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A B S T R A C T   

Ship manoeuvrability of Maritime Autonomous Surface Ships (MASS) revolutionise the maritime industry. 
However, this paradigm shift necessitates the advancement of manoeuvring control models to meet the complex 
demands of autonomous navigation. This paper addresses the need for an improved manoeuvring control model 
for MASS, particularly concerning path planning and tracking in the presence of wave loads. The paper estab-
lishes a comprehensive mathematical model for ship manoeuvring, considering forces acting on the ship’s hull, 
propellers, rudders, and wave loads. A time optimisation model using a spatial reformulation approach is 
introduced. A nonlinear Model Predictive Control (MPC) model is presented for path planning and tracking, with 
a case study investigating the influence of wave load and comparing two control strategies. 10%–20% of time 
consumption increases if the wave load exists. This research bridges the gap in existing literature by incorpo-
rating wave loads into MPC-based control models for MASS. The findings shed light on the significance of wave 
loads in ship manoeuvring and provide valuable insights into effective control strategies for autonomous vessels 
operating in real-world sea conditions.   

1. Introduction 

The study of ship manoeuvrability has long been a central focus 
within the field of naval architecture and the shipping industry. How-
ever, with the rapid advancements in remote control, communication 
systems, observation technologies, and artificial intelligence, the 
concept of Maritime Autonomous Surface Ships (MASS) has emerged as 
a highly promising solution for enhancing the economic, efficient, and 
environmentally sustainable aspects of the shipping trade. Additionally, 
these autonomous vessels have demonstrated potential in offshore 
renewable energy transportation, as noted by Zhang et al. (2023b). 

In light of these technological advancements and evolving maritime 
needs, there is a growing imperative to enhance the maneovuring con-
trol models for MASS. This necessity arises from the inherent complex-
ities of autonomous navigation and the desire to bulid upon the 
conventional model introduced by Fossen (2011). Consequently, this 
paper aims to address the need for improved maneouvring control 
model for MASS in order to meet the evolving demands and opportu-
nities within the maritime industry. 

Designing a time-efficient path and trajectory represents one of the 
most formidable challenges in the realm of autonomous ship control. To 

achieve the minimum berthing time, a PID controller was employed, 
which involved solving nonlinear two-point boundary value problems 
(TPBVP) through a sequential conjugate gradient-restoration (SCGR) 
method (Ohtsu et al., 1996). Subsequently, path tracking was executed 
using a Proportional-Derivative (PD) controller, although it lacked 
anti-disturbance capabilities. Comparable methods were also explored 
in studies like (Okazaki and Ohtsu, 2008; Im, 2012). Given its inherently 
feedback-based nature, the PID controller exhibited limited efficacy in 
time optimisation scenarios. Mizuno et al. (2004) introduced an 
ANN-based Non-linear Model Predictive Control (NMPC) to compensate 
for control errors within ship manoeuvring simulations. Furthermore, 
Model Predictive Control (MPC) has been applied as an advanced 
controller for generating optimal control solutions. However, this 
approach relied on two separate control algorithms for the planning and 
tracking phases. Zhang et al. (2017) pioneered a robust model predictive 
control approach for path-following control in surface vessels, specif-
ically to mitigate the effects of measurement noise. Wang et al. (2020) 
successfully achieved obstacle avoidance and path optimisation for 
autonomous underwater vehicles (AUVs) through an integration 
method that combines the MPC method, sliding mode control, and 
particle swarm optimisation. Recent years have witnessed substantial 
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contributions from researchers in the field of path planning and tracking 
for surface ships, as evident in works such as (Oh and Sun, 2010; Wahl 
and Gilles, 1998; Helling et al., 2021; Pavlov et al., 2009; Huang et al., 
2020). 

It should be highlighted that ships are constantly exposed to envi-
ronmental loads at actual sea conditions, which wave loads being the 
most significant factor affecting a ship’s manoeuvring performance. Liu 
et al. (2017) developed a novel guidance and control system for USVs in 
consideration of environmental influences. A robust autopilot module 
and an intelligent path planning module were integrated into their 
system. Kim et al. (2017) proposed a path optimisation method based on 
a genetic algorithm and a new fitness function. Environmental loads and 
travel time were considered in their study. Huang et al. (2019) proposed 
a trajectory tracking controller for USVs with multiple uncertainties and 
input constraints. In their study, a trajectory tracking guidance law 
based on yaw angle and surge motion was used. The inner and outer 
disturbances were observed by reduced order extended state observers 
in their controller. 

It should be noted that there have been numerous studies utilising 
MPC controllers to generate optimal control results for MASS in calm 
waters. However, calm water conditions do not accurately represent the 
real operating conditions of autonomous ships at sea. To the best of the 
authors’ knowledge, there appears to be a deficiency in research that 
takes into account external loads affecting a ship’s manoeuvrability 
when generating optimal control results using MPC methods. For 
example, a MPC-based control strategy was developed for autonomous 
ship path planning and tracking in (Zhang et al., 2022, 2023a). How-
ever, as a key influence of ship manoeuvring, wave load is not consid-
ered. This paper will introduce wave load in the MPC-based control 
model to refine the mathematical model and extend two control stra-
tegies under wave load. There are two questions will be answered in this 
study:  

1. What is the impact of wave load to path planning and tracking of the 
ship manoeuvring?  

2. Which type of control strategies is better for ship manoeuvring under 
wave loads? 

In Section 2, the mathematical model of ship manoeuvring will be 
established. The forces acting on ship’s hulls, propellers rudders and 
wave load are treated separately. A time optimisation model by a spatial 
reformulation approach will be introduced in section 3. In Section 4, a 
nonlinear MPC model is introduced for path planning and tracking of the 
ship manoeuvring. A case study of ship manoeuvring control, including 
time-optimal path planning and tracking, will be investigated to analyse 
the impact of wave load and evaluate two control strategies in Section 5, 
followed by conclusions in Section 6. 

2. Mathematical model of ship manoeuvring 

In this section, mathematical model of ship manoeuvring illustrates 
the hydrodynamic of a ship. The forces acting on the ship are expressed. 
In the article, superscript prime (’) represents derivate with respect to 
space; superscript dot (⋅ ) represents derivate with respect to time; su-
perscript (dl) represents dimensionless value. 

When designing course autopilots, it is often convenient to normalise 
the ship steering equations of motion with respect to the vessel speed, U. 
Dimensionless hydrodynamic derivatives are derived based on the 
Froude criterion in this study. Dimensionless variables are derived by 
the prime system II of SNAME (Fossen, 2011). The limitation of the 
dimensionless system is that the time under the zero-speed state cannot 
be expressed. Thus, the numerical simulation will not discuss the 
zero-speed condition. 

Table 1 shows the variables and dimension used for the prime system 
II. The Length, L, is the ship length between perpendiculars (Lpp). The 
limitation of the dimensionless system is that the time under the zero- 

speed state cannot be expressed. Thus, the numerical simulation will 
not discuss the zero-speed condition. 

2.1. Assumptions and limitations 

The following assumptions (Yasukawa and Yoshimura, 2015) are 
deployed as follows,  

• Ship is a rigid body.  
• Hydrodynamic forces acting on the ship are treated quasi-steadily.  
• Lateral velocity component is small compared with longitudinal 

velocity component.  
• Ship speed is not fast that wave-making effect can be neglected.  
• Metacentric height GM is sufficiently large, and the roll couple effect 

on manoeuvring is negligible.  
• Manoeuvring motions are affected by the low-frequency wave 

responses. 

