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Abstract— Train delays have been a serious persisting problem
in the UK and also many other countries. Due to increasing
demand, rail networks are running close to their full capacity.
As a consequence, an initial delay can cause many knock-on
delays to other trains, and this is the main reason for the overall
deterioration in the performance of the rail networks. Therefore,
it is really useful to have an Al-based method that can predict
delays accurately and reliably, to help train controllers to make
and apply alternative plans in time to reduce or prevent further
delays, when a delay occurs. However, existing machine learning
models are not only inaccurate but more importantly unreliable.
In this study, we have proposed a new approach to build
heterogeneous ensembles with two novel model selection methods
based on accuracy and diversity. We tested our heterogeneous
ensembles using the real-world data and the results indicated
that they are more accurate and robust than single models
and state-of-the-art homogeneous ensembles, e.g. Random Forest
and XGBoost. We then verified their performances with an
independent dataset from a different train operating company
and found that they achieved the consistent and accurate results.

Index Terms— Train delay prediction, heterogeneous ensemble,
random forest, diversity.

I. INTRODUCTION

ESPITE significant efforts made by train operating com-
panies (TOCs) in the UK to improve the performance

of train services, the Public Performance Measure (PPM)l
[1] decreased from 91% in 2013-14 to 82.8% and On-Time
measure to 62.3% in December of 2022 [2]. In general,
train delays can be classified into two types: primary and
reactionary. A primary delay is an initial delay that can be
caused by a variety of factors, such as accidents, equipment
or signal failures, construction works, bad and hot weather,
flooding, vandalism, trespass, etc. [3]. A primary delay can
then initiate a series of consequential reactionary delays on
other trains running on the same or related rail networks [4].
Over the decades, the number of train passengers has
been steadily increasing, except at the peak of the Covid-19
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IPPM has been the performance indicator of train services in the UK. It was
replaced by an enhanced metric—Control Period 6 (CP6) in April 2019, but
PPM is still a useful indication and as our data was up to 2019 before the
Covid-19 Pandemic, we used it in this study.

pandemic, so the number of train services has had to be
increased accordingly. But the increased train services put
more pressure on the rail networks to be running close to
their full capacity, and hence leave very little buffer to absorb
disturbance of train operations. As a consequence, one small
primary delay can cause many reactionary delays cascading
through the rail network. This can result in major disruptions
to the network and significant inconvenience to the passengers.
Whilst the Covid-19 pandemic was very bad for many things,
it provided an unprecedented opportunity to verify the impact
of rail networks running at their capacity. Due to the significant
drop of passenger numbers, fewer trains were running on the
rail networks, so most trains were running on time and the
PPM improved considerably. But as the pandemic eased off,
more people started travelling again, and the train services
were almost back to their normal schedule. Since then, more
trains have been delayed, as indicated by the most recent
PPM figure of 83.9% for 26 June to 24 July 2022, which is
much lower than the 90.3% for the equivalent period during
the high time of COVID-19 in 2021 [1]. This highlights
once again the need for predicting delays and then producing
alternative decisions to reduce the impact of delays as much as
possible.

Nevertheless, due to the high complexity of rail networks
and service operations, it is very difficult for train controllers
to foresee all the reactionary delays in long sequences and
then come up with some evidence-based alternative plans
to manage or mitigate the delays and disruptions. Thus,
it is essential to develop some new methods or systems to
predict train delays at a sufficiently early stage to assist train
controllers to take appropriate actions to minimise the number
and impacts of consequent delays.

This paper proposes a machine learning ensemble method
that combines different types of predictive models to improve
the accuracy of delay prediction. The ensemble approach
works by generating several models in an analogous way
to a committee of human experts. The outputs of member
models in an ensemble are then combined using an aggregation
function to generate a hopefully improved final output. But
an ensemble may not produce a better output than that of
individual models, and it all depends on how an ensemble is
constructed and what aggregation function is used [5]. Simply
speaking, for example, if an ensemble is built with some
identical models, i.e. there is no difference or diversity among
these models, then such an ensemble will not produce any
better results, but the same as that of the individual models,
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because they do not have different ability to compensate the
weakness of each other. Therefore, an ensemble should ideally
be built with diverse models.

However, most current ensemble methods generate homo-
geneous ensembles, where the models are all of the same
type, e.g. decision trees, hence they are highly likely to be
similar to each other and make the same mistakes, and as
a result, a homogeneous ensemble may not perform better
than individual models. On the other hand, a heterogeneous
ensemble is built with the models that are generated by
different types of learning algorithms to utilize the strengths
of each type to therefore achieve more accurate results.

In this study, we built heterogeneous ensembles with mul-
tiple models generated by using a variety of machine learning
algorithms. This should give a great advantage over both
individual methods and homogeneous ensembles. Moreover,
the aggregation function is also important because it deter-
mines how the outputs of individual models are combined to
produce the final prediction. In this study, we devised some
aggregation functions using averaging and weighted averaging
and compared their performance on the test data. A framework
has been built to implement these ensembles and the weighted
aggregation function, and a case study on an intercity train
service was conducted. In addition to this, we have investigated
two criteria for selecting the models for building effective
ensembles: accuracy and diversity.

The rest of this paper is organised as follows: Section II
briefly reviews the related work, Section III describes in
detail the methodology and construction of the ensembles.
Section IV presents the experiment design and results, includ-
ing a discussion of their implication. Finally, Section V draws
the conclusions and gives suggestions for future work.

II. RELATED WORK

Various methods have been used for predicting train delays,
including regression and classification. A recent paper [6]
reviewed the methods for train delay prediction and divided
them into two categories: event-driven, which models the
dependencies of train arrivals, departures and other events in
the rail network, and data-driven where the train-event depen-
dency structure is not explicitly modelled. They concluded that
while event-driven approaches are easily interpretable, the best
data-driven methods give the most accurate predictions overall
and have the additional advantage of being easier to be applied
in real time.

This section reviews the related work in predicting train
delay, by initially overviewing the basic methods that gener-
ate individual models, then focusing on ensemble methods.
As some methods developed in one transportation type may
be applicable to other types of transportation, so we will also
briefly cover some publications in the areas of air and road
transportation.

So, our reviews are organised by single models, ensemble
methods and the work in other types of transportation.

A. Single Models

As the target of train delay prediction problem is a real
value—usually the time variation from the scheduled time,

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

so regression is the commonly used approach in this field.
With various regression algorithms from simple linear to
polynomial regression, to some stochastic and kernel-based
machine learning methods, such as Support Vector Regression,
Artificial Neural Networks, each of them can be used to
generate single models from the data for predicting train delay.

In 1994, [7] used stochastic approaches to simulate inter-
actions between trains to help avoid the effects of knock-on
delays. Later, [8] recommended the use of stochastic meth-
ods for estimating arrival and departure delays in Holland.
Reference [8] used a stochastic based modeling approach to
highlight techniques that estimate reactionary delays, which
are systematic in nature and are the cause of delays in
railway stations. Their approach used probability distributions
to deal with data fluctuations. They explored delays resulting
from conflicts of routes and the transfer of trains between
connections. However, as noted in a recent paper by [9], the
approaches using probability distribution models have failed
to provide accurate predictions of train delay durations when
they occurred.

More recently, [10] used Bayesian network models for
predicting delays. They stressed that traditional techniques
require frequent updating, pointing out that if real-time train
movement data is to be used, it will be extremely resource-
intensive. They therefore used different structures, including
the so-called hybrid structure, primitive-linear and heuristic
hill-climbing. Their method aims at using the technique of data
related to high-speed routes in China, which cover distances
of over 1000 km. When applied to these routes, they achieved
an accuracy of over 80% and so it is evident that modelling
such routes can be done effectively. Their method also differ-
entiates between the primary and reactionary delays. However,
it should be noted that most lines in the UK railway networks
do not cover such long distances, neither are they high-speed,
but more interconnected, therefore it is not clear how well
their approach would generalise to the UK rail networks.

