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ABSTRACT

In this paper, we address the challenge of matching semantically similar keypoints
across image pairs. Existing research indicates that the intermediate output of the
UNet within the Stable Diffusion (SD) can serve as robust image feature maps for
such a matching task. We demonstrate that by employing a basic prompt tuning
technique, the inherent potential of Stable Diffusion can be harnessed, resulting
in a significant enhancement in accuracy over previous approaches. We further
introduce a novel conditional prompting module that conditions the prompt on the
local details of the input image pairs, leading to a further improvement in perfor-
mance. We designate our approach as SD4Match, short for Stable Diffusion for
Semantic Matching. Comprehensive evaluations of SD4Match on the PF-Pascal,
PF-Willow, and SPair-71k datasets show that it sets new benchmarks in accu-
racy across all these datasets. Particularly, SD4Match outperforms the previous
state-of-the-art by a margin of 12 percentage points on the challenging SPair-71k
dataset.

1 INTRODUCTION

Matching keypoints between two semantically similar objects is one of the challenges in computer
vision. The difficulties arise from the fact that semantic correspondences may exhibit significant vi-
sual dissimilarity due to occlusion, different viewpoints, and intra-category appearance differences.
Although significant progress has been made (Han et al., 2017; Rocco et al., 2018; Cho et al., 2021;
Min et al., 2019a; Li et al., 2023), the problem is far from being completely solved. Recently,
Stable Diffusion (SD) (Rombach et al., 2022) has demonstrated a remarkable ability to generate
high-quality images based on input textual prompts. Looking specifically at semantic matching,
follow-up studies (Zhao et al., 2023; Tang et al., 2023; Zhang et al., 2023) have further revealed that
SD is not only proficient in generative tasks but also applicable to feature extraction. Experiments
demonstrate that SD can perform on par with methods especially designed for semantic matching,
paving a new direction in this field. This brings up a yet unanswered question: Have we fully ex-
plored the capacity of SD in matching? Or, how should we harness the information gathered from
billions of images stored within SD to further improve its performance?

Engineering the textual prompt has already been extensively utilized in numerous computer vision
tasks, including image generation using Stable Diffusion. In these applications, prompts are metic-
ulously handcrafted to achieve the desired output. Prompt tuning, or direct optimization of prompt
embedding, has also been utilized to adapt pre-trained vision-language models, such as CLIP (Rad-
ford et al., 2021), to new data domains in tasks like image classification, especially when faced with
limited data resources (Zhou et al., 2022b; Khattak et al., 2023). Inspired by the latter strategy, and
given that the accuracy of matching is quantifiable and limiting the prompt to the textual domain is
unnecessary, we can directly optimize the prompt on the latent space to exploit SD’s potential for
semantic matching. In spite of its straightforward nature, we find that learning a single, universal
prompt applicable to all images is already highly effective in adapting SD to semantic matching, and
not only improves previous SD-based semantic matchers (Tang et al., 2023; Zhang et al., 2023) but
also leads to the state-of-the-art performance over all types of methods.
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Current works that explore SD for visual perception task mimic the textual prompt input of standard
image generation SD, by either handcrafting a text input (Tang et al., 2023) or by using an implicit
captioner (Xu et al., 2023). Novel to our work, we find that the choice for prompt, text or otherwise,
particularly when including prior information, significantly influences the overall matching perfor-
mance. We then introduce two additional prompt tuning schemes tailored specifically for semantic
matching: one that leverages explicit prior semantic knowledge and learns a distinct prompt for each
object category, and a novel conditional prompting module (CPM) that conditions the prompt on the
local feature patches of both images in the image pair to be matched, instead of global descriptors
of each individual image. Experiments show that these designs lead to further improvements in
matching accuracy.

We can delineate our contributions in this paper as follows:

1. We demonstrate that the performance of Stable Diffusion in the semantic matching task can
be significantly enhanced using a straightforward prompt tuning technique.

2. We propose a novel conditional prompting module, which uses the local features of the
image pair. Our experiments show that this design supersedes earlier models reliant on the
global descriptor of individual images, leading to a noticeable improvement in matching
accuracy.

3. We evaluate our approach on the PF-Pascal, PF-Willow, and SPair-71k datasets, establish-
ing new accuracy benchmarks for each. Notably, we achieve an increase of 12 percentage
points on the challenging SPair-71k dataset, surpassing the previous state-of-the-art.

