rebounded as seen in 
Fig. 8g where the tissue is pinched between the two bubbles. The upper 
part is getting stretched downward and hence experiences tensile forces 
close to the water-tissue interface. The secondary collapse shocks are 
both shown in Fig. 10c. As the liquid jet continues its downward motion, 
the two toroidal bubbles experience a third collapse; significant vorticity 
is present, as shown in Fig. 9c. Finally, the two bubbles merged into one 
once again, as shown in Fig. 8h. The part of the tissue above the 

upstream torus is pulled downward forming a spike, where most of the 
tensile forces are present. As the penetration process inside the tissue 
continues, the spike is further pulled downstream, as evidenced in 
Fig. 8i. The maximum principal stress is notably highest very close to the 
interface where the tissue was penetrated and particularly in the spikes. 

In various experimental studies, the aftermath of bubble collapse is 
characterized by the formation of a pit within the soft material, serving 
as evidence of material damage [10,56,98,99,103]. The primary 
mechanism responsible for such damage is seemingly attributed to the 
liquid jet. The present results corroborate these findings and elucidate 
the dynamic processes that lead to tissue damage. Moreover, the prob-
able sites of such damage are identified, enhancing our understanding of 
the damage locations within the tissue. 

5.2. Effect of the shear modulus 

In this section, the effect of the shear modulus on both the bubble and 

Fig. 13. Effect of the initial bubble radius (a) Temporal evolution of the normalized air volume (b) Temporal evolution of the penetration depth of the liquid jet for 3 
different bubble radii (c) Integral of the maximum principal stress for 3 different bubble radii (d) Integral of the minimum principal stress for 3 different bubble radii 
(e) Integral of the maximum shear stress for 3 different bubble radii. 
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solid dynamics was studied by selecting two additional tissues: liver and 
bile duct. The corresponding parameters of the EoS utilized to charac-
terize them are summarized in Table 2. In Fig. 11, the temporal evolu-
tion of the normalized air volume, penetration depth and surface 
integrals of the stresses are presented. The change in shear modulus is 
seen in Fig. 11a to have a small impact on the bubble dynamics. The 
early stage of the bubble dynamics is observed to be identical up to the 
third collapse where the normalized air volume starts to vary for the 
different tissues. This finding is consistent with the hypothesis that the 
early stage of the simulation is ultrasound-driven due to the small 
acoustic impedance mismatch. In Fig. 11b, the penetration depth into 
the tissues is observed to be similar up to the end of the penetration 
stage. Later the speed of the penetration slows down and the tissue with 
the lowest shear modulus, the liver is clearly seen to be penetrated more 
than the strongest soft tissue selected: the bile duct. The surface integrals 
of the maximum, minimum principal stress and maximum shear stress 
are plotted in Fig. 11c-e. The increase in shear modulus is observed to 

induce higher stresses across the 3 metrics measured. It is consistent 
with the fact that the strongest soft tissue deforms less than the softest 
and can also be seen in Fig. 11b with the penetration depth. The effect of 
the shear modulus on the penetration depth and deformation has also 
been assessed in experiments [103]. It was observed that both the 
penetration depth and the deformation of the tissue-mimicking material 
decreased with increasing shear modulus. The same observations are 
made in this work whereby the increase of the shear modulus is 
demonstrated to decrease the penetration depth in late stages as 
depicted in Fig. 11b, and the deformation seen by the reduction in 
elongation in Fig. 12. Across the 3 metrics of stress measured and for the 
selected tissues, the maximum principal stress is seen to be the highest. 

In Fig. 12, the tri-contours for the liver, gallbladder, and bile duct 
respectively at t = 0.373μs are presented. While the shape of the 
deformation overall is similar, there are two noticeable differences. At 
this stage of the process, the upstream entry point for the three different 
tissues is seen to have different shapes. Indeed, the bile duct which is the 

