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Abstract

We present an open-source, pip installable
toolkit, Sig-Networks, the first of its kind
for longitudinal language modelling. A cen-
tral focus is the incorporation of Signature-
based Neural Network models, which have re-
cently shown success in temporal tasks. We
apply and extend published research providing
a full suite of signature-based models. Their
components can be used as PyTorch building
blocks in future architectures. Sig-Networks
enables task-agnostic dataset plug-in, seamless
pre-processing for sequential data, parameter
flexibility, automated tuning across a range of
models. We examine signature networks under
three different NLP tasks of varying temporal
granularity: counselling conversations, rumour
stance switch and mood changes in social me-
dia threads, showing SOTA performance in all
three, and provide guidance for future tasks.
We release the Toolkit as a PyTorch package1

with an introductory video 2, Git repositories
for preprocessing3 and modelling4 including
sample notebooks on the modeled NLP tasks.

1 Introduction

Existing work on temporal and longitudinal mod-
elling has largely focused on models that are task-
oriented, including tracking mood changes in users’
linguistic content (Tsakalidis et al., 2022b,a), tem-
poral clinical document classification (Ng et al.,
2023), suicidal ideation detection on social media
(Cao et al., 2019; Sawhney et al., 2021), real-time
rumour detection (Liu et al., 2015; Kochkina et al.,
2023). Transformer-based models struggle to out-
perform more traditional RNNs in such tasks, high-
lighting their limitations in temporal settings (Mul-

* Indicates equal contribution.
‡Work done while at Queen Mary University of London.

1https://pypi.org/project/sig-networks/
2http://youtu.be/lrjkdfYf8Lo
3https://github.com/datasig-ac-uk/nlpsig/
4https://github.com/ttseriotou/sig-networks/

lenbach et al., 2018; Yuan et al., 2022). Inspired
by the success of models with short- and long-term
processing capabilities (Didolkar et al., 2022; Tse-
riotou et al., 2023) in producing compressed tempo-
ral representations, we develop a toolkit that applies
Signature Network models (Tseriotou et al., 2023)
to various longitudinal tasks. Path signatures are
capable of efficient and compressed encoding of
sequential data, sequential pooling in neural mod-
els, enhancement of short-term dependencies in
linguistic timelines and encoding agnostic to task
and time irregularities. We make the following
contributions:

• We release an open-source pip installable toolkit
for longitudinal NLP tasks, Sig-Networks, in-
cluding examples on several tasks to facilitate
usability and reproducibility.

• For data preprocessing for the Signature Net-
works models (Tseriotou et al., 2023), we in-
troduce another pip installable library nlpsig
which receives as input streams of textual data
and returns streams of embeddings which can be
fed into the models we discuss in this paper.

• We showcase SOTA performance on three lon-
gitudinal tasks with different levels of tempo-
ral granularity, including a new task and dataset
– longitudinal rumour stance, based on rumour
stance classification (Zubiaga et al., 2016; Kochk-
ina et al., 2018). We highlight best practices for
adaptation to new tasks.

• Our toolkit allows for flexible adaptation to new
datasets, preprocessing steps, hyperparameter
choices, external feature selection and bench-
marking across several baselines. We provide
the option of flexible building blocks such as Sig-
nature Window Network Units (Tseriotou et al.,
2023) and their extensions, which can be used as
a layer integrated in a new PyTorch model or as a
stand-alone model for sequential NLP tasks. We
share NLP-based examples via notebooks, where
users can easily plug in their own datasets.
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2 Related Work

Longitudinal NLP modelling has been sporadi-
cally explored in tasks like semantic change detec-
tion (Bamler and Mandt, 2017; Yao et al., 2018;
Tsakalidis and Liakata, 2020; Montariol et al.,
2021; Rosin and Radinsky, 2022) or dynamic topic
modelling (He et al., 2014; Gou et al., 2018; Dieng
et al., 2019; Grootendorst, 2022). Such approaches
have limited generalisability as they track the evo-
lution of specific topics over long-periods of time.
Social media data have given rise to longitudinal
tasks such as mental health monitoring (Sawhney
et al., 2021; Tsakalidis et al., 2022a), stance detec-
tion and rumour verification (Kochkina et al., 2018;
Chen et al., 2018; Kumar and Carley, 2019) requir-
ing more fine-grained temporal modelling . Other
tasks, like healthcare patient notes (Ng et al., 2023)
and dialogue act classification (Liu et al., 2017; He
et al., 2021) are also longitudinal in nature.
Path Signature (Chen, 1958; Lyons, 1998) is a col-
lection of iterated integrals studied in the context
of solving differential equations driven by irreg-
ular signals. It provides a summary of complex
un-parameterised data streams through an infinite
graded sequence of important statistics. Thus, it
produces a collection of statistics efficiently sum-
marising important information about the path. Sig-
natures are deemed invaluable in machine learning
(Levin et al., 2013) as sequential feature transform-
ers (Yang et al., 2016; Xie et al., 2017; Yang et al.,
2017; Lyons et al., 2014; Perez Arribas et al., 2018;
Morrill et al., 2020), or integrated components of
neural models (Bonnier et al., 2019; Liao et al.,
2021; Tseriotou et al., 2023). However, they have
only been sparsely explored within NLP (Wang
et al., 2019, 2021; Biyong et al., 2020), addressing
only sequentiality or temporality. Motivated by the
wide range of longitudinal NLP tasks and the work
by Tseriotou et al. (2023) we present a toolkit for
neural sequential path signatures models achieving
SOTA performance in a range of such tasks.
Libraries for computing path signatures include
roughpy, esig, iisignature (Reizenstein and
Graham, 2020), signatory (Kidger and Lyons,
2021) and signax (see links in Appendix E). Sig-
Networks is a PyTorch library using signatory
for differentiable computations of the signature
and log-signature transforms on GPU. Currently
only signax provides an alternative implementa-
tion of differentiable computations of signatures
using JAX (Bradbury et al., 2018).