There are limitations of the proposed study regarding to the as-
sumptions: the proposed ship manoeuvring model is incapable to 
describe high-speed ship manoeuvring. Mean drift wave loads are 
considered while periodical dynamic wave load is neglected. Conven-
tional propeller and rudder are adopted, and regular wave are discussed. 

2.2. Coordinate systems 

Only 3-Degree-of-Freedom (3-DoF) motions in the horizonal plane 
(surge, sway, and yaw) will be considered in this article because the 
motions of the other DoFs (roll, pitch and heave) have insignificant 
impact to the manoeuvring operation. Fig. 1 shows the coordinate sys-
tems used in the ship manoeuvring mathematical model: the earth-fixed 
coordinate system, o0-x0y0, where x0-y0 plane coincides with the still 
water surface, and the moving ship-fixed coordinate system, o-xy, where 
o is taken on the midship of the vessel, and x and y point towards the 
ship’s bow and the starboard, respectively. u and vm denote the velocity 
components in x and y directions at the midship position, respectively; r 
is the yaw rate; Heading angle, ψ , is defined as the angle between x0 and 
x axes; drift angle at the midship position, β = tan− 1( − vm /u); the 
resultant velocity, U =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

m
√

. δ is the rudder angle; UR is the 
resultant inflow velocity of the rudder; u and vm denote the inflow ve-
locity components of the rudder in x and y directions, respectively; FN is 
the rudder normal force; αR is the attack angle of rudder. 

The present model utilizes a coordinate system fixed to the midship 
position which is convenient for simulation with different loading con-
ditions. Employing the midship-based coordinate system can avoid po-
sition change of the center of gravity (Yasukawa and Yoshimura, 2015). 

Table 1 
Dimensionless variables used for the prime systems II.  

Variable Dimension 

Length L 
Mass 1/2ρL2D 
Inertia moment 1/2ρL4D 
Time L/U 
Reference area LD 
Position L 
Angle 1 
Linear velocity U 
Angular velocity U/L 
Linear acceleration U2/L 
Angular acceleration U2/L2 

Force 1/2ρU2LD 
Moment 1/2ρU2L2D  
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2.3. Motion equations 

The mathematical model of the manoeuvring motion is established 
on the body-fixed coordinate frame. Transformation matrices are 
required to bridge the trajectories of ship under the two coordinate 
frames. Displacement transformation is expressed as follows: 
[

x0
y0

]

=

[
cos ψ − sin ψ
sin ψ cos ψ

][
x
y

]

+

[
xm
ym

]

, (1)  

where (x0, y0) is the current position of the midship in the earth-fixed 
coordinate o0-x0y0; (x, y) is the current position of the midship in the 
ship-fixed coordinate; (xm, ym) is the initial position of the midship in the 
earth-fixed coordinate o0-x0y0. Moreover, the following velocity trans-
formation equation is the derivative of Equation (1): 
⎡

⎣
ẋ0
ẏ0
ψ̇

⎤

⎦=

⎡

⎣
cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤

⎦

⎡

⎣
u
v
r

⎤

⎦, (2)  

where yaw motion in the horizontal plane is added in Equation (2). 
In the control system of ship manoeuvring, the propeller rotation 

speed and rudder angle are treated as manipulated variables (MVs). 
Displacements and velocities are referred to as states variables. In the 
present model, six states and two MVs are used to simulate the 
manoeuvring operation which are expressed as follows: 

Xt = [ x0 y0 ψ u v r ]T

ut = [ np δ ]T
, (3)  

where Xt is the state vector and ut is the MV vector in the temporal co-
ordinate. The former three variables in the state vector are displace-
ments in the earth-fixed coordinate system and the latter three variables 
are the velocity components in the body-fixed coordinate system. The 
variables in the MV vector include the propeller rotation speed np and 
the rudder angle δ. 

The manoeuvring equations are represented in surge, sway and yaw 
directions as follows: 

mu̇ − mvr = FX
mv̇ + mur = FY
IzGṙ = N

, (4)  

where m is the mass of ship; IzG is the moment of inertia of ship around 
center of gravity. Fx, Fy and N are the external forces in surge, sway, and 

yaw directions respectively which are represented as follows: 

Fx = − mxu̇ + myvmr + Xm
Fy = − myv̇m + mxur + Ym
N = − Jzṙ + Nm − xGFy

, (5)  

where Fx and Fy are the surge force and sway force acting on ship; N is 
the yaw moment acting on ship around center of gravity; mx and my are 
the added masses of the x axis direction and y axis direction, respec-
tively; Jz is the added moment of inertia. The center of gravity of ship is 
located at (xG, 0, 0) in o–xyz system. xG is the longitudinal coordinate of 
the center of gravity of ship. Xm, Ym and Nm are surge force, sway force, 
yaw moment around midship except added mass components, respec-
tively. The sway velocity component at the center of gravity (CoG), v is 
expressed as follows, 

v= vm + xG⋅r. (6) 

Substituting Equations (5) and (6) into Equation (4) for eliminating 
v, 

(m + mx)u̇ −
(
m + my

)
vmr − xGmr2 = Xm

(
m + my

)
v̇m + (m + mx)ur + xGmṙ = Ym

(
IzG + x2

Gm + Jz
)
ṙ + xGm(v̇m + ur) = Nm

. (7) 

Equation (7) is the motion equation to be solved of which unknown 
variables are u, vm and r. The external force in the right-hand side of 
Equation (7) consists of four components, the ship hull hydrodynamic 
force, the propeller force, the rudder force and the wave force, which are 
expressed as 

Xm = XH + XP + XR + XW
Ym = YH + YP + YR + YW
Nm = NH + NP + NR + NW

, (8)  

where the subscripts H, P, R and W represent the ship hull, propeller, 
rudder and wave, respectively. 

2.4. Hydrodynamic forces acting on a ship hull 

XH, YH and NH are expressed as follows: 

XH = − R0 + Xvvv2
m + Xvrvmr + Xrrr2 + Xvvvvv4

m

YH = Yvvm + Yrr + Yvvvv3
m + Yvvrv2

mr + Yvrrvr2 + Yrrrr3

NH = Nvvm + Nrr + Nvvvv3
m + Nvvrv2

mr + Nvrrvmr2 + Nrrrr3

, (9)  

where Xvv, Xvr, Xrr, Xvvvv, Yv, Yr, Yvvv, Yvvr, Yvrr, Yrrr, Nv, Nr, Nvvv, Nvvr, Nvrr, 
and Nrrr are called the hydrodynamic derivatives on maneuvering. 

2.5. Hydrodynamic force due to propeller 

Surge force due to propeller XP is expressed as 

XP = (1 − tP)TP
YP = 0
NP = 0

, (10)  

where the thrust deduction factor tP is assumed to be constant at a given 
propeller load for simplicity. The propeller forces in sway and yaw di-
rections are excluded. Instead of this, the steering effect is taken into 
account at the rudder force component XR as shown in the next sub-
section of rudder force. Propeller thrust TP is written as 

TP = ρn2
PD4

PKT(JP), (11)  

where KT is approximately expressed as a 2nd polynomial function of 
propeller advanced ratio JP: 

KT(JP)= k0 + k1JP + k2J2
P. (12) 

JP is written as 

Fig. 1. 3-DoF Coordinate systems of ship manoeuvring mathematical model.  
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JP =
(1 − wP)u

nPDP
. (13) 

The wP changes with manoeuvring motion in general which is pre-
sented as (Yasukawa and Yoshimura, 2015) 

(1 − wP) / (1 − wP0)= 1 + {1 − exp( − C1|βP|)}(C2 − 1), (14)  

where βP is the geometrical inflow angle to the propeller in maneuvering 
motions, which is defined as 

βP = β − xPr. (15) 

C1 and C2 in Equation (14) are constant coefficients. 

