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A B S T R A C T

Neural machine translation (NMT) has revolutionised automatic translation and has
been instrumental in saving costs and improvements in productivity within the trans-
lation industry. However, contemporary NMT systems are still primarily designed to
translate isolated sentences, disregarding crucial contextual information in the process.
This lack of context awareness frequently leads to assumptions about the most likely
interpretation of the source text, potentially propagating harmful biases learned from
the training data, such as assuming that the average participant in a conversation is
male. In the dialogue domain, where the meaning of an utterance may vary depending
on what was said before, the environment, the individuals involved, their relationship,
and more, translations produced by context-agnostic systems often fall short in captur-
ing the nuances of specific characters or situations.

This thesis expands the understanding of and explores the potential applications of
contextual NMT with focus on personalisation. Our methods challenge the prevailing
context-agnostic strategy in machine translation and seek to address the
aforementioned issues. Our research suggests that by integrating existing information
into the translation process we can enhance the quality of translation hypotheses.
Additionally, we demonstrate that one type of information can be effectively leveraged
to enable manipulation of another. Our experiments involve adapting machine
translation systems to individual speakers and productions, focusing on combinations
of their individual characteristics rather than relying on discrete labels. We also explore
personalisation of language models based on context information expressed in this
way: to personalise a model for a particular character, we use a combination of their
traits. These personalised language models are then used in an evaluation scenario
where the context specificity of machine translation hypotheses is expressed as the
pointwise mutual information between the proposed text and its original context.
Finally, our best personalised NMT system is thoroughly evaluated in a professional
multi-modal setting of translating subtitles for TV series on two language pairs:
English-to-German and English-to-French. Throughout the thesis, we report on
experiments with various types of context in a setting of translation between English
and a range of European languages. Our chosen domain is dialogue extracted from TV
series and films, due to the availability of context-rich datasets, as well as the potential
practical application of this research to the work of the industrial partner to this PhD,
ZOO Digital1.

1 https://www.zoodigital.com/.
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Our research tackles five primary challenges:

1. Direct incorporation of extra-textual information into neural machine translation
systems.

2. Zero-shot and few-shot control of this information.

3. Reference-free evaluation and analysis of contextual NMT.

4. Personalisation of language models (LMs) and NMT systems using rich sets of
speaker and film metadata annotations.

5. Human evaluation of machine translation in a professional post-editing setting.

By addressing these challenges, this thesis aims to enhance machine translation in
dialogue by ensuring translations are better suited to the specific characters, addressees,
and contextual factors involved. The research contributes to the advancement of NMT

systems that can effectively account for the personalised nature of dialogue.
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1
I N T R O D U C T I O N

Neural machine translation (NMT) has seen a series of rapid advances in the recent
years with the advent of the Transformer architecture (Vaswani et al. 2017) along with
innovative techniques such as back-translation (Sennrich et al. 2016c) and sub-word
tokenisation (Sennrich et al. 2016d). The impressive results achieved with these methods
still remain competitive today (Figure 1.1).

Figure 1.1: Trajectory of the state-of-the-art performance of neural machine trans-
lation systems. The benchmark is an English-to-German WMT transla-
tion task held by Papers With Code (https://paperswithcode.com/sota/
machine-translation-on-wmt2014-english-german). Taken on 01/03/2023.

Originally, this overnight success of NMT led some researchers to make a claim about
human parity (Hassan et al. 2018), one since refuted or challenged by other work
(Läubli et al. 2018, Graham et al. 2020, Toral 2020). The opponents argued that the
evidence obtained in the evaluation task was too weak for the claim, as the campaign
was limited to translation of isolated sentences, failing to capture the complexities of
translating full (multi-sentence) texts. As a consequence of this and to address this
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2 introduction

limitation, research within NMT started to focus more on incorporating context – any
textual information related to the input text, whether intra- or extra-textual – to generate
translation hypotheses.

The shift from one paradigm (sentence-level) to another (contextual), however, neces-
sitates challenging the long-standing status quo. Dominant in the field for years, the
context-agnostic framing of machine translation has shaped various systemic aspects in
its image. Firstly, the notion of context in translation is unaccounted for in many evalu-
ation benchmarks of NMT, including the WMT 2014 benchmark presented in Figure 1.1.
In fact, how well NMT performs is typically measured on context-agnostic test sets; in
accordance with this criterion, the best system is the one which can most effectively
translate individual sentences divorced from their broader context and the surround-
ing text. This evaluation approach aligns with the most commonly used metrics, such
as BLEU, chrF++ or Comet, which focus on quantifying the similarity between the
reference translation and the model’s hypothesis. Secondly, the majority of training
corpora for NMT consist of pairs of sentences expressed in two different languages, de-
void of any contextual information. Finally, the architectures of most NMT systems are
primarily designed to address the challenge of translating input sequences of limited
length into output sequences of similar length. These architectures do not lend them-
selves easily to accommodating additional inputs, such as contextual information, thus
perpetuating the context-agnostic paradigm.

The context-aware framing of NMT has a parallel with everyday life: when we engage
in a conversation, we do not process what is said to us in isolation, but rather consider
the broader context, including who said it, where and when it is being said, what was
said before, and more. While the simplification of disregarding such information has
ultimately significantly helped accelerate the progress of NMT, it has also created a
simplistic narrative for the task that is difficult to escape. To make the shift towards
context-aware NMT, it is imperative that the employed architectures, datasets, and
evaluation are adapted to more faithfully reflect the contextual complexity of naturally
occurring text.

Recent few years have already seen the first signs of transition towards contextual
NMT: a considerable body of work was devoted to the challenge of incorporating
document-level context (i.e. past and future sentences on the source or target side) into
it. Questions regarding this issue have been considered in many publications, including
how context affects translation (Voita et al. 2019a), which parts of the surrounding text
are needed to resolve the inter-sentential phenomena (e.g. Kim et al. 2019), how to
efficiently incorporate this information into the translation pipeline (e.g. Lupo et al.
2022a,b) and how to address the lack of parallel document-level data (e.g. Yu et al. 2020).
In contrast, the problem of incorporating extra-textual information into translation
has attracted significantly less focus, with most studies concentrating exclusively on
controlling formality (e.g. Sennrich et al. 2016a, Anastasopoulos et al. 2022) or gender
(e.g. Vanmassenhove et al. 2018, Moryossef et al. 2019a), despite calls for research in
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natural language processing (NLP) to become more personalisation-focused (Flek 2020,
Dudy et al. 2021). More attention ought to be given to how various kinds of such
extra-textual information can be incorporated into machine translation, and what effect
they have on it. That is precisely the goal of this thesis.

Context plays a special role in interpreting and generating dialogue, here defined
as the interactive act of communication which relies on verbal and non-verbal cues
to maximise the understanding between two or more interlocutors. In contrast with
monologue (e.g. news articles, books, blog posts and talks), in dialogue things are often
communicated without being said explicitly, as they can be recovered by the addressee
from previous utterances or the environment. As the speaker, we possess the knowledge
of how we should be addressed, and how we should address our interlocutor (whether
formally or informally). Finally, every person has their own unique speaking style,
which - though only in part - is determined by their background, gender, age or country
of origin. A one-size-fits-all model will ignore all of these factors, creating the source
ambiguity problem, where the same source sentence, which will occasionally require
different interpretations in different contextual scenarios, gets processed the same way
in all cases as the context information is disregarded.

As our first contribution, we must now make a novel but necessary distinction
between two ways in which extra-textual context can affect text: grammatical and
behavioural agreement. Grammatical agreement describes the known, well-defined,
grammatical way in which context affects its text. A fundamental example of this
phenomenon is the use of honorifics in situations requiring formal register in languages
such as German (you expressed as Sie formally or du informally). Another example
is the expression of the speaker’s or addressee’s gender in the Polish language via
morphosyntactic markers(I was expressed as byłem by the masculine speaker and byłam
by the feminine one). Behavioural agreement, on the other hand, pertains to the way
language tends to be used in the given context. For example, the legal jargon is far more
likely to be employed by a lawmaker or a student of law than the average person; the
phrase Yes, God! has a meaning radically different to the queer community than to
the Christian community, especially of the older generation; and depending on which
anglophone country an English speaker is from, they may use the term cookie or biscuit
to refer to the same sweet snack, or even a different word entirely. The effects of the
genre, tone or domain on text, typically studied within machine translation research,
all fall within behavioural agreement. None of the above examples are “hard-coded”
into language. Furthermore, some context variables influence both types of agreement:
Vanmassenhove et al. (2018) highlight that the gender of the speaker influences both the
morphology of words describing the subject (grammatical agreement), as well as offer a
discussion of the French term crois (“believe”) which is used more frequently by males
than females (behavioural agreement). Within this thesis, we explore context variables
which induce either or both types of agreement, and while we offer specific tools for
calculating accuracy of grammatical agreement control, we propose that behavioural
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agreement be evaluated with a bespoke tandem of systems which calculate context
specificity of the given translation, i.e. how likely the given translation is to occur in the
provided context when compared to the general case.

Finally, a potential solution to the problem of contextual machine translation may
be on the horizon with the recent advent of large language models. With the use of
the likes of ChatGPT, one may soon be able to produce a contextualised translation
simply by specifying in one’s input prompt what kind of adaptations ought to be
made to it. However, harnessing the power of such models even for translation alone
remains an open task. Furthermore, we envision that in the future where such models
become widely available, there are still undeniable advantages to deploying smaller-
scale tailored solutions like the ones described in this work. Such models can be trained
on modest hardware, and with smaller amounts of hand-selected training data, giving
the user total control over what the model is exposed to.

1.1 aims and objectives

The majority of this thesis is centred on the domain of scripted dialogue, which
encompasses text found in sources such as subtitles, transcriptions or scripts of TV
series and film. Several reasons make this domain particularly suitable for our study.
First and foremost, when compared to monologue, the interpretation and processing of
dialogue is generally more reliant on contextual cues (Halliday & Hasan 1976, Pickering
& Garrod 2004, Danescu-Niculescu-Mizil & Lee 2011). Secondly, there is an abundance
of parallel dialogue corpora extracted from subtitles. Furthermore, this data can be
enriched with various meta-information, including details about the show or film itself
(e.g. its plot), the discourse context (e.g. descriptions of scenes) or information about
the characters involved (e.g. their ages or countries of origin). In contrast to real-life
dialogue, significantly larger datasets exist within this domain, partly due to the ethical
concerns surrounding the processing of personal profiles of real individuals. Lastly,
it is worth noting that machine translation of subtitles remains an ongoing challenge
within the subtitling industry. One of the key objectives of this thesis is to investigate
whether contextual systems can improve the efficiency of this automation.

The work presented in this thesis is carried out in a number of language pairs,
dictated by the availability of data and the feasibility of application of the models in the
future. As such, all explored language pairs involve translation from English (to Polish,
French, German, Spanish, Italian, and Russian) and to English (from Polish, French,
German, and Russian).

Specifically, we address the following research questions:

RQ1 How can attribute control best be incorporated into neural machine translation in
multiple attribute and low-resource scenarios?

Within this research question addressed in Chapter 2, we investigate how
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elementary extra-textual phenomena can be effectively controlled in translation,
particularly focusing on the English-to-Polish language pair (§ 2.3), as well
as exploring low-resource control of formality in four language pairs (§ 2.4).
Finally, we present MTCue, a novel solution which enables control of the same
phenomena in a few- and zero-shot fashion, without the need for attribute-
annotated translation samples (§2.5).

RQ2 Can language models for film and TV characters be personalised solely relying
on their character profiles and information on the discourse environment, and used to
evaluate context-specificity in personalised machine translation?

The second research question (Chapter 3) first explores whether language
modelling of dialogue can benefit from rich metadata annotations. We address
it by contributing an English-language corpus of film dialogue annotated
with rich speaker profiles and film metadata, and showing such annotations
effectively enable language model personalisation, even in cases where no
prior dialogue data is available for a given character. Secondly, we explore the
application of such personalised language models in the evaluation of context
specificity of machine translations.

RQ3 How does personalisation affect translation quality and post-editing effort in a
real-life scenario of subtitle translation?

In the final research chapter (Chapter 4) we delve deeper into using contextual
information in translation, this time directly focusing on the industrial use case
of the thesis. We apply the outputs of MTCue, as well as several baselines, in a
professional multi-modal system for subtitle translation and post-editing. Our
analysis suggests that MTCue makes fewer context, style and fluency errors,
especially in the English-to-French (EN-FR) language pair. We also contribute
a wealth of findings regarding future human evaluation campaigns in this
domain.

This thesis received partial funding from ZOO Digital1, a Sheffield-based company
specialising in subtitling and dubbing services. They also contributed an industrial
use case as the objective for the research. Owing to this collaboration, we obtained
diverse subtitle and transcribed data from various sub-domains of streaming content,
including films, unscripted entertainment, and cartoons. The data came with valuable
annotations, such as character profiles and scene descriptions, enabling us to conduct
more comprehensive experiments.

1 https://www.zoodigital.com/

https://www.zoodigital.com/
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1.2 contributions

The present work makes the following research contributions:

• We propose a novel distinction between grammatical and behavioural agreement in
contextual translation (Chapter 1).

• We implement a tool for annotating utterances in the Polish language with speaker
and interlocutor attributes at over 99% validation accuracy (§2.3).

• We build a machine translation system which produces translations in agreement
with the provided gender of the speaker, gender and number of the interlocutor(s)
and formality, at over 99% accuracy (§2.3).

• We build a formality-controlling machine translation system for translation from
English into German and Spanish in a low-resource scenario (§2.4).

• We propose MTCue: a context-aware machine translation model which can utilise
any context expressible in natural language to produce translations of better
quality (§2.5).

• We show that MTCue achieves 100% zero-shot accuracy at controlling the
formality of translations in English-to-German on an shared-task test set, and
significantly improves on zero-shot and few-shot control of multiple attributes in
English-to-Polish translation (§2.5).

• We contribute Cornell-rich, a dataset of rich character annotations for a subset
of the most featured characters from the Cornell Movie Dialogs Corpus (Danescu-
Niculescu-Mizil & Lee 2011) (§3.3.1).

• We propose LMCue: an extension of MTCue adapted to the task of contextual
language modelling and show over a set of comprehensive experiments that
LMCue significantly outperforms parameter-matched LM baselines (reducing
perplexity by up to 6.5%) and performs on par with per-speaker fine-tuning
methods, while requiring no such fine-tuning (§3.3).

• We introduce a new metric, speaker mean reciprocal rank (sMRR), which measures
how well a personalised language model captures the language patterns of a
character (§3.3.3.4).

• We devise a formulation and an experimental analysis regarding the use of
personalised LMs to evaluate how specific the given translation hypotheses are
to the extra-textual context they arise in, together with a range of examples
investigating the evaluation behaviour (§3.4).



1.2 contributions 7

• We contribute a cost-benefit study showing which speaker characteristics have
contributed the most to perplexity reduction relative to the cost of collecting the
information (§3.5).

• We present empirical evidence that pre-training LMCue on document-level infor-
mation helps realise personalisation in fine-tuning on considerably smaller cor-
pora with access to extra-textual context (§3.3.3.2).

• We present the results of a human evaluation campaign performed in a
professional production setting of subtitle translation across three different types
of TV series, showing that leveraging context in machine translation yields
significant improvements in context-specific errors marked during post-editing in
the English-to-French translation direction (§4.5).

• We contribute a taxonomy of possible errors in post-editing machine-translated
subtitles and present a detailed analysis of the types of errors made by non-
contextual and contextual machine translation systems (§4.3.2).

• We report the results of a survey conducted among the participating professional
translators, gathering their views on the future of machine translation in the
subtitle industry, as well as their expectations from the technology (§4.5.2.1).

The rest of the thesis is structured as follows. Immediately following this Introduction
are the three research chapters (Chapter 2, Chapter 3, Chapter 4), each accompanied
with a tailored Related Work section providing the necessary background. In the
appendix (Appendix A) we provide the necessary background information and context
to enable the reader to understand this research project. It lays the foundation for the
rest of the thesis and contains essential information that is necessary for the reader to
comprehend the scope and nature of the research. Since many readers will already have
been familiar with these concepts, we advise to read the chapter only if the reader is not
already familiar with machine learning or Natural Language Processing. Otherwise, if a
certain concept is unclear, throughout the thesis we hyperlink the employed concepts to
Appendix A for easy access to a definition. Finally, we conclude the thesis and outline
the directions for future work in Chapter 5.





2
C O N T R O L L I N G E X T R A - T E X T UA L AT T R I B U T E S I N
T R A N S L AT I O N

2.1 chapter overview

Neural machine translation has made significant progress in the recent years, much
owing to the advent of the Transformer architecture (§A.1.2.1), as well as supplementary
techniques such as sub-word segmentation (§ A.2.1) or back-translation (§ A.2.3.1).
Nevertheless, much remains to be done in certain aspects of the task. One challenge
NMT faces today is source ambiguity. When a source sentence contains the same ordered
set of tokens, it is either always translated in the same way, or the set of different
hypotheses produced is not related to the context in which the source arises in the
original text. This phenomenon is easiest exemplified when the speaker’s grammatical
gender is involved, which in some languages can determine the morphological endings
to certain words.

In this chapter, we explore the role of extra-textual attributes in NMT. In §2.3 (Vincent
et al. 2022b), we centre the attention on the English-to-Polish (EN-PL) translation direction
and introduce methods which sensitise NMT to four extra-textual variables: formality,
the speaker’s gender, and the gender and number of the interlocutor(s). We develop
a tool which automatically annotates these four attributes based on morphosyntactic
evidence found in the target (Polish) sentence itself, and then use that data to train a
model which can control these attributes.

In § 2.4 (Vincent et al. 2022a), we present our winning submission to the IWSLT
2022 formality control task (Anastasopoulos et al. 2022). Our approach addresses the
problem of low-resource formality control in multiple language pairs, addressing few-
shot control (§ A.1.3) in English-to-German (EN-DE) and English-to-Spanish (EN-ES),
as well as zero-shot control (§ A.1.3) in English-to-Russian (EN-RU) and English-to-
Italian (EN-IT).

Finally, in §2.5 (Vincent, Flynn & Scarton 2023) we introduce MTCue, a contextual
translation architecture which consumes as input the source sentence and various
contextual information (film metadata, past sentences) and produces translations which
are more adapted to the provided context. In our evaluation, we show that MTCue

offers a novel and robust solution to the two problems described in the preceding
sections: by utilising various sources of context, it learns a general representation of
context and is then able to scale to new extra-textual variables. We show that MTCue

trained on metadata and past context achieves over 80% accuracy on the multi-attribute
control task described in §2.3 and 100% accuracy at formality control on the IWSLT

9
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2022 shared task test sets in the EN-DE and EN-RU pairs, both in a zero-shot fashion
and requiring no adaptations to those specific downstream attributes.

2.2 related work

As a domain, dialogue presents a unique set of challenges within machine translation,
owing to the properties of discourse. Dialogue is naturally coherent and cohesive
(Halliday & Matthiessen 2013), and this manifests itself in the text in three ways:

• via reference, where the speaker refers to elements with pronouns or synonyms
that they judge recoverable from somewhere else in text;

• via ellipsis and substitution, where the speaker omits parts of or whole phrases
which can be unambiguously recovered by the addressee;

• via lexical cohesion, where the speaker chooses words related to those that have
been used earlier.

Dialogue is also naturally in agreement with the environment it is spoken in, the
dialogue participants and their unique attributes (Halliday & Matthiessen 2013). It
reflects the speaker’s chosen tone to effectively convey their message. Ambiguity and
polysemy present within the utterance can often be automatically resolved in the
presence of context. However, machine translation, typically designed to translate
isolated utterances, may fall short in capturing these inherent characteristics, resulting
in text that lacks natural properties.

Most studies on incorporating contextual information into NMT of dialogue have
focused on document-level context, targeting specifically coherence and cohesion
phenomena such as ellipsis or reference. Notable approaches include using multiple
encoders (e.g. Miculicich et al. 2018), cache models (Kuang et al. 2018), automatic
post-editing (Voita et al. 2019a), shallow fusion with a document-level language model
(Sugiyama & Yoshinaga 2021), data engineering (Lupo et al. 2022a) or simple
concatenation models (Tiedemann & Scherrer 2017). A different branch of contextual
models seeks to restrict or guide hypotheses via variable controlling to certain external
conditions. One of the first such works focuses on controlling the formality register
applied in translation hypotheses. Sennrich et al. (2016a) show that this can be
achieved in the EN-DE translation direction with a side constraints approach whereby a
meaningful tag is prepended to those training data samples which convey specific
formality. The same idea is revisited by numerous works in NMT and NLP, alternatively
under the name of tagging or user embedding. For example, some researchers have
applied it in the context of interlocutors’ gender identities: Vanmassenhove et al. (2018)
explore the idea of gender identity being a linguistic signal in translation, analysing
how a male/female tag impacts the vocabulary used by the members of the European
parliament. Moryossef et al. (2019a) propose the idea that NMT models can be primed
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to use the correct self-referrent gendered words via inference-time prefixes such as “He
said:” or “She said:”. Their results suggest that such a priming approach is sufficient to
control this aspect of translation; however, their study is evaluated on one specific
target scenario (a woman speaking to a plural audience). Findings from both studies
suggest that controlling the gender of the speaker improves translation quality in
languages which contain a grammatical system for expressing that gender.

The idea of using prefixes or tags in training data was later established as an easily
accessible method of imposing constraints in generation tasks, and successfully applied
to control the translation length (Lakew et al. 2019a, , using discrete length categories:
short, medium and long), vocabulary used (Post & Vilar 2018) or domain and genre
(Matusov et al. 2020). In Johnson et al. (2017), the target language itself is treated as
extra-textual context in a multilingual setting. Schioppa et al. (2021) notably addresses
the problem of controlling attributes such as length, monotonicity (closeness of the word
order in the source and target sentences) and formality on a continuous scale by shifting
the outputs of each encoder layer by a control vector V scaled by a continuous weight
w which corresponds to the “strength” of the controlled attribute. Their results suggest
that this formulation enables more fine-grained adaptations for continuous phenomena
than a discrete “bucketing” approach of e.g. Lakew et al. (2019a). Controlling multiple
attributes with this approach has not been excessively studied (Schioppa et al. 2021),
though works such as Takeno et al. (2017) and Lample et al. (2019) show that this can be
facilitated by concatenating the control tokens or averaging the vectors corresponding
to their embeddings.

Typically, attribute-controlling models are fully supervised, requiring annotated
training data. Such annotations can be obtained directly, e.g. from metadata
(Vanmassenhove et al. 2018); although most available corpora are unannotated.
Sennrich et al. (2016a) and Elaraby et al. (2018) automatically annotate the data using
morphosyntactic parsers based on rules, validating agreement to the attribute in
question in target-side sentences. To verify that the rules capture the attribute
completely, a precision/recall score is computed against a manually labelled test set.
However, this solution is not without its issues: (i) it is time-consuming and difficult to
implement (e.g. the annotation rules produced by Elaraby et al. yield a recall value of
50− 71.42% across markings of different speaker and interlocutor genders), (ii) this
solution is only applicable when the effect of the individual attributes on text is fully
known, which is not the case for most contextual phenomena in language. Although
contextual adaptation in NMT to phenomena that span beyond gender, formality and
domain has been discussed theoretically, most empirical research falls back to gender
(Rabinovich et al. 2017) or formality control (Niu et al. 2017). Somewhat of an
exception, Michel & Neubig (2018a) adapt NMT for each of many speakers by adding a
“speaker bias” vector to the decoder outputs. They find that explicitly modelling
speaker-related variation has a positive impact on BLEU and slightly improves speaker
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classification accuracy (determining the authorship of the translation hypothesis
among all speakers).

In conclusion, a tagging approach offers a simple and effective way of introducing
a more fine-grained control to an otherwise one-size-fits-all model, however it relies
on the user knowing in advance what needs to be controlled, and that data annotation
or identification methods exist to collect sufficient training data for the task. In §
2.5 (Vincent, Flynn & Scarton 2023), we address this drawback by proposing a novel
NMT architecture which learns from the available context (such as document-level
and metadata information) to enable few- and zero-shot control of some of the most
popular extra-textual attributes such as formality. Part of that work is motivated by
the CUE vectors (Novotney et al. 2022). The CUE approach represents contextual
variables as equal-sized vectors computed by passing sentence embeddings of the input
context (computed with the DistilBERT model described in Sanh et al. 2019) through
a dedicated encoder. Novotney et al. show that incorporating CUE into a language
model improves perplexity within the domain of news articles. Their formulation
allows the user to train the contextual model on any set of available variables. In
contrast, we reformulate CUE for contextual machine translation, provide a detailed
analysis of incorporating CUE into the model, emphasise the importance of vectorising
the context variables prior to embedding them, and examine the benefits for zero-
shot and few-shot performance in contextual NMT tasks. Furthermore, we propose a
number of improvements to the original approach, such as altering the way context
is combined with the textual information and using a different sentence embedding
model, ultimately showing significant improvements over that setup.
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2.3 controlling extra-textual attributes of dialogue participants

2.3.1 Introduction

In some languages, dialogue explicitly expresses certain information about the inter-
locutors: for example, while in English words describing the speaker “I” and the in-
terlocutor “you” are ambiguous w.r.t. their gender, number and formality, languages
such as Polish, German or Spanish will mark for one or more of these attributes. In
industrial settings such as dubbing and speech translation, there is an abundance of
available metadata about the interlocutors, such as their gender(s), that could be used
to help resolve these ambiguities.

Field Value

source "Are you blind?"
spoken by (=speaker) "Anne"

speaker’s gender "feminine"
spoken to (=interlocutor(s)) ["Mark", "Colin"]

interlocutor(s)’ gender "masculine"
formality "informal"

Table 2.1: A TV segment along with available metadata.

Table 2.1 shows an example of such a TV segment: the English sentence ‘Are you
blind?’, should translate to Polish as ‘Jesteście ślepi?’ as the addressee is a group of men
and the setting is informal; however, when spoken e.g. formally to a mixed-gender
group of people, the correct translation would read ‘Są państwo ślepi?’, using a different
verb inflection and an honorific (państwo). Since the contextual information required
to resolve the ambiguity in this example does not belong to the text itself, traditional
models do not use it. This yields hypotheses which introduce some assumptions about
that context, typically reflecting biases present in the (often unbalanced) training data.
To avoid this, a better solution is to resolve such ambiguities by using both the available
metadata and the source text as translation input. Alternatively, when such information
is unavailable, all possible contextual variants could be provided as output, passing the
choice from the model to the user (Jacovi et al. 2021, Schioppa et al. 2021).

In the context of the gender of the speaker and interlocutor, prior research has
explored two ways in which such information influences a text (Rabinovich et al.
2017, Vanmassenhove et al. 2018). Firstly, naturally occurring texts satisfy grammatical
agreement between the gender of the speaker and interlocutor and the utterances which
describe them. How this agreement is expressed in speech varies among different
languages (Stahlberg et al. 2007). Polish is a grammatical gender language: every noun
is assigned a gender, and grammatical forms must agree with that noun. In contrast,



14 controlling extra-textual attributes in translation

Figure 2.1: Example of an ambiguous English sentence with all plausible translations to
Polish. There are a total of 18 equally plausible possible hypotheses based on
the combination of contexts.

English is a naturally gender-neutral language, with “no grammatical markings of sex”
(Stahlberg et al. 2007, p. 165). Secondly, gender can be seen as a demographic factor
that influences the way people express themselves (e.g. word choice). Hereinafter we
refer to the former as grammatical agreement and the latter as behavioural agreement.

In this work, we seek to build neural machine translation (NMT) models that satisfy
grammatical agreement. Given an English sentence and a set of attributes (e.g. the
gender of the speaker and number of interlocutors), a NMT system must translate
this sentence into Polish with a correct grammatical agreement to all attributes but
introduce no markings of behavioural agreement. We explore the agreement to one
Speaker attribute: the gender of the speaker (SpGender), and three Interlocutor

attributes: the gender and number of interlocutor(s) (IlGender, IlNumber), as well
as the desired Formality of addressing the interlocutor(s). Figure 2.1 exemplifies the
extent of ambiguity these attributes introduce in English-to-Polish translation.

The main contributions of the work outlined within this section are:

(a) A novel English-to-Polish parallel corpus of TV dialogue annotated for SpGender,
IlGender, IlNumber and Formality.

(b) A tool for analysing attributes expressed in Polish utterances.

(c) The examination of a wide range of approaches to attribute control in NMT,
showing that at least four of them can be reliably used for incorporating extra-
linguistic information within English-to-Polish translation of dialogue.
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This work has been published in the Proceedings of the 23rd Annual Conference of
the European Association for Machine Translation (EAMT 2022).1

2.3.2 Problem Specification

Recognising the small number of studies within machine translation research on the
English-to-Polish language direction, as well as our capacity (thanks to the available
parsers and native speakers to validate their performance), we decide to focus the study
on this language pair. Polish is a West Slavic language spoken by over 50M people
over the world (Jassem 2003). It uses an expanded version of the Latin alphabet and is
characterised by a complex inflectional morphology (Feldstein 2001). It is a grammatical
gender language (Koniuszaniec & Błaszkowska 2003) meaning all forms dependent
on pronouns must agree to their gender and number. It uses a West Slavic system of
honorifics pani, pan, panie, panowie, pańSignstwo (henceforth Pan+) (Stone 1977). Being a
null-subject language (Sigurdsson & Egerland 2009), it does not require that pronouns
signifying the speaker or the interlocutor are explicit, unless they belong to the Pan+
group (Keown 2003).

English lacks a grammatical gender or a system of honorifics, and the pronoun “you”
is used for both plural and singular second person addressees. It is therefore ambiguous
w.r.t. some expressions describing the speaker or the interlocutor, which we capture
into four attributes, as follows (the attributes are summarised in Table 2.2).

speaker attributes The gender of all forms dependent on the pronoun ja (I) must
match the gender of the speaker SpGender ∈ { f eminine, masculine}. This includes past
and future verbal expressions (e.g. byłam ‘I wasfem’ vs. byłem ‘I wasmasc’), adjectives (e.g.
piękna ‘prettyfem’ vs. piękny ‘prettymasc’) and nouns (e.g. wariatka ‘lunaticfem’ vs. wariat
‘lunaticmasc’) that describe the speaker.

interlocutor attributes All word forms dependent on the pronoun ty/wy/Pan+
“you”, including the pronoun itself, must match:

• the gender of the interlocutor (IlGender); this includes cases analogous to Sp-
Gender, extended to e.g. vocatives (e.g. Ty wariatko/cie! ‘You lunaticfem/masc!’);

• the number of interlocutors (IlNumber); this includes verbs and pronouns in
second person;

1 Vincent, S. T., Barrault, L. & Scarton, C. (2022a), Controlling extra-textual attributes about dialogue
participants: A case study of English-to-Polish neural machine translation, in ‘Proceedings of the 23rd
Annual Conference of the European Association for Machine Translation’, European Association for
Machine Translation, Ghent, Belgium, pp. 121–130. URL: https://aclanthology.org/2022.eamt-1.15

https://aclanthology.org/2022.eamt-1.15
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Attribute Abbreviation Type

Speaker

SpGender

<sp:feminine> Feminine speaker
<sp:masculine> Masculine speaker

Interlocutor

IlGender

<il:feminine> Feminine interlocutor(s)
<il:masculine> Masculine interlocutor(s)

<il:mixed> Mixed-gender interlocutor(s)

IlNumber

<singular> One interlocutor
<plural> Multiple interlocutors

Formality

<informal> Informal
<formal> Formal

Table 2.2: Attributes and types controlled in the experiment.

• the formality in addressing the interlocutor (Formality)2; this entails using an
inflection of the pronoun Pan+ consistent with IlGender and IlNumber where
applicable, or using polite forms (e.g. Proszę wejść. ‘Come in.’).

Throughout this section, when using the term gender, we refer to the grammatical
gender rendered in text. In the Polish language, the grammatical system of gender
in first and second person is a rigid dichotomy of masculine and feminine variants,
lacking alternatives for people who identify as neither.

2.3.3 Experimental Setup

2.3.3.1 Data Collection

We collect pre-training data from two corpora: the English-to-Polish part of OpenSubti-
tles18 (Lison & Tiedemann 2016) and the Europarl (Koehn 2005) corpus. The data quan-
tities can be found in Table 2.3 (column “pretrain”).

Since our studied attributes have a well-understood effect on dialogue, we decide to
create a fine-tuning corpus for the task by annotating the pre-training samples with the

2 Formality is not necessarily a binary variable, for example Feely et al. (2019) define three stages of
formality: formal, polite and informal. In Polish, formality and politeness can be regarded as completely
separate phenomena and within this work we focus on the two-stage formality alone.
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pretrain finetune amb_test

train
#sents 10.8M 2.9M −
#tokens 82.1M 26M −

valid
#sents 3K 3.5K −
#tokens 23.3K 48.7K −

test
#sents − 3.5K 1K
#tokens − 47.7K 10.3K

Table 2.3: Quantities of unique data used for: model pre-training (pretrain), model fine-tuning
(finetune) and the testing set for calculation of restricted impact (amb_test). Values
are averaged for source and target text.

desired information; each sample is paired with an annotation of up to four types of
attributes. For that purpose, we implement a set of morphosyntactic rules for the Polish
SpaCy model (Tuora & Kobylinski 2019) which uses the Morfeusz2 morphological
analyser (Kieras & Wolinski 2017). Since speaker and interlocutor characteristics vary
between utterances (as opposed to between words or whole exchanges), we produce one
annotation of the four attributes for each utterance. For both speaker and interlocutor
gender attributes, the masculine gender makes up over 60% of the corpus. Altogether, a
total of 34.33% of the corpus marks at least one of the attributes; Figure 2.2 shows how
different linguistic categories contributed to extracting each attribute. In the fine-tuning
corpus we only keep samples with at least one attribute marked.