3 Methodological foundations

3.1 Task Formulation and Background

Longitudinal Task Formulation. We use the fol-
lowing terminology throughout the paper:
• Data Point: di, is a single piece of information

at a given time, i.e. a post, tweet or utterance.
• Data Stream: S[t1,tm], is a series of chronologi-

cally ordered data points {d1, . . . , dm} at times
{t1, . . . , tm}, i.e. a timeline or a conversation.

For each di, we consider its historical data stream.
We divide our models in two categories: (a)
window- and (b) unit-based. In (a) we assume a
window of |w| most recent historical data points
of di, Hi={di−(w−1), . . . , di}, as our modeling
sequence. In (b), we follow Tseriotou et al.
(2023) to construct n history windows, each of
length |w|, shifted by k points.5 The modeling
sequence is given by Hi = {hi1 , ...,hin−1 , hin}
with the qth unit (of w posts) defined as hiq=
{pi−(n−q)k−(w−1), pi−(n−q)k−(w−2), ..., pi−(n−q)k}.
Path Signatures Preliminaries. In our formu-
lation, the textual data stream is the equivalent
of the path P over an interval [t1, tm] and the
signature S(P ) is a pooling layer providing a
transformed representation for these sequential
data. The signature is a collection of all r
iterated integrals along dimensions c: S(P )t1,tm =

(1, S(P )1t1,tm , ..., S(P )ct1,tm , S(P )1,1t1,tm
, S(P )1,2t1,tm

,

... , S(P )c,ct1,tm
, ..., S(P )i1,i2,··· ,irt1,tm

, ...). Since the
iterated integrals can go up to infinite dimensions,
a degree of truncation N (i.e. up to N-folded
integrals) is commonly used. A higher N leads
to a larger feature space. Log-signatures’ output
feature space increases less rapidly with input
dimensions c, and depth N , allowing a more
compressed representation. Sig-Networks allows
for the selection of the desired N and the imple-
mentation of signatures or log-signatures. We use
N=3 and log-signatures which achieved the best
performance.

3.2 System Overview

Fig. 1 shows the overview of our Sig-Networks
toolkit. The system receives a task-agnostic dataset
of linguistic data streams. These can optionally
include a set of pre-computed linguistic embed-
dings for each data point (e.g. post), timestamps
and non-linguistic external features. Linguistic
embeddings can also be computed by the system

5The total number of modeled data points is k∗n+(w−k).



Figure 1: Sig-Networks Tooklit Overview.

Figure 2: Signature Window Unit and its variations.

and then dimensionally reduced using a selected
method (§3.3). Timestamps can be processed to
produce and normalise time-related features. The
data points are then chronologically ordered and
padded based on either a window- or a unit-basis.
Data splitting for model training is performed by
the relevant module (§4.1), providing a range of op-
tions (including k-fold, stratification). A range of
baseline or Signature Network models are available
for training (§3.4,4.3,4.2) through user defined pa-
rameters, integrating hyperparameter tuning func-
tions for task-based optimal parameter selection.

3.3 Feature Encoding

Each data point is encoded in a high-dimensional
space using SentenceBERT (SBERT) (Reimers and
Gurevych, 2019) to derive semantically meaning-
ful embeddings. Our toolkit provides different sen-
tence encoding options (§4.1) 6 and multiple op-
tions for dimensionality reduction (§4.1). We found
UMAP to perform slightly better. Sig-Networks

6We recommend 384-dim embeddings to facilitate dimen-
sionality reduction required for input to signature transforms.

also caters for time-related and external feature in-
corporation. There is a range of timestamp-derived
features and normalisation methods, according to
different task characteristics (§4.1 & Appendix C).
External information and domain-specific features
can be either included as part of the stream feature
space, c, or concatenated at the output of the model.

3.4 Signature Network Models

The Signature Network model family forms an ex-
tension of the work by Tseriotou et al. (2023) on
combining signatures with neural networks for lon-
gitudinal language modeling. We present a range of
models (§5.2) based on the foundational Signature
Window Network Unit (SWNU), which models
the granular linguistic progression in a stream: it
reduces a short input stream via a conv-1d layer op-
eration, applies an LSTM on signatures on locally
expanding windows of the stream and produces a
stream representation via a signature pooling layer.

SWNU implementation is flexible, allowing se-
lection between LSTM vs BiLSTM, convolution-
1d layer vs convolution neural network (CNN), and
the option to stack multiple such units to form a
deeper network. Importantly, we also introduce a
variant of SWNU (‘SW-Attn’), replacing LSTM
with a Multi-head self-attention with an add &
norm operation and a linear layer (Fig. 2).

Furthermore, the toolkit allows for the flexible
use of Seq-Sig-Net (the best performing model
by Tseriotou et al. (2023)), which sequentially
models SWNU units through a BiLSTM, preserv-
ing the local sequential information and capturing
long-term dependencies. Further available vari-
ants of Seq-Sig-Net include SW-Attn+BiLSTM
(replacing SWNU with a SW-Attn unit) and SW-



Figure 3: Seq-Sig-Net and its variations using SWNU
(yellow, see Fig. 2) on a sample length of 11 points.