2.6. Hydrodynamic force due to rudder 

Effective rudder forces XR, YR and NR are expressed as (Maki et al., 
2020) 

XR = − (1 − tR)FN sin δ
YR = − (1 + aH)FN cos δ
NR = − (xR + aHxH)FN cos δ

. (16)  

Note that the rudder tangential force is neglected in Equation (16). The 
tR, aH and xH are the coefficients representing mainly hydrodynamic 
interaction between ship hull and rudder. The tR is the steering resis-
tance deduction factor and defined the deduction factor of rudder 
resistance versus FN sin δ (Matsumoto and Suemitsu, 1980). XR includes 
a component of the propeller thrust change due to steering as mentioned 
in subsection 2.5. Therefore, tR means a factor of both the rudder 
resistance deduction and the propeller thrust increase induced by 
steering. aH and xH are called the rudder force increase factor and the 
position of an additional lateral force component, respectively. The aH 
represents the factor of lateral force acting on ship hull by steering 
versus FN cos δ which means the lateral component of FN. The xH means 
the longitudinal acting point of the additional lateral force component. 
The measured value of xH is about 0.45Lpp which means the longitudinal 
acting point of the additional lateral force component. xR is the longi-
tudinal coordinate of rudder position which is of − 0.5Lpp. 

Rudder normal force, FN, is expressed as 

FN =

⎧
⎪⎨

⎪⎩

1
2

ρARfαU2
R sin αR

(
np ≥ 0

)

0
(
np < 0

)
, (17)  

where AR is the rudder area. fα is the rudder lift coefficient estimated by 
Fujii’s formula (Fujii and Tuda, 1961) expressed as follows: 

fα =
6.13Λ

2.25 + Λ
(18)  

where Λ is the aspect ratio of rudder surface. The resultant rudder inflow 
velocity UR and the attack angle of rudder aR are expressed as follows: 

UR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
R + v2

R

√

, (19)  

αR = δ − tan− 1
(

vR

uR

)

≃ δ −
vR

uR
. (20) 

Assuming that the helm angle is zero when β and r are zeros, vR can 
be expressed as 

vR =UγRβR, (21)  

where γR is the flow straightening coefficient and 

βR = β − lRr, (22)  

where lR, which can be obtained from the captive model test, is treated 
as an experimental constant. The γR characteristic considerably affects 

the maneuvering simulation. Thus, γR should be captured correctly. 
Value of γR generally takes different magnitude for port and starboard 
turning (Fujii and Tuda, 1961). 

The longitudinal inflow velocity component to rudder uR is expressed 
as follows: 

uR = εu(1 − wP)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

η
{

1 + κ

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
8KT

πJ2
P

√

− 1

)}2

+ (1 − η)

√
√
√
√

, (23)  

where means a ratio of wake fraction at rudder position to that at pro-
peller position defined as 

ε=(1 − wR) / (1 − wP). (24) 

In Eq. (23), κ is an experimental constant. wR is the wake coefficient 
at rudder position. η is the ratio of propeller diameter to rudder span, 
namely, DP/HR. 

2.7. Wave load acting on the ship hull 

Uni-directional regular wave is considered in the present numerical 
simulation. Since the manoeuvring motions are mainly affected by the 
low-frequency wave responses, second order mean drift forces are 
calculated (Salvesen, 1974). The second order mean drift forces is 
dependent to encounter wave frequency ωen and encounter wave 
heading angle γen. The waves satisfy the dispersion equation 

ω2 = gk tanh(kd), (25)  

where ω is the wave frequency, k is the wave number, and d is the wave 
depth. For deep water, 

ω2 = gk. (26) 

The relationship between wave length λ and wave number k is shown 
as follows: 

λ=
2π
k
. (27) 

The encounter wave frequency ωen is 

ωen=ω
(

1 − U
ω
g

cos γen
)

. (28) 

The encounter wave heading angle γen. 

γen = γw − ψ , (29)  

where γw is the wave incident angle. 
The wave length is not less than 0.5 L whose low-frequency citation 

is dominant. The longitudinal and lateral drift forces and the 2nd-order 
yaw moments are pre-calculated for a range of resultant speed U and 
encounter heading angle γen under a range of incident wave length. The 
wave forces acting on the ship hull are derived as follows: 

XW = CWXρgA2
WB2/L

YW = CWYρgA2
WB2/L

NW = CWNρgA2
WB2

, (30)  

where CWX, CWY and CWN are the hydrodynamic coefficients of wave 
induced forces and moment in surge, sway and yaw directions. AW is the 
amplitude of the incident wave. The longitudinal, lateral drift forces and 
yaw moment are ranged of between 0◦ and 360◦. B is the ship breadth. 

3. Time optimisation model 

The manoeuvring model introduced in Section 2 is the temporal 
hydrodynamic model, which cannot be directly used to derive the time 
optimal solution. Therefore, reparameterisation is required to make the 
time an optimisation variable. This study proposes a novel model 
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transformation to transform the temporal formulation to a spatial one. A 
curve variable is an independent variable. All states are dependent on 
the curve variable, including time. Time optimisation in temporal co-
ordinate is realised approximately by numerical iteration. However, 
through the reformulation, the manoeuvring time is expressed clearly as 
a function mathematically which can be optimised in a theoretical 
approach. 

3.1. Reference curve variable 

The coordinate system adopted in the spatial reformulation of the 
ship manoeuvring model is shown in Fig. 2. (xm, ym) is the position of 
midship in the earth-fixed frame. There is a point on the curve whose 
radius of curvature, ρσ , just cross through the centroid of the vessel. ψσ is 
the heading angle in the spatial coordinate and ψ̇σ is its derivative. uσ is 
the component along the tangential direction of curvature. ṡ is the 
projection of uσ onto the tangential line. The red dot curve σ(s) serves as 
a spatial coordinate, where s is an independent variable instead of the 
time t. If the position states X0, Y0 and ψ from the earth-fixed coordinate 
X0-Y0 are projected onto σ, they can be replaced by a new set of 
displacement states in the spatial coordinate. 

ey = cos(ψσ)(ym − yσ) − sin(ψσ)(xm − xσ)

eψ = ψ − ψσ , (31)  

where ey is the lateral deviation of the vessel to the reference curve, eψ is 
the rotational deviation to the reference tangential direction and Xσ , Yσ 

and ψσ are the position states and rotational state of a reference point on 
the path given by the independent variable s. The manoeuvring devia-
tion in temporal coordinate is transferred to the spatial one. 

Assuming the vessel is not at rest at any time instant (i.e., ṡ ∕= 0), the 
state vector can be expressed in the spatial coordinate. The extended 
state vector with the two new states can be written as follows: 

cXS =
[
x0(s)y0(s)ψ(s)u(s)v(s)r(s)ey(s)eψ(s)

]T
, (32)  

where ey (s) and eψ (s) are the unique state variables which are mean-
ingful only in a spatial coordinate. 

