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Abstract: We consider two constructions of 4d N = 1 gauge theories in M-theory. The

first is purely geometric and involves compactifying M-theory on singular manifolds of G2-

holonomy. The geometries studied are ALE-fibered over a compact base M3. This fibration

admits a description in terms of a Higgs bundle with three-dimensional baseM3 which arises

as the BPS equations of M-theory reduced adiabatically along the ALE fibers. The gauge

theory sector of these compactifications originates from M2-branes wrapped on vanishing

cycles of the ALE fibration with interactions set by Euclidean M2-branes wrapped on asso-

ciative submanifolds traced out by the vanishing cycles. The first part of this thesis develops

the physics of these models and introduces a colored supersymmetric quantum mechanics

organizing and quantifying non-perturbative effects due to M2-brane instantons. In this

framework we study the local models of twisted connected sum G2-manifolds and describe

their possible chiral deformations.

The second construction considered in this thesis utilizes M5-branes wrapped on Rie-

mann surfaces embedded in local Calabi-Yau threefolds. We focus on the subset of such



configurations derived from 4d N = 2 theories of class S breaking to N = 1. Their BPS

equations construct Higgs bundles differing from the standard class S Higgs bundle by an

additional Higgs field. The associated N = 1 curve collects the spectral data of both Higgs

fields and different curves describe distinct vacua of the same gauge theory. The second part

of this thesis studies the construction of such Higgs bundles and derives the confinement

properties of each vacuum from the associated N = 1 curve. This allows for the study

of confinement in non-Lagrangian N = 1 theories which is illustrated by constructing an

infinite class of non-Lagrangian N = 1 theories that contain confining vacua.
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Part I
Introduction

Quantum field theories have been at the heart of theoretical and experimental particle

physics for close to a decade. Their predictive power is unprecedented and their contributions

to mathematics and physics numerous. Yet they resist rigours mathematical formulation and

exploring their properties remains an active field of research. Wide ranging progress has been

made for topological, conformal and supersymmetric quantum field theories and others. In

these cases non-trivializing structures are imposed on the dynamics of the field theory and

as a consequence methods of analysis beyond perturbation theory become available. In this

thesis we focus on supersymmetric field theories which in many cases allow for embeddings

into string and M-theory establishing common higher dimensional origins, classifications

and non-trivial equivalences. In this fashion string and M-theory have proven to be an

invaluable tool in deepening the understanding of supersymmetric quantum field theories,

which display many semi-realistic features relevant for more generic quantum field theories.

In this thesis we consider two constructions of 4d N = 1 gauge theories in M-theory.

String theory realizations of such gauge theories allow for geometric interpretations of

their moduli spaces and dynamical properties. Often, the former is a favorable perspec-

tive for exploring regimes of strong coupling, following theories through phase transitions

and describing non-Lagrangian theories. Complementary, the latter regularly elucidates

non-perturbative aspects of the gauge theory and geometrifies its spectrum and symme-

tries. Whenever string theory backgrounds are purely geometric, perhaps supporting various

branes, these methods are referred to collectively as the tool set of geometric engineering

with many ideas tracing back to the seminal papers [5–8].

Since its inception geometric engineering has been at the heart of many applications

1
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of string theory, starting with model building for particle physics [9–18], the study of su-

perconformal field theories [19–26], or sharpening the boundaries of the string theory land-

scape [27–30]. For many of these applications F-theory has been the framework of choice

in recent years. In F-theory however, the defining data of 4d N = 1 theories is not purely

geometric, but includes a choice of G4-flux, which pushes this construction beyond a purely

geometric framework and yet is crucial for the resulting 4d N = 1 theory to be chiral.

An alternative construction that yields minimal supersymmetry in 4d is obtained from

M-theory on G2-holonomy manifolds1 and will be the focus of part II of this thesis. The main

challenge in this set-up is the construction of compact G2-manifolds with singularities, which

yield both gauge (codimension 4) and chiral matter (codimension 7) degrees of freedom in

4d [9,10,31–34]. To this moment this is an open question. These singularities are necessary

ingredients in an attempt to replicate semi-realistic physics, without them the 4d theory

contains at most an abelian gauge symmetry and no light charged matter.

Until recently, even the number of known smooth, compact G2-manifolds was rather lim-

ited: the only concrete examples were the Joyce orbifolds given by resolutions of T 7/Γ [35],

constructions based on orbifolds of a Calabi-Yau three-fold times S1 and the construction

of Joyce and Karigiannis [36] giving G2-manifolds constructed from compact G2-orbifolds

by gluing in Eguchi-Hanson spaces along the orbifold locus. Recently, a comparatively

large class of examples (order millions) of compact G2-manifolds was described in [37–39]

as twisted connected sums (TCS).

