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Abstract: In recent years, there has been a surge in the global digitization of corporate processes and con-
cepts such as digital technology development which is growing at such a quick pace that the construction
industry is struggling to catch up with latest developments. A formidable digital technology, artificial
intelligence (AI), is recognized as an essential element within the paradigm of digital transformation,
having been widely adopted across different industries. Also, AI is anticipated to open a slew of new
possibilities for how construction projects are designed and built. To obtain a better knowledge of the
trend and trajectory of research concerning AI technology application in the construction industry, this
research presents an exhaustive systematic review of seventy articles toward AI applicability to the entire
lifecycle of the construction value chain identified via the guidelines outlined by the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA). The review’s findings show foremostly that
AI technologies are mostly used in facility management, creating a huge opportunity for the industry to
profit by allowing facility managers to take proactive action. Secondly, it shows the potential for design
expansion as a key benefit according to most of the selected literature. Finally, it found data augmentation
as one of the quickest prospects for technical improvement. This knowledge will assist construction
companies across the world in recognizing the efficiency and productivity advantages that AI technologies
can provide while helping them make smarter technology investment decisions.

Keywords: artificial intelligence; AI technologies; AI adoption; AI benefits; AI challenges; construction
industry

1. Introduction

On a regional, national, and global scale, construction is considered a large sector
with strategic importance [1]. It is also an industry that has been plagued by a slew
of issues for decades, including low production, slim profit margins, waste, and safety
concerns. Its projects are extremely complex, and the danger of inefficiency and risk, which
eventually contribute to project costs and delays, grows geometrically with the project’s
scale [2,3]. In the past, to mitigate these issues, the construction industry traditionally
concentrated on generating operational benefits by employing technology to streamline
processes and procedures, but the data gathered as a result of this digitization trial is often
overlooked [4,5]. Surprisingly, this industry is still on the edge of digitization, which is said
to disrupt existing traditional procedures while also opening up a slew of new prospects [6].

In recent years, there has been a surge in the global digitization of corporate processes
and paradigms, including industry 4.0, and digital twins and digital technology development
is growing at such a quick pace that the construction industry is struggling to catch up with
the latest developments. A formidable digital technology, artificial intelligence (AI), is now a
vital component of the digital shift (partly due to big data revolution), having gained broad
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acceptance in diverse sectors, including healthcare, where it assists in patient diagnosis through
genetic data [7,8]; manufacturing, where it is utilized for workforce management, production
process optimization, and predictive maintenance [9]; education, where it facilitates virtual
lectures [10,11]; finance, particularly in fraud detection [12,13], and transportation, exemplified
by the development of self-driving autonomous cars [14,15], among many others.

The definition of AI has evolved throughout time, but its foundation has always been the
goal of creating machines that are capable of thinking like humans. It does this by trying to
imitate human intelligence through hardware and software solutions [16]. With more data being
generated every second, AI technologies encompassing robotics, machine learning, natural
language processing, speech recognition, expert systems, and computer vision, among others,
have aided the scientific community in harnessing the growth of big data [17]. On these massive
datasets, scientists can extract information that human eyes cannot interpret quickly enough
using AI.

As a result, it is clear that AI can help the construction industry improve decision-making,
drive project success, and deliver projects on time and on budget by proactively unlocking new
predictive insights from its ever-growing volume of project data, which was previously only
archived for future reference. For instance, data collected from smart devices, sensors within the
Internet of Things (IoT), Building Information Modeling (BIM), and various other data sources
can be analyzed by AI technologies to find patterns in the performance and usage of current
infrastructure assets and determine what sort of infrastructure is needed in the future and how
it should be supplied [5].

Furthermore, the number of incremental stages necessary to bring infrastructure designs
to operational status will most likely be reduced by AI. This will save time and money in
the manufacturing of construction materials, alongside the development and maintenance
of our infrastructure networks. In this regard, a vast body of international literature have
investigated the use of AI technologies to tackle concerns related to construction projects. For
example, machine learning has been applied to mitigate construction project delay risks [1,18,19],
occupational health and safety concerns within the construction sector [20–22], and construction
and demolition waste generation [23–25].

It is the viewpoint of Gamba, Balaguer, and Chu [26–28] that robotics can be used to
automate the assembly of building elements (e.g., masonry walls, steel structures etc.). Also,
Bruckmann and Wu [29–31] made an important point by adding that a robotic system, com-
prising a gripper connected to a frame via cables, demonstrates applicability in the domain of
bricklaying. Furthermore, an expert system has been devised for the computation of fault rates
in incidents related to falls in the construction domain [32–34] and natural language processing
has been applied to extract and exchange information, as well as a variety of downstream
applications to aid management and decision-making in smart construction projects [17,35,36].

More recently, some studies have conducted traditional narrative critical/literature reviews
for a specific AI technology in the construction industry (e.g., computer vision by Xu [37],
natural language processing by Wu [17], robotic system by Davila [38], etc.), while a few other
studies have conducted traditional narrative critical/literature reviews for adopting generic AI
technologies in the construction industry with a specific goal (e.g., Parveen [39] focused on AI’s
legal issues and regulatory challenges, Schia [40] focused on AI’s impact on human behavior,
and Abioye [41] focused on the current state, prospects, and forthcoming challenges in the field
of artificial intelligence).

However, to the best of the authors’ knowledge, there has been no exhaustive examination
of the application of AI technologies in the construction industry. Thus, this study is motivated
by the absence of a systematic review in this domain. In conducting a systematic review,
independent researcher(s) design a system, based on specific guidelines (protocol), and the
system then makes the decisions to determine the outcome of the research thus producing a
research outcome that is explicit, reproducible, and without prior assumptions [42]. Meanwhile,
in a typical traditional narrative literature review, the identification, selection, inclusion, and
extraction of research articles solely (all) depends on the judgement of the author(s) in order to
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support their model, hypothesis, and to identify the research gaps. This poses a great concern of
subjectivity, repeatability, and reproducibility of results from such research [43].