3.2. Spatial reformulation 

An extended state vector of Equation (3) in a temporal coordinate is 
required, which can be expressed as follows: 

Xt,ext =
[

Xt
T ey(t) eψ(t)

]T
, (33)  

where ey (t) and eψ (t) do not have a physical meaning in a temporal 
coordinate. The definitions of ey and eψ are based on the spatial curve s in 
the spatial coordinate. When the states are expressed in the temporal 
coordinate, the spatial curve does not exist. Therefore, the expressions of 
ey and eψ can be calculated, however, the definitions are meaningless in 
the temporal coordinate. Introducing ey and eψ is to establish an 
augmented matrix of the temporal model with the same size of the 
spatial model. 

X′
s =

dX′
s

ds
=

dX′
s

dt
dt
ds

=
1
ṡ
Ẋt,ext , (34)  

where the superscript prime is used to represent the spatial derivative 
with respect to the curve and the superscript dot is used to represent the 
temporal derivative with respect to time. Velocity along the path is 
derived by the velocity with respect to the curve (Verschueren et al., 
2014). The expression of ṡ is by state variables based on the expression of 
surface derivative, 

ṡ= ρσψ̇σ =
ρσ

ρσ − ey
(u cos(eψ) − v sin(eψ )), (35)  

where ρσ is the radius of curvature of the reference path. The derivatives 
of the last two state variables in Equation (35) with respect to time are 
expressed as follows: 

ėy = u sin(eψ ) + v cos(eψ )

ėψ = ψ̇ − ψ̇σ . (36)  

With the reformulation of the manoeuvring model in a spatial coordi-
nate, total time of manoeuvring operation T, which is the optimisation 
target, can be written as follows: 

T =

∫ tf

t0
1dt =

∫ sf

s0

tds =
∫ sf

s0

1
ṡ

ds, (37)  

where the subscripts 0 and f indicate the start (lower bound) and end 
(upper bound), respectively, of the integration; dt is time increment in 
the temporal coordinate and d is the curve increment in the spatial 
coordinate. 

3.3. Straight-line curve simplicity 

Assuming the curve is a straight line, ρσ≫ey and ψ̇σ = 0 as shown in 

Fig. 2. Definition of the coordinate system in the reformulation coordinate.  Fig. 3. Definition of the state variables in the straight-line coordinate system.  
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Fig. 3. Thereafter, the expression of the manoeuvring model in a spatial 
coordinate can be simplified as follows: 

ṡ = u cos(eψ ) − v sin(eψ )

ėψ = ψ̇ . (38) 

Given that these variables are involved in the majority of the state 
representatives, such simplification will accelerate optimisation itera-
tion in the numerical simulations. All manoeuvring operations in this 
study are based on the preceding hydrodynamic equations of the MMG 
model. With the given manoeuvring equation, a control system can be 
built and implemented. 

4. Model predictive control strategy 

4.1. MPC algorithm 

This study will apply a nonlinear MPC to a ship manoeuvring prob-
lem owing to the nonlinear nature of the manoeuvring operation. 

The open-loop control (receding horizon control) inside the MPC 
controller is shown in Fig. 4. The initial inputs are defined randomly. 
The input control the plant model and the MPC controller optimise the 
input based on cost function and constraints. The updated control inputs 
generate the updated outputs. The input and output are iteratively 
optimised in a prediction horizon. The plant model is a simplified esti-
mation of actual plant which accelerates the optimisation process. The 
initial input of the control system is random in a certain prediction 
horizon and import to the plant model. The controller will optimise the 
control input based on the defined cost function. The MPC controller is 
designed with the support of MATLAB Model Predictive Controller 
Toolbox. The main modular of numerical model is user-defined, like cost 
function, state space and constraints. The unmentioned modular are set 
as default, such as dynamic optimiser (see Fig. 5). 

4.2. State space representative 

Given that states and MVs are coupled in a dynamic plant model, the 
state space of nonlinear MPC (Kouvaritakis and Cannon, 2016) is 
expressed as follows: 

Ẋt = ft(Xt, ut)

Ẏ t = ht(Xt, ut)
. (39)  

In the nonlinear MPC Toolbox of Matlab, nonlinear MPC controllers 
solve nonlinear programming problems using the fmincon function with 
the sequential quadratic programming (SQP) algorithm, which requires 
Optimisation Toolbox software. The SQP algorithm requires linearised 
state space to generate the optimised control input in each prediction 
horizon. 

The nonlinear model can be represented in a formation of linear 

time-invariant (LTI) state space representative as follows: 

Ẋt = AtXt + Btut
Yt = CtXt + Dtut

, (40)  

where Yt is the observation matrix. The first row in Equation (40) is the 
description of the manoeuvring model. Observation Yt is the same as 
state Xt when Ct = I and Dt = 0, where I is a unit matrix and 0 is a zero 
matrix. 

The earth-fixed state variables are dependent on ψ , u, v and r. The 
body-fixed state variables are dependent on u, v, r and MVs. Define 
generalised mass matrix and generalised force matrix as follows: 

M =

⎡

⎢
⎢
⎣

m + mx 0 0
0 m + my xGm
0 xGm IzG + x2

Gm + Jz

⎤

⎥
⎥
⎦ (41)  

F =

⎡

⎣
Xm +

(
m + my

)
vmr + xGmr2

Ym − (m + mx)ur
Nm − xGmur

⎤

⎦ (42) 

The body-fixed state variables are derived as 
⎡

⎣
u̇
v̇
ṙ

⎤

⎦=M− 1F (43) 

Since not all the states are coupled, the expression and calculation of 
At and Bt in the Jacobian matrix are simplifised as sparse matrices 
(Zhang et al., 2022). 

4.3. Temporal-spatial transformation 

Extended state vector in temporal coordinate is likewise expressed as 
follows: 

Ẋt,ext =A8×8
t,extXt,ext + B8×2

t,extut,ext, (44)  

where A8×8
t,ext is an 8 × 8 extended Jacobian coefficient matrix of the state 

vectors and B8×2
t,ext is an 8 × 2 extended Jacobian coefficient matrix of MV 

vectors. The derivation of the extended state space representative in a 
temporal coordinate can be written as 

Fig. 4. Optimisation open loop of the MPC controller.  
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A8×8
t,ext =

∂Ẋt,ext

∂Xt,ext
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Ẋt

∂Xt

∂Ẋt

∂ey

∂Ẋt

∂eψ

∂ėy

∂Xt

∂ėy

∂ey

∂ėy

∂eψ

∂ėψ

∂Xt

∂ėψ

∂ey

∂ėψ

∂eψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B8×2
t,ext =

∂Ẋt,ext

∂ut,ext
=

[
∂Ẋt

∂ut

∂Ẋt

∂ut

∂Ẋt

∂ut

]

. (45) 

According to Equations (31), (36) and (39), the state space in spatial 
coordinate can be expressed as 

∂Ẋt

∂Xt
= At

∂ėy

∂Xt
= [ 0 0 0 sin(eψ ) cos(eψ ) 0 ]

∂ėψ

∂Xt
=

∂ψ
∂Xt

−
1
ρσ

∂ėy

∂eψ
= u cos(eψ ) − v sin(eψ)

∂Ẋt

∂ey
=

∂Ẋt

∂eψ
=

∂ėy

∂ey
=

∂ėψ

∂ey
=

∂ėψ

∂eψ
= 0

. (46) 

The state space representatives for the manoeuvring model in a 
spatial coordinate is 

X′ =A8×8
s Xs + B8×2

s us, (47)  

where Xs is the state vector, us is the MV vector, As is an 8 × 8 Jacobian 
coefficient matrix with respect to the state vectors. Bs is an 8 × 2 Jaco-
bian coefficient matrix with respect to the MV vector, us is the control 
input in the temporal coordinate. All of these matrices are expressed in a 
spatial coordinate. 