Fig. 14. Effect of the standoff distance (a) Temporal evolution of the normalized air volume (b) Temporal evolution of the penetration depth of the liquid jet for 3 
different standoff distances (c) Integral of the maximum principal stress for 3 different standoff distances (d) Integral of the minimum principal stress for 3 different 
standoff distances (e) Integral of the maximum shear stress for 3 different standoff distances. 
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strongest soft tissue is observed to have retracted faster than the gall-
bladder and the liver respectively. Additionally, the entrainment of the 
tissue due to the vorticity is less prominent with the increase in shear 
modulus. It can be seen in the three figures where the elongated tissue 
for the liver reaches downstream close to the liquid jet pit. Whereas in 
the case of the gallbladder the elongated tissue is above the toroidal 
bubble at the same timestep. Similarly, in the case of the bile duct the 
elongation of the tissue is greatly reduced compared to the two other 

tissues at that time. Lastly, the bubble shape, velocity and pressure are 
observed to be the same in the three cases presented demonstrating 
again that the increase in shear modulus does not impact the bubble 
dynamics at this stage of the process. 

5.3. Effect of the bubble radius 

In this section, the effect of the bubble radius is investigated by 

Fig. 15. Effect of the standoff distance. Ultrasound-induced collapse of an air bubble of R0 = 10μm near bileduct at t = 0.19μs, t = 0.31μs, and t = 0.44μs for 
standoff distances Sd = 1.1R0, Sd = 2.0R0 and Sd = 3.0R0. The black isosurface separates the three materials and is defined by αk = 0.5. Upper left hand: contour of 
velocity magnitude. Upper right hand: contour of pressure. Bottom half: contour of the maximum principal stress. 
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selecting bubble radii found in therapeutic applications [86]. The initial 
bubble radii R0 are chosen to be 10μm, 5μm, and 2.5μm and gallbladder 
is selected for the three cases presented. In Fig. 13, the temporal evo-
lution of the normalized air volume, penetration depth and surface in-
tegrals of the stresses are presented for the different bubble radii. First, 
the bubble dynamics are naturally seen to be significantly different in 
Fig. 13a where the collapse times, minimum radii, and rebound radii 
change. Second, the bubble radius is seen to have a major effect on the 
penetration depth in Fig. 13b. Indeed, all three identified stages are 
affected. In the collapse stage, the pulling effect of the tissue is less 
prominent for the smaller bubbles. This result is consistent with our 
hypothesis that the main mechanism behind the pulling effect is the sink 
flow below the bubble. The penetration stage is observed to be short-
ened for the smaller bubbles. It can be attributed to the fact that the 
collapse is milder as the bubble is smaller and the subsequent liquid jet 
reaches smaller velocities. The rebound stage although happening 
earlier exhibits the same behavior for all radii where the penetration of 
the velocity liquid jet is greatly reduced. Lastly, another major finding is 
the importance of the bubble size on the stresses experienced by the 
tissue. In Fig. 13c-e, the maximum, minimum principal stresses, and 
maximum shear stress are plotted. The trend of the bigger bubble to 
produce higher stresses is clearly observed. 

The effect of the initial bubble radius on the deformation and the 
penetration depth was examined in [98,103]. It was found that larger 
bubble resulted in an increased penetration depth as well as an increase 
in the damage pit radius. In Fig. 13b, the same correlation of the 
penetration depth on the initial bubble radius is found. This finding has 
significant importance for mitigating cavitation-related injuries where 
bubble sizes can be carefully chosen for specific treatments. 

5.4. Effect of the standoff distance 

In this section, the effect of the standoff distance on the bubble dy-
namics and the deformation is presented herein. Three standoff dis-
tances are examined: Sd = 1.1R0, Sd = 2.0R0, Sd = 3.0R0 where R0 =

10μm. The temporal evolution of the air volume normalized by its initial 
value is depicted in Fig. 14a for the three standoff distances. The bub-
ble’s collapse time is observed to be the same for all three cases. Dif-
ferences in bubble dynamics become more pronounced after the third 
collapse, with the greatest standoff distance showing the most signifi-
cant variations. For two smallest standoff distances the second and third 
collapse occur while the bubble is engulfed by the tissue which is not the 
case for Sd = 3.0R0. We observed that this difference could be due to the 