Secondly, and as a final rationale of this research, no study, to the best of our knowledge,
has conducted any kind of AI review toward its applicability to the entire lifecycle of the
construction value chain. In addressing this void, the aim of this study is to provide a
thorough systematic review of artificial intelligence and its implementation throughout the
entire construction value chain lifecycle—from building material manufacturing to design,
planning, and construction, as well as facilities management. The systematic review is
structured around the ensuing research questions:

1. What AI technologies have been documented in the literature so far?
2. What are the different stages of the construction project lifecycle wherein these AI

technologies are applied?
3. What potential benefits arise from the implementation of the identified AI technolo-

gies, and what are the existing challenges and deficiencies in their industry adoption?

This research makes a significant contribution to the body of knowledge by addressing the
knowledge gap in the field of AI in the construction industry, specifically by addressing several
imaginable application cases for AI across diverse phases of the construction project lifecycle
and the potential benefits of implementing AI technologies, as well as the present roadblocks
and gaps in their industrial adoption. This will immensely contribute to the advancement of the
Architecture, Engineering, and Construction (AEC) industry and the holistic built environment
ecosystem in identifying opportunities for technological advancement.

2. Methodology

This study adopts a philosophical paradigm rooted in pragmatism, emphasizing practical
applied research that employs multiple perspectives for data interpretation. Depending on the
research question, the study considers both observable occurrences and subjective meanings
as viable sources of knowledge [44]. This study employed a systematic review methodology.
A systematic review, distinct from a conventional literature review, utilizes a precise, compre-
hensive, replicable, and auditable methodology to evaluate and interpret all pertinent research
associated with a particular research question, subject, or domain [42]. Moreover, by scrutinizing
the holistic perspective and amalgamating discrete elements to synthesize results in a structured
manner, a systematic review can address the limitations inherent in a traditional narrative
literature review, which is commonly used in the vast body of literature.

To develop its systematic review protocol, the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines were applied. PRISMA serves as a protocol
for executing systematic reviews and meta-analyses, comprising a twenty-seven-item checklist
and a four-phase flow diagram. Conceived by a consortium of twenty-nine scholars in the
medical domain, PRISMA aims to enhance the lucidity and uniformity of literature reviews.
Consequently, our examination’s focal theme, exploration strategy, criteria for inclusion and ex-
clusion, eligibility standards, data extraction, and synthesis methodologies were all delineated in
adherence to this protocol which was chosen because of its comprehensiveness, wide acceptance,
and applicability in different fields of study, despite the fact that it was originally established
for the medical and health domain [43]. For a start, the review process was broken down
into four steps: article identification, article screening, critical assessment, and data extraction
and synthesis.

During the article identification process (step 1), a comprehensive exploration of the
literature was conducted to identify articles for this research. Specifically, articles available
in the Scopus electronic database up until 21 January 2022 were utilized as the principal
source of information for the search. This database was chosen over others like ScienceDirect
and Web of Science because it is the “largest abstract and citation database of peer-reviewed
literature” [45]. Furthermore, Scopus indexes practically the whole ScienceDirect database, and
Scopus offers a greater choice of journals than Web of Science, as well as quicker citation analysis
and coverage of more articles [46]. The abstract, title, and keywords of publications in this
database were searched using the following search terms: (“artificial intelligence” OR “machine
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learning” OR “deep learning” OR “reinforcement learning” OR “automation” OR “robotics”
OR “expert system” OR “natural language processing” OR “optimization” AND (“construction
industry” OR “building industry” OR “built environment” OR “Architecture Construction
and Engineering”)) with no date, language, or article type restrictions. The search terms were
divided into two major parts separated by the “AND” operator, namely, AI technologies and
the construction industry. The search terms also contained several interesting synonyms, word
variations, and exact phrase searching symbols, such as the usage of double quotation marks in
“machine learning”and “building industry”, among many others.

At the article screening process (step 2), the abstracts of 2716 articles were reviewed to see
whether they were related to the research questions and to make sure there were no duplicates.
As such, this led to the removal of 2306 items, leaving 410. At the critical assessment (step 3),
three distinct inclusion and exclusion criteria were implemented. Articles were deemed eligible
if their primary emphasis centered on the utilization of artificial intelligence technologies in
construction projects and excluded otherwise. Additionally, only articles presenting original
research data were included, while review articles were excluded. Finally, each article’s
relevance was determined using a previously developed rating scale by [42,43,47]. The scale
was adapted based on practical results of how artificial intelligence technology is used in
a construction project, with “1” indicating low relevance, “2” medium relevance, and “3”
indicating high relevance.

Consequently, the full text of all articles having information relating to genuine case studies
of AI technology implementation in construction projects or AI technology application proven
in a laboratory environment were extracted, exported to a file in Comma-Separated Values
(CSV) format, given a “3” rating, and included in the evaluation during the data extraction and
synthesis process (step 4). Finally, a comprehensive examination of the selected articles was
conducted for the purpose of data extraction, encompassing elements such as research aim,
project type, country/region, research method(s), and AI technology, among others. Figure 1
elucidates this process, presenting a flow diagram delineating the research article selection
procedure. The diagram outlines the total count of articles identified through the database
search, articles screened in accordance with eligibility criteria, articles fully accessed, and the
eventual count of articles utilized for analysis in this study.
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3. Results
3.1. Summary of Selected Articles

A summary of the selected articles organized by their respective publication source
is provided. It was discovered that the journals Automation in Construction and Journal
Construction Engineering and Management, as well as conference proceedings from the Confer-
ence on Computer-Aided Architectural Design Research, CAADRIA, possessed the preeminent
quantity of articles, constituting 20% of the overall selected papers. In general, 75.71% of
the total papers (53 out of 70) were disseminated through peer-reviewed scholarly journals,
whereas 16 articles (22.86%) were presented at conferences, and just 1 paper was part of a
book series.

For two decades between 1993 and 2013, there were eight articles, each with a different
year of publication (see Figure 2). There is a notable constant increase in the quantity
of research publications throughout the AI in construction research community. More
specifically, between 2017 and 2021, there was a constant increase in the number of research
publications published in the research community, with a total of 56 articles, indicating
a rising interest in the application of artificial intelligence technology to the construction
industry. Figure 3 shows the number of publications according to the first author’s insti-
tute’s location. Predominantly, researchers from China (12 articles), the United States of
America (USA) (8 papers), Republic of Korea (6 papers), Italy, the United Kingdom of Great
Britain (GBR), and Australia (4 papers each) published most of the papers relevant to the
research topic.
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Upon scrutinizing the geographic dispersion of academic papers related to artificial
intelligence research applied in the construction/execution lifecycle of the construction
value chain, it was discovered that researchers in the Republic of Korea and China emerge as
primary contributors to scholarly inquiry within this domain (4 articles each), followed by
researchers in GBR and Australia (3 articles each). Interestingly, researchers in China tend
to have devoted the most attention to AI applications in the supply/facility management
lifecycle of the construction value chain, with seven publications dedicated to it, and five
articles dedicated to the planning/design lifecycle of the construction value chain as well.