The Jacobian matrices, At and Bt, can be derived by using numerical 
method with MATLAB Deep Learning Toolbox (MathWorks, 2019). 

4.4. Cost function and constraints 

Expressions of cost function and constraints determine the optimi-
sation process and optimal output values. The influence of states and 
MVs in the cost function are considered as follows: 

min J(Xt, ut) = min
∫ tf

t0
L(Xt, ut)dt

min J(Xs, us) = min
∫ sf

s0

L(Xs, us)ds
(48)  

where J is the cost function, the subscripts t and s represent temporal and 
spatial coordinates, respectively. The functionality of the MPC controller 
is to minimise the cost function. Meanwhile, L is the target function. 

min J(Xt, ut) = min
∫ tf

t0
L(Xt, ut)dt

min J(Xs, us) = min
∫ sf

s0

L(Xs, us)ds
(49)  

In the path planning stage, the cost function of nonlinear MPC controller 
is defined as time consumption of the berthing operation with con-
straints, which are varying ranges of state and MVs and varying ranges 
of their derivatives. Time consumption is expressed as a function of 
curve variable in spatial coordinate, as shown in Equation (37). To 
minimise the time consumption of ship manoeuvering, cost function can 
be written as follows: 

Fig. 5. Hydrodynamic coefficients of wave induced forces and moment (U =
0–7.96 m/s, γen = 0–360◦, λ = 1.0 L). 
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min
(
Jplan

)
=min

(∫ sf

s0

1
ṡ

ds
)

(50)  

where Jplan is the cost function, which is expressed as an integral of time 
with respect to the curve variable and [s0, sf] represents prediction ho-
rizon in a spatial coordinate. Constraints applied at the path planning 
stage are defined as follows: 

X′ = AsXs + Bsus

Xs ∈
[
Xs,l,Xs,u

]

us ∈
[
us ,l, us ,u

]

u′
s ∈
[
u′

s,l, u
′
s,u

]

Xs(0) = Xs, initial

(51) 

The first constraint in Equation (51) is state space, which represents 
the vessel’s hydrodynamics. The second constraint corresponds to the 
boundary condition of the states. The subscripts l and u indicate the 
lower and upper bounds, respectively, of the integral. The third 
constraint is the boundary condition of MVs. The fourth constraint is the 
boundary condition of the MV derivatives. The last constraint is the 
initial condition of the manoeuvring equation. 

In the trajectory tracking stage, cost function is defined as the de-
viation of the tracking trajectory to the planned time-optimal trajectory, 
which can be written as follows: 

min(Jtrack)=min
(∫ tf

t0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
X0,track − X0,ref

)2
+
(
Y0,track − Y0,ref

)2
√

dt
)

(52)  

where X0 and Y0 are the positions in the earth-fixed coordinate, which is 
given in Equation (52) and are elements in the first two rows of the state 
vector. The subscript ‘track’ represents the tracking states and subscript 
‘ref’ represents the planned states as a reference path. The initial and 
final conditions of the tracking trajectory are the same as the planned 
time-optimal one. Tracking trajectory is iteratively optimised by mini-
mising its deviation to the planned time-optimal trajectory, and there 
are acceptable errors between planned trajectory and tracking one. 
Constraints applied at the trajectory tracking stage are defined as 
follows: 

Ẋ = AtXt + Btut

Xt ∈
[
Xt,l,Xt,u

]

ut ∈
[
ut ,l, ut ,u

]

u′
t ∈
[
u′

t,l, u
′
t,u

]

Xt(0) = Xt,initial

(53)  

in which constraints have similar meaning as the ones used in Equation 
(51). However, they are based on a temporal coordinate. 

4.5. Extended Kalman filter estimation 

An Extended Kalman filter (EKF) estimation is used in tracking 
simulation to reduce the influence of noise of actuators and observers. 
Hence, the manipulated action or observed states are not the accurate 
values. The EKF estimation preprocess the observed signal of updated 
states to make the measured data close to the real data based on the 
statistics theory. The EFK estimation makes the control system efficient 
and reliable. The EKF estimation in the temporal discrete form was 
shown in (Zhang et al., 2022). 

5. Result analysis and discussion 

Combining the methods discussed in Sections 2–4, NPMC in spatial 
coordinate is used to generate the time-optimal path. The controller 
manipulates rudder and propeller to track the planned path as a refer-
ence using temporal NMPC. EKF estimation will reduce the deviation 

caused by disturbances. 

5.1. Description of ship manoeuvring model 

The ship model used in the numerical case study is a very large crude 
carrier (VLCC) tanker called KVLCC2 (Stern, 2008). The detailed infor-
mation of the model is available in (SIMMAN, 2008; Yasukawa and 
Yoshimura, 2015). Second-order wave loads for the KVLCC2 were 
determined from the circular motion tests reported in (Jeon et al., 2021). 
The principal particulars of the ship model are shown in Table 2. The 
maximum speed is 15.5 knots which equals to 7.974 m/s. The corre-
sponding rotation speed of the propeller is 1.77 rotations per second 
(rps). The steering rate of the rudder is 1.76◦/s. The radius of yaw gy-
ration is estimated as 0.25L, therefore, the moment of inertia in the 
horizontal plane is IzG = m⋅(0.25L)2. 

Table 3 shows the normalised hydrodynamic derivatives and co-
efficients of ship hull used in the numerical model. Full-scale hydrody-
namic derivatives and coefficients appeared in Equation (9) are 
calculated based on the prime system II of SNAME and the principal 
particulars shown in Table 2. The propeller quantities appeared in 
Equations (10)–(15) are shown in Table 4. The rudder quantities 
appeared in Equations (16)–(24) are shown in Table 5. 

The wave load acting on the ship is induced by uni-directional wave 
(see Table 6). The wave amplitude and wave length can be expressed by 
the ship length L. The wave amplitude is determined as a relatively small 
value compared to L, which meets the assumption of linear wave theory. 

The resultant speed U is between 0 and 7.974 m/s and the incident 
wave length λ = 1.0 L. The hydrodynamic coefficients of wave-induced 
forces and moments mentioned in Equation (30) were referenced from 
the experimental data provided by Jeon et al. (2021), where all 
wave-induced forces and moments were obtained through experimental 
approaches for the VLCC. The spline interpolation and extrapolation are 
implemented to obtain the wave load coefficients at unknown ship 
speeds and heading angles. 

5.2. Validation of ship manoeuvring model 

The numerical simulations of the turning, zigzag characteristics were 
carried out to ensure that the nonlinear MMG model accurately assessed 
the maneuvering behavior of the KVLCC2. Turning circle motion and 
zig-zag motion of the KVLCC2’s MMG model has been validated by 
comparing with a series of experimental tests (Kim et al., 2019) as shown 
in Fig. 6. The mathematical manoeuvring model predict the complicated 
interaction amongst the hull, propeller, rudder and wave load. When 
using the nonlinear MMG model adopted in this work, the agreement is 
reasonable for the predicted ship trajectories. 

5.3. Manoeuvring and controller scenarios 

ψinitial represents the initial heading angle and ψfinal is the final 
heading angle of the manoeuvring operation in the earth-fixed frame. In 
the case study section, two typical manoeuvring scenarios are proposed 

Table 2 
Principal particulars of the KVLCC2 tanker.  