2 RELATED WORK

Semantic Correspondence Early attempts at semantic matching focused on handcrafted features
such as HOG (Dalal & Triggs, 2005), SIFT (Lowe, 2004), and SIFT Flow (Liu et al., 2010). SCNet
(Han et al., 2017) was the first deep learning method to tackle this problem. Various network ar-
chitectures have been proposed, addressing the problem from different perspectives, such as metric
learning (Choy et al., 2016), neighbourhood consensus (Rocco et al., 2018; Li et al., 2020; Min &
Cho, 2021), multilayer feature assembly (Min et al., 2019a; 2020), and transformer-based architec-
ture (Cho et al., 2021; Kim et al., 2022b), etc. Another line of work in this field is learning matching
from image-level annotations. SFNet (Lee et al., 2019) uses segmentation masks of images; PMD
(Li et al., 2021) employs teacher-student models and learns from synthetic data, while PWarpC
(Truong et al., 2022) relies on the probabilistic consistency flow from augmented images. Although
significant progress has been made, the majority of these methods are based on ResNet (He et al.,
2016), which has inferior representation capability compared to later ViT-based feature extractors
like DINO (Caron et al., 2021; Oquab et al., 2023) or iBOT (Zhou et al., 2021), thus limiting their
performance. SimSC Li et al. (2023) demonstrates an improvement of 20% in matching accuracy
by switching from ResNet to iBOT in its finetuning pipeline.

Diffusion Model The pioneering work that formulated image generation as a diffusion process is
DDPM (Ho et al., 2020). Since then, numerous follow-up works have been proposed to improve
the generation process. DDIM (Song et al., 2020) and PNDM (Liu et al., 2022) accelerate the
generation process through the development of new noise schedulers. The works by Dhariwal &
Nichol (2021) and Ho & Salimans (2022) enhance the fidelity of the generation by adjusting the
denoising step. Another milestone in this field is Stable Diffusion (Rombach et al., 2022), which
significantly increases the resolution of generated image by working on the latent space instead of
pixel level, paving the way for novel methods in image editing (Brooks et al., 2023; Couairon et al.,
2022) and object-oriented image generation (Gal et al., 2022; Ruiz et al., 2023), etc. More recently,
Zhao et al. (2023) found that pre-trained Stable Diffusion can also act as a feature extractor, drawing
features from images for visual perception tasks. This insight led to studies like DIFT (Tang et al.,
2023) and SD+DINO (Zhang et al., 2023), which delve into the impact of timestep and layer on
pre-trained SD’s capabilities in semantic matching. Our work is closely related to these efforts,
but we instead explore how the prompt can be optimized within an SD framework to improve its
performance on semantic matching.
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Figure 1: The general pipeline of SD4Match. We present three prompt tuning options for our
method: Single, Class, and conditional prompting module (CPM). The prompt is tuned by the cross-
entropy loss between the predicted probability map and the ground-truth probability map of given
query points. During inference, we use Kernel-Softmax proposed by Lee et al. (2019) to localize
correspondences.

Prompt Tuning Prompt tuning has gained popularity due to its success in adapting pretrained
language models to downstream tasks in natural language processing (Shin et al., 2020; Jiang et al.,
2020). COOP (Zhou et al., 2022b) was the first work to introduce prompt tuning to computer vision,
adapting CLIP to different data distributions in a few-shot setting. Its successor, COCOOP (Zhou
et al., 2022a), conditioned the prompt on input images to enhance generalizability. These have
inspired several other prompting methods (Khattak et al., 2023; Zhu et al., 2022). A parallel line of
research explores visual prompts, often in the form of masks overlaid on images, to achieve similar
objectives (Bahng et al., 2022; Oh et al., 2023). However, most literature has solely focused on
prompt tuning for image classification tasks. To the best of our knowledge, our study is the first to
apply prompt tuning to the SD model for semantic matching.

3 METHOD

In this section, we introduce our method, namely Stable Diffusion for Semantic Matching
(SD4Match). We illustrate the general pipeline in Fig. 1. The UNet component within SD ex-
tracts feature maps from input images based on the prompt generated by our prompting module. We
present three options for the prompt: one single universal prompt (SD4Match-Single), one prompt
per object category (SD4Match-Class), and the conditional prompting module (SD4Match-CPM).
The prompt is tuned by the cross-entropy loss between the predicted matching probability and the
ground-truth probability of given query points. All modules are kept frozen except for the prompting
module during the tuning.