The physics of M-theory and string theory on TCS G2-manifolds has been investigated

in [40–48]. One key property common to all TCS manifolds, which is a direct consequence

of this particular construction, is that singularities will occur (if at all) in codimension 4

and 6, but not 7. From the standard geometric engineering dictionary for G2-manifolds it

then follows that the resulting models in 4d do not have chiral matter. An obvious question

is then which type of deformations are required to remedy this limitation.
1We shall often simply refer to these as G2-manifolds.
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Part II of this thesis provides a setting which gives some answers to this question and

explores how such transitions would be characterized in TCS geometries, by providing a

local model description in terms of a Higgs bundle. We set out to develop this Higgs bundle

description for the class of ALE-fibered G2-manifolds in great generality before applying it

to the local limits of TCS G2-manifolds. This local model framework was advocated for

in [49] with the heterotic dual picture initially presented in [34].

We begin by reviewing of the Higgs bundle descriptions of ALE-fibered G2-manifolds

and the associated gauge theory sector engineered in M-theory. Chiral matter is localized at

distinct codimension 7 singularities of the geometry and therefore interactions are generated

purely by Euclidean M2-brane instantons. A critical contribution of the presented research

lies in the analysis of these non-perturbative interactions by studying these at low energies

where they permit a description in terms of Euclidean instantons of a quantum mechanical

system. The latter allows for their computation using localization techniques and therefore

these geometries constitute a class of examples with exceptional control over such membrane

instanton effects. Further, we study certain non-generic Higgs bundles, called to be of type

Morse-Bott, describing ALE-fibered G2-manifolds with codimension 6 singularities. Armed

with these local models we study chiral deformations of local TCS G2-manifolds.

We now pivot to introduce the contents of part III in this thesis. Gauge theories with

minimal supersymmetry in four dimensions can exhibit confinement. A celebrated result in

G2-physics is the description of confinement in 4d N = 1 super Yang-Mills (SYM) theory

[31, 32, 50]. Here the geometric transition of (a quotient of) the Bryant-Salamon cone [51]

is found to describe the transition from the gauge theory phase to the confining phase.

Confining strings are realized in M-theory as wrapped M2-branes and other objects such as

domain walls and glueballs are also understood string theoretically. Here, another example is

MQCD [52], the diagnostics for confinement are the confining strings and their charges under

unbroken 1-form symmetries. These are rare occasions in which characterizing confinement

does not rely on a field theoretic, Lagrangian perspective.
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Many celebrated results on supersymmetric field theories, with roots in string theory,

involve the construction and classification of non-Lagrangian theories [19–21,24–26,53–56].

These are engineered by geometries or on the world volumes of brane systems and therefore

defined without an explicit reference to a perturbative Lagrangian formulation. This presses

the question on how to determine the higher form global symmetries [57] for this class of

theories and understand their description at long distances.

Very recently a plethora of results concerning the string theory origin of 1-form sym-

metries and more generally higher form global symmetries have been derived. Highlights

include the study of geometrically engineered (superconformal) field theories in 5d [58–62],

in 4d [63–66] and related holographic considerations [67–70]. In many cases these advances

have freed the analysis of higher form symmetries from an underlying Lagrangian formula-

tion and added additional tools for the study of the IR physics of non-Lagrangian theories.

Part III of this thesis pushes forward along these ideas. We consider 4d N = 1 gauge

theories realized on the world volume of M5-branes wrapped on Riemann surfaces embedded

in Calabi-Yau three-folds. This construction accesses a larger class of theories than those

engineered from G2-manifolds and in particular we focus on theories arising as deformations

(rotations) of theories in class S. Here we start with 6d N = (2, 0) theories and construct

the spectrum of line operators in 4d by wrapping surface operators on one-cycles of the

Riemann surface, extending the results presented in [3].

The most prominent example of this class of theories is MQCD [52] which lies in the

same universality class as 4d N = 1 SYM. It is the simplest and first class of examples we

consider in part III of this thesis. We further study 4d N = 1 SYM with an adjoint chiral

superfield subject to various polynomials superpotentials [71–74] and finally give a new class

of non-Lagrangian N = 1 theories exhibiting confinement constructed from theories in class

S using multiple irregular punctures. We derive the preserved 1-form symmetry in each

vacuum from its N = 1 curve. Notably the input data for this procedure is solely the

topology of the N = 1 curve and requires no Lagrangian to be specified. The N = 1 curve
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is a solution to a Higgs bundle over the Riemann surface wrapped by the M5-branes. This

Higgs bundle is an extension of the standard class S Higgs bundle [75–77] by an additional

Higgs field [78, 79]. Crucially this BPS system requires both Higgs fields to commute and

therefore, as we explain, the diagonal curve of the spectral curves for both Higgs fields can

be constructed. This combination of spectral curves is the N = 1 curve and its derivation

and properties are subject of part III.