Bayesian networks [11] were applied to this problem with
historical data from Sweden. Their method was not restricted
to static data and was also able to include dynamic character-
istics of delays that were constantly fluctuating.

Support Vector Machines have also been used. For example,
[12] applied a hybrid method to the prediction of bus arrival
times; and [13] used SVM for identifying any connections
between train delays and railway network qualities. This work
focuses on anticipating and avoiding delays, particularly as
finding any connections between the two could enable railway
staff make use of learned choices to decrease delays.

Two further potential methods discussed by [13] were
hybrid simulation and machine learning, and multiple
regression.

Artificial Neural Networks (ANN) are also commonly used
for predicting train delay [14], [15], [16]. Reference [14]
used ANN to predict arrivals and departures on the Iranian
train network. Their study modeled the train delay prediction
as a classification problem, rather than a regression problem
naturally considered by most other studies. Reference [15]
used ANN, together with some other methods in their study
for predicting train delays in the Italian rail network. The
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different approaches of [14] and [15] highlight the importance
of tailoring the method employed and the features selected
to suit the specific problems of the network. The Iranian rail
network has a quite lower level of complexity than that of
the Italian network. Since the UK rail network is extremely
complex with a huge number of crossovers and the train
services are run by many different privatised companies, the
methods of [15] would be better suited for the UK rail network
than that of [14].

Another type of neural net, Extreme Learning Machines
(ELMs), Shallow and Deep, were used by [16] for predicting
train delays because ELMs can learn faster than those which
use traditional learning algorithms, which may not be fast
enough, and they generalise well [17]. They were claimed to
be more appropriate with big data than the methods that use
univariate statistics because the model adapts and improves
when fed external data [16].

In general, although these algorithms and models may
produce some good results, they have a common weakness,
that is, their performance varies quite considerably from model
to model when used on different data, which means that
they are not very consistent or are unreliable when working
alone. However, this drawback can be compensated by using
ensemble approaches, which will be reviewed below.

B. Ensemble Methods

An ensemble in machine learning can be simply defined as a
committee of several models working together with a decision
aggregation function with an aim of producing a better final
output [5]. The basic idea is based on the fact that while
no individual model may be perfect for solving a non-trivial
problem, a committee constructed with several suitable models
can work better than individuals working alone.

Reference [15] used standard the ensemble method Random
Forest (RF) in their work and demonstrated that the ensembles
are able to improve predictions. They compared their RF
ensembles with kernels and neural networks. They noted that
because they derived more detailed features in their dataset,
the RF was able to use more subsets of features selected at
random to generate as many as 500 decision trees and then
combine them to produce a more accurate prediction, although
it was more time consuming and used more resources.

Reference [18] also compared Random-Forest ensemble
models to multiple linear regression models and found the RF
models to be more accurate in prediction. They determined
the number of trees to use by examining the error between
different tree sizes, because they required an accurate but not
overly complex model.

Several other authors have also used Random Forest for
train delay predictions. Reference [19] concluded that in their
application it outperformed linear regression and decision
trees. Reference [20] used a two stage RF model and found
that it increased the accuracy of delay predictions. Reference
[21] used a bi-level RF approach, while [22] used a large scale
application of RF.

All these studies demonstrated that the Random Forest
ensembles outperform individual models generated by other

approaches, and suggested that it was the best algorithm at the
time for predicting train delays. But as their studies did not use
a relatively new type of boosting algorithm—XGBoost [23],
their suggestion should be taken with caution. A recent study
[24] used XGBoost with hyperparameter tuning by Bayesian
optimization for predicting train delays. When tested with the
data for two high speed railway lines in China, it performed
better than six other well-known algorithms including Random
Forest, which gave the second best performance.

In summary, it is clear that ensemble methods are generally
more accurate than individual models and, to date, Random
Forest and XGBoost ensembles have been considered as the
best methods for train delay prediction problem.

C. Work in Related Fields

Commercial aviation, like rail transport, is a complex system
in which many stages of the process may be subject to delays
caused by factors such as bad weather, mechanical issues
and availability of aircraft, crew, embarking/disembarking
ports, runways and airspace. Reference [25] reviewed stud-
ies of using machine learning algorithms for predicting
flight delays. They noted that machine learning is becoming
increasingly important in flight system analysis, and that the
most frequently used methods are neural networks, k-Nearest
Neighbor, SVM, Random Forest and fuzzy logic. For example,
[26] predicted root delay at US airports using Random Forest
and compared their methods with regression. Reference [27]
predicted root delay using an adaptive network they had cre-
ated using fuzzy inference systems. These predications were
then input into fuzzy decision-making method for sequencing
flight arrivals at JFK International Airport.

Reference [28] considered a wide range of factors with
potential impact on flight delay, and conducted a compar-
ison of several machine learning-based models for general
flight delay prediction tasks. They created a dataset for
this purpose containing automatic dependent surveillance-
broadcast (ADS-B) messages combined with airport informa-
tion, weather information and flight schedules. Their design
for prediction included various classification tasks plus a
regression task. Their experiments indicated that long short-
term memory (LSTM) could cope with the aviation sequence
data it received but had a problem with overfitting. In com-
parison with earlier models, their Random Forest-based model
performed well in terms of prediction accuracy (90.2% for
the binary classification) and it was able to surmount the
overfitting problem.

Reference [29] predicted the likelihood of flight delays
using data mining and causal machine learning algorithms, in a
process, known as USELEI (Understanding, Sampling, Explor-
ing, Learning, Evaluating, and Inferring) process. The process
was used because CRISP-DM (Cross Industry Standard Pro-
cess for Data Mining) and SEMMA (Sample, Explore, Modify,
Model, Assess), which are commonly used for research in
data mining, do not take into account important features of
causal data mining which requires the identification of causal
relationships between variables and the creation of a causal
network from sizeable data sets. Data from various sources
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were used and the results indicated that predictors including
capacity, efficiency and traffic volume, had significant effects
on the probability of flight delays. The predictive power
and precision of the final network was high, with a 91.97%
predictive accuracy.

In the area of passenger road transport, passenger satisfac-
tion and increasing use of bus services may also be affected
by the accuracy of delay predictions. Reference [30] analysed
two important factors in real time bus dispatching which can
be used to deal with fluctuations in travel time due to traffic
conditions and passenger numbers. They predicted bus arrival
times by combining Support Vector Regression and Kalman
Filters. They also proposed automatic timetable redesign using
a circle search algorithm, and their results were verified in a
case study in Shenzhen, China.

From our review of the published work on predicting train
delays and the work in related transport areas of aviation and
roads it is clear that similar approaches are being used across
different areas. Therefore it is possible that methods developed
in one area could be used in other areas, and thus the methods
we have developed for rail transport in our research have
strong potential to be used in other transport areas.

The existing studies that we have discussed showed that
machine learning models are of great benefit in the prediction
and avoidance of train delays. The ensemble approach has
proven effective and in comparison to using single classifica-
tion or regression models, it would be expected to perform
better, as has proven to be the case. To date there has
been very little work on using heterogeneous ensemble meth-
ods. Homogeneous ensembles have the advantage of using
a committee of models. However, the models are all of the
same kind. In contrast, a heterogeneous ensemble has models
produced by different algorithms which are methodologically
heterogeneous. These models are therefore less likely to make
similar errors, resulting in a more accurate ensemble.

The only published example of a heterogeneous ensemble
in the context of predicting train delays that we are aware
of is that of [22]. They developed a heterogeneous ensemble
consisting of three models: Random Forest, kernel regres-
sion and mesoscopic simulation of the network. They only
generated one model of each type and used them as they
are without any assessment or selection. They found that
the ensemble performed better than the individual models.
However, they also found that their approach was sensitive to
hyperparameters and fine tuning was required. This means that
their method would not generalise well. In a previous study
[31] we showed that heterogeneous ensembles outperformed
random forest for predicting train delays. The motivation of
this research is to help improve the UK train network by devel-
oping an accurate and reliable machine learning ensemble by
efficiently combining multiple models generated from different
standard learning algorithms into a heterogeneous ensemble.