Attn+Encoder (replacing BiLSTM with stacked En-
coder layers on top of learnable unit embeddings).
The final representation is pooled through a train-
able [CLS] token. The number of stacked layers
is user defined (see Fig. 3). For all Sig-Network
models, we follow the same formulation as Tse-
riotou et al. (2023), by concatenating the SBERT
vectors of the current data point with the learnable
stream representation and passing it through a feed-
forward network for classification using focal loss
(Lin et al., 2017). The system provides flexibility
with respect to the number of hidden layers and
the optional addition of external features. It also
provides separate classes for the signature units so
they can be incorporated in new architectures.

4 System Components

As shown in Fig. 1, the toolkit is split up into two
pip installable Python libraries: nlpsig (SBERT
vector extraction, data pre-processing including
dimensionality reduction of the SBERT streams,
constructing model inputs) and sig-networks (Py-
Torch implementations of our models, functions for
model training/evaluation).

4.1 Data Preparation Modules in nlpsig

These modules perform data loading and prepro-
cessing. nlpsig allows for loading pre-computed
embeddings for the data points or calculating
them using any pretrained or custom model from
the sentence-transformer and transformer li-
braries via the nlpsig.encode_text modules.7

Utilising signatures typically requires dimen-
sionality reduction of the data point embeddings
(§3.3). nlpsig provides several options via the

7encode_text

nlpsig.DimReduce8 class: UMAP (McInnes et al.,
2018), Gaussian Random Projections (Bingham
and Mannila, 2001; Achlioptas, 2003), PPA-PCA
(Mu and Viswanath, 2018), PPA-PCA-PPA (Rau-
nak et al., 2019). The nlpsig.PrepareData9 class
is used to process the data and obtain streams of
dimension-reduced embeddings as input to the Sig-
nature Network family of models (see §3.4).

If the dataset includes timestamps, we auto-
matically compute several time-derived variables
with different standardisation options. External
non-linguistic features can also be included in
the dataset and model. The toolkit provides
the flexibility of including these features as
part of the path stream and/or concatenated in
the output with the SBERT representation of
the current data point (see Appendix C). There
are wrapper functions in the sig-networks
package (sig_networks.obtain_SWNU_input,
sig_networks.obtain_SeqSigNet_input) to
easily obtain the padded input for each model.
Since the nlpsig library allows for more flexibility
in constructing streams of embeddings, customisa-
tion of these wrapper functions is encouraged for
different datasets or tasks.

4.2 Training
Through nlpsig.classification_utils, the
toolkit allows for k-fold cross validation or a sin-
gle train/test split.10 Splits can be completely ran-
dom, stratified (for streams via split_ids), or pre-
defined (via split_indices). If a subset of the
dataset is leveraged for classification (e.g. single-
speaker classification in dialogue), the user can
define such indices in path_indices. For training,
the user can select the loss function (cross-entropy,
focal loss), a validation metric and specify the early
stopping patience. Off the shelf hyperparameter
tuning functions are available via grid search.

4.3 Model Modules
These modules allow for flexible training for each
model, with the function names presented in Fig. 1.
PyTorch classes for the building blocks of our mod-
els are provided separately to encourage their novel
integration in other systems (e.g. see Appendix G).
The toolkit can be used to benchmark datasets us-
ing: BERT, feedforward network with(out) his-
torical stream information and BiLSTM. For Sig-

8dimensionality_reduction
9data_preparation

10classification_utils

https://nlpsig.readthedocs.io/en/latest/encode_text.html
https://nlpsig.readthedocs.io/en/latest/dimensionality_reduction.html
https://nlpsig.readthedocs.io/en/latest/data_preparation.html
https://nlpsig.readthedocs.io/en/latest/classification_utils.html


Network family models, we provide options for
choosing: 1. N , truncation degree, 2. signatures
or log-signatures, 3. pooling options in the units,
4. LSTM or BiLSTM in SWNU, 5. dimensionality
reduction of Conv-1d or CNN and their dimensions
in the unit, 6. combination method of historical sig-
nature modelled stream with current SBERT data
point and external features, 7. number of encoder
layers, 8. path chronological reversion. Impor-
tantly, the user can assess their task of interest and
define the window size w, number of units n, and
shift k (see § 6). After model tuning one can ac-
cess the trained model object, a set of results for all
seeds and hyperparameters, and a set of results for
the best hyperparameters.

5 Experiments

5.1 Tasks and Datasets

We demonstrate the applicability of Sig-Networks
across three longitudinal sequential classification
tasks of different temporal granularity. For all tasks
we consider the current data point, its timestamp
and its historical stream.
Moments of Change (MoC). Given sequences of
users’ posts, MoC identification involves the assess-
ment of a user’s self-disclosed mood conveyed in
each post with respect to the user’s recent history as
one of 3 classes: Switches (IS): sudden mood shift
from positive to negative, or vice versa; Escalations
(IE): gradual mood progression from neutral/pos-
itive to more positive, or from neutral/negative to
more negative; or None (O): no change in mood
(Tsakalidis et al., 2022b). Dataset is TalkLife MoC:
18,702 posts (500 user timelines; 1-124 posts each).
Annotation was performed on the post-level with
access to the entire timeline.
Counselling Dialogue Classification. Given the
data stream of utterances during a counselling di-
alogue between therapist and client, the task is to
categorise client’s utterances into one of 3 classes:
Change: client seems convinced towards positive
behaviour change; Sustain: client shows resistance
to change; Neutral: client shows neither leaning
nor resistance towards change. We utilise thera-
pist and client utterances in the stream, while clas-
sifying only client utterances. Dataset is Anno-
MI (Wu et al., 2022): 133 motivational interviews
(MI), 9,699 utterances (4,817 client utterances),
sourced from effective and ineffective MI videos
on YouTube & Vimeo. The videos were profession-
ally transcribed and annotated by MI practitioners.