3.2. Types of AI Technologies and Categorization

Table 1 shows the different types of AI technology and their distribution across dif-
ferent application areas. In general, the seventy reviewed studies referenced seven AI
technologies for use in the construction industry, with supervised learning, deep learning,
knowledge-based systems, robotics, and natural language processing being the most often
mentioned. On the other hand, AI technologies such as optimization and reinforcement
learning garnered less attention. In terms of the distribution of AI technologies to their
application areas in health and safety management, supervised learning was the most
researched (4 articles), followed by deep learning and knowledge-based systems (3 articles
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each). Deep learning and supervised learning have shown to be effective time and cost
management technologies (2 articles each). Also, robotics was the most often mentioned
technology for prefabrication (2 articles). Furthermore, the most promising AI technologies
for heating, ventilation, and air conditioning (HVAC) optimum control were identified to
be optimization and deep learning technologies (2 articles each), while most papers high-
lighted the application of natural language processing in relation to sustainable concrete
and regenerative sustainability (1 article).

Table 1. Types of AI technology and their area of application.

AI Technology Description Subtype Application Area Reference

Supervised Learning (SL)

A type of machine learning in
which a computer algorithm is
trained on labeled input data
for a certain output.

Support vector machine (6),
artificial neural network (6),
bckpropagation (3), decision
tree (5), random forest (4),
k-nearest neighbors (3),
gradient boost machine (2),
adaptive boosting (2), naïve
Bayes (2), extreme gradient
boosting (2), logistic
regression (2), ensemble
method (2), light gradient
boosting machine (1), extra
trees (1)

Health and safety management (4), time and
cost management (2), building structures (2),
structural reliability (1), sustainable concrete
(1), demolition waste management (1),
constructability analysis (1), construction
monitoring (1), construction equipment (1),
occupant behavior (1), site layout (1),
cementitious composite (1), energy savings
and demand response (1), project selection
(1), construction
negotiation and conflict resolution (1)

[19,24,25,48–70]

Deep Learning

A type of machine learning
that trains computers to
accomplish things that
humans do instinctively.

Convolutional neural network
(6), deep neural network (4),
autoencoder (1), long
short-term memory (1)

Health and safety management (3), time and
cost management (2), HVAC optimal control
(1), construction monitoring (1), intelligent
building design (1), 3D datasets (1), building
information modeling (1), monument
recognition (1), surface defect detection (1),
building recognition (1), filing architectural
drawings (1) parametric design (1)

[66,71–88]

Knowledge-Based System

A computerized system
designed to capture and
imitate human intellect in
symbolic form, often through
a series of if–then rules.

Expert system (5), Case-based
reasoning (2), Fuzzy
logic (1)

Health and safety management (3), building
automation (1), productivity estimation (1),
site layout (1), building diagnosis and
repairs (1), performance evaluation (1),
construction
negotiation and conflict resolution (1),
occupant behavior (1)
architectural innovation (1)

[51,57,89–97]

Robotics

A technology that deals with
the creation, design,
construction, and operation of
programmable machines.

Additive
manufacturing (4), robotic
beam assembly (1), soft
robotics (1), robotic
bricklaying (1), mobile
robot (1)

Robotic prefabrication (2), digital fabrication
(1), collaborative
robotics (1), block assembly (1), intelligent
hoisting (1), health and safety management
(1), environmental impact analysis (1)

[26,71,98–104]

Natural Language Processing

An artificial intelligence
technology that utilizes
computers to comprehend,
generate, and analyze human
languages known as natural
language processing.

Text clustering (1), word
segmentation (1), information
retrieval and extraction (1),
text analysis (1)

Health and safety management (2), HVAC
optimal control (1), sustainable concrete (1),
regenerative sustainability (1)

[56,105–109]

Optimization

A technique that seeks to alter
an existing process to enhance
the occurrence of good results
and decrease the occurrence of
bad outcomes.

Genetic algorithm (2), gray
wolf optimization algorithm
(1), genetic algorithm,
stochastic
gradient descent (1), genetic
programming (1)

HVAC optimal control (2), health and safety
management (2), sustainable concrete (1),
building structures (1)

[60,68,85,110]

Reinforcement Learning

A form of machine learning
that enables an agent to
acquire knowledge through
iterative experimentation and
experience while receiving
feedback from its actions.

Q-learning (4)
Energy savings and demand response (1),
HVAC optimal control (1), health and safety
management (1), look-ahead schedule (1)

[110–113]

Quite notably (see Table 1), the articles included in this study highlighted the emer-
gence of diverse subtypes within each AI technology. For instance, the most cited subtypes
of supervised learning AI technology were support vector machine and artificial neural
network (6 articles each), followed by the convolutional neural network subtype of deep
learning (6 articles), and the expert system subtype of knowledge-based systems (5 articles).
As Table 1 shows, most of the papers included cited adaptive manufacturing (4 articles)
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and Q-learning (4 articles) as the most widely used subtype of robotics and reinforcement
learning AI technology, respectively. In addition, genetic algorithm appeared to be the most
favorable subtype of optimization technique for the researchers (2 articles).