III. DELAY PREDICTION MODELLING SCHEME

We can represent the train delay prediction as follows.
A given train service journey, J, will contain several stations,
ie, J = {81,8,...,S,...,5v=1, Sy} starting with the
initial station Sj, then intermediate stations S, to Sy_1, (where
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the train stops for passengers embarking and disembarking,)
and ending with the terminal station Sy . There will be a series,
T, of n trains: T = {T1,T»,...,T},...,T,—1, T,}, moving
(or stationary) at various times and positions according to the
timetable, assuming that they are running on time.

We can then define the delay prediction problem for a train
T; that has just departed from a Station S;, then we want to
predict its arrival time at the next station §;, and at all the
subsequent stations of the journey. The modelling scheme for
this is described as follows.

Rather than predicting the actual arrival time of a given
train 7; at its next station, we transform the value to predict
the difference between the scheduled and actual arrival times.
Let tp, and 1., represent the scheduled and actual arrival
times, respectively, of train 7; at an intended station S;.
The difference, Atr, between these values is calculated by the
following equation,

A1(Ti, Sj) = taa(Ti, Sj) — tpa(Ti, Sj) ey

A positive value for Ar indicates a delay and a negative
value indicates an early arrival. This predicted delay will be
taken, together with other variables, as the inputs to the next
model for predicting the arrival time at a subsequent station.

IV. HETEROGENEOUS ENSEMBLE METHODS

Ensemble methods are techniques for combining several
base learning models together in order to achieve a better accu-
racy than that single models can have. However, an ensemble
may not necessarily do better if it is not properly constructed
and a very important condition for an ensemble to be better
is that its member models must be diverse enough from each
other when making their decisions [5].

As noted earlier, ensembles can be classified into two types:
homogeneous and heterogeneous. a homogeneous ensemble is
built with models generated by just one type of base learner
only, e.g. decision trees. In contrast, a heterogeneous ensemble
is built using models generated by several different types of
base learners. A homogeneous ensemble method, although
using just one learning algorithm, attempts to generate diverse
models by either manipulating training data with different
sampling strategies, or using different parameters of the base
learner. But as these models are of methodologically the
same type, they are generally similar to each other and hence
more likely to make the same errors [32]. As a result, the
improvement from a homogeneous ensemble can sometimes
be very small, if any. But on the other hand, the models that
are generated by using different learning algorithms should
be more diverse from each other to reduce the probability
of making the same errors simultaneously, that is why a
heterogeneous ensemble is more likely to perform better in
terms of accuracy and consistency.

In our study, we proposed a framework for building
heterogeneous ensembles and compared our heterogeneous
ensembles with some popular homogeneous ensembles, which
are briefly described as follows for convenience.
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A. Existing Popular Homogeneous Ensemble Methods

The most common ensemble or arguably state of the art
approaches are Random Forest, Boosting and XGBoost.

1) Random Forest: is an ensemble algorithm that was
proposed by [33] that generates a variety of decision trees that
can be used for classification and regression. The basic idea
is that it selects some features at random to induce a decision
tree and repeats this process for many times by sampling
features t at random with replacement to generate a forest
of many trees, i.e. a homogeneous ensemble of decision. The
ensemble prediction is achieved by averaging for regression
and by majority voting for classification. It has been applied
to many areas and usually achieved very good results.

2) Boosting: [34] is to generate a series of models with a
boosting mechanism that attempts to make the next model
improves the errors of previous models. One of the most
well know boosting algorithms is AdaBoost (from Adaptive
Boosting). After each boosting iteration the weights applied
to individual data samples that have not been correctly learned
by the model at previous iteration are increased, i.e. boosted,
so that the current model will pay more attention to learn
those samples correctly. The boosting process usually stops at
a given number of iterations. These models essentially form a
homogeneous ensemble and the final output is determined by
combining the outputs of all the models with different weights,
computed based on their accuracy.

3) XGBoost: eXtreme Gradient Boosting [23] is an exten-
sion of the Boosting framework. It employs distributed Newton
gradient descent and parallel tree boosting to improve effi-
ciency. It has been used in many domains [35], [36], [37],
demonstrating that it has the ability to perform fast and
achieve accurate results. It can use parallel and distributed
computing to speed up the learning process, resulting in a
faster and scalable modelling process. XGBoost has been
popularly used in various applications and has often produced
better results than other methods, even including some deep
learning methods.

Due to their excellent performance, XGBoost and Random
Forest are considered as state of the art methods in machine
learning for many real-world applications. That is why they
were chosen for comparison with our methods.

B. Heterogeneous Ensembles

Heterogeneous ensembles are expected to perform better
than homogenous ensembles because they are built with
methodologically different models, which may have learned
different aspects of a problem from the training data and
could be more diverse from each other to avoid making the
same mistakes. Previous studies [38], [39], [40], [41] have
shown that heterogeneous ensembles can perform better than
homogenous ensembles, not only being more accurate but
more reliable as well. Train delay prediction has proven to
be a difficult problem to solve and many attempts have been
made to apply machine learning methods to it. Because of
the advantages of heterogeneous ensemble techniques, and the
fact that almost no work has been published describing their

application to train delay prediction, we therefore chose to
develop heterogeneous ensembles in this study.

1) Building Heterogeneous Ensembles: The process we
proposed for building heterogeneous ensembles consists of the
following steps.

o Dataset: Some data of train operations in the UK were
collected and used in this study. The basic form of the
train running data is provided in a format similar to a train
timetable. For each train, it lists the planned departure
time, actual departure time, planned arrival time and
actual arrival time for each stop station along the journey
of a train service.

o Feature Extraction: The raw data was transformed into a
structured representation by extracting the features listed
in Section VII-A.

o Data Partitioning: The data was then partitioned into
training, validation and testing datasets, the proportions
being 70%, 15% and 15%, respectively, using a random
seed for reproducibility.

o Base Learning Algorithms: In the next stage of the pro-
cess several different learning algorithms are employed
to generate predictive models as the candidates to be
selected for building the ensemble.

o Collection of Trained Models: All the trained models
are put into a Collection of Models (CM) as candidates
for further processing.

o Model Selection: This step selects some models as the
member models of a heterogeneous ensemble. We devised
two selection methods: MSM1 and MSM?2, based on
two different criteria: accuracy and diversity, respectively,
calculated on the validation dataset. We will discuss these
criteria in detail later.

o Decision Making Function: The final stage is to com-
bine the results of the chosen member models in an
ensemble in order to produce the final prediction. For
this process, two combination techniques: Averaging (AE)
and Weighted Averaging (WE) were employed and their
details will be described in the next subsection.

« Heterogeneous Ensemble: Once this is done, the ensem-
ble is complete and can be used for prediction or further
tested on the test data.

This process was implemented in Python, using Scikit-learn
and other libraries.

2) Decision Fusion Strategies: Any ensemble requires a
decision making function to combine the outputs of the
individual models to produce the final output. This function
plays a very critical role in determining the performance of
an ensemble [5]. We devised two functions for this: Averaging
(AE) and Weighted Averaging (WE).

a) Averaging (AE): This is a technique that computes
the mean of the outputs from all the individual models in an
ensemble as the final output of the ensemble. It is the simplest
decision fusion function and is often used for regression
problems. In this technique, all the models in an ensemble
are used to make their prediction independently for each data
point and their predictions in real value are then averaged to
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produce a final prediction, y,. (Equation 2.)