Stance Switch Detection. The Stance Switch De-
tection task tracks the ratio of support/opposition
towards the topic of a conversation at each point in
time and captures switches in overall stance. This
is a binary classification of each post in a conversa-
tion stream into: Switch: switch between the total
number of oppositions (querying or denying) and
supports or vice versa; or No Switch: either the
absence of a switch or cases where the numbers
of supporting and opposing posts are equal. For
this task we introduce a new dataset, Longitudi-
nal Rumour Stance (LRS), a longitudinal version
of the RumourEval-2017 dataset (Gorrell et al.,
2019). It consists of Twitter conversations around
newsworthy events. The source tweet of the con-
versation conveys a rumourous claim, discussed by
tweets in the stream. In 325 conversations 5,568
posts are labelled based on their stance towards the
claim in the corresponding source tweet as either
Supporting, Denying, Questioning or Commenting.
We convert conversation structure and labels into a
Longitudinal Stance Switch Detection task. Con-
versations are converted from tree-structured into
linear timelines to obtain chronologically ordered
lists. Then we convert the original stance labels
into Switch and No Switch categories based on the
numbers of supporting tweets versus denying and
questioning ones at each point in time.

5.2 Models and Baselines

We perform 5-fold cross-validation, repeatedly
with 3 seeds (see Appendix A for full details) and
compare against the following baselines:

BERT(focal/ce): data point-level (stream-agnostic)
BERT (Devlin et al., 2018) fine-tuned using the
alpha-weighted focal loss (Lin et al., 2017) or cross-
entropy, respectively.
FFN: data point-level Feedforward Network (FFN)
operating on SBERT of the current point.
FFN History: stream-level FFN operating on the
concatenated SBERT vectors of the current point
and the average of its historical stream.
BiLSTM with a single layer operating on a speci-
fied number of historical data points.

Our Sig-Networks Family Models are:
SWNU (Tseriotou et al., 2023) uses expanding
signature windows fed into an LSTM. We modify
the unit to use a BiLSTM and improved padding.
SW-Attn: Same as SWNU but with Multi-head
attention instead of an LSTM.



Model Anno-MI LRS TalkLife
(3-class) (2-class) (3-class)

BERT (focal) .519 .589 .531
BERT (ce) .501 .596 .521
FFN .512 .581 .534
FFN History .520 .625 .537
BiLSTM (w = 5) .517 .637 .544
SWNU (w = 5) .522 .670 .563
SW-Attn (w = 5) .515 .667 .556
History Length 11 20 35 11 20 35 11 20 35
#units (w=5, k=3) 3 6 11 3 6 11 3 6 11
BiLSTM .518 .507 .510 .657 .648 .648 .539 .533 .525
SWNU .522 .512 .493 .671 .654 .673 .550 .537 .539
SW-Attn .517 .508 .508 .659 .665 .661 .547 .541 .539
Seq-Sig-Net .525 .523 .517 .672 .678 .654 .563 .561 .559
SW-Attn+BiLSTM .511 .514 .515 .663 .657 .660 .554 .557 .550
SW-Attn+Encoder .498 .506 .505 .664 .657 .662 .552 .552 .545

Table 1: Results (macro-avg F1) of the Sig-Networks
toolkit models on our three tasks for different History
Lengths. Best and second best scores are highlighted.

Seq-Sig-Net: Sequential Network of SWNU units
using a BiLSTM as in Tseriotou et al. (2023).
SW-Attn+BiLSTM: Seq-Sig-Net with SW-Attn
unit instead of SWNU.
SW-Attn+Encoder SW-Attn+BiLSTM with two
Encoder layers using unit-level learnable embed-
dings instead of the BiLSTM .

6 Results and Discussion

Performance comparison. Signature Network
models show top performance, with Seq-Sig-
Net achieving SOTA or on-par performance with
SWNU across all tasks (see Table 1, detailed in Ap-
pendix B). On LRS the best model is Seq-Sig-Net
with window length w=20 posts (F1=.678), while
on Anno-MI the best model is also Seq-Sig-Net but
for w=11 (F1=.525). In TalkLife, Seq-Sig-Net and
SWNU both reach top performance (F1=.563). The
difference of optimal window length across tasks
relates to the characteristics of each dataset (see
Table 2 and next paragraph). Additionally, the per-
formance of BiLSTM peaks within the same range
of history length, different for each task, denoting
the best performing models depend on the temporal
granularity of the task. Lastly, SW-Attn+Encoder
performs better than SW-Attn+BiLSTM regardless
of task and history length, further highlighting the
importance of sequential modelling for these tasks.

Dataset
Anno-MI Longitudinal TalkLife

Rumour Stance MoC
Change Sustain Switch Switch Escalation

Mean Point Time Diff. 5sec 1hr 26min 40sec 6hr 51min 11sec
Median Point Time Diff. 3sec 1min 39sec 59min 38sec
Mean consecutive events 2.21 1.68 8.52 1.58 4.12
Median consecutive events 1 1 4 1 3
Mean no. of events in stream 8.86 4.05 6.45 1.77 4.03
Median no. of events in stream 5 3 0 1 1

Table 2: Dataset Statistics on time and event length.