We organize this section as follows: In Sec. 3.1, we briefly introduce the diffusion model and its ap-
plication as a feature extractor. In Sec. 3.2, we investigate the effect of the existing prompt schemes
and introduce our prompt tuning in detail. Finally, in Sec. 3.3, we elaborate on the design of the
conditional prompting module and the reasoning behind it.

3.1 PRELIMINARY

Diffuion Model The image diffusion model, as proposed in Ho et al. (2020); Song et al. (2020),
is a generative model designed to capture the distribution of a set of images. This model consists
of two processes: forward and reverse. In the forward process, a clean image I is progressively
corrupted by a sequence of Gaussian noise. This corruption follows the equation:

It =
√
αtIt−1 +

√
1− αtϵt−1 (1)

where ϵ ∼ N (0, 1) and αt is the coefficient controlling the level of corruption at timestep t. When
t = T is sufficiently large, image IT is totally corrupted, resembling a sample of N (0, 1). In the
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Table 1: Evaluation of existing works on SPair-71k dataset with different prompt types. The results
are PCK with α = 0.1. The definition of the metric is provided in Sec. 4.2.

Prompt Type Empty String “a photo of a {object category}” Implicit Captioner
DIFT (Tang et al., 2023) 50.7 52.9 -
SD+DINO∗ (Zhang et al., 2023) 50.3 52.2 52.4

reverse process, the diffusion model fθ(It, t) learns to predict the noise ϵt added to the image I at
timestep t in the forward process. Therefore, by drawing a sample from N (0, 1), we can recover its
corresponding “original image” by iteratively removing the noise ϵt. In Stable Diffusion (Rombach
et al., 2022), such a reverse process can condition on various types of input, such as text or other
images, to control the content of generated image.

Stable Diffusion as Feature Extractor The text-to-image Stable Diffusion is found with the ca-
pability of extracting semantically meaningful feature maps from images (Zhang et al., 2023; Tang
et al., 2023; Luo et al., 2023). Given an input image I and a specific timestep t, I is encoded by VAE
to the latent representation z which is then corrupted to zt by Eq. (1). The UNet in Stable Diffusion
then predicts the noise at timestep t. The resulting feature map is obtained from the output of an
intermediate layer of the UNet’s decoder during this noise prediction phase. Observations show that
the earlier layer of the decoder with a large t captures more abstract and semantic information while
the later layer of the decoder with a small t focuses on local texture and details. This is similar to the
feature pyramids in ResNet (He et al., 2016). Therefore, careful choices of t and layer are required.
For the sake of simplicity, we skip the VAE encoding step and directly refer to the UNet’s input as
image I rather than latent representation z in the following paragraphs.

3.2 PROMPT TUNING FOR SEMANTIC CORRESPONDENCE

We first investigate the impact of various existing prompts on matching accuracy. We evaluated
three commonly-used prompts: an empty textual string “ ” (Zhao et al., 2023); the textual template
“a photo of a {object category}” which requires the category of the object (Tang et al., 2023),
and the implicit captioner borrowed from the image segmentation method (Xu et al., 2023) that
directly converting the input image into textual embeddings (Zhang et al., 2023). We applied these
prompts to two SD-based approaches: DIFT (Tang et al., 2023) and SD+DINO (Zhang et al., 2023).
DIFT directly uses the feature map produced by SD2-1 to perform matching, whereas SD+DINO
fuses the features from DINOv2 and SD1-5 for better accuracy. To isolate the effect of DINO on
matching results, we excluded the DINO feature in SD+DINO, designating this modified setting
as SD+DINO∗. The results are summarized in Tab. 1. We notice that the SD model keeps the
majority of its capability in semantic matching even when supplied with a non-informative empty
string. This is attributed to the fact that the timestep t in both works is relatively small (t = 261
for DIFT and t = 100 for SD+DINO out of the total timestep T = 1000) so the information in the
input image remains largely intact. Therefore, the image itself is sufficient for most matching cases.
With the help of prior knowledge of the object of interest, either in the form of object category or the
implicit captioner, the accuracy is improved by about 2 percentage points, reflecting the importance
of input-related prompts.

Analogous to the empty string, we search for a single universal prompt that is applied to all images.
We randomly initialize the prompt and directly finetune the prompt embeddings with the semantic
matching loss proposed by Li et al. (2023). Given two images IAt and IBt corrupted to timestep t,
the UNet f(·) of Stable Diffusion extracts their corresponding feature maps FA

t ∈ RC×HA×WA and
FB
t ∈ RC×HB×WB by:

Ft = f(It, t, θ) (2)

where θ ∈ RN×D

is the prompt embedding, N is the prompt length and D is the dimension of the
embedding. FA

t and FB
t are then L2-normalized along the feature dimension obtaining F̂A

t and F̂B
t .