3.3. Construction Project Types and Their Lifecycle Application Area

In terms of the types of construction projects in which AI technologies were used,
Figure 4 suggests that the majority of the scholarly articles included (58.60%) were related to
built environment and residential building (28 articles in built environment and 13 articles
in residential building). Following that were papers regarding high-rise and commercial
buildings, which made for 18.60% of the articles chosen (7 articles in high-rise building and
6 articles in commercial building). Bridge/highway project and office building project were
discovered in 7.10% and 4.30% of the total of 70 articles, respectively. Moreover, power
plant, timber construction, and architectural heritage projects all had the same number of
articles (2 each), with only one article (1.40%) proposing the use of AI technology in retrofit
building and water treatment plants.
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Furthermore, Figure 5 depicts the distribution of articles by construction project type
and lifecycle stage. The majority of articles on built environment were focused on the
construction/execution stage (15 articles). However, there were only a few articles that
focused on the planning/design stage of the built environment (3 article). Likewise, the
planning/design and supply/facility management stages of the construction lifecycle for
residential buildings received the greatest attention (6 articles each), with a smaller number
of articles devoted to the construction/execution stage (1 article). Papers related to high-rise
buildings had a focus toward the construction/execution stage (3 articles). All the included
papers on commercial buildings (6 articles) and bridge/roadway projects (5 articles) focused
on the three stages of the construction lifecycle in near equal measure. Interestingly, articles
pertaining to power plant projects (2 articles) and retrofit building (1 article) exhibit a
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distinct emphasis solely on the construction/execution stage within the construction value
chain lifecycle. Conversely, water treatment projects predominantly concentrated on the
planning/design stage of the construction value chain lifecycle. Additionally, projects
involving timber construction and architectural heritage shared an equal number of articles
across their respective stages in the construction value chain lifecycle.
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3.4. Benefits, Challenges, and Opportunities for Technological Advancement
3.4.1. Benefits

This subsection comprehensively addresses the manifold benefits derived from the
escalating prominence of artificial intelligence technologies in the construction industry.
The principal benefits attributed to the integration of AI technology within the construction
sector, as delineated in twenty-six out of the seventy curated articles, are succinctly outlined.

Potential for Design Expansion

Intelligent room layouts for better natural ventilation are one example of how AI
technologies can lead to novel design aspects. As mentioned by Sonetti [107], who de-
veloped AI solutions for human-centered regenerative design, AI technologies are strong
supporters of human-centric regenerative design when it comes to developing technologies
that improve interactions between buildings and their occupants. It is the viewpoint of
Lamio [82] that the application of AI technologies to automate building design processes
demonstrates that an image taken from a virtual model can accurately distinguish the
building type. They developed an AI tool using classical and modern machine learning
techniques to categorize images of building designs into three classes. This is especially
important considering the large number of BIM structures with missing information or
incorrect labeling.

Possibility for Big Data Analytics

AI technologies are exposed to an unending quantity of data to learn from and im-
prove on every day at a time when vast amounts of data are being produced in the
industry [114,115]. For instance, the research led by Palma [81] explored the integration
of convolutional neural networks (CNNs), a subset of deep learning methods, into the
realm of architectural heritage by developing a mobile app aimed at monument recognition,
pioneering the use of AI in this domain. Palma’s [81] argument is compelling, especially in
terms of his pointing out that the output of their adoption of AI technology resulted in the
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creation of open datasets for testing and evaluating AI applications in the field of architec-
ture and architectural heritage. In addition, Keshavarzi [86], who developed a generative
system that addresses the challenge of limited 3D datasets for deep learning methodologies
in the built environment stated that their AI technology has the potential to facilitate data
augmentation of parametric 3D scan datasets by taking an extant 3D scan as input and
generating alternative iterations of the architectural configuration, encompassing walls,
doors, and furnishings, accompanied by corresponding textures. This process extends the
prevailing 3D geometry datasets, which are conventionally constrained in their scope.

Workplace Health and Safety

AI technology can provide a project with precise job site safety best practices based on
learned knowledge. As one of the most hazardous industries to work for, this surveillance
keeps people safe and accidents to a limit. In the pursuit of minimizing accident occurrences
within construction sites, Zhang [56] employed a diverse set of AI technologies. Specifically,
an ensemble model was devised, integrating text mining, natural language processing
(NLP), and machine learning methodologies for the comprehensive analysis of construction
accident records. The objective was to discern and extract salient elements associated with
accidents, ultimately mitigating potential hazards. With reference to Yu [73], AI technolo-
gies can be used as non-invasive tools for workload monitoring and thorough ergonomic
assessment for various construction tasks, such as assessing risk factors for work-related
musculoskeletal disorders by developing an AI tool that employs a smartphone camera
with advanced deep learning algorithms to extract construction workers’ skeleton data,
complemented by smart insoles to quantify plantar pressures during various construction
activities. More so, Su [76] adopted an AI technology to predict the smoke motion and the
available safe egress time in a typical atrium.

Increase in Productivity

Some AI technologies can complete repetitive tasks swiftly and precisely while being
fatigue-free. For instance, Li [103] detailed the creation of a vision-based intelligent mobile
robot hoisting system to improve the hoisting process, including the process of hooks
identifying the hoist points and autonomously releasing the components without the
need of on-site construction employees. According to García de Soto [100], by offering a
process for evaluating productivity based on total cost and time per unit installed, it is
conceivable to obtain considerable economic advantage from the use of additive digital
fabrication to create complicated structures through the development of an AI-driven
robotic construction method as part of digital fabrication in the construction industry.
Furthermore, investigations by several researchers [71,98,99,101–103] have shown the
possibility of replacing risky and difficult manual construction work with automated robots.

Enhanced Risk Mitigation

All construction projects have a few risks, which can take numerous forms, including
quality, timeliness, and cost. A particular strength of Hong’s [105] argument is that AI
technologies can assist in assigning time and cost contingency to completing a construction
project through the development of natural language-related AI technologies including
clustering methods, including latent semantic analysis (LSA), latent Dirichlet allocation
(LDA), and word2vec, amongst many others for quantitative analysis in construction
scheduling. Varouqa [55] concurred and went on to say that AI technologies can be
employed as optimization strategies in prefabricated construction projects to save time and
money. Furthermore, Lee [108] adopted AI technology to perform a pre-emptive contract-
risk evaluation, which can offer stakeholders with contractual positions and rights based
on contract facts, minimizing the number of claims and conflict cases between participating
parties during construction.
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3.4.2. Challenges

There are several challenges described in the seventy selected articles about the im-
plementation of AI technology in the construction industry (see Table 2). In general, a low
accuracy level due to scarcity of available data was found to be the most frequently cited
challenge (41.43%) during the adoption of supervised learning AI technology (15 occur-
rences), followed by data transformation techniques not transferable to data from other
regions (12.86%) during the implementation of the same AI technology (5 occurrences),
lack of real-world applicability (11.43%) when using deep reinforcement learning AI tech-
nology (3 occurrences), and incorrect image classification of structures (4.29%) during deep
learning AI technology adoption (2 occurrences). However, 2.86% of the articles considered
the combination of industrial robot size and weight limits and high demand for sophisti-
cated algorithms and computing power owing to massive volumes of data being equally
troublesome when adopting deep learning and supervised learning AI technology in the
construction industry. Other notable challenges include difficulty in model calibration
and excessive modeling errors for heating demand prediction, long installation time for
robots, difficulties in developing inference rules for expert systems, and misclustering
of some project milestones into building works for natural language processing, among
many others.