M
Ya=Q_ y)IM )
J
where, y; is the output from member model j, M is the
number of models in the ensemble.

b) Weighted averaging (WE): This is a variation of
Averaging, or a generalised averaging fusion function. The
important difference is that outputs of individual models are
assigned with different weights based on their performance
when computing the final value. There can be different ways to
calculate the weights, based on the chosen metrics, e.g. R? or
MAE. In this study, for model j, its weight w; is computed
with equation 3, based on its R? on the validation data, where
a is the multiplying factor to further adjust influence of a
model. When a > 1, the weight is boosted to increase the
influence of a good model in making the final decision; whilst
when a < 1, the weight is further reduced for the models with
poor performance. When a = 1, the value of R? of a model
is just taken as its weight, which was used in this study for
simplicity, without loss of generality.

wjzajRi (3)

The output of a weighted ensemble, y,, can then be
computed by Equation 4.

M M
Yw =(Zyj X wj)/zwj
J J

where, y; is the output from member model j, w; is the weight
for model j.

In order to construct a heterogeneous ensemble with dif-
ferent models that are as diverse as possible, we chose
12 different learning algorithms to generate candidate models,
which will be listed later.

For a given training dataset each algorithm is used to
generate a model. Thus 12 models are generated as candidates
for forming an ensemble. For comparison, we built various
ensembles by using two model selection methods, based
on accuracy (MSM1) and diversity (MSM2), which will be
described in Section VI.

“

V. DIVERSITY MEASURES

A fundamental philosophy that makes an ensemble better
is that the individual models in an ensemble must be diverse
enough from each other to avoid making the same mistakes
simultaneously. So, having a certain level of appropriate
diversity among the member models is essential [5]. However,
measuring the diversity among the models is tricky as there
are different definitions of diversity in the literature and most
of them were defined for classification problems. Diversity
measures can be generally divided into two categories: pair-
wise and non-pairwise. Pairwise measures only consider the
difference between two models at a time and non-pairwise
measures try to estimate the diversity among all the models.
Although there are dozens of definitions for diversity, almost
all of them are not really effective as they measure a specific
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diversity that is not directly related to the decision marking
function [5]. On the other hand, when a diversity is defined to
represent the failure independence among the member models,
which is used in the final decision fusion function, it is
demonstrated to have a consistent association with ensemble
accuracy [42].

For regression problems, it is more challenging to measure
diversity among the models because the diversity measures
defined for classification problems require categorical outputs
and cannot handle the real value in a regression problem output
hence they are not directly applicable to regression ensemble.
One review [43] evaluated several diversity measures in regres-
sion ensembles by using correlation coefficient, covariance,
dissimilarity measure, Chi-square, mutual information, etc.
A typical study [44] demonstrated that negative correlation
can be useful to push the models apart if it is integrated in the
training of neural networks. But again, this mechanism is not
related to the final decision making and hence its effectiveness
is limited. In addition, these studies do not consider how the
diversity in an ensemble can be affected and measured when a
model is added to or removed from an ensemble, which may
affect its overall prediction [43].

For this study we redefined some of the metrics evaluated
by [43] and also modified probably the most effective non-
pairwise diversity measure for classification, the Coincident
Failure Diversity (CFD) [9], [32], to fit regression problems.
To the best of our knowledge this is the first time that CFD
has been applied to a regression problem.

It is important to note that different diversity measures
will give values across different ranges, therefore when using
diversity as a component in the fitness function, we normalise
values of diversity metrics. The metrics that we derived or
used in our study are described below.

A. Correlation

In statistics, the correlation coefficient is a measure of
how strongly two variables are related to one another
based on their relative movements, with a range of values
between -1.0 and 1.0. A correlation of -1.0 indicates that
there is a perfect negative correlation, while a correlation of
1.0 indicates that there is a perfect positive correlation. With
a correlation value of 0.0, no linear relationship can be found
between the two variables. Therefore, the diversity is inversely
proportional to correlation, i.e., when the correlation is high,
the diversity will be low and vice versa.

It can be used as a diversity measure between a pair of
two models, which we call as the correlation diversity D, as
defined below.

For a given pair of models with their outputs: y; and y;,
with k as an index over the intended N data samples.

D, = -, ) )
Where. r — —20ik=)*3 (jk—y;)
’ 2 Q= X (Ve —;)?
Where r is the standard Pearson’s correlation coefficient.
When, r = —1, D, is 1, meaning that the maximum
diversity is achieved; r = 0 => D, = 0.5, indicating that two
models have a random diversity between them; and when

&)
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r =1 => D, =0, there is no diversity between two models.
So, for any pair of models, they must meet the condition:
D, > 0.5, to be considered diverse enough.

B. Covariance

The covariance indicates whether the two variables vary
together in a correlated manner. Unlike the correlation, whose
values are limited to —1 and +1, the values of covariance
are unbounded, could be anything between -oo and oo,
which can be difficult to interpret or to use as a diversity
measure, so we need to convert it to a limited and meaningful
representation. We employ the sigmoid function to convert the
range of possible covariance values to (0, 1). So we define the
covariance diversity D, as follows.

2e—|cov\
i T ©
cov — 2 ik =) X 2 (jk —j) o

N -1
where, cov is a normal covariance coefficient between two
outputs, y; and y;. With this definition, the bigger |cov] is,
the smaller diversity is, and vice versa. When |cov| is small
or close to zero, which means that two variables do not show
correlation in their trends, so D, is close to 1, i.e. maximum
diversity.

C. Disagreement

This score measures how dissimilar the predictions from two
different models are. It is mainly used for binary variables, but
may be indirectly applied to the continuous output after it is
first converted into a binary value with a threshold value 6,
as per Equation 8.

0, x <0
X) = 8
f@=1""1"2, ®)
The disagreement between outputs of two models can be
used as a diversity metric, which is defined as follows.

N()l +N10
NOO+N01 +N10+N11

where N'!! represents the number of samples that are correctly
predicted by a pair of models M; and My, and N% represents
the number of samples incorrectly predicted by two models.
N0 _ the number of samples that are correctly predicted by
M and incorrectly by M, and N°! - the number of samples
that are incorrectly predicted byM, but correctly by M5.
When Disagreement is 0, it means that two models have no
disagreement between them, i.e. they always produce the same
outputs, either correct or wrong on the same date at the same
time, so they are identical. In this case, there is no need to
have another model in an ensemble. When Disagreement is 1,
it means that two models always give the opposite answers on
every data point, hence have the maximum diversity, which
is not necessarily a good thing either as they will always
cancel each other out. Where it may be useful is when some
values are below the middle point (0.5) as it means that the
two models have some common knowledge for dealing with

(€))

Disagreement =

majority of data, whilst each has some unique knowledge to
cover unusual data.

D. CFD

The Coincident Failure Diversity score was defined by [32]
to measure the probability that two or more models fail on test
data simultaneously and was also used for binary variables.
But in a similar manner as mentioned above, we modified
it to handle continuous variables for regression problems as
follows:

(10)

where, m(= 1,2, ... M) is the number of models that produce
a wrong prediction on the data between 1 and M), and f, is
the failure frequency of m models and is defined as:

fm = Em/Eany (11)

where E,, is the number of samples incorrectly predicted by
m models and E,,, is the number of samples incorrectly
predicted by at least one model.

When CFD = 0, this means that all the members of an
ensemble are the same, hence there is no diversity. When
CFD = 1, the ensemble members have a maximum diversity,
indicating that all members make distinct errors that are
compensated by the other members. So an ensemble with a
maximum diversity should produce a perfect answer, although
its members may make some mistakes.

VI. ENSEMBLE CONSTRUCTION ALGORITHMS

In order to construct an effective and efficient ensemble,
a very important step is to decide what models and how
many models should be used [45]. This is because that the
characteristics of individual models in terms of accuracy,
efficiency and diversity, as well as the number of models
are two essential factors that affect the performance of an
ensemble [5]. More models used means more resources (time
and space) required, so when building an ensemble it is thus
more economical and efficient to use as few models as possible
while preserving accuracy and diversity [46].

In our research we proposed two model selection methods:
MSM1 and MSM2, based on two different criteria, to build
various heterogeneous ensembles. MSM1 only considers accu-
racy of individual models, and MSM2 takes both accuracy and
diversity into consideration.