Let X = {(xA
q ,x

B
q ) | q = 1, 2, ..., n} be the ground-truth correspondences provided in the training

data. For each query point xA
q = (xA

q , y
A
q ) in IAt , we extract its corresponding feature F̂A

t,q ∈ RC

from F̂A
t and compute a correlation map MA

q ∈ [−1, 1]HB×WB with the entire F̂B
t :

MA
q,kl = (F̂A

t,q)
⊤F̂B

t,kl (3)
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where F̂B
t,kl ∈ RC are the feature at position (k, l) in F̂B

t . The correlation map MA
q is converted to

a probability distribution PA
q by the softmax operation σ(·) with temperature β:

σ(z)i =
exp(zi/β)∑
j exp(zj/β)

(4)

The loss between IAt and IBt is the average of the cross-entropy between PA
q and the ground-truth

distribution PA,gt
q of all correspondence pairs X:

L =
1

n

n∑
q=1

H(PA,gt
q , PA

q ) (5)

where PA,gt
q is the Dirac delta distribution δ(xB

q ). Following Li et al. (2023), we apply a k × k

Gaussian kernel to PA,gt
q for label smoothing. During inference, we use Kernel-Softmax (Lee et al.,

2019) to localize the prediction. The entire UNet f is fixed and the only parameter required to update
is the prompt embedding θ during tuning. We refer to this option as SD4Match-Single.

Just like the textual template, we can also learn one prompt for one specific category. Assume we
have n classes and a set of n prompt embeddings {θ1, θ2, ..., θn}, then Eq. (2) becomes:

Ft = f(It, t,Θ(c(It))) (6)

where c(It) ∈ {1, 2, ..., n} is the category of object of interest in It and Θ(i) = θi. We denote this
as SD4Match-Class.

3.3 CONDITIONAL PROMPTING MODULE

An alternative approach to SD4Match-Class involves conditioning the prompt on input images, thus
eliminating the need for manual inspection of the object’s category. Previous studies have delved into
conditional prompts for tasks like image classification (Zhou et al., 2022a; Oh et al., 2023) and image
segmentation (Xu et al., 2023). In this context, the prompt is conditioned on the global descriptor
of the image, typically extracted by ViT-based (Dosovitskiy et al., 2020) feature extractors such
as DINOv2 (Oquab et al., 2023) or CLIP (Radford et al., 2021). This descriptor is then projected
to match the dimension of the prompt embedding and forwarded to the text encoder accompanied
by a learnable positional embedding. While this approach has shown effectiveness for the tasks
mentioned above, it might not be the optimal design for finding semantic correspondence. Our
reasons are:

1. Semantic matching involves a pair of images. The prompt for this specific pair should be
one prompt conditioned on and applied to both images, rather than two different prompts
conditioned on each individual image and applied to them separately.

2. Semantic matching relies on the local details of images. The prompt should be conditioned
on the local features rather than the global descriptors of the images.

3. The prompt should incorporate a universal head that is applicable to all images. An analogy
for this is the prefix “a photo of a” in the textual template.

We therefore propose a novel conditional prompting module (CPM) and illustrate its architecture in
Fig. 2. It mainly consists of four modules: a DINOv2 feature extractor, two linear layers gd(·) and
gn(·) and an adaptive MaxPooling layer p(·). Given a pair of clean images IA and IB , we first use
DINOv2 to extract their local feature patches FA and FB , where FA,FB ∈ RNdino×Ddino . We
then fuse the local features of two images by concatenating them along the feature dimension and
projecting the concatenated feature FAB ∈ RNdino×2Ddino to the dimension of the prompt embed-
ding D by the linear layer gd(·), resulting in F̃AB ∈ RNdino×D. These operations only explore
the feature-wise relationship within the image pair but do not extract the inter-patches information
from it. Therefore, we further process F̃AB by another linear layer gn(·) along the patch dimension.
This allows information exchanges between different local feature patches, enhancing the capability
of the prompt. The output of gn(·) goes through the adaptive MaxPooling layer p(·) to reduce its
patch dimension to Ncond so that the prompt will not exceed the maximum prompt length of the SD
model, producing F̂AB ∈ RNcond×D. We then follow the design in Xu et al. (2023), generating
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Figure 2: Illustration of the architecture of our conditional prompting module.