The structure for this thesis is as follows. In part II, III we give the content of [1, 2]

and [3, 4] respectively. Part II merges the two papers contained into a unified presentation

and part III presents the key results of [4] preceded by the content of [3] on which these

build upon. For both parts additional details can be found in the appendices of the original

papers which we reference where appropriate. Finally in part IV we conclude and offer an

outlook on interesting future research directions.



Part II
Higgs Bundles for M-theory on G2-manifolds

We briefly discuss the geometries considered in this part of the thesis and the methods we

developed to analyse them. Consider a G2-manifold realizing in M-theory an ADE gauge

group in 4d and take its local model to have a description in terms of an ALE-fibration over

a compact supersymmetric cycle M3

C2/ΓADE →M3 . (1)

The supersymmetric three-cycle M3 is an associative cycle in the G2-manifold. We col-

lect some background on G2-manifolds, their associative submanifolds and ALE spaces in

sections 1.1 and 1.2.

As M-theory compactified on an ALE space gives a 7d super Yang-Mills (SYM) theory

with ADE gauge group [10,18,80], the effective 4d N = 1 theory of an ALE-fibration can be

found by studying a topologically twisted 7d SYM theory on the three-manifold M3. The

BPS equations then determine the field configurations along M3 that ensure that N = 1

supersymmetry is preserved in 4d. They are given in terms of a Higgs bundle specified by

an adjoint valued one-form Higgs field φ and a gauge connection A along M3. We will focus

mainly on diagonalizable Higgs fields, which implies that the connection A furthermore has

to be flat. The diagonalizability implies that we can equivalently describe the Higgs bundle

via its eigenvalues or spectral data.

The BPS equations are DAφ = D†Aφ = 0 and FA = i[φ, φ] which requires the complex

connection D = d + ϕ with ϕ = φ + iA to be flat. The spectrum is characterized by the

zero modes of the operator D and in general the zero mode counting problem for a given

BPS configuration is difficult to solve. However, progress can be made by instead studying

6
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approximate zero modes localized at the zeros of φ. These modes result from M2-branes

wrapped on vanishing cycles in an ALE fiber. Their masses are generated non-perturbatively

by M2-brane instantons wrapped on associative cycles spanned by the vanishing cycles in

the ALE-fibration. Consequently, the massless spectrum follows by finding those linear

combinations of approximate zero mode for which these mass terms cancel.

This point of view motivates the study of a colored supersymmetric quantum mechanics

(SQM). The approximate ground states and flow-line instantons in this quantum mechanics

are in correspondence with the approximate zero modes and non-perturbative effects due to

M2-brane instantons. The field space of the 7d SYM theory is the Hilbert space of the colored

SQM on which the operator D acts as the supercharge. Compactification integrals are

interpreted as amplitudes of the colored SQM. It is natural to conjecture that the quantum

mechanics is an effective description of a probe M2-brane wrapped on the vanishing cycles of

the ALE-fibration. Rather than deriving this statement from M-theory, we argue bottom up

starting from the 7d SYM that all non-perturbative effects here are correctly accounted for by

this colored SQM. We then leverage the colored SQM as computational and organizational

tool for the M-theory compactification. The relationship between the SYM and SQM is

discussed in more detail in section 6.4.

While this approach elucidates the light modes of the compactification and interactions

between these, the final answer to the zero mode counting problem remain difficult to deter-

mine. However, in certain simple cases we can give an explicit answer [1,49]. We consider the

simplified setting with BPS equations dφ = d†φ = 0 and so φ = df , where f is a harmonic

function. We allow source terms, i.e., ∆f = ρ. In this set-up the problem of finding the

zero mode spectrum and interactions maps to generalizations of Morse-Bott cohomology on

M3, which is a manifold with boundary constructed from M3 by excising the support of the

sources ρ. More general configurations relate to generalizations of Novikov cohomology. As

a preview of the results to follow, we summarize some relations between the G2-manifold,

partially twisted 7d SYM, effective 4d theory and the colored SQM in table 1.
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Another virtue of this simplified set-up is that it suffices for the modelling of the local

geometry of M-theory compactifications on TCS G2-manifolds, which have an ALE-fibration

over S3 (e.g., as in [45]) with fully factored spectral covers. Moreover it allows us – in the

framework of the local Higgs bundle description of the geometry – to make a concrete pro-

posal for the types of deformations and transitions that the geometry needs to undergo.

Although we necessarily lose the concrete description of the geometry offered in terms of

a twisted connected sum2 we may nevertheless track what happens to our model in the

language of the local geometry, which may be useful in modifying/improving the TCS con-

struction.