3.4.3. Opportunities for Technological Advancement

More so, Table 2 emphasizes how AI technologies open a slew of opportunities for
technological advancement in the construction industry, giving it a competitive edge by
improving efficiency across the whole value chain from building materials manufacturing
to design/planning, construction/execution, and supply/facility management.

Data Augmentation

In concrete, it shows that 41.43% of the selected papers who experienced a low ac-
curacy level due to scarcity of available data suggested the need for future studies to
augment datasets for the development of more robust AI technologies in the industry. For
instance, Hu’s [71] automatic robotic disinfection framework was unable to investigate
the relationship between adequate UV light exposure and the effects of pathogen eradi-
cation due to low accuracy in segmenting the areas of potential contamination on small
objects such as doorknobs and cabinet handles in adverse conditions. Furthermore, Davila
Delgado [74] successfully demonstrated the application of undercomplete, sparse, deep,
and variational autoencoders as novel techniques for data augmentation and generation of
synthetic data in construction management, which can provide useful insights regarding
the underlying non-linear relationships among variables in the datasets amongst many
other selected studies.

Model Generalizability/Transferability

The opportunity for AI model generalizability and transferability became eminent as
the unique data transformation employed in 12.86% of the selected articles was not trans-
ferable to the data from other regions as typical of any data-driven model. Zhang’s [110]
argument is persuasive in this aspect, particularly when they pointed out that their building
energy AI model has better generalizability because it is based on fundamental scientific
laws. A building energy model, for example, can properly estimate the energy performance
of a new unseen control technique while a data-driven model may not. This is the case since
the data-driven model is built using a training dataset that contains no information about
the unseen control technique. In addition, Koc [60] raised awareness for future studies
to take advantage of model generalizability, since he encountered the difficulty of an un-
balanced dataset while using AI technology to assess construction workers’ post-accident
impairment status.
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Table 2. Cited challenges for integrating AI technologies and opportunities for technological advancement in the construction industry.

Challenges Opportunities AI Technology No. of Articles Reference %

Low accuracy level due to scarcity of available data Data augmentation Robotics, DL, expert system,
optimization, SL (15), NLP 29 [24,25,48,52–55,57,59–63,66,69,71–

73,75,80,84,88,89,91,94,96,97,104,108] 41.43

Data transformation not universally applicable Model generalizability and transferability NLP, SL, optimization, expert
system, DL 9 [19,50,51,58,70,74,92,95,109] 12.86

Only experimental with lack of real-world applicability Real-world applicability SL, optimization, DL, RL 8 [49,68,76,78,79,85,112,113] 11.43

Incorrect image classification of structures Computer vision and AR DL, SL 3 [77,81,87] 4.29

Size and weight restrictions of industrial robots Design optimization Robot 2 [99,101], 2.86

High data demands, require advanced algorithms Cloud computing infrastructure DL, SL 2 [64,83] 2.86

Limited computing sSpeed Compiling Keras/TensorFlow RL 1 [111] 1.43

Model calibration challenges, errors in predictions Multi-objective RL RL, optimization 1 [110] 1.43

Long installation time Programming safety and recalibration
of peripherals Robotics 1 [98] 1.43

Saturated neural network accuracy, optimization challenges Enhanced random neural network
structure generation. SL, DL 1 [82] 1.43

Difficulties in developing inference rules High optimization techniques Expert system 1 [90] 1.43

Misclustering of some project milestones
into building works Construction schedules analysis NLP 1 [105] 1.43

Inadequate network architecture Large (big) datasets SL, optimization 1 [65] 1.43

Omission of planning in robotic design Design optimization Robot 1 [100] 1.43

Limited scope in classification of building structures Computer vision and AR SL 1 [67] 1.43

Threshold limitations on Elasticsearch queried data Load balancing NLP 1 [106] 1.43

Limited customization of textures for walls 3D modeling and AR DL 1 [86] 1.43

Control approach for large hydraulic robots New control methods Robot 1 [26] 1.43

Robot response hindered by image quality Hgh-definition camera Robot 1 [103] 1.43

Natural language exhibits diverse expressions Advanced optimization NLP, SL 1 [56] 1.43

Inability to repair walls and columns Data-driven machine learning Expert system 1 [93] 1.43

Heterogeneous hardware and software integration AI knowledge experts SL 1 [64] 1.43

Social barriers to the adoption of AI AI education and trainings NLP, SL, DL 1 [107] 1.43
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Real-World Applicability

About 11.43% of the selected articles only tend to have simulated the adoption of
AI technologies in a controlled environment thus lacking the confidence to validate their
methods in a real-world setting.

According to Vázquez-Canteli [111], a useful graphical user interface (GUI) that
allows users to write machine learning code or set hyper-parameters of the algorithms
after the simulation environment is compiled is required for their fast AI-based building
energy simulator implemented in an integrated simulation environment to be tested in a
physical setting. Furthermore, as illustrated in Hong’s [105] AI framework for clustering
construction schedules in UK-based construction projects, Gondia’s [19] AI-based model
lacks the use of real construction project schedule information for their construction project
delay risk prediction implementation in Egypt.

Computer Vision and Augmented Reality

The application of the most recent computer vision techniques and augmented reality
functions followed suit, with 4.29% of selected articles recommending them as a means of
advancing technology in the construction industry. More precisely, in the implementation
of automatic image recognition of architectural heritage sites by Palma [81], for example,
items in the same cultural site appeared to be extremely similar, or could appear together in
the same view, making it impossible to distinguish one part from another. However, these
circumstances emphasize the practical value of AI rather than the recognition of landmarks
that are far apart. Thus, this implies the most up-to-date computer vision algorithms will
be key to obtaining more detailed information than previously or the use of augmented
reality functions to enhance their interaction.