the conditional prompt θAB
cond by θAB

cond = F̂AB ∗ Ωα + Ωpos, where Ωα ∈ RNcond×D is a condi-
tioning weight and Ωpos ∈ RNcond×D is a positional embedding. The conditional prompt θAB

cond is
appended after a global prompt θglobal ∈ RNglobal×D, producing the final prompt θAB ∈ RN×D

and N = Nglobal +Ncond. Eq. (2) subsequently becomes:

FA
t = f(IAt , t, θAB), FB

t = f(IBt , t, θAB) (7)

Note that the feature map FA
t changes if its pairing image IBt also changes since the prompt is

conditioned on both images in the image pair. A benefit of this design is that if multiple objects are
present in images, the prompt would focus on the common object between the image pair.

4 EXPERIMENTS

In this section, we first provide the implementation details of our method in Sec. 4.1 and introduce
datasets and evaluation metrics in Sec. 4.2. We then present the evaluation results and ablation
studies in Sec. 4.3 and Sec. 4.4 respectively.

4.1 IMPLEMENTATION DETAILS

Our method is implemented in Python using the Huggingface (Gugger et al., 2022; Wolf et al.,
2020; von Platen et al., 2022) and PyTorch (Paszke et al., 2019) libraries. We follow DIFT and
adopt Stable Diffusion 2-1 as the diffusion model, where the total timestep T is 1000. We utilize the
output from the 2nd up block of the UNet as the feature map, and set the timestep t = 261 during
training. We choose DINOv2-ViT-B/14 (Oquab et al., 2023) as the feature extractor in CPM. The
maximum prompt length for Stable Diffusion is 77, which includes two special tokens: SOS and
EOS. Therefore, we set the prompt length N = 75 in SD4Match-Single and SD4Match-Class, and
Nglobal = 25 and Ncond = 50 in SD4Match-CPM, occupying all 77 token positions. For inference,
we set the timestep t = 50 as empirical tests suggest it provides optimal results, even though our
method is trained at t = 261. The temperature β and the Gaussian smooth kernel k are set to 0.04
and 7, respectively, during training. We train our method using the Adam optimizer (Kingma &
Ba, 2014) with a batch size of 9 for 30,000 steps across all experiments. The learning rate is set at
1 × 10−2 in all configurations, except for the two linear layers gd(·) and gn(·) in the CPM, where
it’s 1 × 10−3. This rate remains constant throughout training. Images are resized to 768 × 768 for
both the training and testing phases. We train SD4Match on three Quadro RTX 6000 GPUs.

4.2 DATASETS AND EVALUATION METRICS

We evaluate our method on three popular semantic correspondence datasets: PF-Pascal (Ham et al.,
2016), PF-Willow (Ham et al., 2017), and SPair-71k (Min et al., 2019b). PF-Pascal consists of 2941
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Table 2: Evaluation on the SPair-71k dataset at α = 0.1. Methods are classified into three categories
based on their degree of supervision: (1) methods which are zero-shot and not tuned on the training
data of Spair-71k, marked as Z. (2) methods using image-level annotations, marked as I. (3) methods
using ground-truth keypoint annotations, marked as K. Best results in each category are bolded.
Overall, Our method achieves the best results in all of 18 categories and we outperform the second-
best method SimSC-iBOT (Li et al., 2023) by 12 percentage points.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor PersonPlant Sheep Train TV All
Z DINO (Caron et al., 2021) 37.3 23.8 63.0 19.9 41.7 29.9 24.1 64.4 21.3 48.7 42.1 30.3 23.3 41.0 28.6 29.8 40.7 37.1 35.9

DINOv2 (Oquab et al., 2023) 69.9 58.9 86.8 36.9 43.4 42.6 39.3 70.2 37.5 69.0 63.7 68.9 55.1 65.0 33.3 57.8 51.2 31.2 53.9
DIFT (Tang et al., 2023) 61.2 53.2 79.5 31.2 45.3 39.8 33.3 77.8 34.7 70.1 51.5 57.2 50.6 41.4 51.9 46.0 67.6 59.5 52.9
SD+DINO (Zhang et al., 2023) 71.4 59.1 87.3 38.1 51.3 43.3 40.2 77.2 42.3 75.4 63.2 68.8 56.0 66.1 52.8 59.4 63.0 55.1 59.3