Part II of the thesis is structured as follows. Chapter 1.1 reviews background material

on G2-manifolds, ALE spaces and other geometric constructions prevalent throughout this

thesis part. Chapter 2 studies the partially twisted 7d SYM theory describing M-theory on

ALE-fibered G2-manifolds at low energies. We derive the Lagrangian, its supersymmetry

variations, the resulting BPS equations, field content and characterize the zero mode spec-

trum. In chapter 3 we consider solutions to the BPS equations with flat connections. These

permit a spectral cover description which allows for a clear interpretation of source terms in

the BPS equations as defects. For fixed backgrounds with fully reducible spectral covers we

analyze in chapter 4 the localized matter sector. In these cases the zero modes are counted

by relative de Rham cohomology groups. This result hinges on an isomorphism which can

not be constructed in more general cases and in chapter 5 we interpret the results of chapter

4 from a more physical perspective using Morse-Bott cohomology. This approach allows for

the generalizations to all solutions of the BPS equations (with or without flat connection)

which are presented in chapter 6. Here the Morse-Bott picture is expanded to a particle

probing the Higgs bundle, this is the colored SQM. Chapter 7 then pushes beyond consider-

ations of the spectrum and focuses on the Yukawa couplings and higher point interactions.

These are computed via supersymmetric localization in the colored SQM. Chapter 9 then
2Studying such transitions in a compact setting seems to go beyond the current tools available in geometry,

as it can no longer be a TCS. However, see also [81].
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vanishing cycle

Defect,
‘Transverse Brane’ − Higgs field pole

Associative S3 Flow lines of φ Mass terms Instanton and
differential ∂MW

Associative S3 Y-Flow tree of φ Yukawa coupling Generalized instanton
and cup-product ∪

Associative S3 Flow-tree of φ Higher-point
coupling

Generalized instanton,
Massey product mn

Globally defined
ALE 2-cycles Split spectral cover Maximal # of

U(1) symmetries
dim gADE embedded

Witten SQMs

Monodromy mixed
ALE 2-cycles

Non-split spectral
cover, Higgs field
with branch cuts

Submaximal # of
U(1) symmetries

Combination of
Witten SQMs

Table 1: Dictionary between ALE-fibration/G2 geometric data of the fibration over M3,
the partially twisted 7d SYM, effective 4d theory and the colored SQM and the 4d N = 1

low energy effective theory.

generalizes the results for solutions of the BPS equations with fully reducible spectral covers

presented in chapters 4 and 5 to solutions with irreducible spectral covers where sheets are

mixed by monodromies. Finally, in chapter 8 we apply our local model analysis to the local

models of TCS G2-manifolds and study which deformations would be necessary to generate

a chiral spectrum.

9



10

Chapter 1
G2-manifolds, Associatives and ALE spaces

1.1 Lie Group G2 and G2-Manifolds

We review facts about the group G2 and G2-manifolds as presented in [82] relevant for chap-

ter II of this thesis. The group G2 is a compact, connected, simply-connected, semisimple

14d Lie group defined as the subgroup of GL(7,R) preserving the 3-form

Φ′ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 . (1.1)

Here the abbreviation dxijk = dxi ∧ dxj ∧ dxk was used. It further preserves the flat metric,

an orientation of R7 and as a consequence the Hodge dual ∗Φ′. Its Lie algebra has the Dykin

diagram

,

and its lowest dimensional irreducible representation are of dimension 1, 7, 14 and 27 respec-

tively with a unique representation for each dimension.

A G2-manifold is a triple (X7,Φ, g) consisting of a (compact) manifold X7 and torsion-

free G2-structure (Φ, g). A torsion-free G2-structure (Φ, g) is a G2-structure (Φ, g) where

the 3-form Φ ∈ Ω3(X7) is covariantly constant ∇Φ = 0 with respect to the Levi-Civita

connection ∇ of the metric g. A G2-structure (Φ, g) is a positive 3-form Φ together with its

associated metric g. A positive 3-form Φ is a 3-form Φ for which at each point p ∈ X7 there

exists an oriented isomorphism σp : TpX7 → R7 mapping Φp to Φ′. The metric g associated

to a positive 3-form Φ is the unique metric g such that σp maps gp to the flat metric on R7.

In this case the frame bundle F of X7 permits a principle sub-bundle whose fiber at a

point p ∈ X7 is given by all isomorphisms TpX7 → R7 mapping Φp to Φ′. Any such fiber is

due to the definition of Φ′ isomorphic to the group G2. By this reduction of the structure
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group the holonomy group of the manifold is contained within G2. For compact X7 the

condition of covariant constance ∇Φ = 0 is equivalent to the requirement of closure and

coclosure

dΦ = 0 , d†Φ = d ∗Φ Φ = 0 . (1.2)

As the Hodge star depends on the metric which itself depends on the 3-form Φ the property

of for the G2-structure to be torsion-free is a non-linear PDE for Φ.