Seq-Sig-Net outperforms all models across tasks
in modeling long-term effects, making it par-
ticularly appealing for highly longitudinal tasks;
SWNU has the best performance when modeling
short linguistic streams. In LRS and TalkLife Sig-
Networks outperforms all baselines, for each his-
tory length. For Anno-MI, the least longitudinal
task due to the short mean/median consecutive se-
quences of Change/Sustain utterances (see Table
2), we conjecture that most of the performance gain
in including historical dialogue information is due
to adding more context rather than sequential mod-
elling. This is apparent from the small performance
gains of Seq-Sig-Net models compared to FFN
History and BERT (focal) versus the much starker
performance improvement in the other tasks.
Time-scale analysis. The degree of temporal
granularity across datasets ranges from seconds
in Anno-MI, minutes in LRS and hours in TalkLife
(Table 2), showing the generalisability of Signature-
Networks. TalkLife has an average of 1.58/4.12
consecutive Switches/Escalations and a similar av-
erage of such events (1.77/4.03 respectively) in
each data stream, meaning that the task benefits
from good granularity on short modeling windows.
This can be provided by both SWNU (window of
5 posts) and a short Seq-Sig-Net of 3 units. Anno-
MI presents even shorter sequences of consecutive
Change/Sustain intentions (2.21/1.68), but the aver-
age number of such events in each conversation is
higher (8.86/4.05), therefore benefiting from being
less sequential in terms of short-term dependencies
but being more sequence dependent on series of
windows. Finally, LRS is the most longitudinal
task in our experiments showing the highest mean
number of consecutive switches (8.52), therefore
benefiting from more units in Seq-Sig-Net.

7 Conclusion

We present the Sig-Networks toolkit, which allows
for flexible modeling of longitudinal NLP classifi-
cation tasks using Signature-based Network models
(Tseriotou et al., 2023), proposing improvements
and variants. We test our system on three NLP clas-
sification tasks of different domains and temporal
granularity and show SOTA performance against
competitive baselines, while also shedding light
into temporal characteristics which affect optimal
model selection. The Toolkit is made available as a
PyTorch package with examples, making it easy to
plug-in new datasets for future model extensions.



Limitations

While the Sig-Networks library provides sequen-
tial models with very competitive performance on
longitudinal NLP tasks, it comes with limitations.
Firstly, it requires basic knowledge of Python, since
it is available as a PyTorch library, and assumes
integration in PyTorch systems. Additionally, its
use on classification tasks requires labeled data,
which can be expensive to obtain for tasks that re-
quire expert annotation. Although our tasks under
examination are in English, we believe that this
work is extensible to other languages. Since one
of the initial steps for obtaining linguistic represen-
tations involves the use of a pretrained language
model, we expect lower quality for low-resource
languages where such pretrained models have poor
performance or are non-existent.

Hyperparameter tuning including time feature
selection, given that the timestamps are available,
is often key in achieving competitive classification
performance. We provide guidelines and expect the
users to perform a thorough grid search if needed to
reach a competitive performance. Lastly, we under-
stand that our data point-level evaluation, which as-
sesses predictions at each point in the stream in silo,
can be lacking pattern identification on a stream
level. We plan to address stream-level evaluation
using the settings from Tsakalidis et al. (2022b) in
future work and we encourage users to cross-check
performance with stream-level metrics.

Ethics Statement

The current project focusses on providing a toolkit
for facilitating research and applications in longitu-
dinal modelling. This is showcased in three tasks,
two of which employ existing datasets (TalkLife
and AnnoMI) and one is a re-interpretation of an
existing public dataset (LRS).

Since the TalkLife dataset involves sensitive user
generated social media content, Ethics approval
was received from the Institutional Review Board
(IRB) of the corresponding ethics board of the Uni-
versity of Warwick prior to engaging in longitu-
dinal modelling with this dataset. Thorough data
analysis, data sharing policies to protect sensitive
information and data anonymisation were used to
address ethical considerations around the nature
of such data (Mao et al., 2011; Keküllüoglu et al.,
2020). Access to TalkLife’s data was obtained
through the submission of a project proposal and
the approval of the corresponding license by Talk-

Life11. TalkLife data were maintained and experi-
ments were ran through a secure server accessible
only by our group members. While we release
code examples and results, we do not release any
data, labels, models or preprocessing associated
with TalkLife data in our git repository.

The AnnoMI dataset is publicly available and
is based on transcribed videos of therapy sessions
which are enacted.

The LRS dataset is a re-interpretation of the Ru-
mourEval 2017 dataset to reflect switches in stance
over time. RumourEval-2017 is a well established
dataset for stance and rumour verification. The
longitudinal stance extension of the dataset allows
studying the changes in public stance over time.

Developing methods for longitudinal modeling
is an important research direction for better inter-
pretation of events. Potential risks from the appli-
cation of our work in being able to identify mo-
ments of change in individuals’ timelines are akin
to those in earlier work on personal event identifica-
tion from social media and the detection of suicidal
ideation. Potential mitigation strategies include re-
stricting access to the code base trained on TalkLife
and annotation labels used for evaluation.
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A Experiment setup details

We train all models using PyTorch (Paszke et al.,
2019) and Huggingface Transformers (Wolf et al.,
2020) for BERT, using the alpha-weighted focal
loss (Lin et al., 2017), except for BERT (ce).
SBERT representations: As noted in §3.3, we use
SentenceBERT (SBERT) (Reimers and Gurevych,
2019) to encode each data point to obtain semanti-
cally meaningful embeddings. To do this with our

toolkit, we used the nlpsig.SentenceEncoder12

class which uses the sentence-transformers
library. For each dataset, we obtained 384-
dimensional embeddings using the "all-MiniLM-
L12-v2" model13.
Model experiment settings: In each of our exper-
iments in §5, we select the best model for each
of the 5 folds using the best validation F1 macro-
average score on 100 epochs with early stopping
(patience set to 3). For training, we use the Adam
optimiser (Kingma and Ba, 2014) with weight de-
cay of 0.0001. For all models, we use the alpha-
weighted focal loss (Lin et al., 2017) with setting
γ = 2 and alpha of

√
1/pt where pt is the proba-

bility of class t in the training data. The exception
is for the BERT (ce) baseline model where we
used the cross-entropy loss. For BERT, we used
batch size of 8 during training due to limited GPU
resources available for training on the secure data
environment which hosted the TalkLife dataset. For
the other models, we used batch size of 64.