I NCNet (Rocco et al., 2018) 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1
SFNet (Lee et al., 2019) 26.9 17.2 45.5 14.7 38.0 22.2 16.4 55.3 13.5 33.4 27.5 17.7 20.8 21.1 16.6 15.6 32.2 35.9 26.3
PMD (Li et al., 2021) 26.2 18.5 48.6 15.3 38.0 21.7 17.3 51.6 13.7 34.3 25.4 18.0 20.0 24.9 15.7 16.3 31.4 38.1 26.5

K CATs (Cho et al., 2021) 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9
PMNC (Lee et al., 2021) 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4
SemiMatch (Kim et al., 2022a) 53.6 37.0 74.6 32.3 47.5 57.7 42.4 67.4 23.7 64.2 57.3 51.7 43.8 40.4 45.3 33.1 74.1 65.9 50.7
Trans.Mat. (Kim et al., 2022b) 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7
SCorrSAN (Huang et al., 2022) 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7 55.3
SimSC-iBOT (Li et al., 2023) 62.2 54.9 79.3 53.2 57.0 72.1 64.8 77.7 39.2 75.9 69.5 68.7 62.4 59.4 45.2 49.5 86.8 71.4 63.5
SD4Match-Single 72.1 66.5 82.3 62.5 57.6 76.0 73.3 81.5 62.0 85.0 71.9 76.1 68.5 76.5 68.9 58.0 89.3 83.1 72.6
SD4Match-Class 75.1 66.6 88.1 71.4 57.8 86.6 74.6 84.2 63.0 83.8 71.5 77.6 73.5 87.2 63.3 60.0 92.0 89.8 75.5
SD4Match-CPM 75.3 67.4 85.7 64.7 62.9 86.6 76.5 82.6 64.8 86.7 73.0 78.9 70.9 78.3 66.8 64.8 91.5 86.6 75.5

training image pairs, 308 validation pairs, and 299 testing pairs spanning across 20 categories of
objects. PF-Willow is the supplement to PF-Pascal with 900 testing pairs only. SPair-71K is a larger
and more challenging dataset with 53, 340 training pairs, 5, 384 validation pairs, and 12, 234 testing
pairs across 18 categories of objects with large scale and appearance variation. Each of the three
datasets has non-uniform numbers of ground-truth correspondences.

We follow the common practice in the literature and use the Percentage of Corrected Keypoints
(PCK) as the evaluation metric. Given an image pair (IA, IB) and its associated correspondence set
X = {(xA

q ,x
B
q ) | q = 1, 2, ..., n}, for each xA

q = (xA
q , y

A
q ), we find its predicted correspondence

x̄B
q and calculate PCK for the image pair by:

PCK(IA, IB) =
1

n

n∑
q

I(∥x̄B
q − xB

q ∥ ≤ α ∗ θ) (8)

where θ is the base threshold, α is a number less than 1 and I(·) is the binary indicator function with
I(true) = 1 and I(false) = 0. For PF-Pascal, θ is set as θimg = max(himg, wimg). For PF-
Willow, the base threshold is θkps = max(maxq(x

B
q ) − minq(x

B
q ),maxq(y

B
q ) − minq(y

B
q )). For

SPair-71K, the base threshold is θbbox = max(hbbox, wbbox) where hbbox and wbbox are height and
width of the bounding box. All three base thresholds’ choices align with the literature convention.

4.3 EVALUATION RESULTS

Evaluation on SPair-71k We provide the evaluation results on SPair-71k in Tab. 2. Specifically,
we achieve the best results across all 18 categories, and we outperform the second-best method
SimSC-iBOT by 12 percentage points (from 63.5 to 75.5) when considering the overall accuracy.
Compared to DIFT, which shares the same SD model with ours but uses a textual template as the
prompt, SD4Match-Single improves the performance of the SD model by 37.2%, proving that the
potential buried in the SD model can be harnessed by simply learning a single prompt. Among
the three options of our method, SD4Match-Class outperforms SD4Match-Single by 2.9 percentage
points. This echoes the results in Tab. 1, showing the benefit of the prior knowledge of the object.
SD4Match-CPM achieves the same accuracy as SD4Match-Class, indicating the effectiveness of our
CPM module in capturing the prior knowledge of the object without manual effort.