A. MSM1

This selection method only considers the accuracy of indi-
vidual models on the validation data. Firstly, it starts with
a collection of the models (CM) that have been generated
with various learning algorithms or provided with a collection
of some existing pre-trained models, and their accuracies are
evaluated on a given validation dataset with a chosen metric,
such as R? or any other suitable one. All the models are
then ranked in a descending order according to their validation
accuracy. The ensemble ® starts empty. Then, starting from the
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top of the ranking, we choose the highest ranked model in the
Collection and add it to ensemble ®. Then the accuracy of the
in-building ensemble will be evaluated in the next component.

This selection process repeats until as long as that the
accuracy of the in-building ensemble keeps improving and
stops when the accuracy starts to drop. However, in our
experiments, we let it continue until there is no model left in
the Collection just to examine the effect of a permutation of
the entire Collection of the modules by producing an accuracy
plot over the growth of an ensemble from empty to the full
size, as shown by the figures in Section VII.

This selection method can be generalised by setting up a
selection batch size, say Q. That is, in every iteration, Q
models are selected together as a batch and then added to a
growing ensemble, rather than just one model at a time. This
can speed up the process of ensemble construction. The batch
size can be determined or varied by a number of factors, such
as the difference of accuracy among the models, or the size
of the model Collection and the size of an intended ensemble,
etc. In our experiments, as the size of the model collection is
relatively small, we set Q = 1, with an intention of evaluating
the contribution of each individual model.

Algorithm 1 for MSM1
Input: Collection of models, CM, validation data Val
Output: The best ensemble Dy,
N=count(CM)
fori=1to N do
calculate Accuracy R* on Val
end for
sort CM in descending order according to their accuracy
R2
6: fori =1to N do
7 select the ith model and add to ®;
8: evaluate ®;, and record the best fo far, ®p.y;
9: if ®po5r > O; then
10: Stop
11: else
12: Continue
13: end if
14: end for

AN

B. MSM2

This selection method takes account of both accuracy and
diversity when selecting models. First, the highest accuracy
model (HAM) is selected from the collection of models (CM).
Then the second model is chosen with the highest diversity
model (HDM) to the HAM. As we applied two different
diversity measures: Pairwised and non-pairwised (CFD), this
selection method has two variants, MSM2a and MSM?2b. For
MSM2a, the diversity between models in CM is calculated
with a pairwise diversity measure such as correlation, covari-
ance and disagreement. For MSM2b, we use the CFD that
considers the combinations of the models in the CM and
each combination consists of HAM, HDM and the remaining
model, then they are added to the Ensemble.
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Algorithm 2 for MSM2a Pairwise

Input: Collection of models, CM, Diversity-metric,

validation data Val

Qutput: The selected models @

N=count(CM)

fori=1toN do
calculate Accuracy R* on Val

: end for

: sort CM in descending order according to their accuracy

R2

6: HAM=the highest accuracy model in CM

7. remove HAM from CM

8: fori =1to N do

9: calculate diversity (HAM, C M;))

10: end for

11: sort CM in descending order according to their diversity

12: fori =1 to N-I do

13: select first i models and add them to a new set called
NCM

14: add model combinationlHAM, NCM) to

15: end for

AN e

C. Evaluation Metrics

We employed two standard metrics to evaluate the accu-
racy of models and ensembles for predicting train arrival
delay. These are the Mean Absolute Error (MAE) and
R-squared (R?):

1) MAE:

N
1 X
MAE = — ; i — il (12)

2) R Squared:

R =1-Q i =%/ D i =3

13)

D. Statistical Tests for Comparing the Results

Statistical significance tests, which compare one method
against others, were used to evaluate the significance of per-
formance differences between the proposed ensemble methods
and the compared models and existing ensembles. These tests
are chosen based on the experimental design. The Friedman
test was used in our study to compare all the methods
used and the results presented by the critical difference dia-
gram. A Friedman test compares multiple learning algorithms
through nonparametric procedures. The results of the test show
if there is a statistical difference between the accuracies of
the algorithms. We have used critical difference diagrams,
as introduced by [47], to provide a visual representation of the
overall performance. In this type of diagram, ensembles that do
not differ significantly are grouped into “cliques” identified by
lines. When two ensembles are not members of any common
clique, their performances are significantly different.
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Algorithm 3 for MSM2b Non-Pairwise
Input: Collection of models, CM, Diversity-metric,
validation data Val
QOutput: The selected models &
N=count(CM)
:fori=1to N do
calculate Accuracy R* on Val
: end for
: sort CM in descending order according to their accuracy
R2
: HAM=the highest accurate model in CM
: remove HAM from CM
: fori =1 to N-1 do
Find all possible combinations of i models and add
them to a new set called NCM
10: M= count (NCM)

© 0 3 o

11: for j=1toM do

12: Compute Diversity (HAM, NCM;)

13 end for

14: sort NCM in descending order according to their
diversity

15: select model combination(HAM, N C M)
16: add selected models to ®
17: end for

VII. EXPERIMENTS AND RESULTS
A. Data and Features

We have been collecting train running data from the Net-
work Rail Darwin data feed site [48] and also the Open Rail
Data Historic Service Performance Data Repository (HSP)
[49]. Besides containing vast amounts of historical data, the
HSP site allows users to filter data by period.

The data used in the experiment should be complete,
accurate, and consistent in representing the normal operations
of train services in the UK. Therefore, we chose a dataset,
coded as NRW, over a period of about 2 years before the
COVID-19 pandemic started simply because that when the
pandemic started, many people were allowed to work from
home, hence the number of train services was significantly
reduced and the remaining trains with a very low number
of passengers ran mostly on-time. The chosen data was pre-
processed by following the common practice in machine
learning research. Specifically, the records with missing data
and duplicate records were deleted. We ran numerous logical
checks on our datasets to identify and correct errors. Some
trains arrived earlier than they left, which was one example
of inconsistency. Records with inconsistent data were deleted.
Numeric data were scaled. Categorical data were converted to
numeric.

In order to convert the train running timetable-like data to
a structured representation, we derived the following features:

o The planned travel time from the current station to the
next.

o The actual travel time from the current station to the last.

o The planned travel time from the current station to the
last.

o The planned dwell time at the current station.

o The actual dwell time at the current station.

e The arrival delay for the current station.

o The departure delay for the last station.

o The departure delay for the current station.

o The number of passing points. (Places where the train’s
passing is recorded.)

o Day of the Month

o Day of the Week

o Hour of the Day

B. Experiment Design

The experiments were all coded in Python, using scikit-
learn and the XGBoost library for generating algorithms. They
were run on a personal computer with an Intel Core i5-7500
CPU running at 3.4 GHz, with 32 GB RAM, and using the
Windows-10 64-Bit operating system.

We designed our experiments to examine the performance
of our heterogeneous ensembles and the chosen comparative
targets: two existing ensembles—Random Forest (RF) and
XGBoost. In order to investigate the effectiveness of our model
selection methods MSM1 and MSM2 and the influence of
ensemble size, we varied the number of models in a hetero-
geneous ensemble from 2 to 12. In addition, we examined the
impact of diversity on accuracy using four diversity measures.

Each experiment was repeated five times with variations
of different data samplings. Overall, we conducted over
150 experiments. The results presented are the average and
standard deviation (SD) of the repetitions.

C. Base Learning Algorithms

In this study, we chose 12 different Regressors with an aim
of representing a wider spectrum of machine learning themes
from the baseline method to “state-of-the-art” methods, to gen-
erate candidate models for building heterogeneous ensembles.
Of them, eight generate individual models: Linear Regression,
Bayesian Ridge [50], Stochastic Gradient Descent [51], Lasso
[52], Ridge [53], K-nearest neighbours Regressor, Decision
tree [54] and Multi-layer Perceptron [55]. Four algorithms
produce essentially homogeneous ensembles with decision
trees: Random Forest [33], ElasticNet, Gradient Boosting [56],
and XGBoost [23].