For the TalkLife MoC dataset, we use the same
train/test splits as in Tsakalidis et al. (2022a,b); Tse-
riotou et al. (2023). Furthermore, we average the
F1 macro-average performance over three random
seeds, (1, 12, 123). For Anno-MI and Longitudi-
nal Rumour Stance datasets, we created the five
folds using the nlpsig.Folds class14 class (with
random_state=0). Each fold constructed was used
as a test and the rest as the training and validation
data. Validation sets were formed on 33% of the
train set. When creating the folds, we stratify us-
ing the transcript_id for Anno-MI and the con-
versation ID for Rumours to ensure there was no
contamination between streams.

For each model, we perform a grid search for
hyperparameter selection based on the validation
set performance comparing F1 macro-average. For
signature window models, prior to hyperparameter
search, we performed dimensionality reduction on
the SBERT embeddings using UMAP (McInnes
et al., 2018) with the umap-learn Python library.
Using the UMAP15 class in the library, we kept
all default parameters besides n_neighbors=50,
min_dist=0.99 and metric="cosine". In each

12https://nlpsig.readthedocs.io/en/latest/
encode_text.html

13https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2

14https://nlpsig.readthedocs.io/en/latest/
classification_utils.html

15https://umap-learn.readthedocs.io/en/latest/
api.html
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of the signature window models, we reduced the
SBERT embeddings to 15 dimensions. For all mod-
els considered, the dropout rate was set to 0.1.

In the rest of this section, we state the hyper-
parameters choices we had for each model. Note
that the full results for each model that we trained
(for each hyperparameter configuration and seed)
as well as the best hyperparameters for each model
and dataset can be found in the GitHub repository
for the project in the examples folder16.
SWNU and Seq-Sig-Net: For the signature win-
dow networks which used the Signature Win-
dow Network Unit (SWNU) (§3.4, 5.2), hy-
perparameter selection was set through a grid
search over the parameters: learning rate ∈
[0.0005, 0.0003, 0.0001], LSTM hidden dimen-
sions of SWNU ∈ [10, 12], FFN hidden dimensions
∈ [[32, 32], [128, 128], [512, 512]] where [h1, h2]
means a two hidden layer FFN of dimensions hi
in the ith layer. For Seq-Sig-Net, the BiLSTM
hidden dimensions ∈ [300, 400]. We took the log-
signature transform with depth (degree of trunca-
tion) 3. In each model run, the convolution-1d
reduced dimensions is equal to the LSTM hidden
dimensions (i.e. 10 or 12 here).
SW-Attn and Seq-Sig-Net-Attention models: For
the signature window networks which used the
Signature Window Attention Unit (§3.4, 5.2) hy-
perparameter selection was set through a grid
search over the following parameters: learning
rate ∈ [0.0005, 0.0003, 0.0001], convolution-1d re-
duced dimensions ∈ [10, 12], FFN hidden dimen-
sions ∈ [[32, 32], [128, 128], [512, 512]]. We took
the log-signature transform with depth (degree of
truncation) 3. While the toolkit allows you to easily
stack multiple SW-Attn blocks, i.e. multiple iter-
ations of taking the expanding window signatures
and multi-head attention (with add+norm and a lin-
ear layer), we only have one block, num_layer=1.

For models using SW-Attn units, we must
choose the number of attention heads to divide the
resulting number of signature channels after taking
streaming signatures. For models with conv-1d re-
duced dimensions set to 10, output_channels=10,
we set num_heads=5 since after taking a log-
signature of depth 3, the output has dimension
38517. For models with output_channels=12,
we set num_heads=10 since the number of log-

16https://github.com/ttseriotou/sig-networks/
tree/main/examples

17signatory.logsignature_channels(10, 3) can be
used to compute this number.

signature channels at depth 3 for a path with 12
channels is 650.
BERT: We fine-tuned the bert-base-uncased18

model on the Huggingface model hub, and used
the transformers library and Trainer API for
training the model. The only hyperparameter
we performed a grid-search for was learning rate
∈ [0.00005, 0.00001, 0.000001]19. For BERT, we
found it was important to use a much lower learn-
ing rate than the ones we used for other models due
to the larger number of parameters in the model.
FFN models: For models using a Feedfor-
ward Network (FFN), either operating on the
SBERT embedding of the current point (FFN)
or operating on a concatenation of the current
SBERT embedding with the mean average of
its historical stream (FFN History), we perform
a hyperparameter search over learning rate ∈
[0.001, 0.0005, 0.0001] and hidden dimensions ∈
[[64, 64], [128, 128], [256, 256], [512, 512]].
BiLSTM: We apply a single layer BiLSTM on a
specified number of historical SBERT embeddings
for the data point. We perform a grid search over
learning rate ∈ [0.001, 0.0005, 0.0001] and hidden
dimension sizes [200, 300, 400].

B Results

We present class-level performance for each task
in Tables 3, 4 and 5.