Generalizability Test Following the practice in the literature, we also test the generalizability of
our method by tuning the prompt on the training data of PF-Pascal and evaluating it on the testing
data of PF-Pascal, PF-Willow, and SPair-71k. The results are presented in Tab. 3. We do not evaluate
SD4Match-Class since the three datasets have different categories. Among methods using image-
level annotations and keypoint annotations, SD4Match-CPM achieves accuracy on par with SimSC-
iBOT on PF-Pascal, and the best generalized results on PF-Willow and SPair-71k across all α. This
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Table 3: Generalizability test of different methods. All methods are either zero-shot or trained on
the PF-Pascal dataset unless labelled otherwise.

PF-Pascal PF-Willow SPair-71k
θimg @ α θkps @ α θbbox @ α

Method 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1
Z DINOv1 (Caron et al., 2021) 55.6 74.2 81.6 39.7 64.8 77.0 23.1 35.9

DINOv2 (Oquab et al., 2023) 63.4 82.6 89.9 37.3 63.4 73.1 38.4 53.9
DIFT (Tang et al., 2023) 69.0 82.2 88.1 44.8 68.0 79.8 39.7 52.9
SD+DINO (Zhang et al., 2023) 68.1 85.7 91.5 44.8 72.0 85.0 44.1 59.3

I NCNet (Rocco et al., 2018) 54.3 78.9 86.0 44.0 72.7 85.4 - 26.4
SFNet (Lee et al., 2019) 59.0 84.0 92.0 46.3 74.0 84.2 11.2 24.0
PWarpC-NCNet (Truong et al., 2022) 64.2 84.4 90.5 45.0 75.9 87.9 18.2 35.3

K CATs (Cho et al., 2021) 75.4 92.6 96.4 40.9 69.5 83.2 13.6 27.0
Trans.Mat (Kim et al., 2022b). 80.8 91.8 - - 65.3 - - 30.1
DHPF (Min et al., 2020) 77.3 91.7 95.5 44.8 70.6 83.2 15.3 27.5
SimSC-iBOT (Li et al., 2023) 88.4 95.6 97.3 44.9 71.4 84.5 22.0 37.9
SD4Match-Single 81.3 92.4 96.6 50.7 77.8 89.5 30.5 44.4
SD4Match-CPM 84.4 95.2 97.5 52.1 80.4 91.2 27.2 40.9
SD4Match-Single (Tuned on SPair-71k) 71.8 85.5 90.4 55.5 81.3 91.2 56.5 72.6
SD4Match-CPM (Tuned on SPair-71k) 73.3 87.0 91.5 56.7 80.9 91.6 59.5 75.5

CPM conditioned on: SPair-71k
@ α = 0.1

1. Image Pair; Local Feat. 75.5
2. Image Pair; Global Desc. 73.3
3. Ind. Image; Local Feat. 70.8
4. Ind. Image; Global Desc. 68.5
5. w/o global prompt 74.6
6. w/o gn(·) 74.0

(a)

0 50 100 200 261 300 400 500
Timestep

45

50

55

60

65

70

75
SP

ai
r-7

1k
 @

 
=0

.1

DIFT
SD4Match-Single
SD4Match-Class
SD4Match-CPM

(b)

Figure 3: Results of ablation studies. (a): Evaluation of our method on SPair-71k with different
settings of CPM. (b): Evaluation of our method on SPair-71k at different timesteps.

verifies the generalizability of our method. Compared with zero-shot methods, especially SD-based
methods DIFT and SD+DINO, we observe substantial improvement on PF-Pascal and PF-Willow
but deterioration on SPair-71k. This is because our universal prompt and CPM overfit the smaller
distributions of PF-Pascal and PF-Willow, leading to a certain degree of reduced generalizability on
the much larger distribution of SPair-71k. Other methods tuned on PF-Pascal also exhibit this trend.
To further address this point, we additionally provide the results of our method tuned on SPair-71k.
We observe a slight improvement on PF-Pascal but a substantial boost on PF-Willow when compared
to zero-shot baselines. This improvement is attributed to SD4Match being tuned on a larger dataset,
which prevents overfitting on a small data distribution and enhances its generalizability.