Other notable opportunities for technological advancement that received less attention
from the selected papers include design optimization and cloud computing infrastructure
with 2.86%, followed by multi-objective reinforcement learning, safety programming and
re-calibration of peripheral modules enterprise AI knowledge experts, and AI education
and trainings, among many others (1.43% each).

4. Discussion

The findings of this systematic review primarily elucidate the dissemination pattern of
research articles based on their publication sources, underscoring a pronounced prevalence
of coverage within academic journals on the subject. This trend aligns cohesively with
the research conducted by [41,116] affirming the transformative surge in the integration of
artificial intelligence within the construction industry, largely attributed to the availability
of substantial funding in this domain. Additionally, a discernible and consistent upward
trajectory is observed in the quantity of scholarly research publications addressing the
application of AI technology in the construction industry across the broader research
community ecosystem. This arguably shows a significant improvement in the promotion
of research and development of trustworthy AI solutions by funding bodies and agencies
across the globe. Interestingly, this is in line with the findings of Rahkovsky [117], who
argued that artificial intelligence research clusters are experiencing extreme growth due
to great support from research funding organizations that are currently been led by the
National Natural Science Foundation of China (NNSFC). It is no surprise from the results
of this systematic review that researchers from China are dominating the research space of
the application on AI technologies in the construction industry since NNSFC is the largest
funder of AI technology research over other large funding bodies such as the National
Institutes of Health and National Science Foundation from the USA, European Commission
and European Research Council from Europe, and Japan Society for the Promotion of
Science from Japan, among others.

Secondly, the analysis of this study further provided answers to all the research
questions stated in the first section. More specifically, although seven major AI technology
types were found in the literature, supervised learning emerged as the most influential
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AI technology of choice for most researchers, especially toward its applicability in health
and safety management. Supervised learning is a branch of machine learning in which
computer algorithms are trained on a labeled input dataset for a certain output. From a
labeled training dataset (i.e., a dataset that already has a known value for each record’s
output variable), supervised machine learning algorithms can find insights, patterns, and
correlations. When proper answers for a given task during training are provided, the
machine learning algorithm can learn how the rest of the characteristics relate to the output,
allowing you to unlock insights and make predictions based on past data. This is extremely
crucial for the industry and consistent with the findings of [5], which argued that the
industry can derive key benefits from AI to drive further profitability only when it leverages
the amount of data produced from a backlog of project schedules, as-built drawings and
models, computer-aided designs, costs, and invoices, among many other sources.

Furthermore, the results showed that although AI technologies can be applied in
three major stages of the construction project lifecycle, more attention is drawn towards
the supply/facility management stage (see Section 3). It can be argued that this is owing
to the massive quantity of data collected over time (from the design stage all the way
through), making it ideal for the adoption of the most significant AI technology (supervised
learning). Thus, this creates a great opportunity for the industry to capitalize by allowing,
for example, facility managers to take proactive action. For instance, as argued by [110],
AI can recognize portions of buildings that are not being utilized and automatically turn
off the heating, ventilation, and air conditioning, substantially decreasing energy use.
Moreover, AI technologies in the construction industry were found to hold promise for
applications in many types of construction projects and their respective lifecycle application
area with about 20% of the literature reporting their implementation in any structures and
systems that are part of the built environment (urban area, pedestrian walkways, parks, etc.)
projects. Kılkış’s [118] argument about this is compelling, especially when they mentioned
that the built environment impacts all parts of our life, including the buildings we live in,
the distribution systems that provide us with water and energy, and the roads, bridges, and
transportation systems we use to move about.

Additionally, most articles acknowledged that artificial intelligence technologies’ grow-
ing popularity in the construction industry would offer a wide range of benefits with
potential for design expansion as a key benefit according to most of the selected literature.
As such, this study argues that given the substantial time investment by engineers and
architects in the architectural design process and their access to an extensive database
housing numerous pre-existing building plans, an artificial intelligence (AI) technology
system holds the capacity to generate diverse design alternatives based on the collective
information derived from the repository of designs. Consequently, designers can input
design objectives and parameters into the system, allowing it to systematically explore all
conceivable permutations of a solution. This process results in the creation of design alter-
natives that satisfy the predefined requirements, with the system progressively refining its
understanding of optimal design choices through iterative learning. This iterative learning,
in turn, enhances the system’s efficacy with each subsequent project. Beyond the potential
design benefits, the application of generative design holds promises in augmenting creativ-
ity. For instance, it can empower architects to unveil hitherto unimagined approaches to
designing forms and curves or guide them toward innovative design solutions that may
remain unexplored through conventional means.

However, most of the articles reported that it is challenging to apply AI technologies
in the construction industry because of a low accuracy level due to the scarcity of available
data. Data scarcity arises when there is a paucity of labeled training data or when there
is none at all. It might be a shortage of data for a particular label as compared to the
other labels (known as data imbalance). It was discovered from some of the selected
literature [52–55,80], which is also in line with research [1], that mega infrastructure projects
often have access to a lot of data; however, they may have data imbalances, whereas small-
sized projects typically have a limited amount of labeled training data. As a result, resolving
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this issue cannot be overstated, as reported articles (41.43%) universally agreed, citing “data
augmentation” as one of the quickest prospects for technical improvement in this area. For
instance, the research [74] successfully demonstrated the application of undercomplete,
sparse, deep, and variational autoencoders as novel techniques for data augmentation and
generation of synthetic data in construction management which can provide useful insights
regarding the underlying non-linear relationships among variables in the datasets amongst
many other selected studies.