elastic forces the bubble must overcome to grow while engulfed in the 
tissue. The temporal evolution of the penetration depth into the tissue at 
the center axis can also be seen in Fig. 14b for the three standoff dis-
tances. The suction effect during which the tissue is pulled upstream 
towards the bubble for Sd = 1.1R0 is not observed for Sd = 2.0R0 and 
Sd = 3.0R0. The velocity of the penetration depth as depicted by the 
slope in Fig. 14b is seen to be similar during the penetration process for 
all standoff distances. The later dynamics exhibit a notable difference 
where the two smallest standoff distances reach the tissue rebound stage 
sooner than the largest standoff distance. The temporal evolution of the 
surface integrals of the maximum, minimum principal stress and 
maximum shear stress are presented in Fig. 14c-e. A clear correlation 
between the standoff distance and the stresses is observed. The smallest 
standoff distances are depicted to induce higher stresses. These insights 
are pivotal for the development of strategies aimed at mitigating 
cavitation-induced tissue damage in therapeutic applications. 

In Fig. 15, the effect of the standoff distance on the ultrasound- 
induced collapse of an air bubble of R0 = 10μm near bileduct for Sd =

1.1R0, Sd = 2.0R0 and Sd = 3.0R0 is depicted for three timestep at t =

0.19μs, t = 0.31μs, and t = 0.44μs. The first presented timestep at t =
0.19μs in Fig. 15a demonstrates the effect of the standoff distance on the 
suction effect. As the standoff distance increases the protrusion of the 
tissue upstream toward the bubble decreases. This trend corroborates 
the proposed hypothesis, implicating the sink flow beneath the bubble as 
the primary mechanism driving this protrusion. The second presented 
timestep at t = 0.31μs in Fig. 15b corresponds to the third collapse as 
seen in Fig. 14a. The early bubble dynamics are shown not to be affected 
by the standoff distance as the shape of the bubble remains the same 
across the three standoff distances. Nevertheless, the bubble exhibits 
distinct phases within the penetration process, as evidenced by the 
observed variations in penetration depth in Fig. 15b. In fact, the lowest 
standoff distance Sd = 1.1R0 is seen to experience the highest stresses at 
this timestep as evidenced in Fig. 14c-e. The observations at the final 
presented timestep at t = 0.44μs in Fig. 15c are consistent with earlier 
findings, showing that the bubble maintains its shape across the various 
standoff, yet is situated at different penetration depths and experiences 
higher stresses as the standoff distance decreases. 

6. Conclusion 

A numerical investigation of the ultrasound-induced collapse of air 
bubbles near soft materials was presented using a novel multi-material 
DIM model with AMR. To have a better understanding of the complex 
interactions of the ultrasound-bubble-tissue flow, the effect of the shear 
modulus, the bubble radius and the standoff distance were investigated. 
The shear moduli were chosen for well-characterized tissues spanning 
over three orders of magnitude. The bubble radii considered are found in 
biological flows. Insights into the nature of the mechanical loads expe-
rienced by the soft material through the visualization of the maximum 
and minimum principal stress and maximum shear stress were 
presented. 

Our findings reveal that the tissue predominantly experiences tensile 
forces compared to compressive or shear forces, suggesting that injuries 
are mainly tensile-driven. Concurrently, areas of maximum tensile 
forces align closely with regions where the tissue undergoes elongation. 
Furthermore, the bubble radius is identified to play a pivotal role in the 
stresses experienced by the soft material, emphasizing its importance in 
medical applications. Meanwhile, variations in shear modulus, while 
having a minimal impact on early bubble dynamics, noticeably influ-
ence the penetration process in later stages as well as the shape of the 
deformations. Finally, it is found that smaller standoff distances lead to 
greater bubble-tissue interaction resulting in higher stresses in the tissue 
while the bubble dynamics are not notably affected. 

This work contributes valuable insights into the complex interplay 
between bubble collapse, acoustic fields, and tissues, paving the way for 
improvements in related medical applications. 

Fig. 16. Mesh convergence study on the ultrasound-induced collapse of an air 
bubble of R0 = 10μm near bileduct. Temporal evolution of the normalized air 
volume for 4 different meshes. 
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Appendix A. Mesh convergence 

A mesh convergence study on the ultrasound-induced collapse of an air bubble of R0 = 10μm near bileduct. The temporal evolution of the 
normalized air volume for 4 different meshes is shown in Fig. 16. The solution with two levels of adaptive mesh refinement provides satisfactory 
results. The mesh with up to three levels of adaptive mesh refinement was chosen for the added quality and sharpness of the contours. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ultsonch.2023.106723. 
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