Of interest in G2-manifolds are calibrated 3-cycles. These are 3d submanifolds N ⊂ X7

which are calibrated with respect to the 3-form Φ. Given a 3d submanifold N ⊂ M the

metric on X7 induces a metric on N via restriction and upon a choice of orientation on N

this gives rise to a natural volume form volN on N . The 3-form Φ is a calibration on X7 by

which we mean that Φ|N ≤ volN for any 3d submanifold N . A submanifold which is such

that Φ|N = volN is called calibrated with respect to Φ.

Submanifolds N calibrated with respect to Φ minimize the volume within their homology

class. Let N ′ ∈ [N ] be a 3-cycle homologous to N ⊂ X7, then

Vol
(
N ′
)

=

∫
N ′

volN ′ ≥
∫
N ′

Φ =

∫
N

Φ =

∫
N
volN = Vol (N) . (1.3)

G2-manifolds may exhibit holonomy groups properly contained within G2. We call a G2-

manifold whose holonomy group is exactly G2 a manifold of G2-holonomy.

1.2 ADE Singularities and ALE Spaces

ADE singularities are quotient singularities arising from fixed points in C2/Γ where Γ is

taken to be a finite subgroup of SU(2). Physically the group Γ is required to be a subgroup

of SU(2) as upon equipping C2/Γ with the flat metric δ the holonomy group simply becomes

Hol(C2/Γ, δ) = Γ ⊂ SU(2) , (1.4)

making C2/Γ an orbifold of special holonomy whereby half of the supersymmetry is pre-

served in compactifications involving C2/Γ. Mathematically this is motivated by the goal
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to preserve the canonical class of a surface when introducing or resolving ADE singularities

embedded in them. These quotients are also realisable as singular varities in (x, y, z) ∈ C3

and have been classified [83–85]. Their equations read

An : 0 = x2 + y2 + zn+1 ,

Dn : 0 = x2 + y2z + zn−1 ,

E6 : 0 = x2 + y3 + z4 ,

E7 : 0 = x2 + y3 + yz3 ,

E8 : 0 = x2 + y3 + z5 ,

(1.5)

where the index of the An and Dn series starts at n = 1 and n = 4 respectively. They

are related to the Dykin diagrams via minimal resolutions1 obtained by blowing up the

singularities at the origin m times, where m references the index featured in (1.5). This

introducesm exceptional divisors Ci of self intersection −2 with mutual intersection numbers

Ci · Cj = 0 or 1 . The collection of curves Ci are always connected and their intersection

matrix reproduces the Dynkin diagram of the simply laced semi-simple Lie algebras of type

ADE. Further these resolutions are smooth manifolds and can be equipped with metrics of

SU(2) holonomy which asymptote the flat metric away from the resolved singularity. These

are the ALE spaces constructed in [86]. These spaces are further hyperkahler, i.e. each can

be equipped with a triplet (I, J,K) of complex structures satisfying

I2 = J2 = K2 = −1 , IJ = −JI = K , ∇I = ∇J = ∇K = 0 . (1.6)

We give an example taken from [87]. Let the group G = U(1)n act on the 4n dimensional

complex vector space X = Hn+1 by assigning alternating charges to neighbouring factors of

the quaternions H, i.e. the first two factors in X are charged +1,−1 respectively under the

first factor of U(1), the second and third factor are charged +1,−1 respectively under the

second factor of U(1) an so on. Each factor of H can be equipped with a hyperkahler struc-

ture with respect to the flat metric. These give rise to a hyperkahler structure (I, J,K, δ)

1A resolution of a singular variety X is a proper birational map f : Y → X where Y is a non-singular
variety. A resolution is called minimal if all other resolutions factor through it. For surfaces these always
exist.
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on X with respect to the flat metric δ on X together with the associated Kahler forms

(ωI , ωJ , ωK). Each factor of U(1) now acts freely on X preserving the metric δ and Kahler

forms (ωI , ωJ , ωK) and gives rise n vector fields Vi generating this action. Focussing on the

complex structure I we see that from

0 = LViωI = d (Vi yωI) , (1.7)

we obtain the existence of a function (µI)i satisfying

d(µI)i = Vi yωI . (1.8)

Denoting the Lie algebra of U(1) by u(1) and setting g = u(1)n we can package the n maps

(µI)i into a single map

µI : X → g∗ , 〈µI(m), ξi〉 = (µI)i(m) , (1.9)

where ξi is an element of the i−th factor of u(1). The Lie group G acts naturally on both

X and g∗ and if µI is equivariant with respect to these we call it a moment map. We can

proceed similarly for the other two complex structures J,K to receive maps µJ , µK . For