Similarly to Elaraby et al. (2018) and Gonen & Webster (2020), we observe that certain
nouns marked as describing the speaker or interlocutor have a fixed gender irrespective
of that person’s gender and are therefore inadequate determinants of their gender
(e.g. coward “tchórz” is always masculine). We could not find a reliable (complete nor
heuristic) method to resolve this other than creating a “stopwords” list of all inflexible
nouns. The process is now performed in two steps: we first extract a list of sentences
containing gender-marked words and then filter out those that were selected based on
our “stopwords” list of inflexible nouns.

We extract 223.0K noun-dependent sentences with 9K unique lemmatised nouns
in the first pass, build the “stopwords” list of 6.8K words and end up with 67.3K
sentences.

annotation rules We identify sentences marking for SpGender by finding tokens
in first person singular and verifying that their head marks feminine or masculine
gender. Formality is identified through the use of the inflected pronouns in the Pan+
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Figure 2.2: Contributions of each grammatical category to each attribute in the extracted corpus.

set (unless it is used as a title, e.g. in ‘Ms Smith’). Formal requests are selected by
finding proszę (‘please’) in the target sentence but not in the source. IlGender is trivially
inferred in formal cases; for informal language, we match structures analogous to those
for the SpGender and extend them to comparative phrases and vocatives. IlNumber

follows from the plurality of second-person verbs as well as the use of the pronoun ty
(‘you’, singular) or wy (‘you’, plural).

To measure the effectiveness of our set of annotation rules, a native Polish speaker
with expertise in NLP manually annotated a random sample of 1K sentence pairs from
the training corpus for the provided attribute types. Given a sample, the annotator
was instructed to identify a type from each attribute, and then highlight a part of
the Polish sentence proving its occurrence. Precision and recall (§ A.3) scores were
measured between the judgements of the rule set and the annotator. The implemented
rule set (hereinafter Detector) scored near-perfectly (99.82% precision and 99.17% recall
averaged over all attributes) and proved suitable for the tasks of both extracting the
corpus and evaluating attribute controlling. Beyond input errors leading to incorrect
processing, we observed two consistent cases of failure:

1. when the interlocutor is addressed in plural but is in fact singular (in cases
like “Gosingular help her. Maybe you [two] willplural figure it out together.” the
addressee may be interpreted as plural instead of singular depending on the
majority of grammatical matches for each type);

2. some tag questions (e.g. “prawda?”) or expressions (e.g. the words “kimś”
(‘someoneinstr.’), “czymś” (‘somethinginstr.’)) are consistently incorrectly analysed
for dependencies, which sometimes leads to triggering of incorrect rules.
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Count Context Example

train valid test SpGender IlGender IlNumber Formality English Polish

419.9K 0.8K 0.8K sp:feminine ∗ ∗ ∗ I’m an amateur. Jestem amatorką.
743.6K 0.8K 0.8K sp:masculine ∗ ∗ ∗ I’m all alone. Jestem całkiem sam.

9.3K 0.2K 0.2K ∗ il:feminine plural informal You’re smitten. Jesteście odurzone.
73.8K 0.2K 0.2K ∗ il:masculine plural informal Have you met Pete? Poznaliście Pete’a?

315.9K 0.2K 0.2K ∗ × plural informal You need to leave. Musicie wyjść.
326.8K 0.2K 0.2K ∗ × singular informal I got you something. Przyniosłem ci coś.
273.0K 0.2K 0.2K ∗ il:feminine singular informal Are you sick? Jesteś chora?
498.7K 0.2K 0.2K ∗ il:masculine singular informal Understand? Zrozumiałeś?

0.7K 0.1K 0.1K ∗ il:feminine plural formal Please, let me explain. Wyjaśnię paniom.
2.7K 0.2K 0.2K ∗ il:masculine plural formal Aren’t you? Panowie nie są?
5.7K 0.2K 0.2K ∗ il:mixed plural formal You are wrong. Mylą się państwo.
63.0K 0.2K 0.2K ∗ il:feminine singular formal Martini for you? Dla pani martini?

144.0K 0.2K 0.2K ∗ il:masculine singular formal Let me have your coat. Wezmę pański płaszcz.
33.5K 0.2K 0.2K ∗ × × formal Go ahead. Proszę kontynuować.

Table 2.4: Training data quantities for all combinations of contexts with examples for each
combination, with relevant grammatical expressions highlighted. Since Speaker and
Interlocutor contexts are always independent, the counts include cases where
they co-occur. ∗ = this attribute may occur in this place; × = this attribute is never
expressed within this category.

data selection and annotation Table 2.4 shows particular groups of contexts,
their typical expression, and total count in the corpus3. Similarly to Sennrich et al.
(2016a), we mask the annotations of half the training samples every epoch at random
and give half of the unannotated sentence pairs a random set of attributes. This helps
preserve the translation quality of the model’s outputs when insufficient context is
given.

We gather a total of 4K unique examples for the validation and testing set, wwith
samples equally distributed across the 14 different context groups (cf. Table 2.4). When
evaluating each implemented approach, we provide two results: when complete context
is given, or when an isolated attribute type is provided. Consider a complete-context test
case within the IlNumber group of

<il:feminine>,<plural>,<formal> I like you.

The input for the isolated attribute is as follows:

<plural> I like you.

3 Note that IlGender, IlNumber, Formality are co-dependent, since they all concern the same entity (the
interlocutor), and thus different combinations of their types lead to different grammatical expressions.
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that is, we omit all types but those belonging to the examined attribute. For the
complete context case we provide the full input. To evaluate each individual type (e.g.
<il:feminine> or <formal>), in the isolated attribute case we gather all validation/testing
cases which match the selected type, with a total count of minimum 200 examples (for
<il:mixed>) up to 1, 200 (for <plural>).

Approach Multi-attribute solution Embedding size Input space occupied

Types as Tags

TagEnc
▲ (Sennrich et al. 2016a) ntypes

TagDec (Takeno et al. 2017) ++ ntypes ∗ dmodel ntypes + 1
TagEncDec

▲ (Lakew et al. 2021) 2 ∗ ntypes + 1

Embedded Average

EmbPWSum (Lakew et al. 2021) 0

EmbAdd (Schioppa et al. 2021) 0

EmbEnc (Ours) ∑ types
ntypes

ntypes ∗ dmodel 1

EmbSOS (Lample et al. 2019) 0

EmbEncSOS (Ours) 1

OutBias
▲ (Michel & Neubig 2018a) ∑ types

ntypes
ntypes ∗ lenvocab 0

Table 2.5: Comparison of examined approaches. ++ = concatenation. ▲ = Approach originally
proposed for single-attribute control and extended by us.

2.3.3.2 Model Settings

In this section, we describe the model architecture and the modifications we apply to
adapt it to our problem. We use the Transformer architecture (§A.1.2.1), implemented
using PyTorch (Paszke et al. 2019). We draw inspiration from Lakew et al. (2021), where
various alterations to the model were tested. Within our setup, these fall into two
main categories: Types as Tags (Tag*) and Average Embedding (Emb*). We extend each
approach that was originally proposed as a way of controlling a single attribute to a
multi-attribute scenario: for Tag*, we supply multiple tags in a random order, and for
Emb* we take the average of embeddings (see Table 2.5 for an overview).

types as tags For the Tag* approach, we associate each attribute type with a
special vocabulary token t (e.g. <singular>, cf. Table 2.2). This token is assigned a
unique, trainable embedding (E(t). During fine-tuning, we concatenate a sequence
T = (t0, ..., tk) of these tags to the source or target sentences4. This sequence is treated

4 During inference, we supply tags by forcibly decoding the relevant type tokens, followed by a <null>
token, before the main decoding step commences.
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the same as other tokens and is integrated into the training process. We use three
settings:

1. TagEnc: appending the tags to the source sentence (Sennrich et al. 2016a).

2. TagDec: prepending the tag to the target sentence (Takeno et al. 2017).

3. TagEncDec: applying tags to both sentences (Niu & Carpuat 2020).

average embedding As an alternative to supplying the tags as a sequence T,
one can average all embeddings in T and use it as a single embedding E(T) (Lample
et al. 2019). Since the averaging operation is differentiable, the changes in the average
can be attributed back to the changes in the individual embeddings. There are a few
key differences between this approach and the one above: first, averaging circumvents
the problem of tag ordering; second, it assumes that all tag-embedded information
contributes equally. We explore five settings for this approach:

1. EmbPWSum: adding E(T) position-wise to each input token (Lakew et al. 2021).

2. EmbAdd: adding E(T) position-wise to encoder outputs (Schioppa et al. 2021).

3. EmbEnc: concatenating E(T) to the input (cf. Dai, Liang, Qiu & Huang (2019),
but in our approach the embedding is not trained adversarially).

4. EmbSOS: replace the start-of-sequence (<sos>) token in the decoder input with
E(T) (Lample et al. 2019).

5. EmbEncSOS: as an additional setting, we test combining EmbEnc and EmbSOS.

As a special case, we test OutBias: adding a type embedding as a bias on the final
layer of the decoder (Michel & Neubig 2018a). We omit the black-box injection method of
Moryossef et al. (2019b) as it is not applicable to IlGender in plural and to Formality.
Our baseline is the pre-trained model without the attribute information.

2.3.3.3 Training Details

We preprocess the corpus with Moses tools for detokenisation and normalising
punctuation5, and by applying a set of rules which includes correcting frequent OCR
errors and removing start-of-sequence hyphens. We train a joint sub-word
segmentation model of 16K tokens using the Byte-Pair Encoding (BPE) algorithm (§
A.2.1) implemented in SentencePiece (Kudo & Richardson 2018) and encode both sides
of the corpus. We follow the standard training regimen for a 6-layer Transformer
(Vaswani et al. 2017) with an input length limit of 100 tokens; this model has just over
52.3M trainable parameters. All training is done on a single 32GB GPU. As the

5 https://github.com/alvations/sacremoses

https://github.com/alvations/sacremoses
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decoding algorithm, we use beam search (§A.2.5) with a beam size of 5. We pre-train
the model until a patience criterion of the chrF++ (§ A.2.3.2) validation score not
increasing for 5 consecutive validation steps, taken roughly four times within every
three epochs (§ A.1.1). This happens around the 24th epoch, or after 66 hours of
training.

Each of the nine architectural upgrades is a copy of the pre-trained model expanded
with the relevant component and fine-tuned. The fine-tuning process exposes the model
to the fine-tuning corpus in 10 epochs; performance is validated every half epoch. We
select the best checkpoint based on the highest chrF++ score on the validation set.

2.3.3.4 Evaluation

We consider the following criteria in evaluation:

1. Translation Quality. Attribute-controlled translations should be of quality no
worse than translations of the non-specialised model.

2. Grammatical Agreement. Attribute-controlled hypotheses should completely
agree to the specified type where necessary.

3. Restricted Impact. Grammatical agreement should only affect words that explic-
itly render the attributes. Therefore, if no attribute is to be expressed in the hy-
potheses, then they should be no different from baseline hypotheses.

We evaluate translation quality with chrF++ (§A.2.3.2)6 and BLEU (§A.2.3.2). Gram-
matical agreement is quantified with the help of the Detector. For every attribute, we
calculate how many hypotheses agree to the correct type t and to the incorrect type t̂.
Let hypt be a hypothesis translated using type t as context, and agree(hyp, t) denote
that the Detector has found evidence of type t expressed in hyp. We express the total
agreement score as:

Agree =
agree(hypt, t)

agree(hypt, t) + agree(hypt, t̂)

Finally, we quantify restricted impact with a custom metric, which measures that
attribute-independent sentences do not carry any attribute-reliant artifacts; we define
this metric, AmbID, as:

chrF++(NMT(srca, A), NMT(srca, Â))

6 For clarity, we normalise chrF++ scores to a [0, 100] range.
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where A is a set of attribute types and Â is the reverse set7. We use an attribute-
ambivalent testing set of a 1K sentences to calculate this score (Table 2.3, column
“amb_test”).

2.3.4 Results

isolated attribute complete context

Model chrF++↑ BLEU↑ Agree↑ (%) chrF++↑ BLEU↑ Agree↑ (%) AmbID↑

Baseline 46.60 23.13 74.35 46.60 23.13 74.35 −
TagEnc 48.95 25.52 99.03 52.41 29.16 99.39 95.87
TagDec 48.65 25.40 99.21 50.83 27.65 96.84 93.15

TagEncDec 48.28 25.26 99.35 51.01 28.15 99.26 82.66
EmbPWSum 46.03 22.37 100 51.90 28.69 97.90 88.67

EmbAdd 47.45 23.61 99.96 51.77 28.56 98.24 87.76
EmbEnc 47.72 24.39 83.42 52.23 28.98 99.30 95.58
EmbSOS 48.28 24.90 99.91 52.38 29.09 98.47 92.07

EmbEncSOS 48.60 25.08 99.87 51.94 28.77 98.55 92.37
OutBias 48.59 24.98 96.71 49.32 26.11 86.25 94.05

Table 2.6: Translation performance of all models; “isolated attribute” means that only one (the
investigated) attribute was revealed to the model. Highlighted is the best result in the
column; all statistically indistinguishable results (according to a bootstrap resampling
method (§A.3.1) with p ≤ 0.05 are underlined.

We report quantitative results in Table 2.6.

grammatical agreement The Agree column in Table 2.6, which shows the
agreement scores given by the Detector, points to a significant improvement of all tested
model variants over the Baseline model in both isolated attribute and complete context
scenario, yielding an improvement of between 9.07 and 25.65 percentage points. In
the isolated attribute scenario, all methods but OutBias and EmbEnc achieve near-
perfect (100%) agreement scores. The agreement scores in the complete context scenario
remain high for other models except TagDec, and pick up for EmbEnc, suggesting that
controlling several attributes generally has no negative impact on individual attributes.

7 For the type triplet IlGender we assume that ̂il:masculine = il:feminine, ̂il:mixed = il:feminine, ̂il:feminine =
il:masculine.
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translation quality Attribute-controlling models achieve significant gains over
baseline for both the isolated attribute and complete context scenarios, and the gains are
consistently higher in the latter, suggesting that exposing the models to more context
yields better translations. TagEnc achieves the highest improvement over the baseline
in terms of chrF++/BLEU for complete context (+5.81 chrF++/+6.03 BLEU). The gains
in translation quality are correlated with agreement scores, except for EmbPWSum,
for which the isolated attribute scenario leads to a near-perfect agreement but low
quality scores. Further investigation shows that this model learned to overproduce
context-sensitive words when given a context of only a subset of types (e.g. translating
“you” as “I” to introduce SpGender marking), leading to high agreement scores but
degradation in quality. This highlights the importance of pairing an accuracy measure
with a translation quality metric.

Figure 2.3: Translation quality (chrF++) for each contextual group.

To investigate how successful the models are at modelling each context group indi-
vidually, we report the mean chrF++ scores obtained for each group’s testing set (Fig-
ure 2.3). All contextual models bring significant improvements over the baseline ex-
cept in the Formal plural feminine interlocutor group, for which there was little training
data (cf. Table 2.4); improvements are consistently greater for feminine than masculine
groups. No single model performs consistently better than others, but TagDec, EmbP-
WSum and OutBias fall behind on most groups. Finally, we observe no significant gain
from including information in both the encoder and the decoder.

restricted impact The AmbID scores shown in Table 2.6 reveal that TagEnc and
EmbEnc introduce the least variation in attribute-ambivalent utterances, suggesting
that adding contextual information to the encoder input only helps limit creation of
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unwanted artifacts. The distance of only 4.13 chrF++ points to the ideal score of 100 for
the highest-scoring model suggests good separation of grammatical and behavioural
agreement. Some separation-specific modelling may further improve this score, but it
was outside the scope of this work.

general discussion The results suggest that TagEnc is the most reliable approach
to the presented problem, followed by EmbSOS and EmbEnc. Notably, we find other
methods dubbed as superior to TagEnc in previous work (EmbAdd, TagDec and
TagEncDec) to underperform in our case.

2.3.5 Conclusions

In this work, we have highlighted the problem of grammatical agreement in translation
of TV dialogue in the English-to-Polish language direction. We have created and
described a dataset annotated for four speaker and interlocutor attributes that directly
influence grammar in dialogue: speaker’s gender, interlocutor’s gender and number
and formality relations between them. We have presented a selection of models capable
of controlling these attributes in translation, yielding a performance gain of up to
+5.81chrF++/+6.03BLEU over the baseline (non-controlling) model. Finally, we have
produced a tool that produces an accuracy score for agreement to each type.

Considering all criteria of evaluation, we have identified TagEnc as the best
performing approach, with EmbEnc, and EmbSOS also achieving competitive
performance. TagEnc may be more attractive in scenarios where interventions in the
model architecture are impossible as it can be implemented via data preprocessing
alone, but the other two have a more scalable design (cf. § 2.2). Finally, contrary to
some previous work, we did not find that including the contextual information in the
decoder as well as the encoder yielded significant improvements in translation quality
or accuracy over including the information in the encoder alone.
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2.4 controlling formality in low-resource nmt with domain adapta-
tion and reranking

2.4.1 Introduction

Formality-controlled machine translation enables the user of the translation system
to specify the desired formality level of the produced hypothesis at input. Due to
discrepancies between different languages in formality expression, it is often the case
that the same source sentence has several plausible hypotheses, each aimed at a different
audience; leaving this choice to the model may result in an inappropriate translation.

This work describes our team’s submission to the first Special Task on Formality
Control in SLT at The International Conference on Spoken Language Translation
(IWSLT) 2022 (Anastasopoulos et al. 2022), where the objective was to enable the
translation pipeline to generate formal or informal translations depending on user’s
input. We participated in the task in four language directions:
English-to-German (EN-DE), English-to-Spanish (EN-ES), English-to-Russian (EN-RU)
and English-to-Italian (EN-IT). Among these, EN-RU & EN-IT were considered zero-shot
(§ A.1.3); for the remaining pairs, small paired formality-annotated corpora were
provided.

Our proposed method is language-agnostic and leverages the formality-annotated
triplets (x, yformal, yinformal) provided by the task organisers (hereinafter the IWSLT
2022 corpus) to pseudo-label a subset of formality-agnostic translation corpora (i.e.
paired translation datasets containing no explicit formality information). Our translation
systems are fine-tuned on this pseudo-labelled data. To further boost the formality
control, we implement a formality-focused hypothesis re-ranking step. Our zero-shot system
uses the re-ranking step alone, i.e. it is not directly fine-tuned to control formality.

More concretely, we extend the provided formality-supervised data by extracting
similar samples from the larger unannotated datasets via a language-independent
approach of domain adaptation (treating the formality data as “in-domain” sets and the
large corpus as an “out-of-domain” set). Our supervised system is fine-tuned on this
data, using a tag appended to the input of the model. We also re-rank the top n model
hypotheses with a formality-focused objective function which uses a relative frequency
model built from the provided IWSLT 2022 corpus. To use the same objective in our
zero-shot system, we extract samples of particular formality levels for the zero-shot
pairs (EN-RU, EN-IT) based on data collected for EN-DE and EN-ES.

Throughout the paper, we use F to denote the formal style and I to denote the informal
style. The official evaluation results reveal that, for the supervised pairs, our approach
improves formality control by 49.5% accuracy points over the baseline, and for the
zero-shot pairs we improve by 33.8%. More specifically, on the test sets for English-to-
German and English-to-Spanish, we achieve an average accuracy of 99.5%, and in a
zero-shot setting for English-to-Russian and English-to-Italian we obtain 65.9%. Overall,
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our submission achieved the best performance in 15 out of 16 directions by automatic
evaluation, and according to the human evaluation of the zero-shot English-to-Russian
task, our system was able to achieve 85.0%/71.3% control for formal/informal register,
the only high-performing zero-shot system in the task. Our work highlights the potential
of both data adaptation and re-ranking approaches in attribute control for NMT.

This work has been published in the Proceedings of the 19th International Conference
on Spoken Language Translation (IWSLT 2022).8

2.4.2 Shared Task Details

The objective of the Special Task on Formality Control in SLT is to train a machine
translation system which can control the formality register of the output given some
input information. For the supervised language pairs, the participants were provided
with short sets of data which could be used for training or validation (400 examples
given as triplets of source sentence, informal hypothesis and formal hypothesis). This
data (hereinafter the IWSLT 2022 corpus, Nadejde et al. 2022a) comes from two
domains, telephone conversations and topical chat (Gopalakrishnan et al. 2019). An
associated matched accuracy scoring script was provided by the organisers, and we
include its pseudo-code in Algorithm 1. Matched accuracy was the primary metric
used to evaluate systems, though translation quality was also measured (via BLEU
(§ A.2.3.2) and Comet (§ A.2.3.2)) to ensure that the systems do not sacrifice quality
for formality control. The formality control test set contained 600 paired examples per
language pair. The “tst-common” set of the MuST-C corpus (Di Gangi et al. 2019) was
used for translation quality testing.

8 Vincent, S., Barrault, L. & Scarton, C. (2022a), Controlling formality in low-resource NMT with domain
adaptation and re-ranking: SLT-CDT-UoS at IWSLT2022, in ‘Proceedings of the 19th International
Conference on Spoken Language Translation (IWSLT 2022)’, Association for Computational Linguistics,
Dublin, Ireland (in-person and online), pp. 341–350. URL: https://aclanthology.org/2022.iwslt-1.31

https://aclanthology.org/2022.iwslt-1.31
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Algorithm 1: Algorithm for computing the formal & informal matched accuracy.
Input: System hypotheses, annotated (F, I) references

Output: m-accF, m-accI ▷ Formal & informal matched accuracy.

for hyp ∈ hypotheses, (refF, refI) ∈ references do

for marked_phrase in refF do

if marked_phrase in hyp then
matchF + = 1

end

end

for marked_phrase in refI do

if marked_phrase in hyp then
matchI + = 1

end

end

if matchF > 0 and matchI = 0 then
totalF + = 1

else if matchI > 0 and matchF = 0 then
totalI + = 1

return totalF ÷ (totalF + totalI), totalI ÷ (totalF + totalI)

end

2.4.3 Proposed Approach

At its heart, our method uses an off-the-shelf Transformer model. In the supervised
system, formality is controlled by employing a tagging approach (Sennrich et al. 2016a),
whereby a formality-indicating tag is appended to the source input. This method has
been widely used in research in various controlling tasks (e.g. Johnson et al. 2017,
Vanmassenhove et al. 2018, Lakew et al. 2019b). The novelty of our approach lies in
how the formality-annotated data was collected, which we describe in this section, as
well as in our re-ranking step which enables zero-shot control of formality. Throughout
this section, we occasionally refer to the MuST-C corpus (Di Gangi et al. 2019); it is a
machine translation corpus of transcribed TED talks, translated from English to other
languages (e.g. German and Spanish). This is one of the corpora used in our later
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experiments (which we describe in § 2.4.4) and we used it to develop and test our
approach.

automatic extraction of formal and informal data As tagging requires
supervised data to be effective, we seek to enhance the formality-annotated training
corpus by annotating samples from formality-agnostic translation corpora. We make
the assumption that similar sentences would correspond to a similar formality level,
and use a data selection technique to extract from the formality-agnostic samples most
similar to the formal and informal sides of the IWSLT 2022 corpus respectively.

Specifically, let G = (Gx, Gy) be the formality-agnostic corpus, and let SF = (Sx, Sy, F)

and SI = (Sx, Sy, I) be the formality-annotated corpora (IWSLT 2022). For simplicity, let
us focus on adaptation to SF.

Focusing on the sentences on the target side (which explicitly express formality
styles), we build a vocabulary of non-singleton tokens from Sy, F, then train two
language models (§ A.2.4): LMS from Sy, F and LMG from a random sample of 10K
sentences from Gy; both LMs use the originally extracted vocabulary. Then, we calculate
the sentence-level perplexity (§A.2.4.1): ppl(LMG, Gy) and ppl(LMS, Gy). Finally, the
sentence pairs within G are ranked by

ppl(LMS, Gy)− ppl(LMG, Gy).

The resulting corpora Gsorted_by_ F and Gsorted_by_ I are sorted by the perplexity differences.
The intuition behind this approach is that sentences which use a certain formality will
naturally rank higher on the ranked list for that formality, due to similarities in the
used vocabulary.

Let Fpos and Ipos be the position of a sentence pair in the formal/informal ranking,
respectively. We implement a function Assignα which, for an α ∈ [0, C), assigns a label
to the sentence pair (x, y), using the following rules:

Assignα


F, if Fpos − Ipos > α;

I, if Ipos −Fpos > α;

None, otherwise.

where C is the size of the out-of-domain corpus. We condition assignment on both
positional lists since common phrases such as (Yes! – Ja!) may rank high on both sides,
but should not get included in either corpus.

In other words, we classify sentences as formal or informal based on the relative
position difference on the formality-ordered lists. We determine α empirically: we test
values from range 0.05C and 0.2C by computing a language model from the resulting
data and calculating the average perplexity ppl(LMCorpus(α), IWSLT). We select the α
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value which minimises this perplexity. We refer to this approach as RD-Labelling

(relative difference labelling).

relative frequency model for re-ranking Sometimes, even when a model
gets the formality wrong in its best hypothesis, the correct answer is sometimes found
within the n best hypotheses but ranked lower. To address this, we propose a re-ranking
approach that uses a formality-specific criterion (distinct from the log probability
criterion used in decoding). This method effectively prioritises the hypotheses with the
correct formality, moving them to the top of the list.

We conducted an oracle experiment using the provided scoring script to determine
the maximum potential improvement achievable by perfectly re-scoring the n-best
list. We generated k-best hypotheses for various values of k ∈ {1, ..., 100}9. From each
list of k hypotheses, we selected the first hypothesis (if any) that matched the correct
formality according to the m-acc metric. The results (Table 2.7) demonstrate that as
we expand the list of hypotheses, the number of translations with the correct formality
increases, reaching an average accuracy of 95.9% (+10.6% compared to the model) for
k = 100. The column “# Cases” indicates that, on average, in up to 21 cases, a hypothesis
of the correct formality could be found with re-ranking. Importantly, regardless of
the value of k, selecting the Oracle hypothesis (i.e. the first one on the list with the
correct formality) does not compromise translation quality compared to the base Model
(column “BLEU”).

To re-rank the hypotheses, we build a simple relative frequency model from the
IWSLT 2022 data. For each term ti ∈ T we calculate its occurrence counts Fcount in the
formal set and Icount in the informal set. Let count(ti) = Fcount(ti) + Icount(ti). Since we
wish to focus on terms differentiating the two sets, we calculate the count difference
ratio and use it as the weight β:

β(ti) =
|Fcount(ti)− Icount(ti)|

max
tk∈T
|Fcount(tk)− Icount(tk)|

We additionally nullify probabilities for terms for which the difference of the number
of occurrences in the formal and informal sets is lower than the third of total occurrences,
a value tuned on the validation set:

κ(ti) =

0, if |Fcount(ti)−Icount(ti)|
Fcount(ti)+Icount(ti)

< 0.33;

1, otherwise

9 We capped the search at k = 100 due to long inference times for higher k values.
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k Accuracy
δto_best # Cases

BLEU
Model Oracle Model Oracle

1 83.8% 83.8% 0.00 0.00 25.28 25.28

5 85.8% 89.2% 1.79 7.00 24.80 24.80

10 85.7% 91.3% 2.66 11.50 25.10 25.53

20 85.3% 92.1% 3.46 13.75 24.74 25.15

30 85.1% 93.0% 5.75 16.00 24.68 25.06

40 85.3% 93.6% 7.84 16.75 24.88 25.24

50 85.3% 94.4% 9.64 18.25 24.84 25.20

60 85.2% 95.0% 11.78 19.75 24.71 25.04

70 85.2% 95.0% 12.08 19.75 24.71 25.04

80 85.2% 95.2% 12.78 20.25 24.72 25.04

90 85.2% 95.4% 13.58 20.50 24.72 25.04

100 85.3% 95.9% 14.66 21.25 24.72 25.04

Table 2.7: Results of the oracle experiment. Model was trained in the Tiny setting and using
the the RD-Labelling method. Provided values are averaged across the development
set. δto_best describes the average distance to the first hypothesis of correct formality
for cases where the most probable hypothesis is incorrect. The column “# Cases”
quantifies that phenomenon.

The probabilities are now calculated as

p(F|ti) =
Fcount(ti)

count(ti)
∗ β(ti) ∗ κ(ti)

p(I|ti) =
Icount(ti)

count(ti)
∗ β(ti) ∗ κ(ti)

For a hypothesis Y, a source sentence S and contexts c, ĉ ∈ {F, I}, c ̸= ĉ, our objective
function in translation thus becomes

p(Y|X, c) = p(Y|X) + p(c|Y)− p(ĉ|Y)

where

p(c|Y) = ∑
i

p(c|yi)
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Figure 2.4: Validation accuracy plot showing the effect of applying FormalityRerank to a list
of k model hypotheses.

Figure 2.4 shows how validation accuracy increases when this method is used,
and that the model is now able to match the oracle accuracy for nearly every k. For
k = 100 the average improvement in accuracy is 10.2%. The effect of model’s accuracy
sometimes surpassing the oracle accuracy (e.g. for k = 30) is a by-product of slight
sample size variations: the m-acc metric depends on phrase matches, and a sample is
only counted for evaluation if a hypothesis has at least one phrase match against the
formality-annotated reference.

generalisation of re-ranking to zero-shot language pairs Relative
frequency re-ranking requires formality-annotated data (i.e. SF, SI) to be available,
which is not the case in our experiments. To enable this re-ranking step, we decide to
obtain such a corpus, given supervised training data in other language pairs (in our
case, the EN-DE and EN-ES data).

Since the IWSLT 2022 corpus is paired, the formality-agnostic text on the English side
does not contain any formality bias that can be leveraged. This points us towards the
formality-agnostic corpus G which we can now annotate using RD-Labelling. However,
when applying RD-Labelling to the MuST-C corpus, we observed that within the set
of samples extracted from MuST-C the same source sentences have entirely different
formality expressions in the German and Spanish corpora, respectively. We confirmed
this suspicion by consulting the source sentences and reference translations with native
speakers of the respective languages.

Let en-de·es be a corpus of triplets of sentences (xen, yde, yes) obtained by identifying
English sentences which occur in both the EN-DE and EN-ES parts of MuST-C; due to
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the nature of this corpus, en-de·es contains 85.72% of sentence pairs from the EN-DE

and 74.13% of pairs from the EN-ES corpus. After marking the target sides of the en-
de·es corpus for formality with RD-Labelling, we quantify in how many cases both
languages get the same label (F or I), and in how many cases they get a different label
(Table 2.8). Out of all annotated triplets, only 5.8% triplets were annotated in both
target languages, significantly less often than expected. Within that group, almost 60%
triplets had matching annotations. This implies that - at least in this particular corpus -
the same English sentence can sometimes be expressed with different formality in the
target language in the same discourse situation. Again, this observation aligns with the
intuition of native speakers of the respective languages.

EN-DE EN-ES Count % of annotated

F F 845 2.85%
I I 233 0.78%
F I 381 0.95%
I F 362 1.22%
F ∅ 10851 36.54%
I ∅ 7805 26.29%
∅ F 6567 22.12%
∅ I 2749 9.26%

Table 2.8: Combinations of formality annotations for the en-de·es triplet extracted from the
MuST-C dataset. “∅” denotes “no annotation”.

Given the non-zero count of triplets with matching formalities, we make another
assumption: namely that the English sentences of the triplets with matching formalities
may be of “strictly formal” or “strictly informal” nature, meaning the translations of at
least some of those sentences to Russian and Italian may express the same formality. To
extract F and I sentences for the zero-shot pairs, we adapt the original method, but this
time using English as a pivot to convey the formality information. We use the English
sentences whose German and Spanish translations were both labelled as F or both as
I , respectively (columns 1, 2 in Table 2.8) and rank the EN-RU and EN-IT corpora by
their source sentences’ similarity to that intersection (using the perplexity difference as
before).

To infer the final corpora with the RD-Labelling method, we use the α which yields
corpora of similar quantity to the ones for EN-DE & EN-ES, since we could not determine
that value empirically.
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2.4.4 Experimental Setup

data collection and preprocessing We collect all datasets permitted by the
organisers for our selected language pairs, including:

• MuST-C (v1.2) (Di Gangi et al. 2019),

• Paracrawl (v9) (Bañón et al. 2020),

• WMT Corpora (from the News Translation task) (Barrault et al. 2021):

– NewsCommentary (v16) (Tiedemann 2012),

– CommonCrawl (Smith et al. 2013),

– WikiMatrix (Schwenk et al. 2021),

– WikiTitles (v3) (Barrault et al. 2020),

– Europarl (v7, v10) (Koehn 2005),

– UN (v1) (Ziemski et al. 2016),

– Tilde Rapid (Rozis & Skadin, š 2017),

– Yandex10.

We list data quantities as well as availability for all language pairs in Table 2.9.
We preprocess the WMT and Paracrawl corpora by running a rule-based heuristic of
removing sentence pairs with sentences longer than 250 tokens, and with a source-
target ratio greater than 1.5, removing non-ASCII characters on the English side and
pruning some problematic sentences (e.g. links). We normalise punctuation using the
script from Moses (Koehn et al. 2007). After the initial preprocessing, we run the
BiCleaner tool (Ramírez-Sánchez et al. 2020) on each corpus; the algorithm applies
a range of standard preprocessing measures (e.g. removing cases where source and
target sentences are identical) and then assigns a confidence score ∈ [0, 1] to each
pair, measuring whether the sentences are good translations of each other, effectively
removing potentially noisy sentences. We remove all sentence pairs from the corpora
which scored below 0.7 confidence. The final training data quantities are reported
in Table 2.9. To train the model on this data, we apply the BPE algorithm (§ A.2.1)
implemented in SentencePiece (Kudo & Richardson 2018) to build a joint vocabulary
of 32K tokens across all languages.