Principal particular Symbol Full-scale value Unit 

Ship perpendicular length L 320.0 m 
Ship breadth B 58.0 m 
Ship draft D 20.8 m 
Ship displacement Δ 312, 600.0 m3 

Longitudinal coordinate of CoG xG 11.2 m 
Block coefficient Cb 0.810 – 
Propeller diameter Dp 9.86 m 
Rudder span HR 15.80 m 
Rudder area AR 112.5 m2 

Maximum speed Umax 7.974 m/s  
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to investigate the influence of wave loads on manoeuvring operations. 
The initial heading angles of ship are set as 0 and 90◦, while the final 
heading angle and the initial incident wave angle are both 0◦ for these 
two cases. The final heading angle and initial incident wave angle is 
0◦ for both cases. The initial wave direction is normal to the x-axis. As 
the final heading angles are the same, here the encounter wave direction 
against the final position, γen,f , is used to describe the wave direction. 
There are only two directions shown in the case study bow and stern 
wave against the ship’s final heading angle. The expected trajectories of 
the ship. The wave load varies, and at the meanwhile the encounter 
wave angle changes during the manoeuvring operations. 

There are three different controller strategies for course planning and 
tracking, which can implement the wave loads:  

• Strategy A exclude the wave loads in both planning and tracking 
process. This strategy is equivalent to the one used in calm water 
case. This strategy is used as a reference to evaluate the impact of 
wave loads on path planning and tracking.  

• Strategy B only include the wave load in the course tracking process. 
This strategy represents that the planned path is optimised in calm 
water. The tracking deviation induced by wave loads will be elimi-
nated by applying a MPC controller.  

• Strategy C considers the wave load in both planning and tracking 
processes. In this strategy, the wave load is treated as a known 
quantity at the planning stage. Thus, the influence of wave loads on 
the propulsion and steering can be considered in the control system. 

In order to investigate the impact of wave loads on manoeuvring 
operations, ten different scenarios were simulated. These scenarios, as 
detailed in Table 7, are selected to cover various controller strategies, 
manoeuvring conditions, and wave load conditions. The case label 
represents the specified scenario for simulation setup. For example, B- 
90-0-stern: ‘B’ indicates Strategy B mentioned above; ‘90’ indicates the 
ship’s initial heading angle is 90◦; ‘0’ indicates the final heading angle is 
0◦; ‘stern’ indicates that the wave propagates from the stern part to bow 
part at the final state. 

5.4. Case study comparison 

In this section, two sets of results will be compared: (1) planned time- 
optimal manoeuvring operations and planned paths; (2) tracking tra-
jectories following the planned state variables. The former set reveals 
the influence of wave load on path planning and the latter set 

Table 3 
Normalised hydrodynamic derivatives of ship hull used in the numerical model.  

Surge Sway Yaw 

Symbol Value Symbol Value Symbol Value 

mdl
x 0.022 mdl

y 0.223 Jdl
z 0.011 

Rdl
0 0.022 Ydl

v − 0.315 Ndl
v − 0.137 

Xdl
vv − 0.040 Ydl

r 0.083 Ndl
r − 0.049 

Xdl
vr 0.002 Ydl

vvv − 1.607 Ndl
vvv − 0.030 

Xdl
rr 0.011 Ydl

vvr 0.379 Ndl
vvr − 0.294 

Xdl
vvvv 0.771 Ydl

vrr − 0.391 Ndl
vrr 0.055   

Ydl
rrr 0.008 Ndl

rrr − 0.013  

Table 4 
Normalised hydrodynamic derivatives of propeller used in the numerical model.  

Symbol Value Symbol Value 

tP 0.220 ε 1.09 
C1 2.0 κ 0.50 
C2 (βP > 0) 1.6 k0 0.2931 
C2 (βP < 0) 1.1 k1 − 0.2753 
wP0 0.35 k2 − 0.1385  

Table 5 
Normalised hydrodynamic derivatives of rudder used in the numerical model.  

Symbol Value Symbol Value 

tR 0.387 γR (βR > 0) 0.395 
aH 0.312 γR (βR < 0) 0.640 
xH/L − 0.464 lR/L − 0.710 
XR/L − 0.5 Λ 1.827  

Table 6 
Wave parameters used in the numerical 
model.  

Symbol Value 

Aw/L 0.01 
λ/L 1.0  

Fig. 6. Comparison of the trajectory between the experiment and MMG models 
for the turning maneuver in regular head waves (δ = 35◦, Aw = 6.4m, λ = 0.7 L). 

Table 7 
Manoeuvring scenarios matrix in the case study.  

Case 
No. 

Case label Controller strategy Manoeuvring 
condition 

Wave 
load   

Planning Tracking ψ0 
(deg) 

ψ f 
(deg) 

γen,f 

(deg) 

1 A-0-0- 
calm 

⨯ ⨯ 0 0 – 

2 B-0-0-bow ⨯ ✓ 0 0 180 
3 C-0-0-bow ✓ ✓ 0 0 180 
4 B-0-0- 

stern 
⨯ ✓ 0 0 0 

5 C-0-0- 
stern 

✓ ✓ 0 0 0 

6 A-90-0- 
calm 

⨯ ⨯ 0 90 – 

7 B-90-0- 
bow 

⨯ ✓ 0 90 180 

8 C-90-0- 
bow 

✓ ✓ 0 90 180 

9 B-90-0- 
stern 

⨯ ✓ 0 90 0 

10 C-90-0- 
stern 

✓ ✓ 0 90 0  
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quantitively analyses the benefit of considering the wave load in the 
controller. There are 50 repeated simulations for each case. 

Fig. 7 shows the path planning results of the time-optimal solutions. 
Because cases of strategies A and B use the same planning controller, the 
planned paths are the same. Cases of strategies A and C are shown in the 
figure to evaluate the wave impact on the path planning. In Fig. 7, Cases 
1, 3 and 5 have similar trajectories, while Cases 6, 8 and 10 have similar 
trajectories. The whole manoeuvring processes can be divided into three 
phases: adjusting, straight, and converging phases. At the adjusting 
phase, the ship changes its heading direction and increases its speed. At 
the straight phase, the ship keeps at the highest speed and a constant 
heading angle. This corresponds to an optimal solution to reduce the 
manoeuvring time. Since the wave directions are different in cases, the 
trajectories at this phase start at different positions with different 
heading angles. It is noted that the planned trajectories under different 
wave loads are the same at the converging phase to ensure the ship stops 
at the targeted position with minimised errors of state variables. 

The optimal manoeuvring time of the planning processes are listed in 
Table 8. Due to the random disturbance of tracking process, the values of 
optimal time are different for repeated simulations. Here, the optimal 
time is taken as the mean value of the fifty simulations repeated in each 
scenario. The wave impacts make the manoeuvring time significantly 
increase. The longest time is observed in the case C-0-0-stern. The time 
differences mainly occur at the adjusting stage. 10%–20% of time con-
sumption increases significantly if the wave load exists. 

The trajectory tracking results are shown in Figs. 8–11. The planned 
path of strategies A and B (black curves and red curves) are overlapped 
because the planning controller are the same. The tracking processes of 
strategy B can reach the target states successfully. It indicates that 
introducing the wave load into the controller is beneficial to the auto-
matic manoeuvring. The failed path tracking occurs at a low probability 
(6 of 200 cases, 3%) for cases of strategy B. An unsuccessful case 
simulation is shown in Fig. 12. Disturbances of 5% is relatively large for 
the observation. this could be the reason of the unsuccessful tracking 
results. If the disturbance is restricted to a lower level, the failure rate 
will be closed to 0. The failure rate is 0% for all repeated 200 cases for 
cases of strategy C, indicating a lower safety risk if the wave loads have 
been considered in planning processes. 