The default parameter settings were used for all these algo-
rithms as our focus was to investigate whether our ensembles
have ability to do better than individual models that work
separately, no matter how well an individual model does.

D. Experimental Results

Figures 1 and 2 present the results for single models,
averaging ensembles (AE) and weighted averaging ensem-
bles (WE). These heterogeneous ensembles of variable sizes
(from 2 to 12) were built with the algorithm MSM1, and the
AE and the WE fusion functions. In Figure 1, R? values of
the predictions are given, with the standard deviations (SD)
over five runs. These results are also presented in Table I
which shows the means and standard deviations (SD) of R? of
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TABLE I
THE RESULTS FOR AE, WE, SINGLE MODELS USING MSM 1

M | Average Ensemble | W. Avg. Ensemble | Avg. single models
R? SD R? SD R? SD
2 0.7909 | 0.0057 0.7909 0.0057 0.7888 0.0010
3 0.7917 0.0052 | 0.7917 0.0052 0.7885 0.0012
4 0.7911 0.0053 0.7911 0.0053 0.7840 0.0091
5 0.7892 | 0.0055 0.7892 0.0055 0.7803 0.0114
6 0.7867 0.0055 0.7869 0.0055 0.7765 0.0138
7 0.7849 | 0.0053 0.7850 0.0053 0.7735 0.0149
8 0.7829 | 0.0052 | 0.7831 0.0052 0.7713 0.0152
9 0.7810 | 0.0051 0.7813 0.0051 0.7693 0.0151
10 | 0.7796 | 0.0052 | 0.7799 0.0052 0.7664 0.0149
11 | 0.7770 | 0.0052 | 0.7776 0.0052 0.7590 0.0335
12 ] 0.7734 | 0.0052 | 0.7747 0.0052 0.7499 0.0441
Number of Models
Fig. 1. R? values of AE and WE using MSM1 and single models.

predictions made by the single models, and the heterogeneous
ensembles. In Figure 2 the MAE values of these predictions
are presented.

From these results it can be seen that both types of ensemble
(AE and WE) had consistently higher R? values than the single
models. In addition their SD values were lower, except for the
ensemble sizes 2 and 3, where the SD values were relatively
small for both ensembles and single models. Also, the SD
values for both AE and WE are much more consistent across
the number of models than the SD for SM. The R? values are
slightly better for WE than AE.

Thus we can say that the ensembles outperform the single
models not only in accuracy but also in consistency (with much
smaller SDs). The AE and WE ensembles were nearly the
same to begin with, but as the number of models increased,
the WE performed slightly better. This is because there are
significant variations in the weights, which aid the ensemble
by giving more weight to the most accurate models.

Figures 3 and 4 show the R? and MAE values obtained,
respectively, for ensembles of different sizes, with AE,
WE and single models using MSM2 with CFD for diversity
measurement.

In Figure 3, R? values of the predictions are given, with the
standard deviations (SD) over five repeat runs. These results
are also presented in Table IT which shows the means and
standard deviations (SD) of R? of predictions made by the
single models, and the heterogeneous ensembles. In Figure 4
the MAE values of these predictions are presented. It can be
seen that AE and WE consistently perform better than single
models. Tables III-V show the mean and standard deviations
(SD) of R? of predictions made using MSM2 with other
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—e— Single Models

MAE

Number of Models

Fig. 2. MAE of AE and WE ensembles built with MSM1 and single models.

TABLE 11
THE RESULTS FOR AE, WE, SINGLE MODELS USING MSM2 (CFD)

M | Average Ensemble | W. Avg. Ensemble | Avg. single models
R? SD R? SD R? SD
2 0.7568 0.0086 | 0.7612 0.0098 0.7209 0.0950
3 0.7689 | 0.0069 0.7732 0.0066 0.7384 0.0729
4 0.7776 | 0.0071 0.7795 0.0071 0.7482 0.0628
5 0.7787 0.0053 0.7798 0.0057 0.7508 0.0561
6 0.7810 | 0.0041 0.7820 0.0047 0.7560 0.0520
7 0.7812 | 0.0052 | 0.7819 0.0058 0.7571 0.0479
8 0.7798 0.0051 0.7804 0.0056 0.7570 0.0443
9 0.7785 0.0048 0.7790 0.0054 0.7570 0.0415
10 | 0.7767 0.0048 0.7776 0.0054 0.7568 0.0391
11 | 0.7768 0.0052 | 0.7771 0.0057 0.7573 0.0372
12 | 0.7734 | 0.0052 | 0.7747 0.0057 0.7497 0.0440
0.75 / ‘—J{ T
Number of Models
Fig. 3. R? of AE and WE ensembles with MSM2b(CFD) and single models.

—— AE
1.6 WE
—e— single Models

MAE

2 3 4 5 6 7 8 9 10 1 12

Number of Models

Fig. 4. MAE of AE and WE with MSM2b(CFD) and single models.

diversity measures. Similar patterns to these found using CFD
were found using these other diversity measures, but the best
results were obtained by using CFD. However, overall, the
best results were obtained with MSM1 rather than MSM2,
thus using diversity when selecting models did not improve
the accuracy of the ensemble.

Figures 5 and 6 present comparisons of the R? values
obtained for different sized AE and WE ensembles using
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—e— MSM1 AE
070 MSM2 (CFD) AE
—e— MSM2 (COR) AE
—e— MSM2 (COV) AE
078 —e— MSM2 (DIS) AE

Number of Models

Fig. 5. Comparison of AEs ensembles built with two selection methods,
different diversity measures and sizes.

—e— MSM2 (DIS) WE

Number of Models

Fig. 6. Comparison of WEs ensembles built with two selection methods,
different diversity measures and sizes.

TABLE III
THE RESULTS FOR AE, WE, SINGLE MODELS USING MSM2 (COR)

M | Average Ensemble | W. Avg. Ensemble | Avg. single models
R? SD R? SD R? SD
2 0.7602 | 0.0083 0.7650 0.0082 0.7280 0.0857
3 0.7373 0.0101 0.7406 0.0080 | 0.7034 0.0741
4 0.7498 0.0080 | 0.7546 0.0080 | 0.7168 0.0662
5 0.7570 | 0.0067 0.7606 0.0068 0.7253 0.0604
6 0.7600 | 0.0065 0.7627 0.0066 0.7305 0.0555
7 0.7612 | 0.0063 0.7633 0.0065 0.7341 0.0516
8 0.7626 | 0.0052 | 0.7644 0.0052 0.7371 0.0486
9 0.7644 | 0.0051 0.7660 0.0051 0.7399 0.0462
10 | 0.7672 | 0.0055 0.7687 0.0055 0.7427 0.0445
11 | 0.7709 | 0.0051 0.7723 0.0051 0.7468 0.0440
12 | 0.7734 | 0.0052 | 0.7747 0.0052 0.7503 0.0440
TABLE IV

THE RESULTS FOR AE, WE, SINGLE MODELS USING MSM2 (COV)

M | Average Ensemble | W. Avg. Ensemble | Avg. single models
R2 SD R2 SD R? SD
2 0.7575 0.0084 | 0.7628 0.0085 0.7214 0.0950
3 0.7338 0.0081 0.7406 0.0082 0.7034 0.0741
4 0.7524 | 0.0070 | 0.7575 0.0070 | 0.7202 0.0692
5 0.7604 | 0.0061 0.7644 0.0062 0.7290 0.0622
6 0.7635 0.0056 | 0.7664 0.0058 0.7335 0.0577
7 0.7647 0.0054 | 0.7672 0.0055 0.7367 0.0533
8 0.7660 | 0.0044 | 0.7680 0.0044 0.7395 0.0489
9 0.7671 0.0048 0.7688 0.0048 0.7414 0.0472
10 | 0.7685 0.0051 0.7700 0.0051 0.7439 0.0458
11 | 0.7705 0.0054 | 0.7719 0.0054 0.7468 0.0444
12 | 0.7734 | 0.0052 | 0.7747 0.0052 0.7503 0.0440

MSMI1 and MSM2, respectively. These results are also pre-
sented in Tables VI and VII, respectively.