Before applying the formality annotation methods we observe that many sentence
pairs in our formality-agnostic corpus are not dialogue and too far removed from
the domains of our test sets. As the first step, we use the original perplexity-based
re-ranking algorithm to prune the corpus. We use the MuST-C corpus as in-domain and
all of the data as out-of-domain. We truncate the dataset to the top 5M sentences most

10 https://translate.yandex.ru/corpus?lang=en

https://translate.yandex.ru/corpus?lang=en
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Corpus EN-DE EN-ES EN-IT EN-RU

MuST-C (v1.2) 0.23M 0.27M 0.25M 0.27M
Paracrawl (v9) 278.31M 269.39M 96.98M 5.38M

NewsCommentary v16 0.40M 0.38M 0.09M 0.34M
CommonCrawl 2.40M 1.85M − 0.88M

WikiMatrix 5.47M − − 3.78M
WikiTitles (v3) 1.47M − − 1.19M

Europarl (v7|v10) 1.83M 1.97M 1.91M −
UN (v1) − 11.20M − −

Tilde Rapid 1.03M − − −
Yandex − − − 1M

Total

Raw 291.14M 285.06M 99.23M 12.84M
Preprocessed 76.99M 91.29M 36.99M 3.86M

Formality-annotated
F I F I F I F I

216.5K 187.2K 111.8K 129.7K 101.0K 172.0K 195.9K 218.4K

Table 2.9: Corpora containing training data used in the experiments. Values indicate number of
sentence pairs after preprocessing.

similar the MuST-C data. We then apply RD-Labelling with α threshold adapted to
the data volume. The resulting data quantities can be found in the last row of Table 2.9.

pre-training and fine-tuning We train a multilingual 6-layer Transformer
model architecture provided within Fairseq (Ott et al. 2019)11. We tie the encoder and
decoder weights, use the Adam optimiser (Kingma & Ba 2015), use a learning rate of
5e− 4 and a batch size of 2000 tokens. We pre-train for 1.5M iterations (approx. 1.5
epochs) and fine-tune for 0.25M iterations (approx. 47 epochs).

For fine-tuning, we use the MuST-C corpus without formality annotations (to main-
tain high translation quality), concatenated with the formality-annotated data inferred
from the large corpus (to learn formality control). We apply FormalityRerank with
k = 50. Similarly to pre-training, we average the last 10 checkpoints.

development results The development results (Table 2.10) of our approaches
suggest that both RD-Labelling and FormalityRerank are effective at improving

11 Our choice of the multilingual approach is dictated by the aim to reduce the required computation time
rather than the potential benefits of multilingual systems in controlling formality, the exploration of which
we leave to future work.
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MuST-C (BLEU) IWSLT 2022 (m-acc)

EN-DE EN-ES EN-RU EN-IT
EN-DE EN-ES

Mean
F I F I

Pre-trained 28.9 39.5 18.5 29.3 63.4% 36.6% 21.5% 78.5% 50.0%
RD-Labelling 32.3 40.8 − − 99.0% 100% 95.2% 99.1% 98.3%
+FormalityRerank 32.3 40.8 20.4 32.0 100% 100% 99.5% 100% 99.9%

Table 2.10: Results on the development sets.

formality control without sacrificing translation quality. In particular, RD-Labelling

alone yields a near-perfect for all subcategories except (EN-DE, I); applying
FormalityRerank effectively brings the average score up to 99.9%. Note that our
pre-trained model for this track achieved lower BLEU scores than for the constrained
track, which is explained by the test set coming from the same domain as the
constrained training data.

2.4.5 Results

In Table 2.11 and Table 2.12, both taken from the task findings (Anastasopoulos et al.
2022), we report official results of translation quality and formality control, respectively.
For our selected language pairs, there was only one other system (UMD) which took
part in the task. These results show that by the automatic metrics our methods surpassed
those of the competitor for every language pair and register direction. The exception is
formal in EN-RU where our system is worse by 0.5%, but our averaged accuracy for this
language pair is overall better by 42.6% points.

Overall, our submitted system achieved a near-ideal accuracy of 99.2%. The zero-shot
system achieved an impressive average accuracy of 83.8%, an improvement of 33.8%
over the baseline and significantly better than the competitors for the EN-RU pair. The
human evaluation findings (reported in Table 2.13) confirm the effectiveness of our
zero-shot system for EN-RU. In disagreement with the automatic metric, the human
evaluation found that our EN-IT system produces mostly formality-neutral hypotheses
when asked for formal style, indicating an area for improvement in the future.

Our results, particularly for the zero-shot pairs (Table 2.11, column Zero-shot) suggest
an interesting phenomenon: for our employed datasets, for any language pair there is a
dominant formality type, which is the formality type that the baseline model learns
to express in translation the majority of the time, as if by default. This dominant type
varies across languages, and for the zero-shot pairs in our evaluation it is particularly
strong (e.g. 94.5% I vs 5.5% F in EN-IT). The dominant formalities were controllable to
a much higher extent by our submitted model (98.6% and 99.5% respectively) than the
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Supervised Zero-shot

EN-DE EN-ES EN-IT EN-RU

System F I F I F I F I

Baseline 45.8% 54.2% 36.6% 63.4% 5.5% 94.5% 93.4% 6.6%
UMD 99.4% 96.5% 99.5% 93.2% 32.8% 97.9% 100% 0.1%

UoS (Ours) 100% 100% 98.1% 100% 51.2% 98.6% 99.5% 85.8%

Table 2.11: Official results of the automatic evaluation of formality control (matched accuracy)
reported for formal (F) and informal (I) register. Baseline scores provided from task
organisers. Scores in bold indicate highest in column.

EN-DE EN-ES EN-IT EN-RU

System BLEU Comet BLEU Comet BLEU Comet BLEU Comet

Baseline 32.6 55.0 37.4 70.0 32.2 64.0 19.5 32.0
UMD 22.4 16.1 27.8 34.4 22.9 24.7 14.4 7.5

UoS (Ours) 32.5 49.7 37.0 63.5 33.1 56.2 21.5 35.7

Table 2.12: Official results of the automatic evaluation of translation quality. Baseline scores
provided from task organisers. Scores in bold are highest in column.

non-dominant ones (51.2% and 85.8% respectively); this result is also consistent with
that of our competitor. This suggests that it is easy for a pre-trained translation model
to learn controlled expression of the dominant type within a dichotomous phenomenon,
while learning to render the less-expressed type is significantly harder, especially in a
low-resource scenario like the present one.

Table 2.12 shows that both ours and our competitor’s submissions sometimes slightly
degrade translation quality scores. This could possibly be caused by the models selecting
terms in the hypotheses which are of correct formality but less fitting translation
candidates in general. Nevertheless, our models exhibit this effect to a significantly
lower effect than our competitors: our models degrade Comet by 3.95 on average,
whereas UMD’s by as much as 34.58 points. Similarly with BLEU, the competitor’s
models degrade it by 8.55 whereas ours actually improve by 0.6. To summarise, our
models achieved near full supervised formality control and over 83% zero-shot control
while maintaining competitive translation quality scores.
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Pair System Register F I Neutral Other IAA

EN-IT

UMD F 13.7 25.2 47.0 14.2

0.91
UMD I 1.0 78.3 11.5 9.2

UoS (Ours) F 6.0 7.2 81.3 5.5
UoS (Ours) I 0.3 81.0 13.2 5.5

EN-RU

UMD F 77.2 0.2 7.0 15.7

0.85
UMD I 74.3 0.7 7.8 17.2

UoS (Ours) F 85.0 0.3 6.0 8.7
UoS (Ours) I 10.3 71.3 3.2 15.2

Table 2.13: Percentage of system outputs (with a given formality level (Register) and track
(Track)) labelled by professional translators according to the formality level:
F(formal), I(informal), Neural or Other. IAA was computed using the Krippendorff’s
α coefficient. Values in green indicate scores which should be as high as possible
(correct register) and values in red indicate scores which should be as low as possible
(incorrect register). We highlight best scores between the two competing systems.

2.4.6 Conclusions

Overall results suggest that with sufficient training data formality control can be easily
facilitated either via direct supervision or re-ranking, and collection of data necessary
to facilitate these methods is possible given small initial samples for all formality
types. Our methods applied to the supervised language pairs (EN-DE, EN-ES) worked
near-unfailingly. Using English as a pivot language to propagate formality information
from one language to another helped achieve impressive results for zero-shot pairs, but
the results were not as good as for the supervised pairs.

We suspect that the significant accuracy gains from FormalityReranking may have
been partially due to formality in the studied language pairs itself being expressed
primarily via certain token words such as the honorific Sie in German creating a pivot
effect (Fu et al. 2019). As such, it may be of interest for future research to study such
methods applied to more complex phenomena, such as grammatical expression of
gender.
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2.5 mtcue : learning zero-shot control of extra-textual attributes

in neural machine translation

2.5.1 Introduction

Although NMT has progressed at a fascinating pace in recent years, contemporary
methods focus on translating isolated sentences and overlook the importance of
adapting to broader context, such as the description of the discourse situation.
Conversely, some researchers have suggested that incorporating fine-grained
adaptations based on extra-textual context could benefit conversational machine
translation (van der Wees et al. 2016). Most existing work that does consider context in
translation has focused on document-level context only, aiming to enhance the
coherence and cohesion of the translated document (e.g. Tiedemann & Scherrer 2017).
Only a limited amount of research has successfully adapted NMT to extra-textual
context variables using supervised learning frameworks on labelled datasets, targeting
individual aspects such as gender (Vanmassenhove et al. 2018, Moryossef et al. 2019a,
Vincent et al. 2022b), formality (Sennrich et al. 2016a, Nadejde et al. 2022b), translators’
or speakers’ style (Michel & Neubig 2018b, Wang, Hoang & Federico 2021) and
translation length (Lakew et al. 2019a), sometimes controlling multiple attributes
simultaneously (Schioppa et al. 2021, Vincent et al. 2022b). However, to our knowledge,
no prior work has attempted to model the impact of continuous extra-textual contexts
in translation or combined the intra- and extra-textual contexts within a robust
framework. This is problematic since translating sentences without or with incomplete
context is akin to a human translator working with incomplete information. Similarly,
only a handful of earlier studies have contemplated the idea of controlling these
extra-textual attributes in a zero-shot or few-shot fashion (Moryossef et al. 2019a,
Anastasopoulos et al. 2022); such approaches are essential given the difficulty of
obtaining the labels required for training fully supervised models.

In some domains, extra-textual context is paramount and NMT systems oblivious
to this information are expected to under-perform. For instance, for the dubbing and
subtitling domain, where translated shows can span different decades, genres, countries
of origin, etc., a one-size-fits-all model is limited by treating all input sentences alike. In
this domain, there is an abundance of various metadata (not just document-level data)
that could be used to overcome this limitation. However, such adaptation is not trivial:
(i) the metadata often comes in quantities too small for training and with missing labels;
(ii) it is expressed in various formats and types, being difficult to use in a standard
pipeline; (iii) it is difficult to quantify its exact (positive) effect.

In this paper, we address (i) and (ii) by proposing MTCue (Machine Translation
with Contextual universal embeddings), a novel NMT framework that bridges the gap
between training on discrete control variables and intra-textual context as well as
allows the user to utilise metadata of various lengths in training, easing the need for
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Figure 2.5: A high-level overview of MTCue (EN-PL).

laborious data editing and manual annotation (Figure 2.5). During inference, when
context is provided verbatim, MTCue falls back to a code-controlled translation model;
by vectorising the inputs, it exhibits competitive performance for noisy phrases and
learns transferrability across contextual tasks. While (iii) is not directly addressed, our
evaluation encompasses two translation quality metrics and two external test sets of
attribute control, showing the impact on both translation quality and capturing relevant
contextual attributes.

MTCue can generalise to unseen context variables, achieving 100% accuracy at a
zero-shot formality controlling task; it learns to map embeddings of input contexts
to discrete phenomena (e.g. formality), increasing explainability; and it exhibits more
robust few-shot performance at multi-attribute control tasks than a “tagging” baseline.

The main contributions of this work are:

1. MTCue (§ 2.5.2): a novel framework for combining (un)structured intra- and
extra-textual context in NMT that significantly improves translation quality for
four language pairs in both directions: English-to-German (EN-DE), German-to-
English (DE-EN), English-to-French (EN-FR), French-to-English (FR-EN), English-to-
Polish (EN-PL), Polish-to-English (PL-EN), English-to-Russian (EN-RU) and Russian-
to-English (RU-EN).

2. A comprehensive evaluation, showing that MTCue can be primed to exhibit ex-
cellent zero-shot and few-shot performance at downstream contextual transla-
tion tasks (§2.5.6 and §2.5.8).

3. Pre-trained models, code, and an organised version of the OpenSubtitles18 (Lison
et al. 2018) dataset with the annotation of six metadata are made available.
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We also present the experimental settings including the data used (§2.5.3), evaluation
methods (§2.5.4) and implementation details (§2.5.5), as well as conclusions (§2.5.9). This
work has been published in Findings of the Association for Computational Linguistics
(ACL 2023).12 13

2.5.2 Proposed Architecture: MTCue

MTCue is an encoder-decoder Transformer (§A.1.2.1) architecture with two encoders:
one dedicated for contextual signals and one for inputting the source text. The signals
from both encoders are combined using parallel cross-attention in the decoder. Below
we describe how context inputs are treated in detail, and later we describe the context
encoder and context incorporation.

vectorising contexts Context comes in various formats: for example, the
speaker’s gender or the genre of a film are often supplied in corpora as belonging to
sets of pre-determined discrete classes, whereas plot descriptions are usually provided
as plain text (and could not be treated as discrete without significant loss of
information). To leverage discrete variables as well as short and long textual contexts in
a unified framework, we define a vectorisation function that maps each context to a
single meaningful vector, yielding a matrix Ec×r, where c is the number of contexts and
r is the embedding dimension. The function is deterministic (the same input is always
embedded in the same way) and semantically coherent (semantically similar inputs
receive similar embeddings). We use a sentence embedding model (§A.2.2; Reimers &
Gurevych 2019a) for vectorisation, which produces embeddings both deterministic and
semantically coherent. Motivated by Khandelwal et al. (2018) and O’Connor & Andreas
(2021) who report that generation models mostly use general topical information from
past context, ignoring manipulations such as shuffling or removing non-noun words,
we hypothesise that sentence embeddings can effectively compress the relevant context
information into a set of vectors, which, when processed together within a framework,
will formulate an abstract representation of the dialogue context. We select the
MiniLMv2 sentence embedding model (Wang, Bao, Huang, Dong & Wei 2021), which
we access via the sentence-transformers library14. In the experiments, we also refer
to DistilBERT (Sanh et al. 2019) which is used by one of our baselines, and a discrete

12 Vincent, S., Flynn, R., Scarton, C. (2023), MTCue: Learning Zero-Shot Control of Extra-Textual Attributes
by Leveraging Unstructured Context in Neural Machine Translation, in ‘Findings of the Association for
Computational Linguistics: ACL 2023’, Association for Computational Linguistics, Toronto, Canada, pp.
8210-8226. URL: https://aclanthology.org/2023.findings-acl.521/

13 The work presented in this section was carried out in collaboration with Robert Flynn who contributed the
ideas of using positional embeddings for document-level information and using QK-Norm, participated
in project discussions, reviewed drafts of the paper and assisted in responding to reviewers.

14 https://sbert.net/

https://aclanthology.org/2023.findings-acl.521/
https://sbert.net/
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Figure 2.6: The MTCue architecture. Stylised after the Transformer architecture figure in
(Vaswani et al. 2017).

embedding function which maps unique contexts to the same embeddings but has no
built-in similarity feature.

For any sample, given a set of its k textual contexts C = [c1, ...ck], we vectorise each
one separately using the method described above. The resulting array of vectors is the
input we supply to the context encoder in MTCue.

context encoder The context encoder of MTCue is a standard self-attention
encoder with a custom input initialisation. Its inputs are sentence embeddings of
context (§2.5.2) projected to the model’s dimensions with a linear layer (384→ dmodel).
In preliminary experiments, we observe that the first layer of the context encoder
receives abnormally large input values, which sometimes leads to the explosion of the
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query (Q) and key (K) dot product QKT. We prevent this by replacing the scaled dot
product attention with query-key normalisation (§A.1.2.2; Henry et al. 2020)15.

We apply positional embeddings (§A.1.2.2) to context, in order to (a) indicate the
distance of a past utterance to the source sentence and (b) to distinguish metadata
inputs from document information. In particular, when translating the source sentence
si at position i in the document, a sentence distance positional embedding (POS) is
added to the embedding representations of each past sentence si−j, with j ∈ [0, t]
where t is the maximum allowed context distance: e′(si−j, j) = e(si−j) + POS(j).
Metadata contexts (m0, . . . , mn) do not receive positional embeddings since their order
is irrelevant. The final vectorised input of the context encoder is:
e′(si, 0), e′(si−1, 1), . . . , e′(si−t, t), e(m0), . . . , e(mn).

context incorporation The outputs of the context and source encoders
(respectively C and S) are combined in the decoder using parallel attention (Libovický
et al. 2018). Let the output of the decoder self-attention be T . Let Tout = FFN(T ′) + T ′,
where T ′ is the multi-head attention output; i.e. Tout is T ′ with the feed-forward layer
and the residual connection applied. In a non-contextual Transformer, source and
target representations are combined with cross-attention:

T ′ = mAttn(kv = S , q = T )

In contrast, parallel attention computes individual cross-attention of T with S and C
and then adds them together:

S ′ = mAttn(kv = S , q = T )
C ′ = mAttn(kv = C, q = T )
T ′ = C ′ + S ′

Parallel attention is only one of many combination strategies which can be used, and in
preliminary experiments we found the choice of the strategy to have a minor impact on
performance.

2.5.3 Data: The OpenSubtitles18 Corpus

The publicly available OpenSubtitles18
16 corpus (Lison et al. 2018), hereinafter

OpenSubtitles, is a subtitle dataset in .xml format with IMDb ID attribution and
timestamps. It is a mix of original and user-submitted subtitles for movies and TV
content. Focusing on four language pairs (en↔{de,fr,pl,ru}), we extract parallel

15 An alternative solution applies layer normalisation to the input of the first layer, but we found that this
degraded performance w.r.t. QK-Norm.

16 Created from data from https://opensubtitles.org/.

https://opensubtitles.org/
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Data type EN↔DE EN↔FR EN↔PL EN↔RU

Source & target 5.3M 14.7M 12.9M 12.4M

metadata
Genre 45.3% 57.8% 60.5% 73.4%

PG rating 35.9% 46.9% 48.8% 62.3%
Writer(s) 45.3% 57.1% 58.9% 71.7%

Year 45.3% 57.8% 60.5% 73.7%
Country 37.7% 42.9% 45.7% 42.7%

Plot description 43.4% 57.1% 59.7% 72.6%
previous dialogue

n− 1 60.1% 68.0% 63.7% 73.6%
n− 2 42.0% 51.2% 46.4% 57.9%
n− 3 31.2% 40.1% 35.5% 46.9%
n− 4 23.9% 32.2% 28.0% 38.6%
n− 5 18.7% 26.2% 22.4% 32.2%

Table 2.14: Data quantities for the extracted OpenSubtitles18 corpus. An average of 81% samples
has at least one other context than the current sentence.

sentence-level data with source and target document-level features (up to 5 previous
sentences), following Voita et al. (2019b). There are timestamps and overlap values for
each source-target sample in the corpus; we only take into account pairs with overlap
>= 0.9 and we use two criteria to build any continuous document: (1) no omitted
pairs (due to poor overlap) and (2) no distance greater than seven seconds between any
two consecutive pairs. To generate train/validation/test splits, we use generated lists
of held-out IMDB IDs based on various published test sets (Müller et al. 2018, Lopes
et al. 2020, Vincent et al. 2022b) to promote reproducibility. We also extract a range of
metadata by matching the IMDb ID against the Open Movie Database (OMDb) API.17

Table 2.14 shows training data quantities and portions of annotated samples per
context while Table 2.15 shows an example of the extracted data. We select six
metadata types that we hypothesise to convey useful extra-textual information: plot
description (which may contain useful topical information), genre (which can have an
impact on the language used), year of release (to account for the temporal dimension of
language), country of release (to account for regional differences in expression of
English), writers (to consider writers’ style), PG rating (which may be associated with

17 https://omdbapi.com/

https://omdbapi.com/
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e.g. the use of adult language). For validation and testing, we randomly sample 10K
sentence pairs each from the corpus, based on held-out IMDb IDs.

Key Value

Source (en) This is the Angel of Death, big daddy reaper.
Target (pl) To anioł śmierci. Kosiarz przez wielkie "k".
PG rating PG rating: TV-14

Released Released in 2009

Writers Writers: Eric Kripke, Ben Edlund, Julie Siege
Plot Dean and Sam get to know the whereabouts of Lucifer and want to

hunt him down. But Lucifer is well prepared and is working his own
plans.

Genre Drama, Fantasy, Horror
Country United States, Canada

Table 2.15: Example of a source-target pair and metadata in OpenSubtitles.

The corpus is first detokenised and has punctuation normalised (using Moses scripts,
Koehn et al. 2007). Then a custom cleaning script is applied, which removes trailing
dashes, unmatched brackets and quotation marks, and fixes common OCR spelling
errors. Finally, we perform sub-word tokenisation (§A.2.1) via the BPE algorithm with
Sentencepiece (Kudo & Richardson 2018).

Film metadata (which comes from OMDb) is left intact except when the fields contain
non-values such as “N/A”, “Not rated”, or if a particular field is not sufficiently
descriptive (e.g. a PG rating field represented as a single letter “R”), in which case we
enrich it with a disambiguating prefix (e.g. “R”→ “PG rating: R”). Regardless of the
trained language pair, metadata context is provided in English (which here is either
the source or target language). document-level context is limited to source-side context.
Since for language pairs into English the context input comes in two languages (e.g.
English metadata and French dialogue), we use multilingual models to embed the
context in these pairs.

2.5.4 Evaluation

We evaluate the presented approach with the general in-domain test set as well as two
external contextual tasks described in this section.
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translation quality The approaches are evaluated against an in-domain held-
out test set of 10K sentence pairs taken from OpenSubtitles. As metrics, we use BLEU18

(§A.2.3.2) and Comet
19 (§A.2.3.2).

control of multiple attributes about dialogue participants (eamt

2022) The EAMT 2022 task, which we introduced in § 2.3 (see also Vincent et al.
2022b), evaluates a model’s capability to control information about dialogue participants
in English-to-Polish translation. The task requires generating hypotheses that align with
four attributes: gender of the speaker and interlocutor(s) (masculine/feminine/mixed),
number of interlocutors (one/many), and formality (formal/informal). These attributes
can occur in a total of 38 unique combinations. We investigate whether MTCue can
learn this task through zero-shot learning (pre-training on other contexts) or through
few-shot learning (when additionally fine-tuned on a constrained number of samples).

To prepare the dataset, we use scripts associated with §2.3 (see also Vincent et al.
2022b) to annotate OpenSubtitles with the relevant attributes, resulting in a corpus
of 5.1M annotated samples. To leverage the context representation in MTCue, we
transcribe the discrete attributes to natural language by creating three sentences that
represent the context. For example, if the annotation indicates that the speaker is male,
the interlocutor is a mixed-gender group, and the register is formal, we create the
following context: (1) “I am a man”, (2) “I’m talking to a group of people” and (3)
“Formal”.

We train seven separate instances of MTCue using different artificial data settings.
Each setting contains the same number of samples (5.1M) but a varying number of
annotated samples. To address class imbalances in the dataset (e.g. masculine speaker
occurring more often than feminine speaker) and ensure equal representation of the 38
attribute combinations, we collect multiples of these combinations. We select sample
numbers to achieve roughly equal logarithmic distances: 1, 5, 30, 300, 3K and 30K
supervised samples per each of 38 combinations, yielding exactly 38, 180, 1, 127, 10, 261,
81, 953 and 510, 683 samples respectively. Including the zero-shot and full supervision
(5.1M cases), this results in a total of eight settings. Each model is trained with the
same hyperparameters as MTCue, and on the same set of 5.1M samples, with only the
relevant number of samples annotated (non-annotated samples are given as source-
target pairs without contexts). We compare our results against our Tagging approach
which achieved the best performance in §2.3). We train the Tagging model in replicas
of the eight settings above.

zero-shot control of formality (iwslt 2022) We experiment with the
generalisation of MTCue to an unseen type of context: formality. In the IWSLT 2022

formality control task (Anastasopoulos et al. 2022), the model’s challenge is to produce

18 Computed with SacreBLEU (Post 2018).
19 Computed using the wmt20-comet-da model.
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hypotheses agreeing with the desired formality (formal/informal). For the English-to-
German language pair, the task provides a set of paired examples (each source sentence
is paired with a formal reference and an informal one), to a total of 400 validation
and 600 test examples; for the English-to-Russian pair, only the 600 test examples are
provided. We test the capacity of MTCue to control formality zero-shot, given a textual
cue as context input.

To evaluate the performance of any tested model, we need a fair method of choosing
a context to condition on, since in a zero-shot setting the model organically learns the
tested attributes from various contexts rather than specific cherry-picked sentences.

To do so, we sample some metadata from the validation set of the OpenSubtitles data
and pick eight contexts (four for the formal case and four for the informal case) which
either used formal or informal language themselves or represented a domain where
such language would be used. We also add two generic prompts: Formal conversation
and Informal chit-chat. The full list of prompts is as follows:

• Formal:

1. Formal conversation

2. Hannah Larsen, meet Sonia Jimenez. One of my favourite nurses.

3. In case anything goes down we need all the manpower alert, not comfortably numb.

4. Biography, Drama

5. A musician travels a great distance to return an instrument to his elderly teacher

• Informal:

1. Informal chit-chat

2. I’m gay for Jamie.

3. What else can a pathetic loser do?

4. Drama, Family, Romance

5. Animation, Adventure, Comedy

We then run the evaluation as normal with each context separately, and select the
highest returned score for each attribute.

2.5.5 Baselines and Implementation

In our experiments, we compare MTCue with three types of baselines:

1. Base and Base-PM. These are pre-trained translation models that match MTCue

either in the shape of the encoder-decoder architecture (Base) or in terms of the
total number of parameters (Base-PM). For Base-PM, the extra parameters are
obtained from enhancing the source encoder, increasing the number of layers
(6→ 10) and doubling the feed-forward dimension (2048→ 4096).
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Model
Params dmodel

Layers h FFN dim.
GPU Hour/Epoch Epochs to best

Cxt Src Dec Cxt Src Dec

Base 66M 512 − 6 6 8 − 2048 2048 − −
Base-PM 107M 512 − 10 6 8 − 4096 2048 − −

Tagging 107M 512 − 10 6 8 − 4096 2048 0.74± 0.35 6.13± 4.09
Novotney-cue 99M 512 6 6 6 8 2048 2048 2048 1.29± 0.56 9.13± 3.60

MTCue 105M 512 6 6 6 8 2048 2048 2048 0.81± 0.39 9.38± 4.57

Table 2.16: Model details for MTCue and baselines. Timings and epochs are averaged across all
language directions.

2. Tagging. Following previous work (e.g. Schioppa et al. 2021, Vincent et al. 2022b),
we implement a model that assigns a discrete embedding to each unique context
value. Architecturally, the model matches Base-PM. The tags are prepended to
feature vectors from the source context and then together fed to the decoder.

3. Novotney-cue. This baseline is a re-implementation of the cue vectors
architecture (Novotney et al. 2022) for NMT. It utilises DistilBERT for
vectorisation and averages the context feature vectors to obtain the decoder input.
In contrast, MTCue employs a parallel attention strategy.

In experiments on formality control, we also report results from the two submissions
to the IWSLT 2022 task, both implementing a supervised and a zero-shot approach:

1. Vincent et al. (2022a) (see also § 2.4). This (winning) submission combines the
Tagging approach with formality-aware re-ranking and data augmentation. The
authors augment the original formality-labelled training samples by matching
sentence pairs from larger corpora against samples of specific formality (akin to
the Moore-Lewis algorithm described in Moore & Lewis 2010). Their zero-shot
approach relies on heuristically finding a suitable sample of formality-annotated
data similar to the provided set and performing the same algorithm above.

2. Rippeth et al. (2022) who fine-tune large pre-trained multilingual MT models
with additive control (Schioppa et al. 2021) on data with synthetic formality labels
obtained via rule-based parsers and classifiers.

implementation We implement MTCue and all its components in Fairseq, and
use HuggingFace (Wolf et al. 2020) for vectorising contexts. We use hyperparameters
recommended by Fairseq, plus optimise the learning rate and the batch size in a grid
search. We found that a learning rate of 0.0003 and a batch size of simulated 200K
tokens worked best globally. Table 2.16 presents the architecture details and runtimes
for the models. All training is done on a single A100 80GB GPU, one run per model.
We use early stopping based on validation loss with a patience of 5 (§A.1.1).
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2.5.6 Results

Model
EN-DE EN-FR EN-PL EN-RU Average

BLEU Comet BLEU Comet BLEU Comet BLEU Comet BLEU Comet

Baselines
*Base 33.60 45.90 34.54 46.92 28.08 58.52 31.37 62.94 31.90 53.57

*Base-PM 34.36 46.77 35.31 48.87 28.66 60.97 32.40 64.55 32.68 55.29

Tagging 34.88 49.21 36.74 51.57 29.08 64.29 32.32 65.12 33.26 57.55
Novotney-cue 35.30 49.83 36.75 50.52 29.09 62.69 32.36 64.90 33.38 56.99

Proposed
MTCue 36.02 50.91 37.54 52.19 29.36 63.46 33.21 65.21 34.03 57.94

DE-EN FR-EN PL-EN RU-EN Average
BLEU Comet BLEU Comet BLEU Comet BLEU Comet BLEU Comet

Baselines
*Base 39.53 59.56 35.46 55.10 34.42 50.38 39.37 55.99 37.20 55.26

*Base-PM 40.32 60.88 36.16 56.28 35.03 51.77 40.04 56.86 37.89 56.45

Tagging 41.52 62.63 37.10 57.41 36.19 53.46 40.33 57.14 38.79 57.66
Novotney-cue 40.86 61.91 36.51 56.21 35.28 52.17 39.44 56.08 38.03 56.59

Proposed
MTCue 40.95 61.58 36.57 56.87 35.68 52.48 39.97 56.92 38.29 56.96

Table 2.17: Translation quality results on the OpenSubtitles test set. *Model trained without
access to any context. We highlight the best result in each column and underline all
statistically indistinguishable results, p ≤ 0.05 (except the Average column).

translation quality Results in Table 2.17 show that MTCue beats all non-
contextual baselines in translation quality, achieving an average improvement of +1.51
BLEU/+3.04 Comet over Base and +0.88/+1.58 over Base-PM. It is also significantly
better than Novotney-cue (+0.46/+0.66). MTCue achieves comparable results to the
parameter-matched Tagging model, consistently outperforming it on all language
directions from English, and being outperformed by it on directions into English.
Since the primary difference between the two models is that MTCue sacrifices more
parameters to process context, and Tagging uses these parameters for additional
processing of source text, we hypothesise that the difference in scores is due to the
extent to which context is a valuable signal for the given language pair: it is less
important in translation into English. This is supported by findings from literature:
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(a) MiniLM-v2 embeddings. (b) Output of MTCue’s context encoder.

Figure 2.7: UMAP visualisation of how various contexts impact the formality of produced
translations when used as input in MTCue.

English is a language that does not grammatically mark phenomena such as gender
(Stahlberg et al. 2007).

The largest quality improvements with MTCue are obtained on EN-DE (+1.66/+4.14
vs Base-PM and +1.14/+1.70 vs Tagging) and EN-FR (+2.23/+3.32 vs Base-PM and
+0.80/+0.62 vs Tagging) language pairs. Contrastively, the smallest improvements
against Base-PM are obtained on the RU-EN pair. MTCue is outperformed by Tagging

the most on PL-EN (−0.51/−0.98). As far as training efficiency, MTCue trains
significantly faster than Novotney-cue, converging in a similar number of epochs but
using significantly less GPU time, on par with Tagging (Table 2.16). Finally, all
contextual models considered in this evaluation significantly outperform the
parameter-matched translation model (Base-PM), clearly signalling that metadata and
document context are an important input in machine translation within this domain,
regardless of the chosen approach.

control of multiple attributes about dialogue participants (eamt

2022) MTCue achieves 80.25 zero-shot accuracy at correctly translating the speaker
and interlocutor attributes, an improvement of 12.08 over the non-contextual baseline,
also expressed in increased translation quality (25.22 vs 23.36 BLEU). Furthermore, it
bests Tagging at few-shot performance by 5 to 8 accuracy points, reaching above 90%
accuracy with only 190 of the 5.1M annotated samples (Figure 2.8). Both Tagging and
MTCue perform similarly with more supervised data. The Tagging model achieves +2
to +3 accuracy points in the 1K to 100K range, while BLEU remains comparable. We
hypothesise that this happens because MTCue relies strongly on its pre-training prior
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Figure 2.8: Evaluation results from the EAMT22 multi-attribute control task.

Model Accuracy BLEU

0-shot
Tagging 67.53 23.35
MTCue 80.35 25.13

100-shot
Tagging 84.97 26.06
MTCue 90.11 27.22

5M-shot
Tagging 99.35 30.03
MTCue 99.07 30.11

when context is scarce: this proves useful with little data, but becomes less relevant as
more explicitly labelled samples are added. Finally, with full supervision, both models
achieve above 99% accuracy.

zero-shot control of formality (iwslt 2022) MTCue appears to success-
fully control the formality of translations in a zero-shot fashion, achieving nearly 100%
accuracy on the IWSLT 2022 test sets across two language pairs, beating all zero-shot
models on the EN-RU pair and performing on par with the best supervised model for
EN-DE. Notably, both baselines presented in Table 2.18 were built to target formality
specifically, unlike MTCue which is a general-purpose model.