G = U(1)n these three maps are indeed moment maps and as the action of G fixes the origin

in g∗ it descends to an action on the space

N = µ−1
I (0) ∩ µ−1

J (0) ∩ µ−1
K (0) . (1.10)

We can now form the quotient Z = N/G and it can be shown that the the hyperkahler

structure of X induces a hyperkahler structure on the quotient Z which is of dimension

dimZ = dimX−4 dimG = 4 dropping a summand dimG for each intersection in (1.10) and

an additonal one for the final quotient by G. The space Z is referred to as the hyperkahler

quotient of X by G, denoted by X//G and was first introduced in [88]. It can be shown

that it is isomorphic to C2/Zn+1 .

In [86] it is shown that the desingularisations can be described in this setup by slightly

altering the above construction. Changing (1.10) to

N = µ−1
I (α) ∩ µ−1

J (β) ∩ µ−1
K (γ) , α, β, γ ∈ g , (1.11)
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we generically obtain a non singular space to which the action of G on X descends as a

fixed point free action. Taking the quotient by this action we obtain a generically smooth

asymptotically locally euclidean (ALE) space Z of SU(2) holonomy. In addition Z is a

hyperkahler manifold itself as the hyperkahler structures of X descend to Z.

To study the topology of these solutions we start by considering the unresolved case of

n = 2 with α = β = γ = 0 which is isomorphic to C2/Z2 given by (1.5) as the the singular

variety

x2 + y2 + z2 = 0 , (x, y, z) ∈ C3 . (1.12)

Grouping real and imaginary parts of x, y, z into vectors u and v respectively (1.12) becomes

u2 = v2 , uv = 0 , (1.13)

which describes a circle bundle over R3 with the base parametrised by say u as the equations

assert that we are dealing with a sphere bundle where each fiber has been intersected with

a plane through the origin. One notices in addition that restricting to a sphere of constant

radius B|r in the base the plane determined by the second equation in (1.13) completes one

rotation when traversing any great circle. This circle bundle π : Zr → Br is characterised

by π∗ : H2(Br,Z) ∼= Z→ H2(Zr,Z) where restriction to points of a fixed radius r within the

base have been denoted by the corresponding subscript. In the above setup H2(Zr,Z) ∼= Z

and so the π∗ is characterised by a number α called the winding number, here α = 1. The

more general case of C2/Z2 described by

x2 + y2 + zn+1 = 0 , (x, y, z) ∈ C3 , (1.14)

is treated similarly its topology is also that of a circle fibration but now α = n. A topological

defect sits at the origin.

Resolving the singularity and executing the hyperkahler quotient construction as in [87]

we find the metric on Z to be the multi centred Taub-NUT metric [89]

ds2 = Ud ~Xd ~X +
1

U
(dθ + ~η d ~X)2 , U =

n∑
k=1

µ

| ~X − ~xk|
+

1

λ2 (1.15)



in the limit λ → ∞ with ~xi = ~xj . Here ~X are coordinates on R3 and θ is an angular coor-

dinate, the structure of a circle fibration has persisted. The vector ~η is such that the U(1)

connection Ω = ~η d ~X on R3 satisfies dU = ∗dΩ. The position vectors ~xk(α, β, γ) collect

the 3n moduli of the metric marking the points at which the circle fibres degenerate. The

resolution Z develops singularities of type C2/Zm whenever m of the ~xk collide. This corre-

sponds to a remnant singularity or equivalently only a partial resolution of the singularity.

Other ADE singularities can be resolved similarly by ALE spaces of SU(2) holonomy.

Chapter 2
The Gauge Theory Sector of M-theory on G2-manifolds

M-theory compactified on a G2-manifold gives rise to a 4d N = 1 supersymmetric gauge

theory with matter fields, coupled to supergravity. In this thesis we will be interested in

the gauge theories obtained from such compactifications and therefore will decouple gravity.

Gauge degrees of freedom in an M-theory compactification on a holonomy G2-manifold are

localized on codimension 4 subspaces, which are associative (i.e., calibrated) three-cycles

M3. Locally the geometry takes the form of an ALE-fibration over M3 as in (1). A useful

way to characterize the gauge sector is to think in terms of the 7d SYM theory obtained

from M-theory on the ALE-fiber: the gauge bosons in the Cartan subalgebra of the gauge

group arise from dimensional reduction of the M-theory three-form C3 on the two-forms

in the ALE-fiber, and the remaining non-abelian gauge bosons arise from wrapped M2-

branes. In an adiabatic approximation, where the ALE-fibration varies slowly over M3, the

4d effective action can be obtained by dimensionally reducing this 7d SYM theory on the

three-cycle M3, with a partial topological twist. In this section we carry out this reduction

and determine the spectrum of gauge and matter fields, which are determined by solutions

of BPS equations along M3 (see (2.18)). The solutions are given in terms of a Higgs bundle

over M3, that is specified by a one-form Higgs field φ and an internal gauge field A.