Notwithstanding, practical obstacles beyond just data accuracy persist around cultural
readiness, ethical risks, skill shortages, and flaws in security posture for many construction
projects exploring AI solutions. As the research [119,120] assessed, construction has often
lagged significantly in digital transformation and technology assimilation compared to
other industries. Coupled with an aging workforce leaning on legacy methods, this exac-
erbates reluctance and barriers to AI change management. For instance, PwC [121] notes
generational shifts may gradually improve receptiveness, like modeling shows younger
workers are 67% more open to retraining on AI tools relative to senior staff. But broad
culture change inevitably remains for the long term. Customized change management
programs fitting construction realties are hence vital to align teams behind AI via strategic
internal communications campaigns and leadership vision as exemplified by firms such as
Bechtel. Additionally, the opaque decision-making of AI systems poses ethical dilemmas
around accountability as flagged by Parveen [39]. Lack of explainable outcomes or audit
trails can impede transparency and responsible oversight of automated systems. There is
also a dearth of standardized governance principles as highlighted in Egwim’s [1] delay
risk assessment.

The specialist expertise needed is another capacity challenge evidenced by widening
talent gaps globally per Johnson’s [122] labor market analysis. Most construction firms are
not staffed with multidisciplinary data scientists or algorithm auditors. As such, the shortage
of such AI and analytics roles may worsen for small- and mid-size construction companies
lacking resources to reskill staff or attract experts. Additionally, many construction industry
jobs also require on-site client coordination, hence diminishing flexibility that technology
candidates expect. Therefore, targeted training programs are crucial to developing well-
rounded internal capabilities. Finally, the vulnerability of connected tools or data handling
processes to malicious threats leaves unprepared adopters exposed to crippling breaches as
studied across industries [123,124]. Also, lack of transparency around data rights or algorith-
mic decision-making processes also introduces major ethical risks. Furthermore, antiquated
security postures coupled with failures to implement robust and resilient protections can
negate any assumed productivity gains. Thus, addressing these open socio-technical prob-
lems demands coordinated efforts across construction stakeholders to formulate frameworks,
standards, and cultural shifts guided by construction-specific nuances.

5. Conclusions

The systematic review study covers 70 studies that were judged to be rigorous, credible,
and relevant in their application of AI technology in the construction sector. The research
content of these 70 publications demonstrated that artificial intelligence research in the
construction sector has taken a quantum leap, with increased interest in academic journals,
particularly in the last few years, owing to the availability of funding in that area. Most
articles pertinent to the research topic in general were published by Chinese researchers.
More precisely, scholars from the Republic of Korea and China contributed the most
publications to the construction/execution lifecycle stage of the construction value chain.
Furthermore, China also published most of the related articles concerning AI applications
in the planning and facility management lifecycle stages of the construction value chain.

Construction AI technology was discovered to be a growing application field, with
supervised learning, deep learning, knowledge-based systems, robotics, natural language
processing, optimization, and reinforcement learning AI technologies all appearing to have
more potential to influence the development of AI research for increased efficiency and
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productivity. Regarding the construction AI technology categories given above, the bulk of
the featured publications used the supervised learning approach. A substantial number of
the articles were connected to the built environment and residential building in terms of the
construction project types in which such AI technologies are used. The papers on high-rise
and commercial buildings came after that. A few studies advocated the application of AI in
building retrofits and water treatment plants. Most publications on the built environment
concentrated on the construction/execution stage. Similarly, the planning and facility
management lifecycle stages of the residential building garnered the most attention.

According to the findings, the most significant number of studies across all build-
ing construction disciplines focused on the possibility for regenerative design expansion.
However, there are various obstacles to implementing AI technology in the construction
industry, with low accuracy owing to a lack of relevant data being the most commonly
mentioned issue. It is also worth noting that, despite being the most prevalent AI construc-
tion method, supervised learning has been the technology of choice for the most difficult
challenge to be solved in the industry. And as sparse, deep, and variational autoencoder
approaches show promise in providing meaningful insights into the underlying non-linear
correlations among variables in datasets, data augmentation was identified as one of the
most promising areas for technical advancement.

This study presents an all-inclusive systematic review of a vast body of knowledge
on artificial intelligence in the construction industry. The findings of this study present a
comprehensive assessment of the many types and categories of AI technologies, as well
as their application areas and the advantages of using them at the three lifecycle stages
of the construction value chain. This knowledge will assist construction organizations
across the world in recognizing the efficiency and productivity advantages that AI tech-
nologies can provide while helping them make smarter technology investment decisions.
It will point construction organizations in the right direction in terms of imagining the
construction problems that AI technology could solve. In addition, it is possible to integrate
evidence from the sorts of construction projects where AI technologies were used to address
technological difficulties and see what new AI technologies can accomplish in the future.

Evidently, the findings of this study are based on a systematic review methodology.
Given that the research article keywords were domain-specific, the principal drawback of
this study approach might be bias in publication selection. As a result, it is possible that
some important papers were overlooked throughout the search. Additionally, the PRISMA
protocol mandated the use of predetermined inclusion and exclusion criteria for article
selection, implying that important publications that did not meet these criteria may have
been overlooked as well. Furthermore, any breakthroughs in the field of AI technology in
construction are pushed by experts who are unable to publish in book series, conference
proceedings, or academic journals. Consequently, there is a chance that any important
research from the experts or somewhere else were overlooked throughout the search.

Although the study explored a variety of AI technologies for various construction
projects, further research is needed to figure out how to simplify these complicated systems
and processes to establish an integrated AI system for the construction sector. Therefore, an
implementation framework is crucial to soften the introduction of a system and bridge the
adoption gap by addressing low accuracy due to a scarcity of available data, model gener-
alizability, incorrect image classification of structures, high requirements for sophisticated
algorithms, and limited computing speed across the existing construction value chain.
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61. Milošević, I.; Kovačević, M.; Petronijević, P. Estimating Residual Value of Heavy Construction Equipment Using Ensemble

Learning. J. Constr. Eng. Manag. 2021, 147, 04021073. [CrossRef]
62. Ayhan, M.; Dikmen, I.; Birgonul, M.T. Predicting the Occurrence of Construction Disputes Using Machine Learning Techniques. J.