Following MTCue’s success at controlling formality with sample contexts, we
investigate the relationship between context embeddings and their corresponding
formality control scores. We consider all 394 unique contexts from the OpenSubtitles

validation data, and another 394 document contexts (individual past sentences) at
random (in-domain). We also use an in-house dataset from a similar domain (dubbing
of reality cooking shows with custom annotations of scene contents) and select another
394 metadata and 394 document contexts from there (out-of-domain). We run inference
on the IWSLT 2022 test set with each context individually (1, 576 runs), and use UMAP
(McInnes et al. 2018) to visualise (i) the input embedding from MiniLM-v2, (ii) the
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Model Supervision Formal Informal Average

EN-DE

Non-context baseline − 74.5 25.5 50.0
Rippeth et al. (2022) Supervised 99.4 96.5 98.0

Vincent et al. (2022a) Supervised 100.0 100.0 100.0

MTCue Zero-shot 100.0 100.0 100.0

EN-RU

Non-context baseline − 96.4 3.6 50.0
Rippeth et al. (2022) Zero-shot 100.0 1.1 50.5

Vincent et al. (2022a) Zero-shot 99.5 85.8 92.7

MTCue Zero-shot 100.0 99.4 99.7

Table 2.18: Evaluation on the IWSLT 2022 formality control evaluation campaign. Baseline
systems were trained on different corpora.

output vector of the context encoder and (iii) the corresponding formality score
(Figure 2.7).

We invite the reader to pay attention to the separation of dark and light points in
Figure 2.7b that is not present in Figure 2.7a. There is a spatial property that arises
in the context encoder and is shown by Figure 2.7b, namely a relationship between
the feature vectors from context encoder and formality scores across both domains:
contexts yielding translations of the same register tend to be clustered together. This is
true for both in-domain data (circles) and out-of-domain data (crosses), suggesting that
after training this effect generalises to unseen contexts.

For further investigation, we sample a few contexts at random which yield 100% zero-
shot accuracy (from the “ends” of the colour scale) and find that these contexts tend
to have semantic relationships with the type of formality they induce in translations.
For example, contexts like “What’s wrong with you?”, “Wh-what’s he doing now?”
yield all-informal translations while “Then why are you still in my office?” or “I can
see you’re very interested.” result in all-formal ones. This confirms our hypothesis:
MTCue’s context encoder aligns the semantic representation of the input context to
the most likely formality it would produce, akin to a human translator deducing such
information from available data. Outside of an evaluation scenario like the present one,
MTCue may therefore be able to predict from the given context what formality style
should be used: an effect only facilitated by the context encoder.
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2.5.7 Examples of Model Outputs (Zero-Shot)

To exemplify how the zero-shot performance of MTCue manifests in practice, we
present some examples of outputs: Example 1 and Example 2 related to the EAMT
2022 multi-attribute control task, and Example 3 related to the IWSLT 2022 formality
control task.

Example 1 EAMT 2022

Source I just didn’t want you to think you had to marry me.

Context I am a woman. I am talking to a man

Reference Bo nie chciałam, żebyś myślał, że cię zmuszam do ślubu.

(‘Because I didn’t wantfeminine you to thinkmasculine I am forcing you into
a wedding.’)

Base-PM Po prostu nie chciałem, żebyś myślała, że musisz za mnie wyjść.

(‘I just didn’t wantmasculine you to thinkfeminine you had to marryfeminine
me.’)

MTCue Nie chciałam, żebyś myślał, że musisz się ze mną ożenić.

(‘I didn’t wantfeminine you to thinkmasculine you had to marrymasculine me.’)

The phrase to marry someone can be translated to Polish in several ways, indicating
that the addressee is to be a wife (ożenić się z kimś), a husband (wyjść za kogoś [za mąż])
or neutral (wziąć ślub). While the reference in Example 1 uses the neutral version, both
Base-PM and MTCue opted for feminine/masculine variants. However, the gender of
the speaker is feminine, so the phrase “... had to marry me” should use either the neutral
version (wziąć ślub) or the feminine one (ożenić się). The baseline model incorrectly picks
the masculine version while MTCue is able to pick the correct one based on the context
given. MTCue also correctly translates the gender of the interlocutor: both in the top
example (myślał vs myślała) and the bottom one (aś vs eś, even though a synonymous
expression is used in translation, agreement remains correct).
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Example 2 EAMT 2022

Source So then you confronted Derek.

Context I am talking to a woman

Reference A więc doprowadziłaś do konfrontacji z Derekiem.

(‘So then you ledfeminine to a confrontation with Derek.’)

Base-PM Więc wtedy skonfrontowałeś się z Derekiem.

(‘So then you confrontedmasculine Derek.’)

MTCue Więc skonfrontowałaś się z Derekiem.

(‘So then you confrontedfeminine Derek.’)

Example 2 highlights a case where the morphological ending to the verb confronted
depends on the gender of the interlocutor. MTCue correctly opts for the aś ending
associated with feminine grammatical gender as opposed to the masculine eś used by
the Base-PM model.

Example 3 IWSLT 2022

Source I got a hundred colours in your city.

MTCue (formal) Ich habe 100 Farben in Ihrer Stadt.

MTCue (informal) Ich hab 100 Farben in deiner Stadt.

Finally, Example 3 shows MTCue produces correct possessive adjectives for each
desired formality.

2.5.8 Ablation Study

We discuss the robustness of MTCue with an ablation study on the model components
as well as a complementary ablation on types of context (metadata vs document).
We evaluate three language pairs (en→de,fr,pl) and report results from single runs
(Table 2.19): Comet score on the OpenSubtitles18 data and zero-shot accuracy at the
two contextual tasks (on the validation sets in all cases).

Removing the context encoder (output of the linear layer is combined with source
straight away) or the position embeddings has only a minor effect on the Comet score;
replacing MiniLM-v2 with a discrete embedding function hurts performance the most.
Positional embeddings seem more important to the EAMT 2022 task than IWSLT 2022
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Ablation Comet Zero-shot Accuracy

en→de en→fr en→pl IWSLT 2022 (de) EAMT 2022

Full MTCue 46.89 54.06 62.67 100.0 81.35

no context encoder 46.76 53.73 63.26 89.10 77.42
no pos. embeddings 46.68 53.81 62.47 91.65 70.91

no MiniLM-v2 45.32 53.42 62.55 50.00 70.16

no metadata 45.23 53.64 62.64 89.70 83.41
no doc.-level data 46.23 53.49 61.67 68.80 74.64

random context 42.17 51.94 61.74 49.90 68.44
no context* 41.22 50.07 58.94 50.00 67.53

Table 2.19: Ablation study on model components and data settings. *Corresponds to non-
contextual Transformer.

- possibly because EAMT 2022 focuses on sentence-level phenomena, so the order of
past context matters.

Replacing MiniLM-v2 with a discrete embedding function removes the zero-shot
effect in both tasks. An interesting finding is that between metadata and document-level
data, it is the latter that brings more improvements to contextual tasks; this means
that our model potentially scales to domains without metadata. Finally, using random
context degrades performance w.r.t. full model implying that the gains come from
signals in data rather than an increase in parameters or training time.

Finally, while we do not ablate the choice of representing context as equal-sized
vectors, in this paragraph we offer a discussion of the alternative choices. Vectorisation
of extra-textual context is only one of many ways in which it can be incorporated into
the model. Alternatively, the textual fields of the context variables could be used as input
verbatim, each individually in their respective context encoders or collectively, separated
by a custom token. Another possibility is using the represented context as a prefix to
the source or target sentence, eliminating the need for a separate encoder. However,
these approaches come with challenges. First, Transformer models, particularly at the
scale characteristic of NMT applications, notoriously struggle with longer sequences
(Dai, Yang, Yang, Carbonell, Le & Salakhutdinov 2019). Adding extra tokens in the
source or target input could potentially harm the model’s quality. Moreover, even in a
separate encoder, context inputs with lengthy sequences, such as those containing plot
or character descriptions, may not be processed optimally, and the complete pipeline
may be slow to train. One notable advantage of vectorisation is its equal treatment
of each context variable, whether it is genre or plot description, at the beginning of
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training. This helps prevent information overload and ensures that longer contexts do
not dominate the model’s attention. Lastly, the cosine similarity objective used to train
MiniLM-v2 increases the interchangeability of context inputs, which is paramount in a
scenario where not all variables are guaranteed to always be represented, but there is
often a significant overlap between some of them.

2.5.9 Conclusions

We have presented MTCue, a new NMT architecture that enables zero- and few-shot
control of contextual variables, leading to superior translation quality compared to
strong baselines across multiple language pairs (English to others, cf. Table 2.17).
We demonstrated that using sentence embedding-based vectorisation functions over
discrete embeddings and leveraging a context encoder significantly enhances zero-
and few-shot performance on contextual translation tasks. MTCue outperforms the
winning submission to the IWSLT 2022 formality control task for two language pairs,
with zero-shot accuracies of 100.0 and 99.7 accuracy respectively, without relying on
any data or modelling procedures for formality specifically. It also improves by 12.08
accuracy points over the non-contextual baseline in zero-shot control of interlocutor
attributes in translation at the EAMT 2022 English-to-Polish task. Our ablation study
and experiments on formality in English-to-German demonstrated that the context
encoder is an integral part of our solution. The context embeddings produced by the
context encoder of the trained MTCue can be mapped to specific effects in translation
outputs, partially explaining the model’s improved translation quality. Our approach
emphasises the potential of learning from diverse contexts to achieve desired effects in
translation, as evidenced by successful improvements in formality and gender tasks
using film metadata and document-level information in the dialogue domain.
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2.6 chapter conclusions

Within this chapter we strived to answer RQ1, i.e. how attribute control can best be
incorporated into neural machine translation in multiple attribute and low-resource
scenarios. We have drawn the following conclusions:

1. Interlocutor attributes can be completely controlled in translation provided
adequate training data. Our work on English-to-Polish translation with the
use of extra-textual attributes highlights that, as far as the effect of grammatical
agreement is concerned, the availability of good quality training data in a sufficient
quantity should be the primary concern.

2. When considering a fully supervised multi-attribute machine translation
scenario, various methods have been suggested for integrating context
embeddings, and their performances tend to be quite similar. As shown in our
assessment discussed in §2.3, approaches that utilise additional embeddings of
context annotations achieve a comparable level of success when trained on the
same dataset. This observation implies that forthcoming fully supervised
approaches to similar problems should prioritise ensuring the availability and
quality of data, rather than solely concentrating on modelling efficiency.

3. Formality can be fully controlled in a low-resource scenario. In §2.4 we showed
how formality can be controlled given only a sample amount of training data.
Following conclusion 2., we predominantly focused on the quality and quantity
of the training data rather than modelling. We also implemented a hypothesis
re-ranking approach which further boosted the formality accuracy in our submis-
sions from 98.3% to 99.9% without impacting translation quality. This re-ranking
component in particular may offer an alternative solution to grammatical agree-
ment in translation in general: if a reward model can be built to assess the accu-
racy of a hypothesis, then the hypotheses which express the given phenomenon
correctly can be preferred over others.

4. Context has a greater impact on translation from English compared to trans-
lation into English. In the evaluation campaign utilising our proposed MTCue

architecture, we found that the models trained to translate from English experi-
enced greater advantages from our approach than models trained on the same
datasets for translation into English. While this observation is based on empiri-
cal evidence, it aligns with the prevailing pattern where translating from English
tends to derive more benefits when context is utilised. This could be attributed, at
the very least in part, to English being a naturally gender-neutral language, and
one that does not explicitly differentiate between various levels of formality.

5. Information for desirable attributes can be contained in the underlying repre-
sentation of context information. Through training MTCue on document-level
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information and film metadata, we successfully managed to manipulate a range
of speaker and interlocutor attributes in zero-shot translation. This outcome can
be attributed to how our architecture encodes and handles context. Importantly,
this strategy might pave the way for future transfer learning applications, like
training on one set of contexts and assessment on another.



3
R E F E R E N C E - L E S S A N A LY S I S O F C O N T E X T S P E C I F I C I T Y I N
T R A N S L AT I O N W I T H P E R S O N A L I S E D L A N G UA G E M O D E L S

3.1 introduction

In Chapter 2, we have presented several ways in which context can be used to improve
both translation quality and context appropriateness, exploring scenarios with varying
access to supervised data. In §2.5 specifically, we presented the MTCue system which is
trained to accept as input a range of various contextual variables. We have shown that
the model leads to improvements in translation quality compared to its non-contextual
counterpart. Thanks to the evaluation tools described in §2.3 and §2.4 we were also
able to quantify how well the model performs at satisfying grammatical agreement in
the given tasks.

What is missing from Chapter 2 – and from literature hitherto – is a method of
quantifying how well the given contextual translation method actually captures the
effect of behavioural agreement. While metrics such as BLEU and Comet highlight
potential improvements in translation quality, they would not be helpful in
distinguishing between two contextual systems: just because one achieves a higher
BLEU score, it does not mean that it is better at capturing the context-specific features
of text. The present Chapter takes a step back to focus on evaluating context specificity
directly from dialogue sentences, divorced from their source counterparts. We arrive at
a reference-free evaluation formulation which focuses on the generated translations
and, in a two-model setting, calculates how specific the translations are in the given
extra-textual context.

Studies of sociolinguistics have long accepted that spoken language is not universal
(Milburn 2004). Contrary to this, conventional approaches to generation tasks in nat-
ural language processing (NLP) build models in a one-size-fits-all fashion, and most
often for a particular language and domain, disregarding the context of the processed
text. In practice, this leads to assuming the most likely scenario as context, sometimes
resulting in harmful predictions (e.g. the “masculine default” in Schiebinger 2014). Per-
sonalisation – adapting model predictions to the unique dialogues of individuals – of-
fers clear benefits in generation tasks (Flek 2020, Dudy et al. 2021), where context in-
formation can help disambiguate the input text, aiding correct interpretation and min-
imising sample bias in training data (Dudy et al. 2021). Personalised systems, by more
effectively capturing the speaking patterns of individuals with specific characteristics
or in particular environments, can be used to generate text adapted to the individual or
more accurately estimate the likelihood of their authorship of a sentence.
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Demographic factors have been shown to improve the performance in various NLP
tasks, such as classification (Hovy 2015), generation (Zeng et al. 2019), and translation
(§2.3, Vincent et al. 2022b). This impact can be grammatical, which is well-defined and
of a morphosyntactic nature, and behavioural, which is more fluid and pertains to the
way language is used by certain demographics or in certain situations. Grammatical
agreement can be exemplified by gender, which, in some languages, determines the
morphological ending of self-referent verbs. Behavioural agreement is more subtle. For
example, the utterance “They’re done!” has a different meaning when said by a baker
about a batch of cookies than when exclaimed by a frenzied king about his treacherous
subjects. Contextual language generation methods frequently concentrate exclusively
on grammatical agreement (e.g. document-level translation in Voita et al. 2019b), and
unsurprisingly so, as it is the more well-understood and easier to evaluate of the two
types of adaptation. In practice, however, both grammatical and behavioural agreement
are required in the language generation process and a robust framework accommodates
one as well as the other.

This Chapter focuses on context-based personalisation of LMs and NMT systems for
speakers and productions in TV series and film (which we refer to as productions). The
way language is used in this domain can vary greatly; for example, TV writers will
construct characters who mimic the way of speaking of a certain group they represent;
productions from a certain decade, country or within a specific genre will capture
the discourse nuances of that group. We demonstrate how speaker and production
metadata can be used to create context-based personalised LMs that model the language
of a specific speaker or production more effectively than a one-size-fits-all model. We
then apply these LMs in practice to measure the context specificity of the tokens in
translation hypotheses – the extent to which tokens occurring in the text are specific to
the given speaker and metadata context – both in professional and machine translations,
in the domain of translating dialogue from TV series.

To define our metric, we borrow from the statistical concept of pointwise mutual
information (PMI) which measures how likely a particular utterance is to occur in the
provided extra-textual context. The metric is intuitive in interpretation: a positive PMI
suggests that the utterance is more likely in the given context than in the general
case (analogously for the negative score). Our results suggest that the degree to which
professional translations in our domain are context-specific (PMI of 0.073) can be
preserved to a better extent by a contextual machine translation model (PMI or 0.051)
than a non-contextual model (PMI of 0.028). This is also reflected in the contextual
model’s superior BLEU and Comet scores.

Our selected domain presents an additional challenge: models must be robust to
the scenario where there are no prior dialogue samples for the given speakers or
productions, i.e. when new content arrives and only metadata is available. This is
known as the cold start problem (e.g. Schein et al. 2002, Huang et al. 2014) where there
is insufficient content to characterise the subjects of a given system. Models adapted
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solely on past dialogue are not robust for this case, and we argue that a context-based
approach is more effective, mimicking the benefits of personalisation by estimating
token distributions for similar character/production profiles.

Since the datasets in our selected domain contain identifiable information such as
titles and character names, we were able to collect a rich set of metadata annotations
for the selected corpus, allowing us to perform experiments on up to 14 unique
metadata variables at once, to our knowledge the richest set of metadata information
for personalisation. In contrast, metadata-based approaches to personalisation reported
in previous work in different domains were small-scale, leveraging a few simple and
mostly categorical variables (Huang et al. 2014, Lynn et al. 2017, King & Cook 2020,
Welch et al. 2020, Guo et al. 2021).

Our work is presented in three parts: first, we consider whether rich character profiles
can be used to model the characters’ speaking styles (§3.3.4.1), including for characters
which did not appear in the training data, by learning from data for characters with
similar profiles (§3.3.4.2). Then, we explore how such personalised LMs can be used
to estimate the context specificity (or extent of personalisation) of professional and
machine translations (§3.4). Finally, in §3.5 we report on a cost-benefit analysis of the
manually collected annotations, encouraging future effort in collecting annotations
which proved most cost effective in our experiments. Additionally, we contribute
Cornell-rich (§3.3.1), a corpus of rich character and film annotations for the Cornell
Movie Dialogue Corpus (Danescu-Niculescu-Mizil & Lee 2011) (Cornell) and sMRR,
a bespoke evaluation metric for personalised language models. As an addendum, in §
3.3.3.2 we also discuss our pre-training strategy which contributed to the success of the
approach to personalising LMs. This paper also presents the related work (§3.2), and
conclusions (§3.7).1

3.2 related work

personalisation in nlp Personalisation in NLP can generally be split into three
groups with respect to how much data is available for a speaker:

1. full supervision, where there is sufficient training data to fine-tune a model for a
particular speaker,

1 The present Chapter has been submitted to a conference and is awaiting review at the time of thesis
submission. It lists eight authors, of which the first is the author of this thesis, the last is the PhD supervisor
and the remaining six are employees at ZOO Digital Group PLC, the industrial partner to this thesis.
The two top credited authors from the company - Alice Dowek and Rowanne Sumner - are the two data
annotators mentioned in the paper, directly supervised by Charlotte Blundell and receiving instructions
from the first author. Emily Preston, Chris Bayliss and Chris Oakley were involved in supervising the
data collection process for the ZOO corpus discussed in the paper. Finally, the majority of the authors
contributed by revising the paper before submission to a venue.
An earlier draft of this work has been made available on arXiv (Vincent, Sumner, Dowek, Blundell, Preston,
Bayliss, Oakley & Scarton 2023).
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2. few-shot, where some supervised data exists but not in quantities sufficient for
supervised training,

3. zero-shot, where no samples of text exist for the speaker used in evaluation.

Full supervision is usually facilitated through some form of a user embedding or tagging
approach (e.g. Sennrich et al. 2016b, Keskar et al. 2019, Mireshghallah et al. 2022): in
abstract, a unique token is assigned to each speaker and provided together with samples
of dialogue of that speaker during training and inference. Among few-shot approaches,
King & Cook (2020) examine several personalisation methods for language modelling
of blog posts with sample adaptation data for new users: fine-tuning, interpolation
(averaging the fine-tuned speaker model with a general model), priming (updating
the cell state of the language model; only possible within selected architectures), and
demographic-based adaptation (fine-tuning on text from users with the same age and
gender). They find that interpolation works best when a relatively large amount of data
is available for the speaker, while priming outperforms all other methods when little
data is available. Welch et al. (2022) consider a scenario where models built for “anchor
users” (who boast a large history of posting) are leveraged to build models for new
users (with a small number of posts), focusing on the similarity between samples of
users’ posts. They find that interpolating fine-tuned models of several anchor users
based on the similarity between their and the new user’s user embedding performed
better than weighted fine-tuning and interpolation based on authorship attribution and
perplexity-based methods.

Zero-shot approaches typically leverage background data available for the new
speakers, like demographic factors or metadata. Huang et al. (2014) rely on the social
network of a user to model their language; Lynn et al. (2017) use age, gender, and
personality traits to improve user modelling in multiple NLP tasks; Zeng et al. (2019)
leverage user profiles to improve comment generation on a social media corpus; Welch
et al. (2020) produce compositional demographic word embeddings by learning
demographic-specific vectors for same training data as the NMT models to measure
each word in the vocabulary. Demographic-based adaptation was found inferior to
interpolation and priming in the few-shot scenario by King & Cook, but their study
only used two factors: age and gender. More recently, substantial strides have been
made in leveraging large language models (LLMs) as a potential cornerstone for
personalised NLP applications. Salemi et al. (2023) introduce the LaMP benchmark,
specifically tailored for various personalised LLM tasks. Their discussion delves into
strategies for personalising LLM outputs at inference time. Aware of the trade-off
between input length and quality in LLMs, they opt for a method involving a retrieval
module that selects the most useful features from the user’s profile for the given input.

Our work is also positioned in the zero-shot category as we rely on rich metadata
annotations to model the dialogue of individual screen characters appearing in par-
ticular productions. Unlike King & Cook, we leverage textual (real-valued) metadata
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annotations, which in personalisation are preferable to categorical values (Lynn et al.
2017), and a significantly higher count of them (up to 14). Ultimately, our approach,
though not reliant on potentially potent LLMs, boasts full trainability and deployability
on commonplace hardware. In contrast with Salemi et al., our method not only scales
effectively to the zero-shot scenario but also capitalises on supervised dialogue sam-
ples for users with accessible records of past dialogues or responses. Importantly, we
also leverage our personalised LMs to quantify context specificity in professional and
machine translation.

A few works have explored the idea that context in LMs can be summarised with pre-
trained models. Ippolito et al. (2020) propose a language model which selects the best
continuation to a story from a finite set of pre-trained embeddings. Novotney et al. (2022)
introduce the notion of cue (contextual universal embedding) vectors, representing
individual context variables as pre-trained vectors. They use DistilBERT to obtain the
vectors, pass them through a context encoder and average the result. Novotney et al.
demonstrate that including article metadata in the form of cue improves perplexity
in language modelling of the articles. Vincent, Flynn & Scarton (2023) explore this
idea further, applying it to machine translation of dialogue and showing that pre-
training on film metadata helps zero- and few-shot performance in some contextual MT
tasks. In this paper, we leverage context in the same way as Vincent, Flynn & Scarton
(2023), but focus on contextual language modelling, and specifically on personalisation
for individual characters and films. We also explore a practical exploration of such
personalised LMs in evaluation of contextual MT (§3.4), and contribute an evaluation
metric for personalised LMs (§3.3.3.4).

evaluation of contextual machine translation Traditional measures
of MT quality (§ A.2.3.2) are based on sentence-level matching to references, and
offer little insight into performance at maintaining or introducing context-specific
features of the source text. Alternative evaluation methods of contextual MT have
been explored to address this. When contextual phenomena are directly observable
and necessitate grammatical agreement (e.g. in formality transfer or document-level
translation), evaluation usually involves parsing tools (Sennrich et al. 2016b, Vincent
et al. 2022a) or contrastive evaluation on bespoke test suites (Bawden et al. 2018a, Müller
et al. 2018, Voita et al. 2019b, Lopes et al. 2020). However, the creation of such tools
and test sets is expensive, and as argued in Post & Junczys-Dowmunt (2023), strong
performance at contrastive evaluation does not necessarily entail the ability to generate
contextual translations in practice. Evaluation of behavioural agreement (e.g. preserving
individual style of a character or production), has mostly been limited to classification
systems (e.g. Michel & Neubig 2018b) which attribute the input text as belonging to one
of a list of speakers. However, such systems depend on sufficient quantities of training
data for each considered speaker, which is usually not readily available.
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language models in machine translation Language models have been
utilised to improve machine translation as means of improving fluency (Stahlberg
et al. 2018), boosting document-level performance (e.g. Sugiyama & Yoshinaga 2021)
or evaluation (Edunov et al. 2020). In contrast, we build a tandem of language models
from the same training data as the NMT models to measure to what extent the NMT
generations are context-specific. Our metric is pointwise mutual information (PMI) (§
A.3), computed in a vein similar to Sugiyama & Yoshinaga (2021) who used PMI between
document context and the target utterance to boost document-level performance of MT.

3.3 building a personalised language model

The first stage of our work delves into building a personalised language model for
dialogue associated with rich contextual annotations. We create two metadata-rich
datasets (§3.3.1) and train a contextual language model to capture the distribution of
the tokens in the dialogue given a set of contextual variables (§3.3.3.1). This section
addresses the following research questions (RQs):

RQA How can rich character profiles be used to model the characters’ speaking
styles? (§3.3.4.1)

RQB How can a LM be personalised for a specific character solely by learning
from data for characters with similar profiles? (§3.3.4.2)

3.3.1 Datasets

Since context-annotated dialogue data is hard to come by, we use a combination
of manual and automatic annotation to create two English-language corpora: ZOO-
English and Cornell-rich, which we describe in this section. The domain of both
corpora is TV series and film dialogue respectively, and samples within each corpus
consist of: an utterance in English and a set of up to 14 textual metadata annotations for
the speaking character (age bracket, country of origin, description, gender, profession,
religion and characteristic quote) and for the production (country, genre, PG rating,
plot description, writers, year). Below we summarise the descriptions for each corpus.

the zoo-english corpus The ZOO-English corpus is a private in-house collec-
tion of subtitles for nine anglophone TV series. It totals 157K dialogue lines and an-
notations for 159 speakers of 101K lines. It is divided into traditional test, valid and
train, but features an additional test set of metadata and dialogue from 11 held-out
speakers who do not appear in the remaining sets. Quantitative details are reported in
Table 3.4 (rows 1-5) and a sample from the corpus is presented in Table 3.1. The corpus
was created from production-ready subtitle files from which dialogue with character
and TV series attributions was extracted. This data was subsequently annotated with
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Metadata type (% annotated) Value

Speaker metadata (50.3%)
Age bracket Adult
Description Chris Kraft is an American aerospace and

NASA engineer who was instrumental in
establishing the agency’s Mission Control
Center (...)

Characteristic quote He just kited a damn check.
Country of origin United States

Gender I am a man
Profession Flight Director

Religion Christian
Production metadata (87.1%)

Genre Drama, History
PG rating PG rating: TV-14

Names of writers Written by: Mark Lafferty
Country of production United States

Year of release Released in 2020

Plot description U.S. fighter pilots are recruited to test ex-
perimental aircraft and rockets to become
first Mercury astronauts.

Table 3.1: A sample of metadata from the ZOO-English corpus.

production metadata (automatically, via the OMDb API2) and character metadata for
the most frequently speaking characters. The annotation process is detailed in §3.3.2.

the cornell-rich corpus Much like ZOO-English, Cornell-rich is a dataset of
rich character and production annotations, albeit for film dialogue extracted from scripts.
It includes 14 distinct metadata variables captured as text. The collected annotations
can be linked to the entries of Cornell (Danescu-Niculescu-Mizil & Lee 2011) which is
a corpus of exchanges from a set of film scripts, with character dialogue attributions
(Figure 3.1 illustrates how Cornell-rich enriches the original corpus). Both dialogue
data and annotations are in English. Cornell-rich comprises annotations for 863
speakers (speaker profiles), covering 135.7K utterances; nearly half of the annotated

2 https://www.omdbapi.com/

https://www.omdbapi.com/
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speakers have 150+ lines of dialogue and about 25% have 200+. At least 64.1% of
conversational exchanges feature at least one annotated character and as much as 95.5%
of the featured films are annotated with film metadata (Table 3.2). We provide a full list
of collected metadata with examples in Table 3.3.3

Figure 3.1: Comparison between Cornell and our proposed Cornell-rich.

(a) Number of lines per produc-
tion year of films in the corpus.

(b) 15 most popular professions in
the corpus.

(c) 12 most popular genres in the
corpus. Titles labelled as multi-
ple genres are counted multiple
times.

Figure 3.2: Visualisation of a subset of features of the proposed corpus.

As per Figure 3.2, the annotated films span nearly a century, with most lines coming
from between the 1990s and 2005; the distribution of professions is significantly flatter,

3 The annotations are available to download at https://github.com/st-vincent1/cornell-rich

https://github.com/st-vincent1/cornell-rich
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Count % of all Utterances % of all

speakers 9.0K − 304.3K −
863 9.5% 135.7K 44.6%

8.2K 90.5% 170.1K 55.9%

exchanges 83.1K − 304.3K −
⇔ ( or ) 53.3K 64.1% 202.4K 66.5%

⇔ 36.8K 44.3% 134.4K 44.2%
⇔ 16.5K 19.8% 68.0K 22.3%

films 617 − 304.3K −
annotated 589 95.5% 291.0K 95.6%

Table 3.2: Details of annotations compared to data quantities from Cornell. = speaker with
rich annotations. = speaker without rich annotations.

with the dominant field (“High School Student”) only making up about 3% of the
corpus. Finally, the most popular genres include drama, comedy, crime, and action.

the opensubtitles corpus We use the OpenSubtitles18
4 corpus (Lison et al.

2018) (OpenSubtitles) to pre-train the language models. It is a a large collection of
subtitles with timestamps that facilitate the extraction of document-level information.
Focusing on past context with no loss of generality, we extract up to 3 past sentences
based on the timestamps (Table 3.4, rows 11-12). Roughly 68% samples contain at least
one past sentence. We detail how the models are pretrained in §3.3.3.2.

3.3.2 Details regarding the data collection campaign

The data collection process of the Cornell-rich and ZOO-English annotations was
carried out by two annotators, both native English speakers and experts in the dubbing
and subtitling industry, formally employed by ZOO Digital. After parsing Cornell

5

and ZOO-English, a spreadsheet of characters was generated that included the names
of the characters, the names of their source films, and the number of lines attributed to
each character.

From previous work (e.g. Johannsen et al. 2015) and hypotheses made based on
experts’ experience, we pre-defined a number of categories of information to collect

4 Based on https://opensubtitles.org/
5 https://convokit.cornell.edu/documentation/movie.html

https://opensubtitles.org/
https://convokit.cornell.edu/documentation/movie.html
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Metadata type (% annotated) Value

Speaker metadata (44.6%)
Gender A man

Age bracket Adult
Profession Attorney

Description Galvin graduated from Boston College’s
law school. Galvin had a promising legal
career ahead of him at an elite Boston
law firm until he was framed for jury
tampering by a partner due to his plans to
expose the firm’s underhanded activities.
(...)

Quote Your honor, with all due respect: if you’re
going to try my case for me, I wish you
wouldn’t lose it.

Country of origin USA
Religion Christian

Film metadata (95.5%)
Genre Comedy, Drama

PG Rating PG Rating: R
Names of writers Written by: Paul Andréota, André Cayatte,

Henri Coupon
Country of production France, Italy

Year of release Released in 1974

Plot description A French judge try to acquit a man who
is accused of murdering his lover.

Table 3.3: A sample from Cornell-rich with each type of collected metadata.

about each character. Specifically, we selected categories that we hypothesised to
(i) be identifiable from the available sources and (ii) influence a person’s speaking
style or vocabulary used. They were: their age bracket ∈ {child, teen, young adult,
adult, elderly}, profession, character description (a few sentences summarising their
personality or character arc), religion and a characteristic quote: a typical or quotable
phrase the character might say. Additionally, the gender annotations from the original
corpus were re-used, and an optional column “additional information” was included
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to collect comments from experts6. The characters with the most lines spoken were
prioritised. This resulted in 863 characters being annotated for Cornell-rich and 159
for ZOO-English.

annotation sources Annotations are based on publicly available pages from
Wikipedia7 for individual films, as well as fan-made Fandom8 pages for both films
and characters. Where information was unavailable from these sources, the annotators
either referred back to the corpus itself or skipped the given field altogether. The film
metadata was obtained via the OMDb API9.

annotation decisions The annotation process involved matching every script’s
name against an IMDb entry, which did not always yield a match as some scripts had
been scrapped or rewritten or characters’ names had been changed. Unidentifiable
films and characters were not considered for annotation. Some information, especially
religion, was occasionally difficult to find, in which case it would be skipped or labelled
as Unknown. It was challenging to produce annotations for characters based on real
people, or for a real person played by themselves. Where characters were based on
historical figures, the annotators focused on the production interpretation of the person;
when dealing with a characterisation of the person at a specific point in time, the
focus was on their behaviour at that point in time. Finally, some characteristics were
unsuitable for selected character information: e.g. when a character was immortal, it
did not fit into set age brackets, and for some characters there were limited clues to
determine their age bracket. In both cases, the final annotations were based on the
annotators’ expertise.

preprocessing Since both ZOO-English and Cornell are of high quality as
is, our preprocessing only involves normalising punctuation, removing tokenisation
using the sacremoses package10, fixing leftover punctuation issues (e.g. ensuring all
multi-dots use three dots) and removing HTML tags. We also preprocess all (original
and added) annotations so that: (i) all empty fields are expressed as an empty string;
(ii) there are no multiple expressions of the same discrete type (e.g. m and M to denote
masculine gender); (iii) all attributes are expressed in unambiguous natural language
(e.g. a PG rating of “R” is rewritten as “PG Rating: R”). OpenSubtitles is preprocessed
following Vincent, Flynn & Scarton (2023), using the scripts provided by the authors.
For subword tokenisation, we use SentencePiece to train a BPE model of 8K tokens on
the train split of Cornell-rich; it is then used to tokenise all datasets.