These results demonstrate that with MSM1 for both AE and
WE, their performance remains constantly best when varying
the size of ensembles from 2 to 12 models. When diversity
is used in selecting models, using CFD with MSM2 is better

TABLE V
THE RESULTS FOR AE, WE, SINGLE MODELS USING MSM2 (DIS)

M | Average Ensemble | W. Avg. Ensemble | Avg. single models
R? SD R? SD R? SD
2 0.7568 0.0086 | 0.7628 0.0085 0.7214 0.0950
3 0.7338 0.0081 0.7406 0.0082 0.7034 0.0741
4 0.7509 | 0.0070 | 0.7557 0.0070 0.7171 0.0665
5 0.7592 | 0.0063 0.7628 0.0063 0.7265 0.0613
6 0.7630 | 0.0055 0.7658 0.0055 0.7326 0.0569
7 0.7644 | 0.0053 0.7667 0.0053 0.7359 0.0527
8 0.7663 0.0054 | 0.7682 0.0055 0.7391 0.0498
9 0.7663 0.0053 0.7679 0.0054 0.7410 0.0478
10 | 0.7684 | 0.0051 0.7698 0.0050 0.7433 0.0456
11 | 0.7709 | 0.0052 | 0.7723 0.0052 0.7468 0.0444
12 | 0.7734 | 0.0052 | 0.7747 0.0052 0.7503 0.0440
TABLE VI
COMPARISON OF TWO SELECTION METHODS IN
DIFFERENT SI1ZES OF AE ENSEMBLES
MSM1 | MSM2 | MSM2 | MSM2 | MSM2
M (CFD) | (COR) | (COV) (DIS)
AE AE AE AE AE
2 0.7909 | 0.7568 | 0.7602 | 0.7575 | 0.7568
3 0.7917 | 0.7689 | 0.7373 | 0.7338 | 0.7338
4 0.7911 | 0.7776 | 0.7498 | 0.7524 | 0.7509
5 0.7892 | 0.7787 | 0.7570 | 0.7604 | 0.7592
6 0.7867 | 0.7810 | 0.7600 | 0.7635 | 0.7630
7 0.7849 | 0.7812 | 0.7612 | 0.7647 | 0.7644
8 0.7829 | 0.7798 | 0.7626 | 0.7660 | 0.7663
9 0.7810 | 0.7785 | 0.7644 | 0.7671 | 0.7663
10 | 0.7796 | 0.7767 | 0.7672 | 0.7685 | 0.7684
11 | 0.7770 | 0.7768 | 0.7709 | 0.7705 | 0.7709
12 | 0.7734 | 0.7734 | 0.7734 | 0.7734 | 0.7734
TABLE VII
COMPARISON OF TWO SELECTION METHODS IN
DIFFERENT S1ZES OF WE ENSEMBLES
MSM1 | MSM2 | MSM2 | MSM2 | MSM2
M (CFD) | (COR) | (COV) (DIS)
WE WE WE WE WE
2 0.7909 | 0.7612 | 0.7650 | 0.7628 | 0.7628
3 0.7917 | 0.7732 | 0.7406 | 0.7406 | 0.7406
4 0.7911 | 0.7795 | 0.7546 | 0.7575 | 0.7557
5 0.7892 | 0.7798 | 0.7606 | 0.7644 | 0.7628
6 0.7869 | 0.7820 | 0.7627 | 0.7664 | 0.7658
7 0.7850 | 0.7819 | 0.7633 | 0.7672 | 0.7667
8 0.7831 | 0.7804 | 0.7644 | 0.7680 | 0.7682
9 0.7813 | 0.7790 | 0.7660 | 0.7688 | 0.7679
10 | 0.7799 | 0.7776 | 0.7687 | 0.7700 | 0.7698
11 | 0.7776 | 0.7771 | 0.7723 | 0.7719 | 0.7723
12 | 0.7747 | 0.7743 | 0.7747 | 0.7747 | 0.7747

than using pairwise measures. However, using any diversity
measure is not as effective as MSM1.

In this work we have examined whether diversity can be
useful for improving the accuracy of an ensemble when used
for selecting models to build it. Our results show that there
is no observable relationship between diversity and accuracy
in regression problems. Compared to other diversity metrics,
CFD stands out as the best.

Clearly, the ensembles built with selection method MSMI1,
i.e. using accuracy measure as its selection criterion, produced
the most accurate results. The fact that MSM2 did not give
as accurate ensembles as MSMI is surprising in view of the
fact that for classification ensembles diversity among models
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has been shown to be an important factor affecting the overall
accuracy of the ensemble, and an ensemble of weak learners
can still give very high accuracy providing they are sufficiently
diverse. However, the measurement of diversity is not trivial
and several measures of diversity have been developed for
classification ensembles. These diversity measures do not all
perform equally well, i.e. some are more effective at measuring
diversity than others. Because there are almost no diversity
measures designed for regression problems, we adapted some
existing classification diversity measures for this purpose,
in particular CFD since it is recognised to be the best diversity
measure for classification ensembles. However it is possible
that these adapted measures were not able to capture the
diversity in the regression ensembles and for this reason
MSM2 was not as effective for model selection as MSM1.

When compared with the single models, our ensembles have
not only the highest accuracies but also the most consistent
results as indicated by smaller SD. Accuracy of single models
often varies considerably over multiple runs and data. A cur-
rent most accurate model may perform considerably worse in
another run with a different partition of the data and it is very
difficult to predict in which run a single model can produce the
best result. In contrast, an ensemble can perform consistently
well in any run, and this high reliability, as represented by
their smaller standard deviations, is more important in real-
world applications.

E. Critical Comparison and Discussion

Figures 7-12 present our results using Critical Difference
diagrams. Figure 7 is the CD diagram of the results with
two selection methods for AE ensembles of different sizes.
(These were presented in Figures 5 and 6.) It can be seen that
while there is no significant difference between MSM1 AE
and MSM2(CFD) AE, there is a significant difference with
MSM2(COV) AE. Figure 8 presents the equivalent comparison
for the WE ensembles of different sizes, which are very
similar.

Figures 9-12 compare the results for ensembles ranging in
size from 2-5, generated with MSM1 with the results for
Random Forest and XGBoost. For an ensemble size of 2
(Figure 9) the AE ensemble performs better than WE; for
size 3, WE performs better than AE, but there is no significant
difference. Overall our ensembles perform better than both
Random Forest and XGBoost. We did not present the results
beyond ensemble size 5. The performance deteriorates for the
larger ensembles and this is most likely due to the poorer
performing models being included, that were excluded by the
selection process in the smaller ensembles.

Overall the key results of this study are that: (1) By
incorporating models produced by the most well known and
state-of-the-art methods, Random Forest and XGBoost, into
our heterogeneous ensembles we have been able to take advan-
tage of both methods and improve upon their performance.
(2) The most accurate results were obtained using ensembles
generated with model selection according to accuracy and
weighed averaging of the model outputs.

These results demonstrate the benefit of the heterogeneous
ensemble approach in general, and also show that our specific
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Fig. 7. CD diagram for results with two selection methods for AE ensembles
of different sizes.
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Fig. 8. CD diagram for two selection methods for WE ensembles of different
sizes.
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Fig. 9. CD diagram for AE and WE ensembles of size 2 with MSMI,
Random Forest model, and XGBoost model.

e — |
4 3 2 1
| L | L | L J
RF MSM1 WE
XGBoost MSM1 AE
Fig. 10. CD diagram for AE and WE ensembles of size 3 with MSMI,

Random Forest model, and XGBoost model.

implementation approach using model selection according to
accuracy and weighed averaging of the model outputs is
effective.