Model Neutral(N) Change(C) Sustain(S) Macro-avg
BERT (focal) .767 .449 .339 .519
BERT (ce) .784 .442 .277 .501
FFN .764 .424 .347 .512
FFN History .761 .449 .351 .520
BiLSTM (w=5) .753 .449 .348 .517
SWNU (w=5) .762 .447 .356 .522
SW-Attn (w=5) .749 .450 .346 .515

History Length
(units)

11 (n=3) 20 (n=6) 35 (n=11)
N C S Macro-avg N C S Macro-avg N C S Macro-avg

BiLSTM .746 .446 .363 .518 .754 .446 .322 .507 .755 .446 .329 .510
SWNU .761 .444 .360 .522 .759 .440 .338 .512 .752 .413 .314 .493
SW-Attn .759 .450 .341 .517 .754 .438 .333 .508 .749 .446 .330 .508
Seq-Sig-Net .769 .446 .359 .525 .769 .452 .347 .523 .763 .446 .342 .517
SW-Attn+BiLSTM .750 .446 .339 .511 .757 .452 .332 .514 .763 .438 .345 .515
SW-Attn+Encoder .765 .411 .319 .498 .767 .423 .327 .506 .763 .410 .343 .505

Table 3: Class-level F1 scores of the Sig-Networks
toolkit models on Anno-MI for different History

Lengths. Best and second best scores are highlighted.

C Time Feature Guidance

As mentioned in §4.1 the toolkit allows for the au-
tomatic computation of the following time-derived
features if a timestamp column is provided:

• time_encoding: date as fraction of the year
• time_encoding_minute: time as fraction of

minutes, ignoring the date
18https://huggingface.co/bert-base-uncased
19Note in transformers (version 4.30.2), the default learn-

ing rate is 0.00005
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Model No Switch Switch Macro-avg
BERT (focal) .724 .454 .589
BERT (ce) .720 .472 .596
FFN .704 .457 .581
FFN History .727 .523 .625
BiLSTM (w=5) .730 .545 .637
SWNU (w=5) .761 .580 .670
SW-Attn (w=5) .761 .574 .667

11 (n=3) 20 (n=6) 35 (n=11)History Length
(units) No Switch Switch Macro-avg No Switch Switch Macro-avg No Switch Switch Macro-avg

BiLSTM .748 .566 .657 .740 .555 .648 .748 .548 .648
SWNU .759 .584 .671 .736 .571 .654 .759 .587 .673
SW-Attn .745 .573 .659 .747 .583 .665 .743 .579 .661
Seq-Sig-Net .760 .584 .672 .754 .602 .678 .748 .559 .654
SW-Attn+BiLSTM .742 .584 .663 .741 .573 .657 .750 .570 .660
SW-Attn+Encoder .746 .581 .664 .742 .572 .657 .756 .569 .662

Table 4: Class-level F1 scores of the Sig-Networks
toolkit models on Longitudinal Rumour Stance for

different History Lengths. Best and second best scores
are highlighted.

Model IS IE O Macro-avg
BERT (focal) .283 .439 .871 .531
BERT (ce) .229 .431 .903 .521
FFN .281 .432 .890 .534
FFN History .280 .454 .877 .537
BiLSTM (w=5) .260 .479 .892 .544
SWNU (w=5) .301 .494 .894 .563
SW-Attn (w=5) .300 .480 .887 .556

History Length
(units)

11 (n=3) 20 (n=6) 35 (n=11)
IS IE O Macro-avg IS IS O Macro-avg IS IE O Macro-avg

BiLSTM .252 .478 .887 .539 .244 .470 .887 .533 .225 .460 .891 .525
SWNU .292 .471 .887 .550 .275 .448 .888 .537 .270 .457 .889 .539
SW-Attn .286 .471 .884 .547 .286 .453 .883 .541 .289 .452 .876 .539
Seq-Sig-Net .301 .495 .893 .563 .304 .487 .891 .561 .303 .480 .894 .559
SW-Attn+BiLSTM .291 .483 .887 .554 .298 .483 .890 .557 .298 .467 .885 .550
SW-Attn+Encoder .289 .477 .890 .552 .302 .463 .891 .552 .294 .452 .887 .545

Table 5: Class-level F1 scores of the Sig-Networks
toolkit models on TalkLife MoC for different History
Lengths. Best and second best scores are highlighted.

• time_diff: time difference between consec-
utive data in the stream

• timeline_index: index of the data point in
the stream

The option to include user-processed time fea-
tures is available. Optionally, the user can specify a
standardisation method for each time feature from
the list below:

• None: no transformation applied
• z_score: transformation by subtracting the

mean and dividing by the standard deviation
of the data points

• sum_divide: transformation by dividing by
the sum of the data points

• minmax: transformation by subtracting the
minimum of data points from the current data
point and dividing by the differential of the
maximum and minimum of the data points.

The above (normalised) features can be included
as part of the path stream in the signature model
(in-path) and/or concatenated with the SBERT rep-
resentation of the current data point in the input
to the final FFN layers in the model (in-input) .
During the different task modeling we find particu-
larly important the efficient incorporation of time
features. Such decision is task-driven.

For Anno-MI we include the
time_encoding_minute and timeline_index
(without transformation) in-path. For Longitudinal

Rumour Stance we include time_encoding
normalised with z_score and timeline_index
without normalisation both in-path and in-input.
Finally for TalkLife MoC we use time_encoding
normalised with z_score both in-path and in-input.
Since TalkLife and Longitudinal Rumour Stance
are social media datasets they can benefit from the
use of in-input features that model the temporal
semantic component of linguistic representations.
We expect in-input features to be less beneficial for
our specific dialogue task which is semantically
stable with conversations being date-agnostic
(but not time agnostic). At the same time in the
dialogue task of Anno-MI, the use of both the
time_encoding_minute, which ignores the date,
and timeline_index in-path, allows for modeling
both the temporal flow of the conversation and the
position (index) of the utterance of interest in the
dialogue. While Longitudinal Rumour Stance also
benefits from using the timeline_index which
identifies the position of information with respect
to the initial claim, the use of time_encoding
normalised with z_score is more suitable here
as it makes use of the date of the comment. In
TalkLife only the latter is used, without any index
features. Here, since relevant context for each
post under consideration occurs in short history
windows, the timeline position (index) is irrelevant.
By presenting how different time features benefit
each task together with the intuition behind the
selection process, we encourage users to consider
the temporal characteristics of their task in-hand
for efficient time feature selection.