6 Upon inspection: the annotators predominantly used this field to provide the actor’s name, an interesting
fact about the character (e.g. “Plays a caricature of himself”), or trivia.

7 https://wikipedia.org/
8 https://fandom.com/
9 https://omdbapi.com/

10 https://pypi.org/project/mosestokenizer/

https://wikipedia.org/
https://fandom.com/
https://omdbapi.com/
https://pypi.org/project/mosestokenizer/
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Total number of
Row Dataset & split segments tokens metadata types

(1) ZOO-English

(2) train 140.4K 1.1M

13
(3) valid 4K 31.3K
(4) test 6K 47.1K
(5) test_unseen 6.7K 51.5K

(6) Cornell-rich

(7) train 289.0K 3.1M

14
(8) valid 5K 51.2K
(9) test 5K 54.4K
(10) test_unseen 5.2K 54.6K

(11) OpenSubtitles

(12) train 14.7M 109.6M 3*

Table 3.4: Quantities of segments, tokens (pre-tokenisation) and unique metadata (speaker and
production) in datasets. *OpenSubtitles uses three past sentences as proxy metadata.

3.3.3 Experimental Setup

3.3.3.1 LMCue Architecture

Our selected language model architecture is adapted from the MTCue model (Vincent,
Flynn & Scarton 2023), which is a Transformer-based multi-encoder contextual machine
translation system. MTCue processes the source text with a source encoder and the
context information with an additional context encoder. We convert MTCue to a
language model by removing the source encoder, resulting in a conditional encoder-
decoder LM where context is treated as the input to the encoder. The sequence of
context information is converted to a sequence of equal-sized vectors with a sentence
embedding model (MiniLM-v2). This approach has the advantage of treating both
discrete and continuous (text) inputs in the same way, potentially utilising the semantic
information of the discrete labels, as well as allowing longer spans of context as input
without issues of long-range dependencies. The target sequences are contextualised via
standard encoder-decoder attention which maps queries (target) to keys and values
(context). We select this approach as MTCue can process large sets of contextual
information and has the potential to scale well to few- and zero-shot scenarios, which
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in our case are explored when we consider test sets with completely new speakers.
Hereinafter we refer to this architecture as LMCue

11.

3.3.3.2 Pre-training

Our preliminary experiments showed that training LMCue from scratch on Cornell-
rich lead to results inferior to a non-contextual language model trained on the same
data (discussed in §3.6). We therefore experimented with pre-training the model first.
Since a larger corpus of dialogue with character metadata is typically unavailable, we
used a corpus with document-level information and treated the past dialogue for any
sentence as the metadata context. We hypothesised that at a larger scale, the effect of
metadata embeddings on text generation will be similar to the effect of embeddings
of past dialogue (Figure 3.3), meaning the pre-training procedure allows the model to
learn dependencies between the context and the text.

Figure 3.3: An illustration of the pre-training and fine-tuning regimens used in the experiments.

This approach has the advantage that metadata-rich corpora are likely to be too small
to train a model from scratch, but document-level information is abundant. In our case,
pre-training on past dialogue proved successful; consequently, all models considered in
our experiments are pre-trained. For this purpose, we use the OpenSubtitles corpus (§
3.3.1).

11 We make the implementation of LMCue available at https://github.com/st-vincent1/LMCue.

https://github.com/st-vincent1/LMCue
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3.3.3.3 Baselines and Implementation

We consider three baselines: a non-contextual LM (base-LM), a speaker-wise fine-tuning
baseline (SpFineTuning) and a linear interpolation method (Lerp) which ensembles
SpFineTuning with the general model base-LM at test time; both baselines are modelled
after King & Cook (2020).

We implement LMCue by modifying the code provided by (Vincent, Flynn & Scarton
2023). The model has 159M parameters and comprises a context encoder (38M) and
a decoder (121M). 25% of the decoder’s parameters are used by the encoder-decoder
attention; a non-contextual decoder of this shape would have 91M parameters. To make
the comparison fair, base-LM matches the total number of parameters in LMCue (159M)
and is therefore wider than the decoder in LMCue (for details see Table 3.5). This strong
baseline removes the possibility that the model improves simply because of a higher
parameter count12. All other baselines (SpFineTune, Lerp) share the architecture and
size of base-LM.

Params dmodel nlayers h FFN dim.

(1) LMCue (Enc.) 38M 512 6 8 2048
(2) LMCue (Dec.) 121M 768 12 12 3072
(3) LMCue (total) 159M − − − −

(4) base-LM 159M 1024 12 16 4096

Table 3.5: Model details for LMCue and base-LM.

The LMCue models are pre-trained on OpenSubtitles (using past dialogue as
context), while base-LM is pre-trained on the text part of the corpus, one sentence at a
time. We use off-the-shelf model architectures with pre-defined hyperparameters in
Fairseq and only tune on three values each for batch size (simulated 200K to 400K
tokens) and learning rate (3e− 4 to 1e− 3) based on validation performance on valid in
Cornell-rich. For fine-tuning, we separately adapt these parameters for each dataset
and metadata combination: learning rate (5e− 5 to 1e− 3) and batch size (0.25K to
20K tokens). The best fine-tuning set of learning rate and batch size was 5e− 5 and
1.5K for LMCue and 2e− 3 and 3K for base-LM. Each model was trained on a single
32GB V100 GPU with an early stopping condition of validation loss not improving for
5 epochs. Pre-training LMCue and base-LM took 35 and 17.5 GPU hours respectively
while fine-tuning these models took respectively 0.78 and 0.32 GPU hours on average.

12 Results from using the smaller baseline LM (91M params) were consistently inferior to 159M by up to 0.75
perplexity.



3.3 building a personalised language model 73

3.3.3.4 Evaluation

For evaluation, we use perplexity (ppl) as well as sMRR, which we define as follows: let
Mj be a model personalised for a speaker sj and Ui be a set of utterances by a speaker
si. We calculate speaker reciprocal rank sRR for any speaker k by scoring the Uk with
M1, ..., Mn (expressed with log likelihood), then ranking the models best to worst by
this score13 and taking the reciprocal rank (1/rank) of Mk, the model for speaker k (see
Figure 3.4). sMRR is sRR averaged for all speakers; 1/sMRR is the average rank of the

Figure 3.4: sRR illustrated for one speaker (Hannah).

correct speaker model. Intuitively, this metric captures the strength of the association
between dialogue and the speaker model: sMRR of 1.0 indicates that for any speaker j,
the model Mj produces the best score for Uj.

Unless otherwise specified, all results are calculated from five runs with different
random initialisation, and the reported value is the mean result. We highlight the best
overall result. Unless another result is underlined, it is significantly worse (indicating
a less effective model) than the best result in bold, with a confidence interval of 95%
(computed with a one-tailed t-test, t(4) = 1.65, p = 0.05).

13 Ties are resolved pessimistically.
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3.3.4 Results

This section presents the results of training LMCue on the Cornell-rich and ZOO-
English corpora. As before, we use the umbrella term production to refer to the
different types of media (film and TV series) in the corpora. Furthermore, we use S
and P to denote that Speaker or Production metadata was used in training (or both,
i.e. S + P).

3.3.4.1 Are speaker profiles helpful?

We examine whether including speaker profiles as a supplementary input in language
modelling can result in significant quantitative improvements. For this, we train models
on the train splits and evaluate on the test splits of both corpora, with overlapping
speakers (= unique combinations of speaker profiles) between them. As demonstrated
in Table 3.6, context-based personalisation with LMCue results in substantial reductions
in perplexity compared to the best baseline, with a decrease of 5.4% for Cornell-rich

and 6.5% for ZOO-English, respectively.

Cornell-rich ZOO-English

valid test valid test

baselines
base-LM 22.35 23.38 18.42 18.41

proposed
LMCue (S) 21.37 22.37 17.52 17.55
LMCue (P) 21.07 22.04 17.18 17.29

LMCue (S + P) 21.14 22.13 17.13 17.21

Table 3.6: Perplexity↓ on different validation and testing sets for the two corpora.

is speaker-based adaptation better than direct fine-tuning? To
determine the effectiveness of our context-based adaptation approach when compared
to LMs fine-tuned on the available speaker dialogue, we focus our setup on five
long-term (multi-episode TV) speakers with at least 3, 000 lines of dialogue sources
from the ZOO-English corpus (Table 3.7). For each speaker, we use 400 and 600 of
these lines for validation and testing, respectively. Within this experiment, we use
SpFineTune and Lerp as baselines. We obtain SpFineTune by fine-tuning the LM on all
ZOO-English data initially (FT1), and then once more on speaker data alone. Lerp is a
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ID #Lines Age Profession Country Genre Characteristic quote

sp01 7.5K Teen Student, Spy United States Comedy “Look, I love you! I have loved you since the
moment I saw you. Please! I’ll never get a
chance to tell you.”

sp02 3.9K Young
Adult

Unemployed,
Community
Service

United Kingdom Comedy, Drama “In the words of the great Lionel Richie...hello.”

sp03 3.2K Adult Actor United States Docuseries “So be present, be spontaneous. Enjoy the
moment, enjoy yourself and learn.”

sp04 3.1K Adult Criminal Profiler United States Crime, Drama, Horror “It isn’t very smart to piss off a guy who thinks
about killing people for a living.”

sp05 3.1K Adult Psychiatrist United States Crime, Drama, Horror “Before we begin, I must warn you... nothing
here is vegetarian.”

Table 3.7: Selected metadata regarding long-term speakers from ZOO-English used in the
experiment.

ID Top-gaining sentence (4+ words) Five top-gaining tokens Top-losing sentence (4+ words)

sp01 “Paranoid and can fit into small
spaces.”

Okay, Wait, spy, Mom, mission “To teach and to lend a guiding hand.”

sp02 “Fucking nuns! Fucking shit!” Fuck, Shit, Fucking, fucking, fuck “English, Math and French.”

sp03 “I love this car.” Wow, ital, coffee, brain, b “I’m not opposed to doing things to my
teeth.”

sp04 “One missing kid’s a boy.” killer, Jack, kill, close, life “She was a slim and delicate pig.”

sp05 “Is your conscience clear?” got, killer, Will, Jack, Ab “Simpler times in boatyards with dad.”

Table 3.8: Sentences and tokens for which the log likelihood under LMCue (S +P) changes the
most compared base-LM.

mean interpolation of SpFineTune with FT1. We do this individually for each speaker
∈ {sp01, ..., sp05}.

LMCue achieves results comparable to all speaker-fine-tuned models (Table 3.9).
When using speaker metadata (S), LMCue achieves sMRR of 1.0 just like fine-tuned
models, suggesting the perplexity improvements come from the model’s context-based
predictions. LMCue (P) achieves lower sMRR (0.8): its predictions are based only on
production metadata, not considering that two different characters may come from the
same production. Speaker profiles S are necessary for full speaker adaptation.

Any adapted model, whether fine-tuned or metadata-based, yields a reduction in
perplexity between 5.1% and 6.8% which is comparable to results on test. SpFineTune

achieves the best overall perplexity reduction of 1.32 and 1.0 sMRR, with LMCue

(S + P) yielding a statistically comparable reduction of 1.29 and the same sMRR while
requiring (i) no fine-tuning and (ii) the maintenance of only one model for all speakers.
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sMRR↑
ppl
↓

sp01 sp02 sp03 sp04 sp05 Mean

baselines
non-context

base-LM 0.2 15.24 17.39 23.53 18.64 21.14 19.19
fine-tuning

SpFineTune 1.0 14.54 16.01 21.76 17.36 19.50 17.84
Lerp 1.0 14.35 16.31 22.25 17.66 19.91 18.10

proposed
metadata-based

LMCue (S) 1.0 14.99 16.75 21.86 17.54 19.89 18.21
LMCue (P) 0.8 14.68 17.17 21.26 17.12 19.45 17.94

LMCue (S + P) 1.0 14.77 16.77 21.22 17.10 19.47 17.87

Table 3.9: Results on the test set for long-term speakers. Underlined results are on par with
results in bold.

To illustrate how personalisation manifests in practice, we identify the predictions of
LMCue (S +P) with the most increased and decreased log likelihood compared to base-
LM (compare Table 3.7 and Table 3.8). Top-gaining tokens have strong associations with
certain categories, like profession (sp01 “Student, Spy”→ spy, Mom, mission), age (sp02
“Young Adult”→ expletives) or genre (sp04, sp05 “Crime, Drama, Horror”→ killer).
Similarly, top-gaining sentences for sp01 and sp02 have a comedic overtone (matching
the genre), while the top-losing sentences do not fit these characters’ demographic
profiles.

3.3.4.2 Zero-shot Transfer to Unseen Speakers

In this section, we assess the effectiveness of speaker adaptation for completely new test
speakers featured in the test_unseen sets of both corpora. To reiterate, these speakers’
dialogue is excluded from training and validation data (although there are overlaps
in production metadata). As before, we fine-tune the pre-trained LMCue on the train

splits. We compare the performance only to base-LM since other baselines are not
equipped to work well in this zero-shot scenario.

Results for this scenario reported in Table 3.10 show that LMCue (S) still improves
perplexity over a parameter-matched LM. Though these improvements are smaller
than in the supervised scenario, they are still significant, especially for ZOO-English
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Cornell-rich ZOO-English

test_unseen test_unseen

Approach ppl
↓

sMRR↑ ppl
↓

sMRR↑

baselines
base-LM 23.62 0.03 17.11 0.09

proposed
LMCue (S) 23.28 0.70 16.49 0.39
LMCue (P) 22.00 0.80 16.21 0.19

LMCue (S + P) 22.31 0.96 16.35 0.32

Table 3.10: Results of evaluation with speaker & film metadata on the test set of unseen speakers.

(−0.62). More importantly, for both corpora S is strongly beneficial towards high
speaker separation (i.e. the model assigns the highest probability to dialogue which
matches the given speaker’s profile), as measured by sMRR. Perplexity does improve
more when P is also used (1.4 → 5.6% for Cornell-rich, 3.6 → 4.4% for ZOO-
English), though in this scenario we are evaluating the easier task of modelling new
speakers in seen or unseen productions. Production metadata alone yields the best
reduction of 6.9/5.3%. Using it has a different effect on the two test sets: first, in
Cornell-rich it induces a stronger boost in sMRR than S (+0.08), while in ZOO-
English it decreases it considerably (−0.20); second, using it in conjunction with S
results in best sMRR in Cornell (0.94), but not so for ZOO-English. This can be
explained by the fact that ZOO-English uses a pool of only nine productions (vs 595
in Cornell-rich), so adding P on top of S is unlikely to increase speaker separation.
In contrast, Cornell-rich uses a rich pool of films, so film metadata is more likely to
be unique between any two speakers, thus introducing it separates the two speakers
even more, increasing sMRR. This is also why sMRR is so high for LMCue (P): with
24 unique films between the 30 speakers the film metadata is rarely shared between
any two speakers, making their context inputs more dissimilar. The magnitude of
improvements in sMRR is also different for the two corpora, which again could be
attributed to scale (863 vs 159 speakers, 595 vs 9 productions). Increasing the number
of annotated entities can therefore improve the personalisation effect. Nevertheless, a
score of 0.39 still suggests that LMCue ranks an unseen character on the 2.56th position
with a model built from their demographic profile, on average.

Using LMCue (S + P), we queried the words for which log likelihood increased
the most w.r.t. base-LM in the test set of Cornell-rich and obtained a list of the
following fifteen tokens:
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crew shark ship azz birds casino space leads
power ocean camp boat cops baby ace

Many of these tokens are context-specific and would only appear in certain scenarios
or domains. For example, casino or space are unlikely to appear in a sentence unless
they represent locations within the film. A subset of the provided tokens (crew, shark,
ship, ocean, birds) may also collectively describe a single scenario, such as an adventure
or thriller film set on a ship in the middle of an ocean. We hypothesise that a few
such films appeared in the training set Cornell-rich, allowing LMCue to develop a
strong prior for predicting these tokens when metadata of similar films is provided as
input. Finally, these tokens are notably more generic than those in Table 3.9: we observe
that the effect of biasing speaker-specific vocabulary may be limited for some tokens
compared to the supervised scenario (e.g. tokens representing names of the character’s
co-stars are not related to demographic features so would not be affected in a zero-shot
scenario).

3.4 measuring personalisation in professional and machine transla-
tions

In §3.3 we have established empirically that LMCue exhibits effects of context-based
personalisation, acting as a person- and production-specific language model when
provided with their metadata, and is comparable with speaker-specific fine-tuning
approaches (§ 3.3.4.1). Compared to a general language model, it assigns higher
probability to tokens which are more likely to occur in the given character and
production context. Within this section, we use this model as a “contextual oracle”,
applying it to various streams of dialogue to obtain judgements on how likely the
dialogue is to be said in the given context. We also use a non-contextual language
model as a “non-contextual oracle”, to measure the extent to which the given text
co-occurs specifically with the provided context. We are interested in the following
research question:

RQC Can MT offer personalisation benefits proportional to professional transla-
tions?

We operate on four iterations of the same text: original version in English (Original),
professional translations of the original text to French, German or Polish (Reference),
and several versions of machine-translated text, which we describe below. Our goal is
to establish to what extent the effect of personalisation (context-specificity to particular
character and production descriptions) is found in professional and machine transla-
tions, and whether hypotheses generated by a contextual machine translation system
exhibit stronger personalisation effects compared to non-contextual.
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3.4.1 Datasets

the zoo-multi corpus For our experiments, we use the ZOO-Multi. It consists
of a subset of the episodes featured in the ZOO-English corpus, but is extended in
two ways: (i) it includes professional translations to French, German and Polish, and
(ii) it contains three additional groups of contextual annotations. In total, the following
context types are included in this dataset:

1. document-level context: the previous five utterances in the source language.

2. production metadata: country, genre, PG rating, writers, plot description and
year; this metadata was obtained via the OMDb API14 and is the same kind of
information used in OpenSubtitles.

3. scene metadata: location, description of activity performed by the characters and
the topic of their conversation.

4. speaker profiles: age bracket, character description, country of origin, gender
identity, profession, religion and a characteristic quote.

5. addressee characteristics: number of interlocutors, their gender identities15 and
the formality register.

We report an example from the corpus in Table 3.11. The slight discrepancies between
quantities for different language pair are the result of some series not being translated
to the given language. This corpus is split differently into training, validation and
testing subsets than ZOO-English.

This corpus is split differently into training, validation and testing subsets than
ZOO-English. Specifically, we pre-select 14 episodes of three unique TV series:

• four episodes (240 min) of The Big Family Cooking Showdown16 (BigFam;
2017-2018), an unscripted British family team cooking competition.

• four episodes (240 min) of The Right Stuff17 (RightStuff; 2020), a scripted
American historical drama series about the United States’ space programme.

• six episodes (180 min) of The World According to Jeff Goldblum18 (WorldJeff;
2019-2022), an American documentary series which follows the acros and musician
Jeff Goldblum19 on his exploration of various subjects through conversations with
experts and enthusiasts.

14 https://www.omdbapi.com/
15 For multiple addressees, the gender identity of the group is used, e.g. “All female”.
16 https://en.wikipedia.org/wiki/The_Big_Family_Cooking_Showdown
17 https://en.wikipedia.org/wiki/The_Right_Stuff_(TV_series)
18 https://en.wikipedia.org/wiki/The_World_According_to_Jeff_Goldblum
19 https://en.wikipedia.org/wiki/Jeff_Goldblum

https://www.omdbapi.com/
https://en.wikipedia.org/wiki/The_Big_Family_Cooking_Showdown
https://en.wikipedia.org/wiki/The_Right_Stuff_(TV_series)
https://en.wikipedia.org/wiki/The_World_According_to_Jeff_Goldblum
https://en.wikipedia.org/wiki/Jeff_Goldblum
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Type of text field (% populated) Example

source sentence That will take 12 hours.
target sentence Cela prendra 12 heures.

past dialogue (83.4%± 6.9)
n− 5 Unless it explodes when you shoot it.
n− 4 I suppose that could happen. What do you suggest?
n− 3 Nothing.
n− 2 Nothing. We do nothing.
n− 1 We wait for the battery to run down and let the oxidizer boil off.

production (59.1%± 28.6)
country United States

genre Drama, History
PG rating PG rating: TV-14

plot description U.S. fighter pilots are recruited to test experimental aircraft and rockets
to become first Mercury astronauts.

writers’ names Written by: Mark Lafferty
year Released in 2020

scene (81.6%± 0.6)
activity Talking, (...) arguing

conversation topic Rocket launch malfunction
location Blockhouse

speaker (45.9%± 22.5)
age bracket Adult
description Chris Kraft is an American aerospace and NASA engineer who was

instrumental in establishing the agency’s Mission Control Center (...)
characteristic quote He just kited a damn check.

country of origin United States
gender I am a man

profession Flight Director
religion Christian

addressee (90%± 9.6)
number & gender I am talking to a man

register (formality) Informal chit-chat

Table 3.11: Details regarding the ZOO-Multi corpus (EN-FR sample). Certain examples have
been shortened for brevity.

The remaining data is split as follows, in two different data settings: Disjoint, where
we use the remaining episodes as validation data, and all other TV series as training
data (so that there is no overlap between training and validation/testing data) and
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Overlap, where we include the remaining episodes in the training data, and select
random utterances from other series for validation. For example, if RightStuff is used
for testing, in the Disjoint setting no samples from that show are allowed in training,
but the Overlap setting will use all non-testing episodes as training data.

Number of samples
Row Dataset & split en-fr en-de en-pl

(1) ZOO-Multi

(2) Disjoint

(3) train* 58.5K 59.0K 107.1K
(4) valid* 4.0K 3.8K 4.1K
(5) Overlap

(6) train* 60.3K 60.8K 106.1K
(7) valid* 2.3K 2.3K 2.3K
(8) test 7.8K 7.8K 7.6K
(9) OpenSubtitles

(10) train 14.7M 5.3M 12.4M

Table 3.12: Quantities of segments in ZOO-English and OpenSubtitles. *Values are averaged
over dataset iterations generated for each of the three series.

The motivation for this dual setup is to represent the real-life scenarios of the subtitle
translation task: when no past episodes are available for the considered series (Disjoint),
and when there are some already completed translations that can be leveraged, e.g.
for past seasons of a series, or a prequel to the film (Overlap). Since we operate in a
low-resource scenario, to maximise the usage of our available data, when evaluating on
any of the three testing series we generate a new training and validation dataset which
uses the remaining testing sets for training; see Table 3.12, rows 1-8 for quantitative
details).

opensubtitles corpus For pre-training, we re-use the version of OpenSubtitles

corpus described in Vincent, Flynn & Scarton (2023). The dataset comprises sentence
pairs annotated with six production metadata (analogous to e.g. ZOO-Multi) and
document-level data. Data quantities are listed in Table 3.12, row 10.
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3.4.2 Evaluation

We evaluate how well adapted to context individual version of the text are by finding
out the degree of co-occurrence between individual sentences or translations and their
specific extra-textual context. We express results as the PMI (§A.3) between the context
C and the target utterance or hypothesis H, which is computed as:

PMI(C,H) = log
p(H | C)

p(H)
(3.1)

= log p(H | C)− log p(H) (3.2)

PMI rewards positively those tokens which occur more frequently in the context C
than in the general distribution termed with the prior p(H). In practice, both terms
of Equation 3.2 are computed with language models: log p(H | C) with LMCue (S +

P) and log p(H) with Base-LM. Both LMs are pre-trained according to the strategy
described in § 3.3.3.2 and fine-tuned on the context and target-side dialogue from
ZOO-Multi corpus (Overlap setting). We train a separate tandem of language models
for each language pair, and for statistical significance we train five distinct instances of
each model (each with a different random seed).

3.4.3 Machine Translation Systems

We use the MTCue architecture (§ 2.5, Vincent, Flynn & Scarton 2023) for the
experiments, leveraging all available context listed in § 3.4.1. We scale the original
model up from 106M to 386M parameters by switching the underlying
encoder-decoder model from Transformer base to big (c.f. Vaswani et al. 2017). We also
implement a corresponding parameter-matched baseline (Base-NMT), which is a
standard encoder-decoder Transformer with double the number of encoder and
decoder layers of MTCue. We pre-train the systems on OpenSubtitles with metadata
and document-level information (as per the original paper) and fine-tune them on the
ZOO-Multi corpus for each language pair separately.

Both models are trained in a pipeline process described in three steps:

1. The source encoder and decoder (standard NMT architecture) are pre-trained on
the translation objective on OpenSubtitles (§2.5.3).

2. MTCue with pre-loaded weights from step 1. is fine-tuned on OpenSubtitles

with document-level information and production metadata20;

20 In preliminary experiments we tested a range of pre-training settings, including the strategy of pre-training
on document data alone outlined in §3.6, but found that pre-training on both document information (with
position information) and production metadata consistently yielded the best performance in this set of
experiments.
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3. MTCue is further fine-tuned on ZOO-Multi (§3.4.1).

Base-NMT is trained in the same three steps, albeit without the contextual informa-
tion. For hyperparameter search, we adapt the learning rate (η) and batch size (β) val-
ues for pre-training (OpenSubtitles) and fine-tuning (ZOO-Multi) models separately,
both times using grid search (§A.1.1), choosing from six values from a range between
0.00005 and 0.002 for (η) and five values from a range between 20, 000 and 400, 000 to-
kens for β. We find that the for pre-training, the best-performing values are an η of
0.0005 and a β of 80, 000. For fine-tuning, we trained 4× 5 copies of models for each
test set and data strategy, for 4 values of α ∈ {1e− 4, ..., 1e− 3} and 5 values of β ∈
{4, 000, ..., 40, 000}. For each data and test setting, we select the model with the best val-
idation BLEU (§A.2.3.2).

For this set of experiments, personalised LMs implemented via LMCue are fine-tuned
on the ZOO-Multi corpus, each time on the given target-side text and speaker and
production metadata only (the same set of context values used to train the models
examined in §3.3). In other words, while we train the contextual models on a larger
set of context variables, we only test context specificity to the speaker and production
context. The hyperparameter search for pre-training and fine-tuning these language
models is conducted following the procedure described in §3.6 and §3.3.3.3.

3.4.4 Results

A positive value of PMI for Reference (mean score of 0.073; Table 3.13) suggests the
presence of a co-occurrence effect between professional translations of the test set and
their extra-textual context. We calculated that the Original text in English obtained
a score of 0.087. The two values are not directly comparable, but they are of similar
magnitude which suggests that the context-specific traits of the original text are well
preserved in the professional translations for this test set.

The non-contextual machine translation model, Base-NMT, achieves significantly
lower PMI on average (Table 3.13, 0.026 for Disjoint, 0.028 for Overlap): the absence of
context at generation time results in translations less adapted to the specific characters
and productions. The nevertheless positive values can be explained by the presence
of domain-specific terms such as “pan” which do not need context to be translated
correctly but will occur more often in specific contexts (e.g. cooking shows), yielding
a positive PMI. The contextual MTCue achieves higher PMI on average than Base-
NMT (+0.015 for Disjoint, +0.023 for Overlap), meaning that using the relevant
context does make the hypotheses more personalised, and the greater improvement for
Overlap suggests that context can be utilised even better when previous samples from
the same speakers or series are given. Interestingly, while personalisation is stronger in
Overlap systems than Disjoint, the MTCue (Disjoint) still performs better than either
Base-NMT system, signifying the robustness of cue vectors to this zero-shot adaptation
to new series and speakers. Among all three target languages, reference translations to
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EN-FR EN-DE EN-PL Average

Reference 0.101 0.037 0.081 0.073

Disjoint

Base-NMT 0.042 −0.004 0.041 0.026
MTCue 0.066 0.007 0.049 0.041

Overlap

Base-NMT 0.040 −0.006 0.049 0.028
MTCue 0.069 0.012 0.072 0.051

Table 3.13: PMI computed with general and personalised language models on translations.
Results computed from five different runs (instances of the language models).
Highlighted results are statistically significantly better than those from other systems.

EN-FR EN-DE EN-PL

BLEU Comet BLEU Comet BLEU Comet

Disjoint

Base-NMT 34.89 23.69 35.71 28.59 31.13 31.50
MTCue 35.73 25.81 36.22 29.29 31.62 32.66

Overlap

Base-NMT 35.06 23.75 36.15 29.75 31.59 32.83
MTCue 36.14 27.04 36.90 30.53 32.18 31.95

Table 3.14: BLEU and Comet scores for the evaluated MT systems. Comet score was computed
using the wmt20-comet-da model. Highlighted results are the best in the column,
and all underlined results are statistically indistinguishable from them (p = 0.05).

German are correlated with context the least (PMI = 0.037) and translations to French
the most (PMI = 0.101). The MT systems’ results follow a similar trend.

For completeness, we provide the BLEU and Comet scores, comparing the MT to the
human references (Table 3.14): in both data settings, MTCue matches the references to
a significantly higher extent than the baseline.

analysis of examples In this section, we delve into a detailed analysis of examples
where the hypotheses of the contextual MT model (MTCue) were assigned a stronger
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PMI score compared to the hypotheses from Base-NMT, quantified with the diff score
defined below:

diff = PMIMTCue(Source) − PMIBase-NMT(Source)

All the examples presented herein are derived from systems trained in the Overlap

data setting. We have deliberately chosen examples that admit multiple translations,
depending on the context they occur in. Across the seven examples, the overarching
context can be summarised as A British family cooking competition show. Each of our
chosen cases in some way relies on this context.

Example 1 diff = 0.26

Source We’re okay, we’re doing just fine, just...
Reference Wszystko jest w porządku.

(‘Everything is alright.’)
Base-NMT (✗) Nic nam nie jest.

(‘We are fine.’)
MTCue (✓) Radzimy sobie.

(‘We’re coping.’)

Our first example exhibits a behavioural agreement adaptation. During cooking
show walkthroughs, there are often discussions about managing stress and working
under pressure. This discourse is sincere and allows the contestants to share about their
struggles. In Example 1, the non-contextual translation Nic nam nie jest would be far
less likely to occur in this walkthrough setting than Radzimy sobie. The former phrase is
more suited for immediate impact situations (e.g. falls) rather than stressful ongoing
situations like a competition show. It also carries a more defensive tone which makes it
ill-fitted for a lighthearted family series.

Example 2 diff = 0.20

Source Well deserved.
Reference Zasłużone zwycięstwo.

(‘Well deserved victory.’)
Base-NMT (✗) Zasłużyłeś.

(‘Youmasculine deserve this.’)
MTCue (✓) Zasłużyliście.

(‘Youplural deserve this.’)
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In Example 2, MTCue discerns the number of addressees correctly: in this family
cooking competition show, congratulations are typically extended to a family, i.e. a
group of people. Our internal case-by-case analysis continually found that the
personalised exhibits an inclination towards the correct gender and plurality.

Examples 3 and 4 illustrate two cases where significantly stronger PMI scores are
assigned to hypotheses that align better with the context, even though they may not be
the correct translations.

Example 3 diff = 1.46

Source Try the balls.
Reference Spróbuj kulkę.

(‘Try a ball.’)
Base-NMT (✗) Spróbuj piłeczek.

(‘Try the footballs.’)
MTCue (✗) Spróbuj jajek.

(‘Try the eggs.’)

In Example 3, MTCue translates balls as eggs and receives a PMI score higher by 1.46
points compared to Base-NMT, which generated footballs). While neither hypothesis
is entirely accurate (the original balls likely referred to meatballs or dough balls), the
term eggs is highly specific to the context of cooking, leading to a higher rating from
the personalised LM.

Example 4 diff = 0.35

Source Spice girls.
Reference Spice Girls.

Base-NMT (✓) Spice girls.
MTCue (✗) Dziewczyny z przyprawami.

(‘Girls with spices.’)

In Example 4, MTCue opts for a literal translation girls with spices for the band Spice
Girls. This choice is deemed more contextually appropriate, likely due to the use of
przyprawy (en. spices), which is very specific to cooking. Both examples show that our
method must be used in tandem with a standard translation quality metric such as
BLEU or Comet, as our approach focuses on monolingual evaluation and does not
prioritise source sentence faithfulness.

Example 5 highlights a scenario where the correct translation of the ambiguous verb
make is generated by the contextual model, interpreting it as prepare. This translation is
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Example 5 diff = 1.19

Source I am now making my...
Reference Przygotuję...

(‘I will make [= prepare] my...’)
Base-NMT (✗) Teraz robię...

(‘I am now making [=do]...’)
MTCue (✓) Teraz przygotowuję...

(‘I am now making [= prepare] my...’)

awarded a significantly higher PMI score than the incorrect translation (do) generated
by the baseline model.

Example 6 diff = 1.45

Source Can somebody get a pan of simmering water on, please?
Reference Czy ktoś może zagotować wodę?

(‘Can somebody boil the water please?’)
Base-NMT (✗) Może ktoś nałożyć wodę na patelnię?

(‘Could someone put some water on the pan?’)
MTCue (✗) Podajcie patelnię.

(‘Pass me the pan.’)

Example 7 diff = 0.62

Source What is this, cake dough?
Reference To ciasto?

(‘Is this cake dough?’)
Base-NMT (✓) Co to? Ciasto?

(‘What’s this? Cake dough?’)
MTCue (✗) Ciasto?

(‘Cake dough?’)