Comparing the trajectory tracking of strategies B and C (red scatters 
and blue scatters) in Figs. 8(a), 9(a) and 10(a), and Fig. 11(a), the 
tracking trajectories are following the different reference paths because 
of the planned references (red curves and blue curves) are generated by 
different types of path planning controllers. The planned time and 
tracking trajectories of cases of strategy C are both longer than those of 
cases of strategy B, which is influenced by involvement of wave load in 
planning optimisation. 

The state variable deviation at the final position of tracking process is 
an important value to evaluate the performance of controller. The de-
viations of control strategies are shown in Table 9. The performance of 
the controller is evenly disturbed in three levels: high, medium, and low. 
The levels are represented by the green, gold and orange colours of cells, 
respectively. The background colours of the case labels indicate the 
overall performances evaluated by the six state variables. The controller 
of strategy C outperforms that of strategy B. 

According to the result comparison, the evaluation of the two control 
strategies, B and C, are summarised in Table 10. Regarding to the system 
complexity, the strategy C is more complex than the strategy B. For an 
actual application, forecasting wave load by onboard devices in tracking 
process is easier than forecasting wave load in the planning stage. If the 
wave load in the planning stage is of low precision, the reliability of the 
planning reference path will be reduced. Regarding to the optimal 
manoeuvring time, the cases of strategy C have long manoeuvring time 
because of wave loads in the planning optimisation model. However, the 
involvement of wave load in the planning stage improves the robustness 
of the tracking process which reduces the failure probability of tracking 
process to zero. The selection of control strategy should be based on the 

Fig. 7. Time-optimal path planning under wave loads.  
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maturity of the onboard observation, actuation, and communication 
systems. If those systems can provide precise information to manoeu-
vring controller, strategy B of low system complexity can be adopted. If 
not, an additional wave prediction system is required to improve the 
operation safety. The control performance of strategy C is better than 
that of strategy B when comparing final deviations of state variables. 

6. Conclusion 

The present study focused on solving the problem of path planning 
and trajectory tracking for autonomous ships operating in wave condi-
tions by means of the MPC controller. Given that autonomous ships 
operate in different environmental conditions, it is very important to 
find the optimal results for the path planning and trajectory tracking of 
the ship in actual seaways in order to ensure safe and efficient autono-
mous navigation. This paper is expected to make a valuable contribution 

Table 8 
Optimal manoeuvring time of the path planning in the simulated cases.  

Case label Planned optimal manoeuvring time (s) 

A-0-0-calm 837.6 
C-0-0-bow 923.2 
C-0-0-stern 1046.4 
A-90-0-calm 824.1 
C-90-0-bow 990.0 
C-90-0-stern 881.2 

The time-optimal state variables are interpolated with a constant time 
increment as introduced by Zhang et al. (2023a) is transferring the reference 
path form a spatial coordinate to a temporal one. In the path tracking process, 
5% error is used, which indicates the measured values of observations and 
manipulated values of actuators are within the range from 95% to 105% of 
the actual values. The accuracy of the measurement is improved through the 
EFK estimation introduced in section 4.5. 

Fig. 8. Planned and tracked trajectories of cases 1, 2 and 3.  

Fig. 9. Planned and tracked trajectories of cases 1, 4 and 5.  

Fig. 10. Planned and tracked trajectories of cases 6, 7 and 8.  
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to the field of autonomous vehicles by showcasing the integration of the 
MPC controller with the MMG model in wave conditions. 

In this study, the dynamics of a ship operating in waves were rep-
resented by the MMG model. The MPC-based algorithm is utilised to 
optimise manoeuvring behaviours of the ship in terms of both the path 
planning and trajectory tracking. In addition, spatial reformation is 
introduced to realise time-optimal optimisation. The wave loads are 
simplified as constant 2-order force and moment neglecting sinusoidal 

load components. The wave load is determined by encounter wave 
angle, ship speed and wave length. Ten cases are illustrated combining 
different control strategies, ship’s initial positions and wave conditions 
to quantitatively analysis the impact of wave loads. The main findings of 
this study can be summarised as follows:  

(1) The involvement of wave load can increase the expected 
manoeuvring time of ship in both of strategies B and C, and the 
planning controller generate different paths compared to the 
paths of calm water when introducing wave loads in strategy C.  

(2) The whole manoeuvring operation can be divided into three 
phases: adjusting, paralleling, and converging phases. The phe-
nomenon is determined by the time optimisation algorithm. 

(3) Two control strategies are evaluated for ship manoeuvring con-
trol system. Strategy B have low system complexity whilst low 
overall performance. Strategy C is more reliable and better per-
formance. However, the wave prediction in planning process is an 
additional burden for ship controller. 

The present methodology is designed for path planning and tracking 
of two waypoints. Am MPC-based control algorithm for multi-waypoint 
paths are required in the further research. Only regular wave load is 
considered in the present study, irregular wave load will be a chal-
lenging and breakthrough for path planning and tracking. 
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Fig. 11. Planned and tracked trajectories of cases 6, 9 and 10.  

Fig. 12. Planned and tracked trajectories of a failed case simulation.  

Table 9 
State variable deviations at the final positions of tracking processes.  

Case 
No. 

Case label |X/ 
L| 

|Y/ 
L| 

| ψ | |uL/ 
U0| 

|vL/ 
U0| 

|rL/ 
U0| 

1 A-0-0-calm 0.15 0.07 0.06 0.13 0.03 0.04 
2 B-0-0-bow 0.22 0.03 0.06 0.18 0.04 0.05 
3 C-0-0-bow 0.35 0.10 0.00 0.25 0.00 0.02 
4 B-0-0-stern 0.25 0.13 0.21 0.17 0.05 0.13 
5 C-0-0-stern 0.36 0.10 0.03 0.26 0.08 0.05 
6 A-90-0- 

calm 
0.17 0.03 0.04 0.14 0.02 0.03 

7 B-90-0-bow 0.35 0.06 0.10 0.30 0.06 0.10 
8 C-90-0-bow 0.48 0.15 0.02 0.40 0.07 0.10 
9 B-90-0- 

stern 
0.64 0.38 0.24 0.06 0.15 0.32 

10 C-90-0- 
stern 

0.10 0.05 0.04 0.02 0.01 0.02  

Table 10 
Optimal time of the path planning in the simulated manoeuvring cases.  

Evaluation Strategy B Strategy C 

System complexity Low High 
Planning time = calm water > calm water 
Tracking failure 3% 0%  
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Data availability 

No data was used for the research described in the article. 

References 

Fossen, T.I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John 
Wiley & Sons. 

Fujii, H., Tuda, T., 1961. Experimental researches on rudder performance.(2). J. Zosen 
Kiokai 1961 (110), 31–42. 

Helling, S., Roduner, C., Meurer, T., 2021. On the Dual Implementation of Collision- 
Avoidance Constraints in Path-Following MPC for Underactuated Surface Vessels, 
2021 American Control Conference. ACC). IEEE, pp. 3366–3371. 

Huang, Y., Chen, L., Chen, P., Negenborn, R.R., Van Gelder, P., 2020. Ship collision 
avoidance methods: state-of-the-art. Saf. Sci. 121, 451–473. 

Huang, Y., Ding, H., Zhang, Y., Wang, H., Cao, D., Xu, N., Hu, C., 2019. A motion 
planning and tracking framework for autonomous vehicles based on artificial 
potential field elaborated resistance network approach. IEEE Trans. Ind. Electron. 67 
(2), 1376–1386. 