15
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2.1 Partial Topological Twist and BPS Equations

We start with 7d SYM with ADE gauge group G̃. This theory can be obtained by dimen-

sional reduction of the maximally supersymmetric 10d SYM on R1,6× T 3. Our conventions

are such that the 10d gauge multiplet consists of a (hermitian) gauge field A and a Majorana-

Weyl spinor λ both valued in the adjoint representation of an ADE group G̃. The Lorentz

group, and thereby the vector multiplet, reduce as follows

SO(1, 9)L → SO(1, 6)L × SO(3)R

A : 10 → (7,1)⊕ (1,3) ≡ (AM , φi)

λ : 16 → (8,2) ≡ (λαα̂) ,

(2.1)

where the 10d vector indices are split into M = 0, . . . , 6 and i = 1, 2, 3 and the spinor

indices decompose as α = 1, . . . , 8 and α̂ = 1, 2, where we denote the R-symmetry indices

with a hat. The 10d Majorana condition descends to a 7d symplectic Majorana-condition1.

Denoting the gauge coupling in 7d by g7 the action becomes

S7d =
1

g2
7

∫
d7x

[
−1

4
Tr
(
FMNF

MN
)
− 1

2
Tr
(
DMφiD

Mφi
)

+
1

4
Tr
(
[φi, φj ][φ

i, φj ]
)]

+
1

g2
7

∫
d7x

[
+
i

2
Tr
(
λ̄αα̂(γ̂M ) β

α DMλβα̂

)
− i

2
Tr
(
λ̄αα̂(σi) β̂

α̂ [φi, λαβ̂]
)]

,

(2.2)

where DM = ∂M − i[AM , · ] and F is the field strength associated to A. The supersymmetry

variations are

δAM = +
i

2
ε̄αα̂(γ̂M ) β

α λβα̂

δφi = +
1

2
ε̄αα̂(σi)

β̂
α̂ λαβ̂

δλαα̂ = −1

4
FMN (γ̂MN ) β

α εβα̂ +
i

2
DMφi(γ̂

M ) β
α (σi) β̂

α̂ εββ̂ −
1

4
[φi, φj ]ε

ij
k(σ

k) β̂
α̂ εαβ̂ ,

(2.3)

where γ̂ denotes the 7d gamma matrices.

This 7d SYM theory is the starting point for the analysis of gauge degrees of freedom in

a local G2-holonomy compactification of M-theory. For a given ALE-fiber, the singularity

determines the 7d gauge group G̃. We now reduce this theory further on an associative

three-cycle M3. Since this will be generically curved with holonomy group SO(3), the 4d
1We refer to appendix A of [1] for our conventions with regards to spinors and supersymmetry.
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theory will in turn only retain supersymmetry if we partially topologically twist the local

Lorentz group SO(3)M with the R-symmetry SU(2)R. Upon compactification on M3 the

local Lorentz symmetry is broken to

SO(1, 6)L × SU(2)R → SO(1, 3)L × SO(3)M × SU(2)R

A : (7,1) → (2,2;1,1)⊕ (1,1;3,1) ≡ (Wµ, Ai)

φ : (1,3) → (1,1;1,3) ≡ (φı̂)

ε, λ : (8,2) → (2,1;2,2)⊕ (1,2;2,2) ≡ (λααα̂, λ̄α̇αα̂) ,

(2.4)

where the vector indices split as µ = 0, . . . , 3 and i, ı̂ = 1, 2, 3 and the spinor indices are

α, α̇, α, α̂ = 1, 2. The fermions λααα̂ satisfy a Majorana-condition.

The supersymmetry parameter ε transforms non-trivially under SO(3)M , so that to pre-

serve supersymmetry in 4d, we redefine the local Lorentz group SO(3)M by an R-symmetry

transformation2 [10, 18,80]

SU(2)twist = diag(SO(3)M , SU(2)R) , (2.5)

with generators (ΣM )i + (ΣR)i, where Σ denotes the generators of the respective algebras.

The field content and supersymmetry parameters transform under the partially twisted

Lorentz group as follows

SO(1, 3)L × SU(2)M × SU(2)R → SO(1, 3)L × SU(2)twist

W : (2,2;1;1) → (2,2;1) ≡ (Wµ)

A : (1,1;3,1) → (1,1;3) ≡ (Ai)

φ : (1,1;1,3) → (1,1;3) ≡ (φi)

ε, λ : (2,1;2,2) → (2,1;1)⊕ (2,1;3) ≡ (χα, ψiα)

ε̄, λ̄ : (1,2;2,2) → (1,2;1)⊕ (1,2;3) ≡ (χ̄α̇, ψ̄ α̇
i ) .