In both Example 6 and Example 7, the translation of MTCue is rewarded more
positively than that of Base-NMT even though neither fits the context more than
the other. On top of that, MTCue’s hypotheses are inferior translations of the source
sentence: in Example 6 the translation of MTCue completely changes the meaning
of the source sentence, while in Example 7 it omits the translation of What’s this?.
These examples spotlight potential challenges in our evaluation model, particularly
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in low-resource scenarios. The limited quantity of samples in our fine-tuning corpus
(approximately 50 to 100K depending on the target language) may have contributed to
the model being more prone to learning spurious correlations due to an insufficient
population of tokens. If a common token or phrase occurs disproportionately often
in certain contexts, it may be considered more context-specific during evaluation
(and skew the PMI score towards a positive co-occurrence factor), even if this context
specificity is not reflective of real-world language use. Conversely, tokens or phrases
occurring disproportionately infrequently in certain contexts may unfairly lower the
score. Effectively addressing this challenge requires the collection and augmentation of
context-annotated data. However, this process must be conducted thoughtfully, striving
to inclusively represent diverse social groups and actively avoiding the emergence of
harmful correlations.

3.5 cost-benefit analysis of human annotations

Granular manual annotations are costly to obtain. Cost-benefit analysis helps avoid
the misallocation of limited annotation funding and resources. This section presents
the results of the cost-benefit analysis we conducted to show which individual speaker
attributes produce the most benefit (reduction in perplexity) w.r.t. the perceived cost of
producing them.

We asked the two human annotators to assess the effort required for the annotation
task using three metrics on a Likert scale of 1 to 10: access (how difficult it was to
find information), credibility (how confident they were in the accuracy/usefulness of
the information), and time (how much time was needed relative to other fields). We
took the mean of both annotators’ scores after reversing credibility (C = 10− C + 1).
We then conducted a simple experiment to measure the benefit of each metadata
type by fine-tuning the pre-trained LMCue on each speaker metadata type evaluated
individually. Finally, we measured the reduction in perplexity from including this
information (Figure 3.5) compared to the 91M parameter decoder in LMCue, since that
is the decoder we are trying to improve with context.

The figure suggests that description, profession and quote yield the greatest perplexity
reduction in both datasets, around 5 to 6%. Description, the best-performing attribute,
alone achieves 88.7/91.9% of the perplexity reduction of LMCue (S). On the other
hand, age bracket, religion and country of origin yield the smallest improvements, and
a better improvement can be achieved with the parameter-matched base-LM. For
Cornell-rich, they still help marginally (1 to 2%), while for ZOO improvements from
age and religion are negligible. This analysis suggests why King & Cook (2020), who
implemented context-based adaptation using only age and gender, found it inferior to
other methods; we found other variables such as description to be significantly more
useful.
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Figure 3.5: Perplexity reduction from training LMCue with individual speaker attributes.

Other findings of the analysis are consistent among the two corpora. Profession,
collected at a relatively small cost, is one of the top-3 attributes for both, hence the
most cost-effective. Religion is the least cost-effective attribute, requiring the most effort
but producing the least benefit. Finally, experimental attributes such as characteristic
quotes and additional information21 have been shown to be useful, the latter placing
in the middle of the ranking whilst the former is on par with the best attribute for
Cornell-rich.

3.6 pre-training strategy : past dialogue as proxy for metadata

This supplementary section presents empirical evidence that past dialogue can be
used as a proxy for fine-tuning LMCue on speaker or production metadata. When
fine-tuning, we use both Speaker and Production metadata. We report performance
on test_unseen to also present sMRR scores.

As per Table 3.15, pre-training on OpenSubtitles leads to best perplexity when
no context is used (base-LM), however using context yields improvements in sMRR,
and these are stronger when metadata is used instead of dialogue. Similarly, without
pre-training we also obtain the best perplexity with base-LM; here even sMRR remains
at a baseline level, i.e. the contextual model fails to learn contextual dependencies
correctly. Metadata only leads to superior results when both pre-training and fine-
tuning are included in the pipeline. Interestingly, pre-training on dialogue yielded the

21 Since additional information was not collected for ZOO, it is not present on the ZOO plot of Figure 3.5.
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Pre-training
Fine-tune ppl

↓
sMRR↑

✗ / ✓ Context

base-LM ✓ − ✗ 28.78 0.03
LMCue ✓ dialogue ✗ 37.19 0.29
LMCue ✓ metadata ✗ 30.95 0.43

base-LM ✗ − ✓ 39.60 0.03
LMCue ✗ − ✓ 51.14 0.03

base-LM ✓ − ✓ 23.62 0.03
LMCue ✓ dialogue ✓ 22.31 0.96
LMCue ✓ metadata ✓ 22.71 0.89

Table 3.15: Results on test_unseen of Cornell-rich from different pre-training/fine-tuning
setups. New results (top 5 rows) come from single runs.

best results, though pre-training on metadata is not far behind (+0.4 ppl, −0.07 sMRR).
We hypothesise that since past dialogue is much more diverse than film metadata
(which contains many repeated fields), it is overall the better pre-training proxy for
fine-tuning on new types of metadata, such as speaker profiles. For applications on
other datasets, we therefore recommend pre-training on a similar dataset (domain-wise)
with access to document-level information.

3.7 conclusions

We have argued for context-based personalisation of language models by training
a conditional generation architecture on dialogue accompanied by rich contextual
annotations. Our approach performs on par with expensive speaker-specific fine-tuning
methods. We have also explored using such models to evaluate the context-specificity
of professional and machine translations, providing insight into how well the generated
translations are specific to the extra-textual context, without direct comparison to the
human references. Finally, we have contributed Cornell-rich, a set of rich speaker and
production annotations for a publicly available dialogue dataset, which can be used to
reproduce our results in personalised language modelling. Below we summarise the
findings specific to each research question.

RQA How can rich character profiles be used to model the characters’ speaking
styles? (§3.3.4.1)
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The LMCue architecture can be trained to exhibit personalisation based on Speaker
context: LMCue (S) reduces perplexity by 4.3/4.7% compared to a parameter-matched
general LM, or by 5.4/6.5% when Production data is also used. In a few-shot scenario,
LMCue (S + P) is better than linear interpolation Lerp and comparable with speaker-
specific fine-tuning (SpFineTune). Since LMCue requires no fine-tuning to specific
speakers, it is favourable if metadata is available.

RQB How can a LM be personalised for a specific character solely by learning
from data for characters with similar profiles? (§3.3.4.2)

On a test set with unseen speakers, context-based personalisation yields a high
speaker separation effect (models assign the highest probability to dialogue which
matches the given speaker’s profile). Using both S and P metadata on this test set
reduces perplexity by 5.6/4.4%, a similar magnitude to that for seen speakers (5.4/6.5%),
suggesting that our method scales robustly to this scenario, unlike speaker-specific fine-
tuning which cannot be applied on new characters. Having a varied pool of speakers
and productions in training data correlates positively with sMRR.

RQC Can MT offer personalisation benefits proportional to professional transla-
tions? (§3.4.4)

Utilising speaker and metadata annotations in MT makes the language used in
hypotheses more context-specific, as measured by the PMI score between such context
and the generated text, when compared to a context-agnostic system. However, this
context specificity is still stronger in gold standard (professional) translations. Our
findings suggest that contextual language models could be paired with automatic
metrics for a more well-rounded evaluation of machine translation as they bring the
aspect of the translations fitting the specific extra-textual context.

RQD Which character metadata are the most cost-effective for personalisation?
(§3.5)

Textual metadata (descriptions, quotes, professions) is significantly more useful for
personalisation with LMCue than discrete metadata (e.g. age bracket). Particularly in
our evaluation, descriptions alone achieve results on par with using the entire speaker
profile. Furthermore, the utility of individual attributes seems to be positively correlated
with the diversity in their representation.





4
A S S E S S I N G C O N T E X T UA L M A C H I N E T R A N S L AT I O N I N A
P R O F E S S I O N A L S C E N A R I O O F S U B T I T L I N G

4.1 introduction

Interlingual subtitling of videos involves a two-step process. Initially, the video is
transcribed in its native language, and the transcribed text is then transformed into
concise subtitle blocks that match the video’s timing. These subtitles are then manually
translated into the desired language, while staying within the subtitle constraints, such
as reading speed, maximum number of lines and characters in a line, length proportions
of the top and bottom lines, and additional considerations such as distinguishing when
dialogue from two or more speakers is displayed. As a heavily involved process with
multiple guidelines, the task necessitates manual quality checks after each major step.

The challenges involved in the above process individually fall within what the field
of speech and language technologies commonly aims to tackle. Speech recognition
research focuses on automatic transcription of text, while machine translation research
considers the problem of automatic translation. Subtitle segmentation is sometimes
conceived of as an individual task (e.g. Ponce et al. 2023), though predominantly it is
incorporated into the guidelines of the main task. For example, Papi et al. (2022) unify
speech transcription and segmentation of the resulting text.

Within this work, we replace the step of translating the native subtitles to the desired
languages from scratch with post-editing machine translations of the source text. Such
a formulation is far from new: machine translation has consistently demonstrated its
potential to reduce effort in the subtitling domain, to a varying degree (e.g. C. M. de
Sousa et al. 2011, Huang & Wang 2023). Nevertheless, these studies have often relied
on off-the-shelf general-purpose NMT engines such as Google Translate1. Our work
challenges this setup: using Google as one of our baselines, we present that by just
tailoring an NMT engine specifically to the target domain we can not only significantly
enhance the accuracy of translation hypotheses (as measured by automatic metrics),
but also significantly reduce the human effort required to post-edit them. On top of
that, we compare two such in-domain systems: a context-agnostic one and one which
leverages a wide range of context information.

Our prior investigations outlined in Chapter 2 and Chapter 3 have illustrated the
advantages of incorporating extra-textual information in both NMT and language
modelling contexts. In this Chapter, we show the impact such incorporation of context

1 https://translate.google.com/
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has on post-editing effort, compared to a non-contextual domain-specific translation
system and a general-purpose commercial system like Google Translate.

We perform a thorough evaluation with the assistance of professionals with expertise
in translation, post-editing and quality checking. Hereinafter we refer as PEs to those
who were tasked with post-editing work, and as translators to those who were tasked
with translation from scratch. The campaign takes place in a full-context multi-modal
environment where the professionals have access to the video material and are able to
directly jump to the segment corresponding to the utterance they are reviewing, as well
as see the preceding and succeeding segments. We employ a total of eight post-editors
(PEs), four for English-to-German and four for English-to-French translation, and four
translators, two per language pair. In our evaluation, we measure both the effort it
takes to post-edit or translate the TV series content, as well as take note of specific
translation errors observed by the post-editors. We find that the contextual MTCue

makes consistently fewer errors related to context and style in EN-FR translation, while
performing on par with its non-contextual counterpart in general translation quality.
Furthermore, both of these domain-adapted systems make fewer total errors than
Google Translate and their outputs are easier to post-edit. Finally, between MTCue

and Base-NMT, our experiment did not find that either system’s outputs require
significantly less effort in post-editing than the other. However, our survey among the
professional post-editors revealed that errors related to style and context in particular
often necessitate complete rewrites of machine translation (MT) outputs over corrections.
This finding motivates future research within contextual NMT.

The rest of the Chapter is structured as follows. §4.2 presents the work related to
this subject. §4.3 describes the experimental setup. In §4.4 and §4.5 we report on the
results of the automatic and human evaluation respectively. Finally, §4.6 concludes the
Chapter.2

4.2 related work

Over the last few years the problem of automatic translation of video subtitles has been
given a volume of attention. Among many others, C. M. de Sousa et al. (2011), Koponen
et al. (2020) and Huang & Wang (2023) observe that post-editing the outputs of an NMT

system is a promising alternative to translation ex novo. Such an approach can reduce
the temporal, technical and cognitive effort of both novice and professional translators

2 The present Chapter is to be submitted as a conference paper to the Annual Conference of the European
Association for Machine Translation (EAMT 2024). It is going to list five authors, of which the first is
the author of this thesis, the last is the PhD supervisor and the remaining three are employees at ZOO
Digital Group PLC, the industrial partner to this thesis. Chris Bayliss was in charge of development work
within the ZOOSubs system, enabling the human evaluation campaign. Charlotte Blundell acted as the
project manager on the company side, facilitating communication with the production team performing
the evaluation work. Both Chris and Charlotte took part in team meeting during which consultations
regarding the work setup took place. Chris Oakley was the industry-side supervisor of the project.
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and subtitlers. Moreover, as highlighted by the findings of a survey among professional
subtitlers detailed by Karakanta et al. (2022), professionals generally have a positive
outlook on including automatic components (such as speech recognition, translation,
and subtitle segmentation) into their workflow, reporting that these components serve
as starting templates, reduce effort and sometimes provide useful suggestions.

However, automatic translation presents a range of challenges that remain unsolved.
Gupta et al. (2019) list a set of issues encountered with this specific problem in their
practical setting. The most common errors include: (i) cases where machine-translated
text disregards the subtitle block limitations, and a shorter and often paraphrased
translation is required, (ii) contextual errors, where words used are lexically correct
but morphologically inconsistent with the surrounding text or video material, and (iii)
lexical inconsistency errors, where the employed vocabulary does not comply with
the standard language or industry usage, or is inconsistent with the video material
or surrounding text. The surveyed subtitlers in Karakanta et al. note two main issues:
lexical errors, including the translation of idioms and figurative language (“automatic
translation still tends to be a bit too literal”), and context issues, such as inconsistent
translation of the same term across multiple segments. Context issues have also been
pointed out as the culprit in automatic translation of text in many works that leveraged
the OpenSubtitles corpus (Lison et al. 2018), a dataset of user-submitted subtitles and
their translations. Specifically, recent work highlights that many translation errors
found in this domain are related to the use of context, which includes document-level
information (Tiedemann & Scherrer 2017, Bawden et al. 2018b), extra-textual information
contained implicitly in the text such as the speaker’s gender identity (Vincent et al.
2022b) and explicit extra-textual information (Vincent, Flynn & Scarton 2023). The
contextualised translation of our selected model enables improvements in both of these
areas.

When considering the task of post-editing machine-translated subtitles, it appears
that the environment setup plays an important role: Huang & Wang (2023) show
that post-editing in a multi-modal scenario decreases the cognitive load of student
translators compared to a mono-modal (text-only) scenario, and argue that this could
be explained by the dual coding theory, according to which the interactions between
the verbal and non-verbal information enhances the translators’ understanding of the
material. Within our multi-modal human evaluation study, we measure the technical
and temporal effort. While we do not directly measure cognitive effort (due to lack of
appropriate measuring equipment), we conduct a survey among the PEs and translators
and report their perception of the study in §4.5.2.1.

Finally, the experimental work presented in this Chapter employs the MTCue archi-
tecture introduced in §2.5 and Vincent, Flynn & Scarton (2023), trained according to
the regimen and on the datasets described in Chapter 3. MTCue is a multi-encoder
Transformer designed for contextual NMT; in Vincent, Flynn & Scarton we show that it
is capable of leveraging contextual signals such as film metadata and document-level
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information to improve translation quality, as well as enable better control of funda-
mental extra-textual phenomena in translation, such as speaker’s gender and formality
register.

4.3 experimental setup

In this section, we outline the experimental setup for our human evaluation experiment.
Our primary objective is to compare the translation quality of various machine trans-
lation models, both in terms of similarity to the reference text, as well as in terms of
the number of errors and the post-editing effort required to achieve sufficient quality,
measured in a human evaluation campaign. Specifically, we employ these models to
generate translations for two language pairs: EN-DE and EN-FR. As our test set, we use
the three TV series: BigFam, WorldJeff and RightStuff, as described in §3.4.1.

4.3.1 Examined System and Baselines

The objective of the experiment is to compare the contextual MTCue system (§ 2.5,
Vincent, Flynn & Scarton 2023), trained to translate dialogue with regards to the extra-
textual context it arises in, to non-contextual machine translation. The MTCue instance
used in this experiment is the one already described in detail in § 3.4.3 within the
previous chapter (Chapter 3). We compare it to three baselines:

1. Google
3, a readily available general purpose NMT engine used extensively in

prior work on automated translation of subtitles.

2. Base-NMT §3.4.3, a non-contextual baseline translation model matched to MTCue

in terms of the total number of parameters. Similarly to MTCue, we re-use the
model described in §3.4.3.

3. Ref the production-approved human translations of the test set. This baseline
is omitted during automatic evaluation (in fact, it is used as the reference text
to calculate the translation metrics), but is used as a baseline in the human
evaluation, where the professionals are asked to post-edit this text (unaware that
it is of already sufficient quality).

Additionally, for the Base-NMT and the MTCue models, two instances are trained of
each, in each of the distinct data settings Disjoint and Overlap (§3.4.1).

4.3.2 Evaluation

We conduct automatic and human evaluation. For automatic evaluation, we use BLEU
(§A.2.3.2) and Comet (§A.2.3.2) as metrics and compare the outputs of the machine

3 https://translate.google.com/

https://translate.google.com/
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translation systems (Base-NMT, Google, MTCue) against the reference (Ref). The
human evaluation campaign is conducted in a professional environment, in
collaboration with ZOO Digital. The objective of this evaluation is to highlight whether
MTCue indeed makes fewer context-related errors, and additionally to shed some light
on whether such a contextual MT model may help decrease the effort required to
post-edit subtitles within this domain.

The task is implemented and performed by professional translators and PEs using
ZOOSubs, an in-house software belonging to ZOO Digital, built to facilitate manual
translation of video material (Figure 4.1). This specialised software offers a user interface
that displays the video material along with its associated subtitles in the original
language. Additionally, it provides a set of windows where the translator can input
translations in the desired target language (Figure 4.1a). When a specific workflow
(such as the one employed in this study) involves pre-translated text, the boxes are
initially populated with draft translations, which the post-editors may edit, divide or
combine as they see fit.

When post-editing the subtitles, the PE can click on any of the target-language text
boxes to edit the text within it. The system automatically tracks the time a worker
spends editing the given box, as well as the number of keystrokes made. These metrics
are recorded for each window separately and are taken into account only if actual
changes were made to the text. Once changes are made, the worker is prompted to
enter the reason for making a change, choosing from a pre-existing list of errors or
optionally providing their own custom description (Figure 4.1b). Multiple errors can be
marked at once.

In our campaign, we leverage this functionality to measure the total and average
time and number of keystrokes made by (a) translators, (b) PEs given some pre-existing
translations. We also measure the total number of boxes edited. Finally, for the purpose
of this project we create a custom list of errors that the PEs are prompted to select from.

worker setup The PEs operate on seven episodes total (half the episodes of every
show featured in §3.4.1), comprising 54% of the original test set’s segments. They are
unaware that some of the text they work with is machine translated, but are told that it
is for a research project and asked to relax some constraints such as adhering to the
reading speed constraints. In addition, we ask four translators (two per language pair)
to translate one 60-minute episode of BigFam from scratch and record their effort.

For each of the seven episodes, the PEs are asked to post-edit one out of four versions
of the text:

1. Google: a baseline machine translation from Google Translate.

2. Base-NMT: a baseline machine translation from Base-NMT (Overlap).

3. MTCue: translation hypotheses from MTCue (Overlap).
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(a) A snapshot of the ZOOSubs system. The original subtitles (far-right column) are translated to their
counterparts in the target language. These translated subtitles are displayed immediately in the video on
the right.

(b) A snapshot of the ZOOSubs system when the error selection window is prompted.

Figure 4.1: Snapshots of the ZOOSubs system in action.

4. Ref: the reference human-written and production-ready translations (to account
for the fact that PEs can sometimes post-edit a translation even when the original
one is valid).

Our setup ensures that the same PE evaluates the output for each episode exactly once
(i.e. does not see two different versions of the same text) (Table 4.1). When referring to
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individual PEs, we use the notation PE.[L][i], where L ∈ {G (German), F (French)}, and
i denotes the PE ID ∈ [1, 4].

Title BigFam RightStuff WorldJeff

Episode no 9th 11th 5th 8th 8th 5th 10th

PE.1 Ref MTCue Google Base-NMT Ref MTCue Google

PE.2 Base-NMT Ref MTCue Google Base-NMT Ref MTCue

PE.3 Google Base-NMT Ref MTCue Google Base-NMT Ref

PE.4 MTCue Google Base-NMT Ref MTCue Google Base-NMT

Translator 1 From Scratch
Translator 2 From Scratch

Table 4.1: Work assignment to PEs and translators in the human evaluation campaign. Within
both language pairs the work assignment is the same.

details regarding the PEs The recruited PEs and translators are professionals
within the subtitle domain and freelance employees of ZOO Digital. All recruited
workers were informed that the undertaken work is carried out for a research project,
but nevertheless they were paid for their effort at competitive PE and translator rates,
standard within the company for this type of work. All work conducted for this human
evaluation campaign was led and managed by a project manager employed by ZOO
Digital. This occurred while the author of this thesis was involved in an internship with
the company (as part of their sponsorship of the PhD), gaining access to the ZOOSubs

system and on-site data.
The ZOO project manager also had information about the PEs and translators back-

ground and, as part of this work, they also answered a short survey about their views
regarding machine translation:

1. Basic information

a) Years of experience (YOE) as a translator.

b) YOE in the domain of subtitle translation.

c) YOE in post-editing.

d) Did your professional training as a translator comprise training in post-
editing specifically?

2. Views on machine translation

a) Which one would you prefer: translating a stream from scratch or doing a
quality check (post-editing) a stream? Why?
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b) What are your views on the use of machine translation in the industry?

c) In your opinion, are there any benefits to post-editing translations rather
than translating from scratch?

We report the Basic information in Table 4.2, while devoting a later section (§4.5.2.1)
to discuss the PEs views on machine translation. All French translators have training
in post-editing, and three out of four prefer it to translating from scratch, while no
German translators have received such training in the past, and all but one strictly
prefer translation from scratch. All PEs have at least one YOE in post-editing and one and
a half in the subtitle domain. Although the translators within both pairs have a similar
amount of experience in translation in general and in the subtitle domain (11.5± 6.5
for French vs 12.5± 5.0 for German), the French translators have the advantage in
terms of YOE in both subtitling (a mean difference of 2.1 YOE) and post-editing (a mean
difference of 3.3 YOE).

English-to-French English-to-German

PE.F1 PE.F2 PE.F3 PE.F4 PE.G1 PE.G2 PE.G3 PE.G4

Translation YOE 15 8 3 20 7 18 8 17

YOE in subtitles 8 6 1.5 20 7 5 8 7

YOE in post-editing 8 6 3 10 5 5 1 3

Post-editing training? ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Prefer post-editing? ✓ ✓ ✗ ✓ ✓/✗ ✗ ✗ ✗

Table 4.2: Details regarding PEs who took part in the campaign.

error taxonomy Upon correcting an individual translation, the PE is prompted to
select a reason for the correction from a fixed list of possible errors. For this project, we
customise the list to involve not only standard translation errors such as Mistranslation
or Omission but also focus on the context-specific errors (e.g. formality mismatch) as
well as task-specific errors (subtitle formatting violation). To build the taxonomy, we first
compiled a list of candidate errors from three sources:

• general machine translation errors reported in previous work (Freitag et al. 2021,
Sharou & Specia 2022),

• the original list of issues already present in the ZOOSubs system,

• errors deemed relevant based on previous work on post-editing
machine-translated subtitles (§4.2).
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We then narrowed down the list of candidates to errors relevant to the study, and
removed duplicates. At that point the taxonomy was uploaded to the system and
the thesis’ author undertook a test evaluation against a stream with 446 segments to
validate the reliability of the list. As a result, some errors were split into more granular
categories, some were renamed and some generalised. Table 4.3 presents the final list
of errors compiled.

Type Description

Translation quality
Catastrophic translation Would be impossible to post-edit; the text must be

translated from scratch.
Mistranslation Incorrect and does not preserve the meaning or

function of the source text.
Omission Part of the source text was left untranslated.

Deviation in sentiment Does not preserve the sentiment of the source (e.g.
does not match the expressed excitement), or negates
the sentiment (e.g. from positive to negative).

Locale convention Violates locale convention, such as currency and date
format.

Fluency Contains punctuation, spelling and grammar errors.

Context
Incorrect gender Misgenders the speaker or the addressed person(s).

Incorrect plurality Incorrectly refers to a single person when a group is
addressed, or vice versa.

Wrong formality Expressed in informal style or uses informal address-
ing when should use formal, or vice versa.

Other inconsistency with video Contains inconsistencies with the video material not
falling within any of the above.

Style
Subtitle formatting violation Violation of the subtitle blocking guidelines.

Other style sheet non-compliance Does not conform to the provided style sheet.
Awkward style The style of the translation does not reflect the style

of the source sentence and/or the context.
Subjective style changes The translation is acceptable but the editor suggests

improvements in style.

Other All other error types; the evaluators are invited to
describe the errors in a text box provided.

Table 4.3: List of errors provided to the human evaluators during the campaign.
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Figure 4.2: BLEU, Comet and PMI scores obtained by the evaluated models. Asterisks (*) over
bars indicate the best result along with all statistically indistinguishable results
computed either via bootstrap resampling (§A.3.1) or t-test for PMI (§A.3.1), p =
0.05.
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4.4 results of automatic evaluation

In Figure 4.2 we report the results of the evaluation campaign, as measured by BLEU (§
A.2.3.2), Comet (§A.2.3.2) and in addition by our context specificity metric introduced
in §3.4. Our first observation is that, especially for the EN-DE pair, the BLEU and Comet

scores of the different models vary considerably, with Comet generally indicating
smaller gains from using MTCue compared to the baseline, and even finding Google

to be the best model for two out of three series, unlike BLEU which always finds it to
be the worst. This discrepancy could be explained by the fact that the hypotheses from
Base-NMT and MTCue have similar lengths to the reference translations (7.06 words per
segment vs 7.04 in references), and the hypotheses from Google are considerably longer
(8.29 words per segment). This may inflate the Comet scores which are computed via
pooled sentence embeddings (§A.2.2) as more information is expressed in the average
segment. BLEU circumvents this inflation via the built-in brevity penalty (§A.2.3.2).

The BLEU scores suggest that the Base-NMT and MTCue systems significantly
outperform Google, even in the Disjoint data setting, with the discrepancy particularly
high for RightStuff, the fictional series about a mission in space. Secondly, for both
Base-NMT and MTCue, fine-tuning on prior episodes of the testing show (Overlap)
generally results in higher scores. MTCue is consistently the strongest-performing
model, highlighting that context information may be particularly useful in this scenario.
According to the PMI scores, the professional translations (Ref) consistently exhibit the
highest context specificity, however the MTCue system (whether in the Disjoint or
the Overlap setting) is on par with this reference score 5 out of 6 times. The Google

system achieves low scores especially in the EN-FR pair, but manages to achieve results
comparable to best in half of the cases. Finally, MTCue remains on par or better at
context specificity than Base-NMT in all cases.

4.5 results of human evaluation

This section present the results of human evaluation. First, §4.5.1 discusses the analysis
of the specific errors marked by the PEs. Then, in §4.5.2, we analyse the effort required
to post-edit the outputs of the individual systems (as well as the professional references,
i.e. Ref). Finally, in §4.5.2.1 we analyse the results of a post-campaign survey regarding
the PEs’ views on machine translation and post-editing in the subtitling industry, which
helps us incorporate the human feedback to shed light on potential future directions
for this work.

job completion As part of the professionals’ contract with the company, they
were allowed to withdraw from completing the work at any point if they deemed the
compensation inadequate for the required job. At the midpoint of the campaign, two PEs

(PE.G1 and PE.G3) contacted the project manager on the company side. They expressed
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concerns regarding the machine translation output, indicating that they believed the
quality was subpar and the task potentially required more effort than translation from
scratch. As an alternative solution, they proposed narrowing the scope of the remaining
work to error identification and marking, without making the necessary corrections.
These two PEs had post-edited two and three (out of seven) episodes respectively before
making this request. Consequently, 32% of the episodes in the EN-DE language pair
lack post-editing results. In our setting without repeated measurements, where each PE

post-edited a distinct version of each episode, any missing results negatively impact
result reliability. Given that we could still gather complete error data, we present our
error analysis in both language pairs in §4.5.1. However, our effort analysis in §4.5.2 is
centred on the EN-FR pair, with results for PE.G2 and PE.G4 shown when per-PE effort
or comparison to translation from scratch is discussed.

4.5.1 Error Analysis

In this section we analyse the errors marked by the PEs. Our initial inspection of the
results indicated that each PE marked a significantly different total number of errors. For
example, within the EN-FR pair, PE.F1 marked a total of 232 errors across all episodes
while PE.F4 marked 878. This makes direct comparison of the error counts across
systems unreliable as each PE also post-edited a different number of segments for each
system (cf. Table 4.1). Since each PE post-edits seven episodes total, each the output
of one out of four examined systems, one of the systems is post-edited only once by
any PE. For example, in Table 4.1, PE.1 is assigned two episodes for Ref, MTCue and
Google, but only one for Base-NMT. In this example, if PE.1 generally marks fewer
errors than others, Base-NMT will be disproportionately rewarded.

To make them comparable, we normalise each of the measurements by computing a
normalisation constant h for each PE and then multiplying the error count for the given
category by the PE’s h. Let ErrPEi ,x denote the number of errors within the category
x for the i-th PE. We compute the normalised count norm(ErrPEi ,x) as described by
Equation 4.1.

norm(ErrPEi ,x) = ErrPEi ,x × hi

where hi =
max(ErrPE1,total , ErrPE2,total , ErrPE3,total , ErrPE4,total)

ErrPEi ,total

(4.1)

We report the total error counts as well as the normalisation multipliers in Table 4.4.

error post-processing Our evaluation took place in a multi-modal subtitling
environment. However, the model outputs, whether from Google or one of our own
systems, were formatted as lists of sentences, lacking adaptation to the constraints
typically associated with subtitles. In standard quality checks conducted by the PEs, the
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English-to-German English-to-French

PE ID Error count h PE ID Error count h
PE.G1 1526 1.76 PE.F1 232 14.68
PE.G2 2452 1.10 PE.F2 182 18.71
PE.G3 2690 1.0 PE.F3 3406 1.0
PE.G4 1832 1.47 PE.F4 878 3.88

Table 4.4: Error counts and normalisation coefficients h for each PE in the experiment.

task encompasses not only correcting translation errors but also ensuring the subtitles
comply with strict guidelines. This includes adhering to reading speed and length limits,
balancing the length of the top and bottom subtitle, disambiguating speaker turns
through the use of colours or dashes, and applying appropriate HTML formatting such
as italics where necessary, as specified by a style sheet. Given the focus of this project is
on contextual machine translation, our systems were not designed to create translations
conforming to these stringent guidelines. Consequently, our primary interest was in
identifying the translation errors alone.

To faithfully replicate the work environment of the PEs, we applied a greedy refor-
matting tool (built into ZOOSubs) to reformat our translations as subtitles. We made it
clear to the PEs that this work is conducted for research purposes, and that standard
subtitle formatting and reading speed guidelines are relaxed for this project.

To ensure that the translation and non-translation errors are kept separate during the
process, we included several environment-specific errors for the workers to select from:

• Subtitle formatting violation: This category addressed cases where the subtitle is
not optimally split across multiple blocks or where the top and bottom lines are
not of similar lengths.

• Other style sheet non-compliance: As the task sought to mimic a production envi-
ronment, the workers were provided with a style sheet guide from a professional
streaming company, which covered rules such as translation of names and titles,
the usage of italics or punctuation conventions.

There were also instances where a PE encountered both translation and
non-translation errors within the same segment, as exemplified below.
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Example Series: WorldJeff

Source Hi. Can I take a look at what you’re doing by any chance?

Base-NMT (✗) Hi. Kann ich mir zufällig ansehen, was du

[BREAK] machst?

Post-ed. Hi. Kann ich mir vielleicht ansehen,

[BREAK] was Sie da machen?

Errors Mistranslation

Subtitle formatting violation

Formal/informal mismatch

In the above Example, both translation errors (Mistranslation of by any chance and
Formal/informal mismatch of you’re doing) and non-translation errors (Subtitle formatting
violation of the position of the subtitle break) are present. While disregarding the
non-translation error counts in such cases is straightforward, correcting the effort
rates (editing time and keystrokes) is more challenging. To precisely gauge the effort
required solely for addressing translation-related errors, we employ a correction method.
Specifically, let Errnon−translation and Errtranslation be the total effort expended by a PE on
a segment that has only non-translation and only translation errors marked, respectively.
We calculate a translation share as follows:

Translation Share (TS) =
Errtranslation

Errtranslation + Errnon−translation

We then use this share to determine the share of the effort spent on translation in
segments that had both errors marked:

Effort on Translation Errors in Mixed Segment = Effort in Mixed Segment× TS

For example, if a PE takes three seconds for translation errors and two seconds for
non-translation errors on average, where they marked both types we multiply their
total effort for that segment by 3

3+2 .
We also noted that the Other category was used substantially and decided to parse

the contents of the optional description text box, to verify whether some of them
fit already pre-defined categories. Indeed, most commonly reported Other errors
were “Grammar”, “Punctuation”, “Timing”, “SGP” (spelling, grammar, punctuation)
and “Literal translation”. Such errors were removed from the Other category and
pigeonholed as appropriate (e.g. “Grammar” as Fluency). More complex comments
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such as “wissen Sie should not be in the translation” were left categorised as Other. In
total, 69.3% of Other errors were re-categorised.

results The calculated normalised counts of errors within each category (Table 4.5)
suggest that MTCue performs no worse than both non-contextual MT systems overall
(row Total), while performing significantly better in the Context and Style categories
in EN-FR, pointing to gains related to the use of context information.