Constr. Eng. Manag. 2021, 147, 04021022. [CrossRef]
63. Amin, M.N.; Iqtidar, A.; Khan, K.; Javed, M.F.; Shalabi, F.I.; Qadir, M.G. Comparison of Machine Learning Approaches with

Traditional Methods for Predicting the Compressive Strength of Rice Husk Ash Concrete. Crystals 2021, 11, 779. [CrossRef]
64. You, Z.; Feng, L. Integration of Industry 4.0 Related Technologies in Construction Industry: A Framework of Cyber-Physical

System. IEEE Access 2020, 8, 122908–122922. [CrossRef]
65. Barai, S.V.; Nair, R.S. Neuro-Fuzzy Models for Constructability Analysis. J. Inf. Technol. Constr. 2004, 9, 65–73. Available online:

http://www.itcon.org/2004/4/ (accessed on 22 March 2022).
66. Lee, Y.-C.; Scarpiniti, M.; Uncini, A. Advanced Sound Classifiers and Performance Analyses for Accurate Audio-Based Construc-

tion Project Monitoring. J. Comput. Civ. Eng. 2020, 34, 04020030. [CrossRef]
67. Zhou, P.; Chang, Y. Automated classification of building structures for urban built environment identification using machine

learning. J. Build. Eng. 2021, 43, 103008. [CrossRef]
68. Bagheri, A.; Nazari, A.; Sanjayan, J. The use of machine learning in boron-based geopolymers: Function approximation of

compressive strength by ANN and GP. Measurement 2019, 141, 241–249. [CrossRef]
69. Shehadeh, A.; Alshboul, O.; Al Mamlook, R.E.; Hamedat, O. Machine learning models for predicting the residual value of heavy

construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Autom. Constr. 2021, 129,
103827. [CrossRef]

70. Pereira, P.F.; Ramos, N.M.M.; Simões, M.L. Data-driven occupant actions prediction to achieve an intelligent building. Build. Res.
Inf. 2019, 48, 485–500. [CrossRef]

71. Hu, D.; Zhong, H.; Li, S.; Tan, J.; He, Q. Segmenting areas of potential contamination for adaptive robotic disinfection in built
environments. Build. Environ. 2020, 184, 107226. [CrossRef] [PubMed]

72. Kim, J.-M.; Bae, J.; Son, S.; Son, K.; Yum, S.-G. Development of Model to Predict Natural Disaster-Induced Financial Losses for
Construction Projects Using Deep Learning Techniques. Sustainability 2021, 13, 5304. [CrossRef]

73. Yu, Y.; Li, H.; Yang, X.; Umer, W. Estimating construction workers’ physical workload by fusing computer vision and smart insole
technologies. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction and International
AEC/FM Hackathon: The Future of Building Things (ISARC 2018), Berlin, Germany, 20–25 July 2018. [CrossRef]

74. Delgado, J.M.D.; Oyedele, L. Deep learning with small datasets: Using autoencoders to address limited datasets in construction
management. Appl. Soft Comput. 2021, 112, 107836. [CrossRef]

75. Charoenkwan, P.; Homkong, N. CSDeep: A crushed stone image predictor based on deep learning and intelligently selected
features. In Proceedings of the 2017 2nd International Conference on Information Technology (INCIT), Nakhonpathom, Thailand,
2–3 November 2017; pp. 1–6. [CrossRef]

76. Su, L.-C.; Wu, X.; Zhang, X.; Huang, X. Smart performance-based design for building fire safety: Prediction of smoke motion via
AI. J. Build. Eng. 2021, 43, 102529. [CrossRef]

https://doi.org/10.1016/j.jclepro.2021.129665
https://doi.org/10.1016/S0926-5805(01)00071-1
https://doi.org/10.1145/3473714.3473788
https://doi.org/10.36680/j.itcon.2021.017
https://doi.org/10.1007/s13369-014-1032-8
https://doi.org/10.6180/JASE.202110_24(5).0011
https://doi.org/10.1016/j.autcon.2018.12.016
https://doi.org/10.1016/j.ssci.2019.05.027
https://doi.org/10.1016/j.cities.2022.103625
https://doi.org/10.1016/j.buildenv.2021.108656
https://doi.org/10.1016/j.autcon.2021.103896
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002088
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002027
https://doi.org/10.3390/cryst11070779
https://doi.org/10.1109/ACCESS.2020.3007206
http://www.itcon.org/2004/4/
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000911
https://doi.org/10.1016/j.jobe.2021.103008
https://doi.org/10.1016/j.measurement.2019.03.001
https://doi.org/10.1016/j.autcon.2021.103827
https://doi.org/10.1080/09613218.2019.1692648
https://doi.org/10.1016/j.buildenv.2020.107226
https://www.ncbi.nlm.nih.gov/pubmed/32868961
https://doi.org/10.3390/su13095304
https://doi.org/10.22260/ISARC2018/0168
https://doi.org/10.1016/j.asoc.2021.107836
https://doi.org/10.1109/INCIT.2017.8257857
https://doi.org/10.1016/j.jobe.2021.102529


Energies 2024, 17, 182 20 of 21

77. Norrdine, A.; Motzko, C. An internet of things based transportation cart for smart construction site. In Proceedings of the 2020
International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics
(Cybermatics), Rhodes, Greece, 2–6 November 2020; pp. 160–167. [CrossRef]

78. Fisher-Gewirtzman, D.; Polak, N. A learning automated 3D architecture synthesis model: Demonstrating a computer governed
design of minimal apartment units based on human perceptual and physical needs. Archit. Sci. Rev. 2019, 62, 301–312. [CrossRef]

79. Spallone, R.; Palma, V. Artificial intelligence and augmented reality: A possible continuum for the enhancement of built heritage.
Disegnarecon 2021, 14, 26. [CrossRef]

80. Bassier, M.; Vergauwen, M. Unsupervised reconstruction of Building Information Modeling wall objects from point cloud data.
Autom. Constr. 2020, 120, 103338. [CrossRef]

81. Palma, V. Towards Deep Learning for Architecture: A Monument Recognition Mobile App. ISPRS Ann. Photogramm. Remote Sens.
Spat. Inf. Sci. 2019, XLII-2/W9, 551–556. [CrossRef]

82. Lomio, F.; Farinha, R.; Laasonen, M.; Huttunen, H. Classification of Building Information Model (BIM) Structures with Deep
Learning. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland,
26–28 November 2018; pp. 1–6. [CrossRef]

83. Long, R.; Li, Y. Research on Energy-efficiency Building Design Based on BIM and Artificial Intelligence. IOP Conf. Ser. Earth
Environ. Sci. 2021, 825, 012003. [CrossRef]
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