D Package Environment

The experiments ran in a Python 3.8.17 en-
vironment with the key following libraries:
sig-networks (0.2.0), nlpsig (0.2.2),
torch (1.9.0), signatory (1.2.6.1.9.0),
sentence-transformers (2.2.2), transformers
(4.30.2), accelerate (0.20.1), evaluate (0.4.0),
datasets (2.14.2), pandas (1.5.3), numpy (1.24.4),
scikit-learn (1.3.0), umap (0.5.3).

E Path Signature Libraries

Library Link
roughpy https://github.com/datasig-ac-uk/RoughPy

esig https://github.com/datasig-ac-uk/esig

iisignature https://github.com/bottler/iisignature

signatory https://github.com/patrick-kidger/signatory

signax https://github.com/Anh-Tong/signax

https://github.com/datasig-ac-uk/RoughPy
https://github.com/datasig-ac-uk/esig
https://github.com/bottler/iisignature
https://github.com/patrick-kidger/signatory
https://github.com/Anh-Tong/signax


F Infrastructure

The experiments with the Anno-MI and Longitu-
dinal Stance datasets were ran on the Baskerville,
a GPU Tier2 cluster developed and maintained by
the University of Birmingham in a collaboration
with a number of partners including The Alan Tur-
ing Institute. Baskerville provided us access with
Nvidia A100 GPUs (40GB and 80GB variants).

The experiments with the TalkLife dataset were
ran on Sanctus, a Queen Mary University of Lon-
don maintained server, with a x86_64 processor, 80
CPUs, 384 GB of RAM and 3 Nvidia A30 GPUs.

G Using the model modules

As noted in §4.3, we provide PyTorch modules for
each of components of our Sig-Network models
to encourage novel integration into other systems.
For example, the key building blocks in each of our
models are the Signature Window units, SWNU
Tseriotou et al. (2023) and SW-Attn, as discussed
in §3.4. These can be easily accessed in the toolkit
with a few lines of Python code.

For example, in code listings 1 and 2 we can
simply load in the SWNU and SW-Attn units
and initialise an instance of the module in a
few lines. For initialising SWNU in listing 1,
we define several arguments: the input chan-
nels of our stream, input_channels=10, the
number of output channels after the convolution-
1d layer, output_channels=5, whether to
take the log-signature or standard signature
transformation, log_signature=False, the
signature depth, sig_depth=3, the dimension
of the LSTM hidden state(s), hidden_dim=5,
the pooling strategy to obtain a final stream
representation, pooling="signature", to
not chronologically reverse the order of the
stream, reverse_path=False, to use a BiLSTM,
BiLSTM=True, to use a convolution-1d layer,
augmentation_type="Conv1d". The alterna-
tive option for augmentation_type is to have
augmentation_type="signatory" which will
use the signatory.Augment PyTorch module to
use a larger convolution neural network (CNN)
for which you can specify the hidden dimensions
to in the hidden_dim_aug argument which is set
to None in this example. Note that some of these
arguments have default values, but we present
them all here for more clarity.

1 from sig_networks.swnu import SWNU
2

3 # initialise a SWNU object
4 swnu = SWNU(
5 input_channels =10,
6 output_channels =5,
7 log_signature=False ,
8 sig_depth=3,
9 hidden_dim =5,

10 pooling="signature",
11 reverse_path=False ,
12 BiLSTM=True ,
13 augmentation_type="Conv1d",
14 )

Listing 1: Example initialisation of Signature Window
Network Unit object

The SW-Attn unit, called SWMHAU in the library,
shares many of the same arguments as expected but
since we are using Multihead-Attention (MHA) in
place of a (Bi)LSTM, we specify the number of at-
tention heads through the num_heads argument and
specify how many stacks of these layers through
the num_layers argument. We can also specify the
dropout to use in the MHA layer here too.

1 from sig_networks.swmhau import SWMHAU
2

3 # initialise a SWMHAU object
4 swmhau = SWMHAU(
5 input_channels =10,
6 output_channels =5,
7 log_signature=False ,
8 sig_depth=3,
9 num_heads=5,

10 num_layers =1,
11 dropout_rate =0.1,
12 pooling="signature",
13 reverse_path=False ,
14 augmentation_type="Conv1d",
15 )

Listing 2: Example initialisation of SW-Attention unit
object

Note that there are variants of these PyTorch
modules which do not include the convolution
1d or CNN to project down the stream to a
lower dimension before taking expanding win-
dow signatures, namely sig_networks.SWLSTM
and sig_networks.SWMHA.

Once these objects have been created, they can
simply be called to apply a forward pass of the
units, see for example listing 3. These units re-
ceive as input a three-dimensional tensor of the
batched streams and the resulting output is a two-
dimensional tensor of batches of the fixed-length
feature representations of the streams.

1 import torch
2

3 # create a three -dimensional tensor
of 100 batched streams , each with
history length w and 10 channels

4 streams = torch.randn (100, 20, 10)



5

6 # pass the streams through the SWNU
7 # swnu_features and swmhau_features

are two -dimensional tensors of shape
[batch , signature_channels]

8 swnu_features = swnu(streams)
9 swmhau_features = swmhau(streams)

Listing 3: Example forward pass of SWNU and
SWMHAU objects

For full examples on how these PyTorch modules
can be fitted into larger PyTorch networks, please
refer to the source code for the Sig-Network family
models in the library on GitHub20.

20https://github.com/ttseriotou/sig-
networks/tree/main/src/sig_networks