The most frequently flagged errors in both language pairs were consistently
Mistranslation and Fluency. Mistranslation was reported a similar number of times for all
three machine translation systems in EN-DE and three times less frequently for
post-editing Ref. In EN-FR, this gap between the machine and human translation was
similar, though within the MT systems themselves, the Google system had a
significantly higher error rate for Mistranslation errors (38.80 mean) than the next best
system, i.e. Base-NMT (22.73); the contextual MTCue achieved an even lower rate of
20.10. Interestingly, MTCue also produced outputs of higher Fluency than other
systems, even surpassing Ref for EN-FR, though at our confidence interval of 80% this
difference is insignificant.

In both language pairs, the Omission error was consistently marked the fewest times
in Google-generated text (see rows labelled Omission wtihin the Translation quality
category). In both cases, Ref scored significantly above the mean. This is unsurprising:
translations authored by the general-purpose Google engine tend to be overly literal
and faithfully preserve the contents of the input sentence, whereas dialogue translation
often necessitates that the translator let go of individual features of the source text, or
opt for alternative expressions, to maintain the brevity and dynamics of the source
dialogue, leading to spontaneous omissions in the reference translations. One such
example is the notorious use of wissen Sie in place of the English you know by Google

in translations to German
As shown in Example 1, the filler phrase you know is translated literally by Google

– and necessitates post-editing – but is ignored by MTCue. Base-NMT and MTCue,
trained on dialogue, are characterised both by the preference of brevity and dynamics
expression in translations while also maintaining a closer link with the source text. As a
result, the number of times both systems were marked with Omission was near average.
However, hypotheses generated by MTCue prompted the PEs to mark Omission more
times than Base-NMT, suggesting that MTCue’s behaviour more closely matches that
of professional translators. Other Translation quality errors were relatively infrequent
and with insignificant differences between systems.

While we did not provide explicit ways for the PEs to mark errors to do with speaker
style so as not to bias them towards seeking out contextual issues, we instead provided
categories for most frequent contextual errors: Incorrect gender, Plural/singular form and
Formal/informal mismatch, as well as loose categories for Style, in the intention to collect
measurements of how often the PEs feel the need to alter the style of the translations.
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Normalised count
Error type Google Base-NMT MTCue Ref

En
gl

is
h-

to
-G

er
m

an
Translation quality 13.12± 14.46 8.70± 11.67 8.49± 10.90 4.56± 5.14

Catastrophic translation 0.50± 0.27 0.46± 0.18 0.88± 0.95 0.72± 0.68
Mistranslation 26.99± 8.58 25.69± 7.67 26.74± 6.15 8.76± 5.51

Omission 0.26± 0.15 2.32± 2.20 3.54± 2.79 5.38± 6.75
Deviation in sentiment 1.11± 0.66 0.83± 0.30 1.25± 0.88 5.23± 4.40

Locale convention 2.04± 0.00 0.94± 0.46 0.61± 0.30 0.91± 1.03
Fluency 16.88± 15.22 9.54± 11.17 7.10± 6.52 4.18± 3.65

Context 5.34± 5.68 2.64± 3.45 2.21± 2.55 1.18± 1.13

Incorrect gender 2.20± 1.58 1.69± 1.90 1.43± 1.17 1.60± 1.19
Plural/singular form error 0.99± 0.81 0.80± 0.63 1.19± 1.24 0.33± 0.00
Formal/informal mismatch 11.31± 4.55 5.29± 4.60 3.86± 3.60 1.19± 1.31

Style 12.19± 9.79 8.12± 6.59 9.88± 7.83 3.77± 3.86

Awkward style 17.70± 7.76 11.82± 5.21 13.11± 7.04 4.70± 4.34
Subjective style changes 2.55± 2.09 1.65± 1.59 2.33± 2.28 2.13± 2.52

Other 2.12± 3.43 3.26± 4.48 2.10± 2.46 3.39± 5.88

Total 9.58± 11.35 6.44± 9.05 6.41± 8.82 3.86± 4.70

En
gl

is
h-

to
-F

re
nc

h

Translation quality 20.01± 23.05 9.27± 9.52 10.21± 8.88 6.60± 5.08

Catastrophic translation 3.41± 1.38 2.25± 2.39 2.86± 3.03 2.51± 3.26
Mistranslation 38.80± 14.35 22.73± 8.49 20.10± 7.34 7.24± 3.61

Omission 2.40± 2.40 3.91± 1.49 5.56± 4.09 7.48± 5.13
Deviation in sentiment 5.93± 5.90 7.82± 6.09 11.59± 0.00 6.74± 3.03

Locale convention 4.29± 2.49 0.73± 0.51 0.21± 0.00 0.63± 0.00
Fluency 30.83± 31.77 7.28± 3.75 5.92± 4.18 7.82± 7.35

Context 5.41± 3.64 6.09± 4.26 3.86± 3.11 1.29± 1.07

Incorrect gender 3.49± 2.59 6.96± 5.57 4.77± 3.98 0.49± 0.44
Plural/singular form error 4.50± 1.92 5.84± 4.60 1.97± 0.62 0.00± 0.00
Formal/informal mismatch 7.44± 4.63 5.58± 3.76 4.23± 2.93 1.69± 1.10

Style 11.05± 7.07 10.35± 3.69 3.41± 2.53 5.55± 3.41

Awkward style 11.13± 7.46 9.55± 1.27 2.89± 2.76 4.10± 1.28
Subjective style changes 10.94± 8.16 11.15± 5.52 4.18± 2.87 6.28± 4.09

Other 37.20± 52.68 11.19± 16.44 23.67± 29.23 27.05± 24.68

Total 17.02± 25.78 8.84± 9.20 9.63± 13.85 8.83± 12.84

Table 4.5: Counts of errors flagged by the PEs for each system. The best (i.e. lowest mean) result
in each row is highlighted and all statistically indistinguishable results underlined
(one-tailed t-test, confidence interval of 80%, p = 0.2). Ref scores are excluded from
statistical significance. Error rates for categories in bold (e.g. Style) are calculated
based on all errors within the category.
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Example 1 Target: German; series: WorldJeff

Source Things catch my eye, you know, and I get a little fascinated.
Reference Die Dinge fallen mir auf, und ich bin etwas fasziniert.

Google (✗) Die Dinge fallen mir ins Auge, wissen Sie, und ich bin ein
wenig fasziniert.

Post-ed. Die Dinge fallen mir ins Auge, wissen Sie, und ich bin ein
wenig fasziniert.

Error Awkward style

Base-NMT (✓) Die Dinge fallen mir auf, und ich bin etwas fasziniert.
MTCue (✓) Die Dinge fallen mir ins Auge und ich bin etwas fasziniert.

Since all of the post-edited content is dialogue, the style of the translation can be directly
associated with the style of the speaker’s expression, without biasing the PE towards
thinking in terms of what is a characteristic way of expression for the given speaker. Our
findings regarding some Context categories (Incorrect gender, Formal/informal mismatch)
are consistent between the two language pairs, and MTCue was found to be superior
in most categories in both cases, with the overall score for the Context category being
significant at 80% confidence for EN-FR. The Plural/singular form error required few
corrections in EN-DE (and base-NMT was found superior to MTCue) and more in EN-FR

(where MTCue was found superior).
The findings from the Style category also work in favour of contextual MT, where it

was found comparable to non-contextual systems for the EN-DE pair and significantly
better than them for the EN-FR pair, requiring the fewest style-based adjustments, even
fewer than Ref. Within the EN-DE pair, Subjective style changes were flagged only up to
4− 5 times per 100 segments for any system, and a consistent number of times between
systems, and Awkward style was flagged the fewest times for Ref (4.68 on average),
much less frequently than for the other systems, among which Google required the
most edits and Base-NMT the fewest.

Overall, our error count analysis suggests that within the EN-FR pair, MTCue has
significantly reduced the number of errors marked for contextual and stylistic reasons
compared to non-contextual systems, while not degrading overall translation quality.
The findings within the EN-DE pair are too variable to yield definitive conclusions, but
entail no degradation of quality leading from the inclusion of context, a significant
improvement for contextual phenomena compared to Google, and highlight that
MTCue makes the fewest contextual errors overall.
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4.5.2 Analysis of Effort and Quality

This section delves into the analysis of per-PE effort spent post-editing or translating the
outputs of each system. Based on the observation that some measurements of editing
time and keystrokes were out of the distribution, we normalise these by first computing
the 97.5th percentile for the given language pair and task (translation or post-editing)
and set all per-segment measurements to be capped at that percentile. Our obtained
percentiles were: 37 seconds and 69 keystrokes for translation, and 45 seconds and 54
keystrokes for post-editing.

effort per PE Analysis of effort metrics for the individual PEs (Figure 4.3) reveals a
significant discrepancy between the total effort put in by PE.F3 compared to the other
three. With the exception of PE.F4, post-editing the outputs of Google generally took
the longest, required the most keystrokes and resulted in the most changed translations
(as measured by HTER), even if the error rate per 100 segments was not the highest (see
PE.F1, PE.F2). Between Base-NMT and MTCue, Judgements of PE.F1 and PE.F2 suggest
that the outputs of these systems required a similar amount of post-editing effort
(though PE.F2 found significantly more errors in Base-NMT’s outputs). According to
all four metrics, PE.F3 found the outputs of MTCue to require less post-editing work
than Base-NMT. Finally, PE.F4 identified a similar number of errors in both, but made
more significant alterations to the contextual outputs of MTCue.

Results for the EN-DE language pair (Figure 4.4) suggest that each PEs contributed
similar effort. Interestingly, the error rate and effort measures of these PEs are closer
in magnitude to the outlier PE.F3 within the EN-FR pair. Putting PEs from both pairs
together we find an interesting correlation: those PEs who expressed a preference for
post-editing marked significantly fewer errors overall. This data suggests that those
professionals who prefer translation opted for the approach of spending any effort
necessary to match the quality of the resulting text to what they would have produced
from scratch, while those who prefer post-editing have contributed a fixed amount of
effort, possibly characteristic of their typical post-editing assignment.

Error rate per 100 segments for this pair suggests that Google consistently requires
the most edits overall, and Ref the least, though only PE.G4 made drastically fewer
edits to this already production-ready text. Between Base-NMT and MTCue, PE.G2
and PE.G3 found MTCue to be less erroneous (and PE.G3 found it to be on par with
Ref), while PE.G1 and PE.G4 identified fewer errors in Base-NMT.

As we are missing effort measurements for PE.G1 and PE.G3, the following analysis
is based only on the other two PEs. Results from PE.G2 indicate that the quality of
translations from Google and Base-NMT is comparable, requiring the most complex
and laborious edits. MTCue’s hypotheses required less work from this PE, and Ref text
still less. Results obtained from PE.G4’s edits are somewhat different. This PE made
next to no edits to the Ref text, which could be interpreted as them being the least
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Figure 4.3: Effort for each PE for the English-to-French language pair.

subjective of the PEs, only making edits when they are necessary. This PE found MTCue

to require more edits than Base-NMT and on par with Google. Interestingly, even
though editing MTCue’s outputs took more time and keystrokes, Google’s outputs
yielded a HTER value about 10 points higher than MTCue. Since Google is the more
literal MT system, and MTCue produces more dialogue-like responses, these findings
suggest that, other things being equal, a literal and overly long translation of dialogue
may take less effort to post-edit than an incorrect platonic (dialogue-like) response,
even if more profound edits are required.

comparison with translation effort In Figure 4.5 we compare the unnor-
malised post-editing effort (gold bars) to the translation effort (turquoise bars) for the
9th episode of BigFam. For PE, we excluded measurements from post-editing reference
translations (Ref). For both language pairs, translating segments from scratch requires
between 4 and 6 times effort, both technical and temporal.
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Figure 4.4: Effort for each PE for the English-to-German language pair.

4.5.2.1 Analysis of the professionals’ views on post-editing and MT

In our final analysis, we present the PEs’ responses to a survey regarding views on
post-editing and machine translation.

When asked to express their preference between post-editing and translation from
scratch, most of the German PEs indicated a preference for translating from scratch,
whether for the domain of subtitles or in general. In particular, three out of four,
expressed frustration with machine translations, highlighting their stiffness and literal
nature. They pointed out that MT omits many aspects of the original text, such as slang,
gender agreement, references to the video and people’s speaking styles. In contrast, they
viewed translation as a more creative process, which yields more idiomatic and fluent
translations. Moreover, they noted that post-editing currently demands significant effort,
sometimes even surpassing that of translating from scratch, yet it is compensated at a
considerably lower rate than translation. One PE remarked that post-editing often feels
like damage control rather than effort to deliver the best possible translation.

Conversely, most of the French PEs (three out of four) expressed a preference for
post-editing. Two out of the three French translators who favoured post-editing cited
their specialisation in quality checking as the reason for their preference. The one
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Figure 4.5: A comparison of the effort of translation from scratch and post-editing machine
translation outputs, captured per 100 segments.

translator who did not prefer post-editing expressed that, due to recurring issues with
subtitle formatting within the project, post-editing was taking considerably longer than
anticipated. They believed that translating from scratch would have focused more on
content and therefore be less tedious.

Regarding their views on machine translation, PEs in both languages agreed that
MT can be a helpful tool, and one PE even noting significant recent improvements in
MT quality. However, most PEs concurred that there is still a substantial gap in quality,
rendering MT insufficiently competent to replace translation from scratch. Despite this,
the PEs expressed optimism that MT could bridge this gap in the future, potentially
resulting in a post-editing workflow that saves effort.

Finally, the majority of PEs recognized the advantages of post-editing, including the
reduction of temporal effort in some cases and the potential to improve consistency in
translating terminology (through a form of translation memory). A French PE pointed
out that post-editing enables greater attention to detail. For some, these benefits are
anticipated in the future, when the technology reaches a sufficient level, requiring edits
only for a fraction of segments.

4.5.2.2 Examples of challenging translations for MTCue

We present several examples of corrections made in the post-editing process to reflect
what kind of corrections required attention as well as what mistakes need to be
improved upon in the future.
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Example 2 Target: French; series: BigFam

Source Testing your creativity as home cooks.
Addressee I am talking to a group of people
MTCue (✗) Vous testez votre créativité de cuisinière familiale.

Post-ed. Vous testez votre créativité de cuisiniers familiale.
Error Incorrect gender

Despite being given the sufficient gender and number context for the interlocutor
in Example 2, MTCue still generated the incorrect noun form cuisinière indicating a
singular female family cook as opposed to the masculine plural form cuisiniers (which
can also be used to refer to a mixed-gender group). We have shown in §2.5 that gener-
ating correct gender and number forms is a capacity which improves in MTCue with
more training data, and while the error counts suggest that the model makes fewer
such errors than its non-contextual counterpart (Base-NMT), there is still room for im-
provement which can be facilitated through inclusion of more annotated samples. In
data settings similar to ours, where parallel translations to multiple languages are avail-
able, future such efforts could explore leveraging annotations obtained automatically
for one language such as Polish in other languages such as French.

Example 3 Target: German; series: BigFam

Source I really want to stir it.
Previous sentence I really want to stir that sugar.

MTCue (✗) Ich möchte es wirklich umrühren.
Post-ed. Ich möchte ihn wirklich umrühren.

Error Incorrect gender

Example 3 highlights another gender-related error, albeit one unrelated to the speaker
or the interlocutor of the conversation. The source sentence uses the pronoun it to refer
to sugar. The information what the pronoun refers to is recoverable from one of the
provided context sentences, namely the immediate previous sentence. However, MTCue

incorrectly translates it as es, when the correct pronoun is the masculine ihn – sugar in
the German language translates as the masculine der Zucker. This type of gender error
can be categorised as a document-level problem as the information is recoverable from
intra-textual context. While this work has not focused on document-level performance
of MTCue, it is crucial that a contextual model performs well in this capacity, and
improving this performance is a suitable direction for future work.

Example 4 presents a scenario where MTCue incorrectly interprets the exclamation
No way as Under no circumstance, which fails to account for the sense of disbelief
and amazement that the victorious family is experiencing. Such an interpretation
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Example 4 Target: German; series: BigFam

Source No way, no way.
Video context The victorious family is in disbelief about their tri-

umph.
MTCue (✗) Auf keinen Fall.

(‘Under no circumstance.’)
Post-ed. Unmöglich.

(‘Unbelievable.’)
Error Other: (inconsistency with video)

relies strongly on the visual context, of which effective incorporation into the machine
translation process in a multi-modal framework is an area for future work.

Example 5 Target: German; series: BigFam

Video context Two cooks in front of a chopping board.
Source N Get that Welly on that board.

Reference N Leg das Welly auf das Brett.
MTCue (✗) Stell die Welly auf das Brett.

Post-ed. Legt das Wellington auf das Brett.
Error Awkward style

Source N+1 She’s on.
Reference N+1 Es ist drauf.

MTCue (✗) Sie ist dran.
Post-ed. Ist drauf.

Error Other: inconsistency with video

Example 5 presents a difficult scenario. On the one hand, MTCue uses the incorrect
German preposition an to translate the English on, instead of the correct auf (on that
board = auf der Tafel). On the other hand, there is a more interesting error, and it
comes from mistranslating She as Sie. The pronoun is a reference to pork Wellington,
abbreviated to Welly by the speaker, and incorrectly assigned the feminine article sie,
instead of the neuter das. The error is difficult not to make since in sentence N+1, the
English speaker personifies the object by referring to it as She - consequently, even a
document-level system could take this into account and incorrectly interpret what Welly
is. And the correct interpretation is crucial to selecting the right verb legen over stellen
which should be used to translate get when referring to meat. While the PE described
this as an inconsistency with video error, it is challenging to outline the minimal set
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of context information sufficient for the correct interpretation and translation of this
example. The context of cooking, the light-hearted, casual character of the show and
the manner of British speech in this scenario, as well as more concrete information,
such as what meal is being made and what the cooks are doing in the moment, all
could aid this process. An important challenge for future contextual systems is going
to be to discern which type of information is necessary and when.

4.6 conclusions

In this Chapter we have presented the results of automatic and human evaluation
campaign on the use of machine translation in post-editing translations of subtitles for
TV series in a multi-modal scenario, with the focus on contextual MT. We have drawn
the following conclusions:

1. Rich contextual annotations benefit machine translation, even in a scenario
of translating unseen series and speakers. Our automatic evaluation results (§
4.4) suggest that MTCue surpasses the translation quality of Base-NMT in both
Disjoint and Overlap data settings, despite only being fine-tuned on 50− 100K
samples of annotated dialogue. The scores are nevertheless consistently better
when there is overlap between training and testing series and speakers.

2. Custom machine translation models for dialogue are more helpful in post-
editing than general systems such as Google Translate. Our results suggest
that the Google system consistently makes the most errors and requires the
most effort to obtain translations of sufficient quality, and we have argued that
overbearing literalness and stiffness of the subtitles may be the root cause.

3. Translations may receive edits even if they are correct. One of the texts post-
edited in our evaluation was a production quality human translation (Ref). We
found that the PEs consistently applied changes to this text despite it needing no
changes, with three of them doing so at a rate of over 40 errors per 100 segments.
In workflows which already include a post-editing step to human translations,
this finding should be taken into account when estimating the efficiency of using
MT instead of human translations.

4. Rich contextual annotations may benefit a post-editing workflow. Between the
two systems trained on the ZOO-Multi corpus (Base-NMT and MTCue), neither
model’s outputs are categorically quicker or easier to post-edit. However, our
results regarding error counts indicate that MTCue – the contextual model –
makes fewer errors related to Style, Context and Fluency, especially in the EN-FR

language pair.

5. Post-editing machine translation requires significantly less technical and tem-
poral effort compared to translation from scratch. Post-editing of any machine
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translation output (even Google) required between four to six times less techni-
cal and temporal effort than translation from scratch, though the post-campaign
survey revealed that some PEs considered the job to sometimes be harder and less
interesting than translation from scratch.

6. Machine translation is viewed positively, though sceptically, by the PEs. The
post-campaign survey revealed the general consensus among PEs in the subtitling
industry: machine translation can be a useful tool, however its usefulness depends
on how it is implemented into the system, and how good is the average translation.
Unfortunately, it also points to a general pessimism towards MT ever becoming
capable of handling colloquial language and behavioural agreement. Since each
PE in our experiment was given outputs of both non-contextual and contextual
systems, as well as professional translations, it is unclear which systems’ outputs
the PEs had in mind when writing this feedback. In the direction of improving
machine translation with context, future human evaluation campaign could
involve sufficiently large groups of PEs to devote individual groups to post-
editing contextual MT outputs exclusively. This way, more clear feedback could
be collected as to whether MT is improving at expressing behavioural agreement.

7. In a professional human evaluation, the recruited PEs may contribute a varying
amount of effort. We found that different PEs put in a different amount of effort,
with a correlation between the amount of effort contributed and the post-editing
training and preference of the PE. However, there may be other reasons for
this variability. Since the PEs were told about the research nature of the project,
they may have approached this project with less vigilance than if the work was
undertaken for actual clients. On the flip side, some PEs may have eventually
realised they were dealing with some MT outputs – they were not told this
explicitly – and became generally more scrutinous as a result, expecting to make
many more corrections than in a typical PEs task. This would perhaps explain why
some PEs took to post-editing Ref at rates sometimes matching the outputs of the
MT systems. In future campaigns, robustness to such variables can be ensured
by e.g. having a more varied pool of workers and assigning significantly fewer
segments to each. However, such a solution was inaccessible to us as our pool of
workers was very limited.

8. The capability of MT to handle subtitle formatting is of the utmost importance
to the PEs. While generating translations which adhere to subtitle constraints was
out of scope for this project, it is clear that the lack of regard for subtitle formatting
when MT systems are used is a serious concern for the PEs who must devote their
time to manually reformatting the input text. Future systems implemented for this
task should therefore take into account such constraints, possibly as an additional
set of contextual variables. Similarly, style sheet adherence could also be seen as a
contextual translation problem and addressed accordingly.
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Finally, as per the suggestion of one of the PEs, the ZOOSubs interface could be
developed further to add machine translation as an assistance tool for translators,
letting them choose when they wish to use the machine-generated outputs, e.g. when
dealing with basic or repetitive segments, while letting them maintain the potential for
creative control, ultimately yielding a more efficient and satisfactory workflow.



5
C O N C L U D I N G R E M A R K S

5.1 assessment of contributions

This thesis has investigated context-based personalisation in neural machine translation.
Our work has explored the issue of grammatical agreement to gender and formality,
proposed MTCue, a novel model architecture for leveraging contextual information
in NMT, explored reference-free evaluation of context specificity in NMT with the use
of personalised language models, and conducted a human evaluation campaign in
a real-world task of subtitle translation, offering insight into the benefits of using
context in this domain, as well as collecting the views of translation professionals on the
current state of machine translation in their domain. In addition, we have contributed
a morphosyntactic annotation tool for gender, number and formality phenomena in
the Polish language, and Cornell-rich, a publicly available corpus of rich metadata
annotations for films and characters featured in the Cornell Movie Dialog Corpus
(Danescu-Niculescu-Mizil & Lee 2011). Below we detail contributions made in effort to
answer each research question.

RQ1 How can attribute control best be incorporated into neural machine translation in
multiple attribute and low-resource scenarios? (Chapter 2)

We have concluded that attribute control can be incorporated in several ways. If
adequate training data is available, then interolcutor attributes such as gender and
formality can be fully controlled. However, even in a low-resource scenario the attributes
can be partially and fully controlled, by implementing methods such as attribute-specific
hypothesis re-ranking and data augmentation. Finally, more complex attributes such
as plot descriptions can be used to improve translation quality, and when provided
alongside other metadata can be used to create a representation space for context which
then enables few- and zero-shot control of attributes such as formality and gender. This
approach is implemented via MTCue proposed in §2.5. To summarise, we have made
the following contributions:

• An annotation tool for dialogue expressed in Polish which leverages Morfeusz2

(Kieras & Wolinski 2017) to detect the presence of grammatical markers of
speaker’s and interlocutor(s)’ genders, the number of interlocutors and the
formality relation between the speaker and the interlocutor(s), their genders and
the number of interlocutors (§2.3).
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• Experiments and performance analysis of nine attribute-controlling approaches
utilising the above corpus, including consideration for translation quality,
accuracy of controlling the phenomena, and the impact of this control on
context-ambivalent examples (§2.3).

• An exploration of low-resource and zero-shot approaches to formality control in
four language directions: English-to-German, English-to-Spanish,
English-to-Italian, and English-to-Russian, showing that both perplexity-based
data augmentation and phenomenon-specific hypothesis re-ranking methods are
an effective tool in improving formality control in NMT (§2.4).

• MTCue: a novel model architecture which utilises unstructured context to improve
neural machine translation (§2.5).

• A comprehensive set of experiments showing that MTCue significantly improves
the quality of translation from English to four other languages (as measured
by BLEU (§A.2.3.2) and Comet (§A.2.3.2), and achieves excellent few-shot and
zero-shot performance at attribute-controlling tasks such as formality and gender
(§2.5).

RQ2 Can language models for film and TV characters be personalised solely relying on their
character profiles and information on the discourse environment, and used to evaluate
context-specificity in personalised machine translation? (Chapter 3)

Our work conducted within Chapter 3 has highlighted that language models for
film and TV characters can indeed be personalised by leveraging the characters’ and
production profiles. Our evaluation suggests that this way of personalisation leads
to performance comparable with speaker-specific fine-tuning methods, but requires
no such fine-tuning and is also scalable to a scenario with little to no annotated
data for specific speakers, mimicking the personalisation effect based on data from
similar speakers. Finally, we managed to successfully leverage such personalised LMs

to evaluate context specificity in machine translation, and showed that MTCue, the
previously introduced contextual MT model, achieves higher context specificity in
its translations compared to a non-contextual baseline, but lower context specificity
compared to the professional human translations.

To support this conclusion, the following contributions have been made:

• Cornell-rich: a publicly available corpus of rich metadata annotations for films
and characters featured in the Cornell Movie Dialog Corpus (Danescu-Niculescu-
Mizil & Lee 2011), and consisting of seven metadata types for 863 characters and
six types for 595 films (§3.3.1).
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• LMCue: a robust implementation of a conditional Transformer-based language
model built for the use case of personalisation (§3.3).

• sMRR: an evaluation metric for speaker-oriented personalisation, which signifies
expresses the correlation between the speaker models and the speakers (§3.3.3.4).

• A profound set of experiments and analysis of LMCue’s performance against
strong baselines and on two corpora (§3.3).

• A formulation and experimental analysis regarding the use of personalised LMs

to evaluate how specific the given translation hypotheses are to the extra-textual
context they arise in (§3.4).

• A cost-benefit analysis revealing which types of manual metadata annotations are
the most useful when personalising LMs (§3.5).

• Empirical evidence showing that pre-training language models on document-level
data helps realise personalisation in fine-tuning on significantly smaller corpora
(§3.6).

RQ3 How does personalisation affect translation quality and post-editing effort in a real-life
scenario of subtitle translation? (Chapter 4)

Finally, in Chapter 4 we conducted a human evaluation campaign in two language
pairs: English-to-German and English-to-French, asking professional translators to
post-edit human and machine translations of seven episodes of three different TV
series. Our automatic evaluation revealed that MTCue exhibits the highest translation
quality among the surveyed systems, and within the human evaluation the outputs of
MTCue were corrected the fewest times for context-related errors among all systems,
confirming that that the improvements are likely context-related. In our analysis of post-
editing effort we did not find significant reductions stemming from these improvements.
However, a survey conducted among the participants revealed that context- and style-
related errors are among the most disruptive ones, motivating future work within this
area. In total, we made the following contributions:

• a taxonomy of errors which includes translation, context, style and subtitle
formatting issues (§4.3.2).

• a comprehensive human evaluation campaign conducted in a practical
multi-modal scenario of subtitle translation, suggesting that contextual machine
translation may have a positive effect on the number of context, style and
translation errors marked in the English-to-French translation direction (§4.5).

• an analysis of the views of translators and post-editors on the use of machine
translation in subtitling, both currently and in the future (§4.5.2.1).
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5.2 limitations

This section outlines the limitations encountered during the course of our research,
shedding light on the factors that have constrained the scope and applicability of our
study.

language pair limitation While the research presented within this thesis was
carried out in six language pairs (sometimes in both directions), we recognise that these
are mainly European languages and that English is a common denominator. Translation
from English into other languages is a scenario typically required by the industrial
partner to this thesis, ZOO Digital: English content often needs to be translated or
dubbed so that the streaming services can make it available in other countries. The
choice of language pairs was also limited by the data and evaluation tools we had
access to (and in the case of the shared task participation, the setting considered in the
shared task). Furthermore, the human evaluation presented in Chapter 4 was conducted
only in two language pairs (EN-DE and EN-FR), attributed to the availability of data as
well as the scarcity of qualified human post-editors capable of conducting meaningful
evaluations. As such, the generalisability of our human evaluation findings may be
restricted. However, our employed methods are language-independent, meaning the
presented research could be expanded to other pairs in the future.

domain limitation Our study mainly focuses on translations in the domain of
scripted dialogue, which aligns with the domain of interest of the industrial partner to
this thesis. Although previous work has shown that certain accommodative characteris-
tics of dialogue are inherently present in scripted dialogue (Danescu-Niculescu-Mizil
& Lee 2011), it goes without saying that TV dialogue is not the same as real dialogue.
The cardinal difference between scripted and real dialogue is the voidance in scripts of
“redundant” elements of everyday speech such as hedges, stutter, interruptions (unless
they serve a specific purpose), to maintain focus on the aim of the conversation and to
speed up the story line (Remael 2003). As such, one must be cautious when drawing
conclusions about real-life dialogue from the presented work. Instead, the implications
of this work are relevant to the industry of automatic subtitling, dubbing, translation
and automatic speech recognition of TV and film content. Additional validation may
need to be performed in order to generalise our findings to other domains.

small dataset limitation Chapter 3 and Chapter 4 present conclusions based
on relatively small fine-tuning datasets. This limitation arises from the constraints of
data collection and availability. Consequently, the results obtained with these datasets
may not entirely capture the actual potential of contextual machine translation and
personalised language modelling. We expect these benefits to strengthen with larger
and more diverse datasets. As stated in the previous paragraph, we advocate for
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conscious effort in creating such datasets, taking into account social biases and equal
representation of different ethnicities and races, genders, sexual preferences, ages,
disabilities, religions, backgrounds, etc.

human evaluation limitation In our human evaluation in Chapter 4 we
collected one measurement per system per episode due to constraints in the availability
of post-editors with expertise in the surveyed languages. It must be recognised that
different PEs may have different preferences for post-editing, which could impact the
robustness of the results. Additionally, our use of PEs with varying levels of post-editing
training and preferences may limit the direct transferability of our findings to specific
locales.

ethical considerations We acknowledge the ethical considerations surround-
ing personalisation and the use of sensitive data such as gender in the context of ma-
chine translation. While we do not foresee any direct application of our work in an
unethical manner, it is crucial to recognise that, like all research employing generative
models, our work is susceptible to inheriting the unintended biases already present in
these models, including social biases. Therefore, when controlling contextual attributes,
researchers must exercise consciousness of the biases in their data to fully understand
the models’ behaviour.

In our research, our ability to explore gender distinctions was constrained by the
limited availability of data, constraining our focus to binary gender categories. Never-
theless, we strongly advocate for the development of datasets that encompass a broader
spectrum of gender identities. Such an initiative not only serves to mitigate potentially
harmful biases but also fosters diversity and inclusivity within machine translation and
language modelling systems. By acknowledging and addressing these ethical concerns,
researchers can work collectively towards more unbiased AI technologies.

5.3 future work

This thesis opens up several compelling avenues for future research, spanning from
exploring alternative data sources to investigating the impact of the presented architec-
tures in other domains and in settings with larger datasets. In this section we describe
each direction in detail.

building relevant linguistic resources for more languages . In §2.3 we
have shown that the availability of training data which adequately captures a specific
phenomenon in translation is the primary criterion for controlling that phenomenon.
To that end, future work could explore building such datasets or annotation tools.
Since the process may require advanced linguistic knowledge and be time-consuming,
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an interesting avenue to consider would be (i) leveraging the resources for existing
languages to build them for new ones, and (ii) exploring multilingual solutions.

applying mtcue to other data domains and at scale . The present work
has applied MTCue to the domain of TV dialogue, and it would be an interesting
future direction to explore whether similar benefits can be obtained in other metadata-
dependent domains such as the biomedical or news. In these domains, context could
play the role of a “sub-domain indicator”; similarly to tagging systems, the prior
calculated based on the article abstract, publication year or journal could better inform
the system of what kind of article is being processed, improving the modelling of
subject-specific terms.

expanding to document-level language modelling . Our proposed LM-
Cue model (Chapter 3) processes text utterance by utterance, which is a setting necessi-
tated by our objective of using the model in evaluating machine translation. However, a
clear increment of this work could scale the model to processing entire dialogues. The
primary challenge with this kind of extension is efficient leveraging of speaker meta-
data, which is subject to change many times within a conversation. Future work could
explore utilising gating mechanisms or other ways of tying the metadata of the correct
speakers to their utterances.

leveraging interlocutors’ characteristics . In Chapter 3 and Chapter 4

we have focused on speaker profiles but not the profiles of the other interlocutors
(with the exception of grammatical agreement attributes, i.e. their gender, number and
formality). In preliminary experiments, we found no benefit to utilising their metadata,
however this could be because the impact of this metadata on language modelling and
translation is too small to learn from corpora of the sizes which were explored in our
sections. Future work could explore efficient ways of incorporating profiles for both the
speaker and the interlocutor, perhaps in a document-level framework (as suggested in
the previous direction).

pseudo-labelling . The primary setback to a wider adaptation of our model is
the lack of useful metadata in some domains. In Chapter 3 we reported on a manual
annotation campaign for collecting rich metadata of TV characters and performed an
ablation study to highlight the cost-benefit trade-off for annotations made in this do-
main. Future work could explore semi-automatic ways of collecting metadata, perhaps
utilising a human-in-the-loop approach with a large language model, where the bulk
of the metadata collection is automated, and human annotators perform the less expen-
sive task of verifying the genuinity of the collected information.
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further use of personalised language models for evaluation of

context-specificity in translation. In Chapter 3 we outlined an idea of
using personalised language models to evaluate context specificity in translations.
Future work could expand on this idea, conducting a thorough investigation across
multiple domains and datasets, as well as other problems of contextual translation
(such as document-level translation).

further human evaluation investigations in professional settings .
Future human evaluation campaigns in setups similar to our (Chapter 4) could (i)
expand to different language pairs, (ii) see the participants grouped into post-editors
of contextual and non-contextual machine translation, so that their post-campaign
views can reflect on the quality of the different types of MT. Furthermore, the current
translation workflow within ZOO Digital includes either translation from scratch
or post-editing (which is paid at a lower rate), and several PEs have suggested that
post-editing machine translation involves more work than standard quality checks. As
part of the expansion with machine translation, post-editing MT could be considered a
third tier, compensated adequatly to the effort it takes compared to translation ex novo
and quality checking.