4.4 ABLATION STUDIES

Conditional Prompting Module We conduct a thorough ablation study to evaluate each design
choice of CPM and present the results in Fig. 3 (a). We evaluate our choice of conditioning in cases
1 through 4. Case 1 involves conditioning on the image pair and local feature patches, representing
our current setting in CPM. When we replace local feature patches with a global image descriptor
(case 2) or shift from conditioning on the image pair to conditioning on an individual image (case
3), there is a decline in performance for both scenarios. Notably, the performance drop from case 1
to case 3 is more significant than that from case 1 to case 2. This suggests that conditioning on the
image pair has a more substantial impact than conditioning on local feature patches in enhancing
matching. In Case 4, where we condition on the individual image and its global image descriptor,
the architecture mirrors the implicit captioner in SD+DINO and COCOOP (Zhou et al., 2022a). This
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Figure 4: Visualization of the learned class-specific prompt in SD4Match-Class.
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Figure 5: Visualization of the learned conditional prompt in SD4Match-CPM.

configuration results in the lowest accuracy, further emphasizing the advantages of conditioning on
an image pair and leveraging local features in semantic matching. We also investigate the impacts
of the global prompt and the patch-wise linear layer gn(·) in cases 5 and 6, respectively. Removing
either of these elements leads to a decrease in performance, underscoring their effectiveness.

Evaluation at Different Timesteps The timestep t is an important hyperparameter that plays a
major role in the matching quality. Both DIFT and SD-DINO have performed the grid search to
find the optimal timestep. We test our method using different t and plot the result in Fig. 3 (b). We
select DIFT as the baseline because we share the same SD model and do not involve other types of
feature. As illustrated, our method outperforms the baseline across a wide range of t over 0 to 500.
Interestingly, we train our method at t = 261 which is the optimal value under the zero-shot setting,
but the accuracy at inference instead peaks at t=50 and then gradually decreases. This indicates that
the model favors a cleaner input image (fewer t) but the noise is also necessary to achieve a good
result when using the learned prompt.

Visualization of SD4Match Prompt To further investigate what has been learned during prompt
tuning, we visualize images generated by Stable Diffusion using the learned prompt. We first visu-
alize the images generated using the class-specific prompt learned by SD4Match-Class and present
samples of selected categories in Fig. 4. Interestingly, for each of the selected categories, the gener-
ated image is an abstract illustration of that category. This highlights the intriguing capability of the
prompt to learn high-level category details using only keypoint supervision at the UNet’s interme-
diate stage. This can be loosely compared with textual inversion (Gal et al., 2022) or DreamBooth
(Ruiz et al., 2023), which extract an object’s information from multiple images of itself and gen-
erate the same object in different styles. We show that, even without the explicit reconstruction
supervision present in these works, Stable Diffusion can still learn the category-level information
from local-level supervision. This reveals the powerful inference ability of the SD model on local
information. We also visualize the conditional prompt generated by the CPM and provide selected
samples in Fig. 5. The conditional prompt, similar to the class-specific prompt, captures the seman-
tic information of objects’ categories. Moreover, the prompt emphasizes the shared object between
two images. As shown in Fig. 5, multiple objects are present in the image pair, and the prompt
focuses on the object with the same semantic meaning. This suggests that the CPM is effective in
automatically capturing the prior knowledge of the object of interest, subsequently enhancing the
matching accuracy.
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5 CONCLUSION

In this paper, we introduce SD4Match, a prompt tuning method that adapts the Stable Diffusion
for the semantic matching task. We demonstrate that the quality of features produced by the SD
model for this task can be substantially enhanced by simply learning a single universal prompt.
Furthermore, we present a novel conditional prompting module that conditions the prompt on the
local features of an image pair, resulting in a notable increase in matching accuracy. We evaluate
our method on three public datasets, establishing new benchmark accuracies for each. Notably,
we surpass the previous state-of-the-art on the challenging SPair-71k dataset by a margin of 12
percentage points.
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A MORE VISUALIZATIONS OF THE LEARNED PROMPT

We provide more visualizations of images generated by class-specific prompts and conditional
prompts in Fig. 6 and Fig. 7 respectively.

Figure 6: Visualizations of images generated by class-specific prompts learned by SD4Match-Class

Image A Image B Generated Image Image A Image B Generated Image

Figure 7: Visualization of images generated by conditional prompts learned by SD4Match-Class.
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B QUALITATIVE MATCHING RESULTS

We provide qualitative comparisons in matching accuracy between DIFT, SD+DINO, and
SD4Match-CPM.

DIFT SD+DINO SD4Match-CPM

Figure 8: Qualitative comparison between DIFT, SD+DINO, and SD4Match-CPM.

15


	Introduction
	Related Work
	Method
	Preliminary
	Prompt Tuning for Semantic Correspondence
	Conditional Prompting Module

	Experiments
	Implementation Details
	Datasets and Evaluation Metrics
	Evaluation Results
	Ablation Studies

	Conclusion
	More visualizations of the learned prompt
	Qualitative matching results