F. Applying Our Heterogeneous Ensembles to a New Dataset

In order to investigate the generalisation ability of our
heterogeneous ensemble methods we tested them on a new
and different dataset of train delays. It was collected from
another major intercity train service from a southwestern
coastal city to London (longer than the journey of the first
dataset) from a different train operating company (TOC) in
the UK. This is because we believe that using the train service
data from a different region, journey and TOC should provide
a good indication of the generalisation and robustness of
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Fig. 11. CD diagram for AE and WE ensembles of size 4 with MSMI,
Random Forest and XGBoost models.

RF MSM1 WE
MSM1 AE 4 22 XGBoost

Fig. 12. CD diagram for AE and WE ensembles of size 5 with MSM1,
Random Forest and XGBoost models.

—e— AE
WE
—e— Single Models

Number of Models

Fig. 13.  Plots of the R? values obtained for AE, WE ensembles and single
models on a new dataset—WEY. It can be seen clearly that the ensembles
are not only more accurate but also more consistent (with very small standard
deviations) than those of single models.

our heterogeneous ensemble methods. This dataset, coded as
WEY, covered a two year period from 2017 to 2018 and
contained more train services with more stations than those
in the first dataset. To save time, we applied this new dataset
only to the methods AE and WE using MSM1, which achieved
the best results on the first dataset, as our aim was to verify if
the good or best performance of our heterogeneous ensembles
can be reproduced in a new dataset.

The data were pre-processed and partitioned in the same
manner as for the first dataset. The experiments were run with
the same settings, except using the new dataset. The results
on the test data of the new dataset are visualised in Figure 13.
It can be seen that the results achieved from AE and WE
ensembles were very similar or identical when the ensembles
were smaller. But when more models were added the WE
ensembles produced slightly higher accuracies than the AE
ones. It should be noted that the accuracies of single models
were always lower than those of the ensembles. On con-
sistency, it is clear that the standard deviations (SD) of the
ensembles were significantly smaller than those of individual
models, which is particularly true when the ensembles got
bigger. It demonstrated again that our ensembles are more
consistent and reliable than individual models.

Number of Models

Fig. 14. Comparison of R? values obtained from Weighted Ensembles (WE)
on the two datasets: the first one—NRW and the new one—WEY. The results
show that the WE ensembles have reproduced the good performance on a
new dataset and actually did better consistently.

These results showed the same, or similar, patterns that were
observed from the results on the first dataset, NRW. Actually,
the results on the second dataset, WEY, are consistently better
than those from the first dataset, as shown clearly by Figure 14,
which could be because WEY is larger. So, in summary,
this test with a new dataset has not only verified the strong
generalisation ability of our methods but has also demonstrated
that they can do even better when they were provided with
more data.

VIII. CONCLUSION

In general, there are two types of machine learning
ensembles: homogeneous and heterogeneous. A homogeneous
ensemble is defined as being built with models of only one
type. For example, some arguably state of the art ensemble
methods—Random Forest, AdaBoosting and XGBoost, are
each constructed with just one kind of model, i.e. decision
trees only. Although they are powerful, they have a common
problem, that is, their member models are methodologically
the same so they are likely to be highly correlated and
make the same mistakes at the same time when making
their decisions [5]. A heterogeneous ensemble, on the other
hand, is built with models of different types, which are
methodologically heterogeneous and should be more diverse
in terms of the knowledge learned from the data to compensate
the weaknesses of each other. Hence, heterogeneous ensembles
should be more accurate and robust in general.

In this paper, we have developed a procedure to investigate
the best approach and strategies for building more accurate
and reliable heterogeneous ensembles. We looked at three
important aspects: firstly, the generation of more diverse
models by using different machine learning algorithms; then
how to determine and select the models that are suitable to
be the members of a heterogeneous ensemble; and lastly how
to aggregate the outputs of the chosen models to produce an
improved output from the ensemble.

For the first aspect, we searched and used as many as
12 different machine learning algorithms that are suitable
for our task—predicting train delays—which is basically a
regression problem. It should be pointed out that as our
procedure for building a heterogeneous ensemble is flexible,
which means it is able to use any types of regressors as its
base learners, it is not limited to the 12 algorithms we used.
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So if one wishes to use other algorithms, such as some new
deep learning methods, it would be a straightforward matter to
include them in the collection. So, we consider our approaches
“future-proof” as they can take advantage of future advances
in machine learning methods for regression.

For the second, we devised two new methods for select-
ing models from the collection of trained models by using
two criteria—accuracy and diversity, independently or jointly,
to build a heterogeneous ensemble. For the last aspect,
we devised a new weighted decision fusion function to com-
bine the outputs of models in an ensemble with weights
computed based on the accuracy of individual models. This
weighted averaging function was compared with the standard
averaging function in our experiments.

We have tested our approaches to build various heteroge-
neous ensembles for predicting train delays on a real-world
dataset. The testing results have clearly demonstrated that the
heterogeneous ensembles built with our first selection method
and the weighted decision fusion function produced the best
results, which are not only more accurate, but also more robust,
compared with other state-of-the-art methods, including the
homogeneous ensembles Random Forest and XGBoost.

To verify the generalisation and reproduction ability of our
ensembles, we tested them on a new dataset, collected from a
different train service provided by a different train operating
company. The results are in a high degree of agreement with
the patterns observed in the results of the same types of
ensembles on the first dataset and are actually consistently
better in all the experiments. We believe that is primarily
because the second dataset contained more data, although it is
more complex, so our ensembles are able to learn more from
the data and hence perform better.

There are of course some limitations in our methods. A rel-
atively obvious weakness of our methods is their efficiency in
exploring the ways for building the most accurate and reliable
ensembles as they need to investigate various combinations
of model selection methods, decision fusion functions and
ensemble size. All these take considerable time to complete.
Nevertheless, once these experiments are completed and the
best ensembles are found, they can be implemented and run
much faster in real time for real world applications.

It would not be possible to continuously update the models
using live data, since the build time would be too long,
however once a model has been made for a given railway
route, it is not expected that it will need to be updated
frequently.

Another weakness is that our methods were developed using
data for a UK mainline railway, and validated using a different
UK mainline railway. It is not certain how well it would work
in extreme situations, such as a complex urban railway system
with many stations, for example the London Underground,
or very long cross-continental routes as are found in China or
North America. However, in principle, we can see no reason
why it should not be applied in such cases.

The method also requires a number of years data for build-
ing an accurate model. This is no problem for an established
line or route where data is collected and stored. However, for a
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new line or a new route on existing lines, it would be necessary
to collect enough data relating to the route in order to build an
accurate model. Similarly in some countries the data might not
normally be collected or stored, and so to apply the method
data would need to be collected first. Also, to use the method
predictively in real time, the current data needs to be available.
However, this would apply to any method that is being used
predictively in real time.

Overall our developed method is not only accurate, but more
robust and it has been shown to work on a different dataset
and these merits mean that it is suitable for a real world
application, where consistently, accurate results are needed.

For further work, we suggest that different weighting mech-
anisms could be investigated in order to identify the optimal
weighting strategy, for example, adjusting and adapting the
weights based on multiple criteria. In addition, there is no
suitable diversity measure for building regression ensembles,
and although we attempted to use and modify some exist-
ing diversity measures used for classification ensembles, our
experiment results showed that these diversity measures have
not helped much in selecting more diverse models that can
improve performance of ensembles. Given that, in principle,
the basic assumption for an ensemble to work better is that
its member models must be different to compensate each
other’s shorting comings, and the fact that our heterogeneous
ensembles improved accuracy, their models must be diverse in
some ways. One reason that these diversity measures did not
show a clear correlation between their values and the ensemble
accuracy is that they do really not measure the useful diversity
among the models. So, we suggest that another area for further
work is to explore new diversity measures.

Overall, our methods have built some very successful
heterogeneous ensembles that can predict train delays more
accurately and reliably than not only individual models, but
also some well-known homogeneous ensembles.
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