A
P R E L I M I N A R I E S

In this supplementary chapter, we delineate the essential concepts that constitute
the foundation of knowledge necessary for understanding the research chapters of
the thesis. The reader unfamiliar with any of the foundational concepts may use the
references provided in text to learn it by reading the explanation provided in this
chapter. This chapter is organised into three sections:

§ A.1 (Introduction to Machine Learning) explains the fundamental principles of
machine learning essential for understanding the research experiments. This
section delves into the architectures and mechanisms employed in the experiments,
including the Transformer architecture and the attention mechanism.

§ A.2 (Natural Language Processing) provides the reader with an understanding
of how the machine learning concepts covered in §A.1 are applied to text pro-
cessing. We explore two specific tasks, namely machine translation and language
modelling, which are extensively experimented with in later chapters.

Finally, the supplementary §A.3 (Statistical Concepts Employed Within This Thesis)
covers a subset of mathematical and statistical concepts that will arise at least once
later in the thesis. This section provides the necessary background knowledge to
comprehend them effectively.
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a.1 introduction to machine learning

a.1.1 Neural Networks

A neural network (NN) is a simplified model of interconnected artificial neurons, as
proposed in 1943 by Mcculloch & Pitts. A neuron with three inputs is presented below.

x1 w1

x2 w2 Σ f

Activation
function

y
Output

x3 w3

Weights

Bias
b

Inputs

Weights w1, w2, w3 are numerical values associated with the connections between
the input layer (inputs x1, x2, x3) and the output y. The first step to calculating y is
multiplying the input values and the corresponding weights. A bias term b is added
to the result, and finally the activation function f is applied, yielding the following
equation for y:

y = f (
N

∑
i=1

xiwi + b)

An example of a commonly used activation function is rectified linear unit (ReLU),
which nullifies negative outputs: f (x) = x+|x|

2 .
A feed-foward neural network (FFNN), the simplest kind, is a network of multiple

layers of artificial neurons (Figure A.1). It consists of an input layer, an output layer,
and at least one hidden layer1 in between. It can be seen as a directed acyclic graph:
the connections always flow forward from layer li to the next layer li+1. The network is
fully connected, which means that all neurons in layer li are connected to all neurons
in layer li+1.

softmax

Softmax is a type of activation function, albeit applicable to vectors rather than individ-
ual values, and in machine learning it is used to interpret the outputs of a network as a

1 A neural network is called deep if it consists of multiple hidden layers.
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Figure A.1: Example of a feed-forward neural network with k = 2 hidden layers. x represents
the input, W0, W1, W2 represent the weights between the input layer and the first
hidden layer, the hidden layers and the last hidden layer and the output layer,
consecutively. A bias term b is added during each computation. The activation
function ay is different from a as it is applied before the last layer (see later).

probability distribution. Given a vector v ∈ R, softmax(v) converts v into a probability
distribution:

softmax(v) =
exp(vi)

∑|v|j=0 exp(vj)
for i in 1, 2, ...|v|

For example,

softmax





0.3

2.4

−1.2

0.5

1.5




=



0.07

0.59

0.01

0.09

0.24


With softmax, we can produce a probability distribution over categories (for classi-

fication tasks), words (for most textual applications like translation) and many other
types of information. In Figure A.1, softmax could be used as fy.

training a neural network An NN is trained2 to learn parameters Wj and bj

for each layer j such that the generated probability distribution ŷ is as close to the true
probability distribution y as possible. In order to achieve that, a loss function is defined
which expresses the error of the model’s predictions w.r.t. the gold standard answer.

2 We focus on supervised learning only.
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An optimiser algorithm, such as Adam (Kingma & Ba 2015) is then used to minimise
that loss function. The cross-entropy loss (§A.3) lends itself especially well to textual
applications of neural networks as it is an easy and reliable way of comparing two
probability distributions.

The goal of training a network is to enable it to produce outputs for unseen examples
by learning from data. Crucially, a well-trained network should generalise effectively to
unseen data. Merely performing well on the training data is insufficient, as overfitting
can lead to poor performance on new samples. Techniques such as dropout (§A.1.1)
can be used to minimise this generalisation error.

To measure the generalisability of a network, one typically splits the available data
into three sets: a training set (which the model directly adapts to), a validation
set (which the model does not see during training, but performance on which can
be computed periodically to verify whether the model’s performance on a held-out
set improves), and a testing set (which is not used at all during training and only
afterwards to verify final performance). When training a neural model, one typically
seeks to achieve a set of weights which:

1. performs well on the training data (i.e. over time reduces the error on training
batches);

2. performs as well possible on the held-out validation data;

3. generalises well to the held-out testing data.

The point at which a network is considered to be optimally trained and the procedure
should cease is described by a stopping criterion (§A.1.1).

stopping criteria

A neural network is trained to approximate the function given by the set of the training
examples, leading to continuous improvement in its performance on that training set. To
maximise the generalisation power of the network, it is ideal to halt the training process
when the performance on the held-out validation set no longer shows improvement.
However, a decline in performance during one validation step does not necessarily
indicate full optimisation, since this performance can fluctuate. Common stopping
criteria then involve either halting the training after a specific nubmer of epochs without
improvement (referred to as patience) or when the improvement fails to meet a minimum
threshold. Alternatively, the stopping criterion can be based on a predetermined number
of training updates, irrespective of the model’s performance. The choice of the stopping
criterion depends on factors such as network size, network type, dataset characteristics,
and the specific task at hand.
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hyperparameter search

NNs training is governed by several tunable parameters, such as learning rate (the
coefficient for changing the model weights in response to the calculated loss), batch
size (number of examples to process in one step) and dropout (§A.1.1). For a network
to train optimally, a suitable values for these parameters must be found, as there is
no particular set of values which performs optimally for any problem. Such values
can be obtained via a hyperparameter search. Let A, B, C be the parameters we wish
to tune and [A0, Ak], [B0, Bk], [C0, Ck] be feasible ranges for candidate values for each
hyperparameter. Two typical strategies for the search are:

• grid search: selecting (nA, nB, nC) values from the ranges for each parameter in
order, then training a model copy with each parameter combination (nA× nB× nC
combinations total);

• randomised search: selecting m random combinations of randomly selected
parameters from the given ranges (m combinations total).

In both cases, the best combination results in a model which performs best on the
validation data according to a pre-selected metric, such as the validation loss or a
downstream performance metric like BLEU (§A.2.3.2).

dropout

By now a default tactic in many models, the dropout regularisation technique (Srivas-
tava et al. 2014) randomly sets the output of certain nodes to zero during each forward
and backward pass, which can be seen as a way of simulating multiple sub-models
within a single model and approximating their average output.

a.1.2 Model Architectures and Components

a.1.2.1 Model architectures

recurrent neural network

Recurrent neural networks (RNNs) were the foundation of most state-of-the-art architec-
tures for neural machine translation until the release of the Transformer (§A.1.2.1). The
RNN can be thought of as a neural network spread through time: at each timestep t,
the hidden state ht is re-computed from the previous hidden state ht−1 and based on
current input xt (Lipton et al. 2015):

ht = a(Whxxt, Whhht−1 + bh)
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where a is the activation function. the output ŷt is produced as a function of the hidden
state ht:

ŷt = softmax(Wyhht + by)

This initial formulation of RNNs imposed a fixed-size limitation on the input and
output of the network; in contrast, for applications like NMT it is desirable that the
length of the output is not constrained by the length of the input. The encoder-decoder
model mentioned earlier (Sutskever et al. 2014) was originally proposed precisely to
address this shortcoming of RNNs: they used one RNN as the encoder and another as
the decoder.

Despite their success and widespread use, RNNs were inherently non-parallelisable
and could not handle long inputs reliably. The Transformer (§A.1.2.1) addresses these
two shortcomings: rather than process the input token by token like RNNs, this non-
recurrential sequence-to-sequence (seq2seq) (§A.1.2.1) model processes it simultaneously
via a parallelisable self-attention mechanism.

the transformer

The Transformer (Figure A.2, Vaswani et al. 2017) is the first model completely based
on the attention mechanism (§A.1.2.2) and variants of it are at the foundation of most
contemporary state-of-the-art models in seq2seq and language modelling tasks. It con-
sists of an encoder and a decoder, each of which is a stack of N layers3. Typically, each
layer consists of at least one multi-head attention mechanism (§A.1.2.2): a Transformer
for NMT uses one self-attention in each encoder layer and a self-attention + an encoder-
decoder attention in each decoder layer. The source information flows through all the
encoder layers sequentially, and results in a feature matrix C which can be seen as an
encoded, self-contextualised version of the input. The target information flows through
the N decoder layers similarly: its self-attention self-contextualises this information,
while the encoder-decoder attention contextualises it with C. The output of the last de-
coder layer is subjected to a linear transformation and finally, the softmax operation (§
A.1.1) is applied to the resulting values in order to obtain a probability distribution.

Since the only interaction between tokens in a Transformer is implemented via
attention layers, which are permutation equivariant, the model has no inherent notion
of token positions in sequences. To address this, positional encoding (§A.1.2.2) is used.
The original Transformer uses a cosine position embedding.

a.1.2.2 The attention mechanism

At the core of the attention mechanism are keys (K), queries (Q) and values (V). K is
the encoding of the data (e.g. word embeddings), on which we wish to compute the

3 The original publication, Vaswani et al. (2017), uses N = 6 for base models and N = 12 for big models.
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Figure A.2: The Transformer architecture (Vaswani et al. 2017, p. 3).

attention vector. V can be seen as a different representation of the data in K4. Q is
a reference used to compute the attention. For example, in Vaswani et al. (2017), Q
corresponds to a particular word when K corresponds to all words in the sequence.
Note that K, Q and V are all matrices.

We use Q and K to compute the energy scores e using a compatibility function f :

e = f (Q, K)

In Vaswani et al. (2017), this amounts to computing the importance of the word denoted
by Q with the rest of the sequence (denoted by K). This result is obtained with the dot

4 Galassi et al. (2020) note that in some architectures V = K.
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product of K and Q, scaled by 1√
dk

to achieve more stable gradients. Together, this yields
a scaled multiplicative compatibility function.

We transform the energy scores into attention weights using a distribution function, g:

a = g(e)

In the Transformer architecture, the distribution function used is the softmax (§A.1.1).
Finally, we apply the attention weights to values V by multiplying the values with a:

z = aV

Later on we will explore how the resulting vector z is parsed further by the Transformer.
Together, within Vaswani et al. (2017), the application of attention results in the

following vector Z:

Z = softmax(
QKT
√

dk
)V (A.1)

The calculation of K, V and Q itself is the result of the following operations on the
input matrix X:

K = WKX

V = WVX

Q = WQX

where WK, WV, WQ are weight matrices which are initialised to random values and
trained along with the model.

multi-head attention

In Vaswani et al. (2017), the context vectors are calculated in multiple distinct heads
(multi-head attention), and then merged together and multiplied with a weight matrix to
arrive at the final embedding. The reasoning behind using multiple heads is to enlarge
the representation space. Since all heads are initialised randomly, they can impact the
sequence differently, producing more diverse hypotheses.

The self-attention described above is computed in h separate heads (within this thesis,
usually either 8 or 16), in a setting called multi-head attention. Each head has its own
WK, WV, WQ matrices, resulting in different attention matrices. The final vectors z are
then concatenated and multiplied with matrix WO into a single matrix z (Vaswani et al.
2017):

MultiHead(K, V, Q) = Concat(head1, ..., headh)WO

where headi = Attention(KWK
i, VWV

i, QWQ
i)
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Figure A.3: Example of a mask used to nullify attention given to future words (n = 6). The
mask adds negative infinities to the attention matrix in places which correspond to
future tokens.

Multi-head attention is the basic implementation of attention used in the model. Atten-
tion blocks appear in the model under three labels:

• self-attention in the encoder: K, V and Q come from the output of the previous
encoder. In the first encoder they come from the input embedding.

• cross-attention in the decoder: K, V come from the output of the encoder while
Q comes from the previous decoder layer.

• masked self-attention in the decoder: K, V and Q similarly come from the output
of the previous decoder and in the first decoder they come from the output
embedding. Values to the right of each token are masked out to prevent illegal
flow of information. During inference, the translation hypothesis is produced
one token at a time. When token ti is generated, the model only has access to
tokens T<i ∈ {t1, t2, ..., ti−1} . The decoder can only make use of links between ti
and the words that occurred before it (and itself). But the original self-attention
mechanism relates every word to all other words in the sequence. In order to
re-use the same mechanism in the decoder, succeeding tokens for each token ti
are masked out (Figure A.3).

The FFNN connection in the encoder is calculated for each word separately, and in
the following way:

h = W0
Tx + b0

z = ReLU(h)

f = W1
Tz + b1

Let the FFNN and Attention blocks described above be sub-layers. The authors employ
a residual connection around each sub-layer in the architecture. The residual connection
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facilitates the addition of the input to the output of the sub-layer (x + Sublayer(x)).
The result of the addition is also normalised (yielding LayerNorm(x + Sublayer(x)).

The purpose of residual connections is to retain information from earlier layers
in later layers. For example, it helps to efficiently propagate the positional encoding
information to further layers.

query-key normalisation

Query-key normalisation Henry et al. (2020) applies l2 normalisation to Q and K
matrices and scales them up by a learnable parameter g (initialised to the 97.5 percentile
of training sequence lengths); the attention equation shown in Equation A.1 becomes

Z = softmax(g× l2(Q)l2(K)T)V

positional embedding

Because the attention mechanism does not inherently encode position information
which is a crucial feature of text, positional encoding is necessary. Originally, Vaswani
et al. (2017) implement absolute position embeddings (APE) by adding sine and cosine
functions of varying frequencies to token embeddings; later approaches such as BERT
(Devlin et al. 2019) replace the sin/cos approach with learned embeddings: a randomly-
initialised vector for any integer position k up until the limit K, k ∈ {0, 1, ..., K} is
adapted during training.

a.1.3 Learning Paradigms

zero-shot learning

Zero-shot learning refers to the paradigm in machine learning where a model is enabled
to exhibit behaviour unseen during training. Typically the training and test data in an
experimental setup will share some common specifications. For example, in machine
translation the underlying assumption could be that the source language is always
Ukrainian and the target language is always Polish. If either or both languages changed
during testing, then the model would be queried for zero-shot adaptation to other
languages.

few-shot learning

The few-shot learning paradigm is analogous to zero-shot except the model is trained
on only a few examples of the downstream task, as opposed to a standard paradigm
where the model is adapted with many examples.
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a.2 natural language processing

a.2.1 Tokenisation

Tokenisation is the process of converting a string S consisting of characters into an array
T of individual tokens based on a delimiter character d or a tokenisation algorithm in
such a way that S can be unambiguously recovered from T. The primary function of
tokenisation is enabling the conversion of input text S to an array of units interpretable
by text processing systems, such as FFNNs. Since any text is described by a finite number
of tokens, a complete vocabulary of these tokens V can be collected. For processing with
neural networks, the tokens in V can each be assigned a unique embedding. The most
common delimiter d is the space character (“ ”), resulting in V of all words in the text.
However, for large datasets V will become too big for standard networks, surpassing
the memory capacity of systems or resulting in training and inference slowdowns.
There are two solutions to this problem:

1. selecting a threshold tV for the capacity of V and only storing the most frequent
tV tokens, treating the remaining tokens as unknown;

2. employing an alternative tokenisation method, such as a sub-word algorithm.

sub-word tokenisation

Due to the constraints on the vocabulary size, models in NLP in the past have struggled
with rare words (Sennrich et al. 2016d). This issue is especially prominent in languages
such as German where words are often formed by compounding. For example, the
phrase suggestion for improvement can be translated to German as der
Verbesserungsvorschlag. Intuitively, a more successful tokenisation method would
recognise such compounds and split them into the individual items, and optionally the
connecting element (e.g. tokenise the string “der Verbesserungsvorschlag” as [“der”,
“ ”, “Verbesserung”, “s”, “vorschlag”]. This is the motivation behind sub-word
tokenisation which treats sub-word units as tokens, meaning one word can be
tokenised as one or more tokens. There are three main sub-word tokenisation
algorithms: Byte-Pair Encoding (BPE) (Sennrich et al. 2016d), unigram (Kudo 2018) and
WordPiece (Wu et al. 2016). Algorithm 2 describes the BPE algorithm which is used as
the tokenisation method throughout the thesis.
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Algorithm 2: Byte-Pair Encoding
Input: C, nV ▷ Training corpus C; Vocabulary size nV .

Output: V ▷ Vocabulary V of size nV built from C.

Function BuildVocab(nV , C):
V ←− vocabulary of all characters in C

while |V| < nV do
a, b ←− two most frequent consecutive tokens from V in C

a · b ←− concatenation of a and b

V = V ∪ a · b
end

return V

a.2.2 Text Embeddings

In order to apply NNs in practice we need a method for realising our input as a vector
of numerical values, and for making sense of the numerical values in the output.
Textual applications of NNs in particular require that a mapping is created between text
numerical values on which the network operates. This is commonly done with word
embeddings, where each word (or sub-word) is treated as a token and mapped to a
vector, or sentence embeddings, where each sentence is mapped to one vector.

word embeddings

Given the input sequence of words T = t1, t2, ..., tk, each word ti is represented as a
vector of real numbers xi. This can be seen as a preliminary neural transformation
where T becomes X through multiplication by embedding matrix We. Given a set of
vocabulary words V, X is obtained by first creating a one-hot encoding of token ti and
multiplying it with the embedding matrix to obtain the embedding xi (Figure A.4). The
embedding matrix can either be trained with the rest of the network, or pre-trained
(e.g. GloVe, Pennington et al. 2014) and frozen (kept fixed during training).

sentence embeddings

Sentence embeddings map sentences to real-valued vectors. The definition of sentence
here is loose and the embeddings can be successfully applied to words, sentences and
paragraphs alike, so long as the text does not exceed the token limit of a particular
model. Sentence embeddings are useful when one needs to compare how similar two
sentences are, in tasks such as semantic search.
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Figure A.4: Example of parsing input tokens to numerical values with word embeddings, where
input = “I love cats” and vocabulary = [cats I love parrot]. First, input tokens are
one-hot encoded according to their positions in the vocabulary. Then, they are
multiplied by the embedding matrix We.

Figure A.5: The siamese network architecture of Sentence-BERT (SBERT). The parameters of the
BERT models are shared.

The state-of-the-art approach to computing sentence embeddings was proposed by
Reimers & Gurevych (2019b) who introduced the SBERT (Sentence-BERT) architecture,
which finetunes BERT (Devlin et al. 2019) in a siamese or triplet network configuration
(Figure A.5). Sentence A and Sentence B are tokenised and the representations of their
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tokens is computed using BERT. Then those representations are pooled (converted to a
single vector via a pre-defined operation such as averaging), resulting in embeddings a⃗
and b⃗ respectively. As the output of the siamese network, cosine similarity is computed
between the two vectors, and compared to the gold standard answer, updating the
parameters of the BERT model according to the training criterion. The training data
comprises pairs A, B which are either identical in meaning (with a cosine similarity of
1) or completely dissimilar (with a cosine similarity of 0).

a.2.3 Neural Machine Translation

Neural machine translation (NMT) involves translating a sequence of tokens in the source
language, x = {x1, ...xt} to a sequence of tokens in the target language, y = {y1, ...y′t}.
Specifically, we aim to find ŷ such that

ŷ = arg max
y

Pθ(y|x)

where θ is the matrix of weights in the NMT model. We find the translation by first
training a neural model to learn the conditional probability distribution, and then
given the source sentence x, we search for the target sentence y which maximises the
conditional probability (Bahdanau et al. 2015). NMT is based on seq2seq models which
use the encoder-decoder architecture. The original idea behind seq2seq was to encode
the input sequence x into a fixed-length vector c, and then decode the output sequence
y from c.

log(pw(yi|xi)) = fD( fE(x)) = fD(c) = y

In such a setting, the encoder and the decoder can be trained together to maximise the
probability of a correct translation given a source sentence:

max
w

1
N

N

∑
i=1

log(pw(yi|xi))

where w are the weights (parameters) of the model, and (yi, xi) pairs respectively
represent the correct translation and source sentence examples from a sentence-aligned
(parallel) corpus C, |C| = N.

Bahdanau et al. (2015) observe that the encoder-decoder architecture forces too strict a
compression of information with its single vector c. They instead propose the attention
architecture, which holds one entry per word and, when processing a particular word,
allows to compute a relevance weight for all the other words. At its heart, attention
computed for a vector x1×d is a vector a1×d of weights, ai ∈ [0, 1]. This idea is based on
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the observation that when humans translate, they pay attention to specific elements of
the sequence rather than the whole sequence equally. Since its formulation, attention
has led to the development of many groundbreaking architectures, among which is the
foundation of the current state-of-the-art approach to neural machine translation, i.e.
the Transformer architecture (§A.1.2.1).

a.2.3.1 Back-translation

Back-translation (Sennrich et al. 2016c, Edunov et al. 2018) is a data augmentation tech-
nique used to obtain a parallel corpus (Xbtr(Ymono), Ymono) given a monolingual corpus
Ymono and a parallel corpus (Xp, Yp). Let src, tgt be the source and target languages re-
spectively; let MT(src→tgt) denote a machine translation model trained to translate text
from src to tgt. Assuming the availability of The process of back-translation to augment
(Xp, Yp) with (Xbtr(Ymono), Ymono) occurs in two steps:

1. A back-translation system MTbtr = MT(tgt→src) is trained on (Xp, Yp).

2. MTbtr is used to translate Ymono, yielding Xbtr(Ymono).

A forward translation model MT(src→tgt) can then be trained on the concatenation of
(Xp, Yp) and (Xbtr(Ymono), Ymono).

a.2.3.2 Evaluation

Machine translation evaluation (MTE) serves to produce a judgement on MT quality,
either automatically (with algorithms or pre-trained models) or through manual human
judgements. Traditionally this is done by comparing the translation hypothesis to a
human-written reference translation, though some methods (like quality estimation)
are reference-free, relying only on the source sentence and the hypothesis.

Some automatic MTE metrics like BLEU and Comet, being particularly popular, serve
as the cornerstone of measuring progress in the field, by tracking results obtained
on the same test sets over time. Automatic MTE can also aid the development of MT
systems, indicating the efficiency of prototypes. Human assessment on the other hand
is too expensive to use in development, but irreplacable when it comes to evaluation.
Automatic metrics can be faulty: n-gram-based metrics (e.g. BLEU) are notorious for
punishing hypotheses which use synonymous translation alternatives, being based
on lexical identity between tokens in the hypothesis and the reference, while learned
metrics (e.g. Comet) can exhibit social biases, a characteristic shared by most trained
neural networks.



142 preliminaries

bleu

Given a reference translation and a translation hypothesis, BLEU calculates the n-gram
overlap between them:

BLEU = BP× exp

(
N

∑
n=1

wn log pn

)

where BP is the brevity penalty, defined as follows:

BP =

1 if c > r

e(1−r/c) if c ≤ r

and pn is the modified precision score, calculated as follows:

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)

∑
C′∈{Candidates}

∑
n-gram′∈C′

Count(n-gram′)

where Candidates are the sentences to be evaluated, Count(n-gram) is the number of
times the n-gram appears in C, and Count clip is the same but clipped to the maximum
number of occurrences of the same n-gram in the reference (extra counts are treated as
errors).

BLEU has attracted attention of researchers as one of the first automatic MTE which
correlated well with human judgements. Unfortunately, several scholars have pointed
out that this metric is not without its problems (Callison-Burch et al. 2006, Reiter 2018).
For example, since it is based entirely on lexical matching, it will fail to recognise a
word’s synonym as its viable translation.

chrf++

Character n-gram F-score (chrF) (Popovi 2017) compute the character n-gram overlap
between hypothesis and reference. First, we compute the precision and reference scores:

chrP =
# of character n-grams in hyp. & ref.

# of character n-grams in hyp.

chrR =
# of character n-grams in hyp. & ref.

# of character n-grams in ref.

The chrF score is defined as follows:

chrF(β) = (1 + β2)
chrP · chrR

β2 · chrP + chrR
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β balances the importance of recall w.r.t. precision (β = 1 makes them equally impor-
tant). Finally, chrF++ (Popovi 2017) is a better-performing variation on chrF in which
both character and word n-gram scores are computed and averaged together. Popovi
comment that n = 6 yields the best correlation to human judgement for character n-
grams and n = 1 or n = 2 works best for word n-grams (and throughout this work, a
value of n = 2 is used).

comet

Comet (Rei et al. 2020) combine the ideas from two metrics: it uses contextual embed-
dings like BERTScore (Zhang et al. 2019) and is trained to optimize human correlation,
like RUSE (Shimanaka et al. 2018). Let s, r be the source sentence and the reference,
and h be the translation hypothesis. Using contextual embeddings, Comet calculates
the following distances between h and s or r: element-wise products (h⊙ s and h⊙ r)
and absolute element-wise differences (|h− r| and |h− s|). They append the distances
to reference and hypothesis embeddings and train a feed forward neural network to
minimise the error between the scores produced and human quality assessments.

Despite more sophisticated metrics achieving better human correlation as measured
by the annual Metrics task at WMT (e.g. Mathur et al. 2020), BLEU remains the most
commonly used one.

a.2.4 Language Modelling

Language modelling refers to the task of determining the probability of a set of words
(or tokens) occurring in a sequence. The most fundamental language models (LMs) are
n-gram models which operate on the assumption of the Markov property, where the
probability of a word depends on a limited (typically fixed) number n of preceding
words. Mathematically, the probability distribution of an n-gram language model is
expressed as:

p(wk|wk−1, wk−2, . . . , w1) ≈ p(wk|wk−1, wk−2, . . . , wk−(n−1))

While n-gram models are computationally efficient and can capture local dependen-
cies, they struggle to handle long-range dependencies and suffer from the sparsity of
data when faced with unseen n-grams. Contemporary language models address these
shortcomings by increasing the context window (n) and leveraging powerful mecha-
nisms such as self-attention to capture complex relationships between words. While
these models still use the Markov property, increasing n to several thousand tokens
yields significantly more contextually grounded models. However, these improvements
come at the cost of training and inference efficiency when compared to n-gram models.
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a.2.4.1 Evaluation

Language models can be evaluated intrinsically (i.e. on how well they capture a given
text) and extrinsically on downstream tasks they are later used on, such as language
understanding (e.g. GLUE, Wang et al. 2018). In this section, we focus only on metrics
used later in the thesis: perplexity (§ A.2.4.1) and mean reciprocal rank (§ A.2.4.1).
Perplexity is an intrinsic measure while mean reciprocal rank is an extrinsic one.

perplexity

Perplexity is an automatic measure of how well the learned probability distribution of
words matches the distribution of the given text. Given a causal LM with parameters θ,
the perplexity for a sequence S = (s0, s1, ..., sn) is given by Equation A.2:

Perplexity = n

√
1

∑n
i log pθ(si|s<i)

(A.2)

mean reciprocal rank

Mean reciprocal rank (MRR) captures the effectiveness of a system which returns a list
of ranked results to a query. Let qi be a query and ai be a list of n possible answers
ai ∈ (ai

1, ai
2, ..., ai

n) ordered descendingly from highest-ranked. Let rankqi ,ai denote the
position of the (first) correct item in ai. Then, the reciprocal rank is the multiplicative
inverse of that position, and, when q belongs to a list of queries Q, the mean reciprocal
rank is the average of the reciprocal ranks computed for all queries in Q:

MRR =
1
Q

Q

∑
i=1

1
rankqi ,ai

Given a list of predicted tokens (t0, t1, ..., tk), an language model can be queried to
produce a probability distribution over the vocabulary for the next word tk+1. If there
exists a gold-standard answer for tk+1, then MRR can be computed on the probability-
ranked list of predicted tokens.

a.2.5 Beam Search

Textual output of a neural network is traditionally generated in an autoregressive way,
i.e. the text is decoded in a pre-determined direction (usually left-to-right) and one
token at a time. The simplest approach to decoding a sequence of tokens, referred to as
greedy decoding, simply takes the most conditionally probable token at each step. An
alternative and more robust strategy (used particularly in NMT) is beam search, which
can be seen as a width-limited breadth-first graph search algorithm, where width is
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usually referred to as the beam size. When the beam size is equal to one, beam search
falls back to greedy decoding.

Let k be the beam size and v be the vocabulary size. At each step of the decoding
process the k hypotheses with the highest cumulative probability are kept. Given the
k hypotheses obtained from step i, at step i + 1 a token is conditionally predicted
from each of the top hypotheses, yielding k× v new hypotheses from which the most
probable k are selected as the result of step i + 1.

a.3 statistical concepts employed within this thesis

classification performance metrics

We consider four performance metrics applicable to tasks with a binary outcome (e.g.
correct or incorrect classification) for each sample from a collection.

Let TP, TN, FP, and FN denote the true positive, true negative, false positive, and
false negative outcomes of an experiment, respectively. Then,

• Accuracy is defined as the sum of correct outcomes (TP, TN) divided by the
sum of all outcomes:

Accuracy =
TP + TN

TP + FP + TN + FN

• Precision measures the proportion of correctly classified positive samples out of
all samples predicted as positive. It quantifies the accuracy of positive predictions.
Precision is computed using the formula:

Precision =
TP

TP + FP

A high precision indicates a low rate of false positives, meaning that the model is
reliable when it predicts a positive outcome.

• Recall measures the proportion of correctly classified positive samples out of all
actual positive samples. It quantifies the ability of the model to identify positive
samples correctly. Recall is calculated using the formula:

Recall =
TP

TP + FN

A high recall indicates a low rate of false negatives, indicating that the model is
effective in capturing positive samples.
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• F1 score is the harmonic mean of precision and recall, providing a single metric
that balances both measures. It combines precision and recall into a single value
that summarises the model’s performance. The F1 score ∈ [0, 1] is calculated as:

F1 score = 2× Precision× Recall

Precision + Recall

cross-entropy

Cross-entropy is a measure of the differences between two probability distributions.
It quantifies the average number of bits needed to represent the true distribution p
compared to the predicted distribution q:

H(p, q) = −
n

∑
i=1

p(xi) log(q(xi))

where the probability distributions p(i) and q(i) are obtained over n possible out-
comes.

label-smoothed cross-entropy

Label-smoothed cross-entropy, often used when training the Transformer (§A.1.2.1) for
the NMT task, is a variation on the cross-entropy function. It adds a small amount of
uncertainty to the true predictions, preventing the overconfidence of the model in what
it has predicted. This also effectively encourages it to learn more robust and calibrated
probabilities. While the standard cross-entropy uses one-hot encoded labels for each
sample, the label-smoothed variant assigns a positive value ϵ ∈ [0, 1] to the true class
and the remaining probability mass (1− ϵ) is distributed equally among the remaining
classes.

pointwise mutual information

PMI measures the level of association between two events. Given two events A and
B, PMI is computed as the logarithmic probability of the joint occurrence of A and B,
divided by the product of their individual probabilities:

PMI(A, B) = log
P(A, B)

P(A)× P(B)

PMI indicates how much more likely it is for A and B to occur together than if they
were independent; positive PMI indicates positive correlation, zero implies independence
and negative PMI indicates negative correlation.
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a.3.1 Statistical Significance Testing

bootstrap resampling

When comparing two machine translation systems,M1 andM2 on a given test set with
a quantitative metric like BLEU (§A.2.3.2), an important thing to consider is how to
ensure that the difference in scores is sufficient to claim one system significantly better
than the other. Koehn (2004) propose that the statistical significance of this difference
can be computed with bootstrap resampling: given a test set of n sentences, we sample
(with replacement) a subset of k sentences from this collection, and compute the quality
score for M1 and M2. We repeat this procedure a large number of times (e.g. 1000).
If e.g. 95% of the timeM1 is better (i.e. obtains a higher score) thanM2, then we can
conclude with 95% certainty that it is the better system.

t-test

A t-test5 is a statistical test which compares the means of two groups of measurements,
typically to determine whether there is a statistically significant difference between
them. In the context of results from evaluating a model, given the baseline model M
and the tested model M′ and the results from n separate runs for each, we can calculate
a t-value based on an array of differences of model scores δ as follows:

t =
δ

σ(δ)/
√

n

where δ corresponds to the mean and σ(δ) to the standard deviation of the differences.
The obtained t-value is then compared to the critical t-value at the selected level of
significance (expressed as a confidence interval or a p−value) and degrees of freedom
(i.e. n− 1). The result is statistically significant if the observed t-value is greater than
the critical t-value.

5 Within this thesis we only consider a one-tailed t-test, which assumes a specific direction of change in
results, for example when we compare an improved model to a baseline one.
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