Im, N., 2012. A study on ship automatic berthing with assistance of auxiliary devices. Int. 
J. Nav. Archit. Ocean Eng. 4 (3), 199–210. 

Jeon, M., Mai, T.L., Yoon, H.K., Kim, D.J., 2021. Estimation of wave-induced steady force 
using system identification, model tests, and numerical approach. Ocean. Eng. 233, 
109207. 

Kim, D.J., Yun, K., Park, J.-Y., Yeo, D.J., Kim, Y.G., 2019. Experimental investigation on 
turning characteristics of KVLCC2 tanker in regular waves. Ocean. Eng. 175, 
197–206. 

Kim, H., Kim, S.-H., Jeon, M., Kim, J., Song, S., Paik, K.-J., 2017. A study on path 
optimization method of an unmanned surface vehicle under environmental loads 
using genetic algorithm. Ocean. Eng. 142, 616–624. 

Kouvaritakis, B., Cannon, M., 2016. Model Predictive Control, vol. 38. Springer 
International Publishing, Switzerland.  

Liu, Y., Bucknall, R., Zhang, X., 2017. The fast marching method based intelligent 
navigation of an unmanned surface vehicle. Ocean. Eng. 142, 363–376. 

Maki, A., Sakamoto, N., Akimoto, Y., Nishikawa, H., Umeda, N., 2020. Application of 
optimal control theory based on the evolution strategy (CMA-ES) to automatic 
berthing. J. Mar. Sci. Technol. 25 (1), 221–233. 

MathWorks, 2019. Compute Gradients for Custom Training Loops Using Automatic 
Differentiation. https://uk.mathworks.com/help/deeplearning/ref/dlarray.dlgr 
adient.html#responsive_offcanvas. 

Matsumoto, K., Suemitsu, K., 1980. The prediction of manoeuvring performances by 
captive model tests. J. Kansai Soc. Nav. Archit. Jpn. 176, 11–22. 

Mizuno, N., Kuroda, M., Okazaki, T., Ohtsu, K., 2004. Minimum time ship maneuvering 
using neural network and nonlinear model predictive compensator. IFAC Proc. Vol. 
37 (10), 297–302. 

Oh, S.-R., Sun, J., 2010. Path following of underactuated marine surface vessels using 
line-of-sight based model predictive control. Ocean. Eng. 37 (2–3), 289–295. 

Ohtsu, K., Shoji, K., Okazaki, T., 1996. Minimum-time maneuvering of a ship, with wind 
disturbances. Control Eng. Pract. 4 (3), 385–392. 

Okazaki, T., Ohtsu, K., 2008. A study on ship berthing support system-Minimum time 
berthing control. In: 2008 IEEE International Conference on Systems, Man and 
Cybernetics. IEEE, pp. 1522–1527. 

Pavlov, A., Nordahl, H., Breivik, M., 2009. MPC-based optimal path following for 
underactuated vessels. IFAC Proc. Vol. 42 (18), 340–345. 

Salvesen, N., 1974. Second-order steady state forces and moments on surface ships in 
oblique regular waves. In: Proceedings of the International Symposium on Dynamics 
of Marine Vehicles and Structures in Waves. University College, London, 1974.  

Simman, 2008. MOERI Tanker KVLCC2. 
Stern, F., 2008. Part B: Benchmark Test Cases, Preprints of Workshop Proceedings, 

Workshop on Verification and Validation of Ship Manoeuvring Simulation Methods. 
SIMMAN, pp. B3–B14, 2008.  

Verschueren, R., De Bruyne, S., Zanon, M., Frasch, J.V., Diehl, M., 2014. Towards Time- 
Optimal Race Car Driving Using Nonlinear MPC in Real-Time, 53rd IEEE Conference 
on Decision and Control. IEEE, pp. 2505–2510. 

Wahl, A., Gilles, E.-D., 1998. Track-keeping on waterways using model predictive 
control. IFAC Proc. Vol. 31 (30), 149–154. 

Wang, X., Yao, X., Zhang, L., 2020. Path planning under constraints and path following 
control of autonomous underwater vehicle with dynamical uncertainties and wave 
disturbances. J. Intell. Rob. Syst. 1–18. 

Yasukawa, H., Yoshimura, Y., 2015. Introduction of MMG standard method for ship 
maneuvering predictions. J. Mar. Sci. Technol. 20, 37–52. 

Zhang, J., Sun, T., Liu, Z., 2017. Robust model predictive control for path-following of 
underactuated surface vessels with roll constraints. Ocean. Eng. 143, 125–132. 

Zhang, M., Hao, S., Wu, D., Chen, M.-L., Yuan, Z.-M., 2022. Time-optimal obstacle 
avoidance of autonomous ship based on nonlinear model predictive control. Ocean. 
Eng. 266, 112591. 

Zhang, M., Yu, S.-R., Chung, K.S., Chen, M.-L., Yuan, Z.-M., 2023a. Time-optimal path 
planning and tracking based on nonlinear model predictive control and its 
application on automatic berthing. Ocean. Eng. 286, 115228. 

Zhang, M., Yuan, Z.-M., Tao, L., Shi, W., 2023b. A NOVEL CONCEPTUAL DESIGN OF 
MODULARISED OFFSHORE GREEN HYDROGEN SYSTEM. OMAE2023, Melbourne, 
Australia.  

M. Zhang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0029-8018(23)03011-1/sref1
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref1
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref2
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref2
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref3
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref3
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref3
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref4
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref4
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref5
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref5
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref5
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref5
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref6
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref6
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref7
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref7
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref7
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref8
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref8
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref8
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref9
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref9
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref9
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref10
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref10
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref11
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref11
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref12
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref12
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref12
https://uk.mathworks.com/help/deeplearning/ref/dlarray.dlgradient.html#responsive_offcanvas
https://uk.mathworks.com/help/deeplearning/ref/dlarray.dlgradient.html#responsive_offcanvas
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref14
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref14
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref15
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref15
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref15
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref16
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref16
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref17
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref17
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref18
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref18
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref18
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref19
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref19
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref20
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref20
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref20
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref21
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref22
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref22
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref22
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref23
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref23
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref23
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref24
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref24
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref25
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref25
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref25
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref26
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref26
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref27
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref27
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref28
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref28
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref28
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref29
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref29
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref29
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref30
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref30
http://refhub.elsevier.com/S0029-8018(23)03011-1/sref30

	Time-optimal control of ship manoeuvring under wave loads
	1 Introduction
	2 Mathematical model of ship manoeuvring
	2.1 Assumptions and limitations
	2.2 Coordinate systems
	2.3 Motion equations
	2.4 Hydrodynamic forces acting on a ship hull
	2.5 Hydrodynamic force due to propeller
	2.6 Hydrodynamic force due to rudder
	2.7 Wave load acting on the ship hull

	3 Time optimisation model
	3.1 Reference curve variable
	3.2 Spatial reformulation
	3.3 Straight-line curve simplicity

	4 Model predictive control strategy
	4.1 MPC algorithm
	4.2 State space representative
	4.3 Temporal-spatial transformation
	4.4 Cost function and constraints
	4.5 Extended Kalman filter estimation

	5 Result analysis and discussion
	5.1 Description of ship manoeuvring model
	5.2 Validation of ship manoeuvring model
	5.3 Manoeuvring and controller scenarios
	5.4 Case study comparison

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