(2.6)

It follows that there are four real supercharges, as required for 4d N = 1 supersymmetry,

εα = (2,1;1) , ε̄α̇ = (1,2;1) . (2.7)
2We will be slightly casual here and in the following, in that the twist involves the Lie algebras, rather

than the groups.
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After the twist the fermions χ and ψ transform as singlets and triplets of the twisted Lorentz

group and are identified with 0- and 1-forms on M3 valued in ad(P ), i.e.,

χ ∈ Ω0(M3, ad(P ))⊗ C

ψ ∈ Ω1(M3, ad(P ))⊗ C ,
(2.8)

where P is a G̃-principal bundle. We denote the field strengths associated to the gauge fields

Wµ and the internal connection Ai by Fµν and (FA)ij , respectively, and their associated

covariant derivatives as Dµ and Di. The latter can be combined with the scalars φi, which

both transform as a 3 of SU(2)twist, into a complex 1-form

ϕi = φi + iAi , ϕ̄i = φi − iAi , Di = ∂i + [ϕi, · ] , D̄i = ∂i − [ϕ̄i, · ] . (2.9)

Note that ϕ, ϕ̄ and D, D̄ are related by conjugation in the gauge algebra. We further

introduce

(Fϕ)ij = [Di,Dj ] , (Fϕ)µi = [Dµ,Di] , (Fϕ̄)µi = [Dµ, D̄i] , (2.10)

and its conjugate Fϕ̄ = F†ϕ. We assume that the 4d gauge fields Aµ are independent of the

internal coordinates alongM3, so that the latter two expressions become standard space-time

derivatives of the complex scalars ϕ, ϕ̄

(Fϕ)µi = Dµϕi , (Fϕ̄)µi = Dµϕ̄i . (2.11)

Define the interaction term

Iϕ,ϕ̄ ≡ 2Diφ
i = ∂iϕ

i + ∂iϕ̄
i + [ϕi, ϕ̄

i] . (2.12)

The partially twisted 7d SYM action is then

SF, twist =
1

g2
7

∫
d7x

{
Tr
[
− iχ̄σ̄µDµχ− iψ̄iσ̄µDµψi +

√
2iχ̄Diψ̄i −

√
2iχD̄iψi

+
i√
2
εijkψ̄iD̄jψ̄k −

i√
2
εijkψiDjψk

]}
SB, twist =

1

g2
7

∫
d7x

{
− 1

4
Tr
[
FµνF

µν
]
− Tr

[
(Fϕ)µi(Fϕ̄)µi

]
− Tr

[
(Fϕ)ij(Fϕ̄)ij

]
− 1

2
Tr
[
I2
ϕ,ϕ̄

]}
.

(2.13)
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The supersymmetry variations for the bosonic fields are

δWµ = iεσµχ̄ , δ̄Wµ = −iε̄σ̄µχ

δAi = − i√
2
εψi , δ̄Ai =

i√
2
ε̄ψ̄i

δφi =
1√
2
εψi , δ̄φi =

1√
2
ε̄ψ̄i

δϕi =
√

2εψi , δ̄ϕi = 0

δϕ̄i = 0 , δ̄ϕ̄i =
√

2ε̄ψ̄i ,

(2.14)

and for the fermionic ones we find

δχ = Fµνσ
µνε+ iIϕ,ϕ̄ ε , δ̄χ = 0

δχ̄ = 0 , δ̄χ̄ = Fµν ε̄σ̄
µν − iIϕ,ϕ̄ ε̄

δψk = i(Fϕ̄)ijε
ijkε , δ̄ψk =

√
2i(Fϕ) k

µ σ
µε̄

δψ̄k =
√

2i(Fϕ̄) k
µ σ̄

µε , δ̄ψ̄k = −i(Fϕ)ijε
ijk ε̄ .

(2.15)

To obtain a 4d supersymmetric theory upon twisted dimensional reduction, the field config-

uration along M3 needs to preserve supersymmetry. We further require the background to

enjoy 4d Poincaré-invariance and therefore require it to be independent of the coordinates

along R1,3

(Fϕ)µi = 0 , (Fϕ̄)µi = 0 . (2.16)

The BPS equations are then obtained by setting 〈δλ〉 = 0 and are

Iϕ,ϕ̄ = ∂iϕ
i + ∂iϕ̄

i + [ϕi, ϕ̄
i] = 0 , (Fϕ)ij = 0 , (Fϕ̄)ij = 0 , (2.17)

where the first equation is obtained by setting the real and imaginary parts of δχ to zero

separately. 4d Poincaré invariance requires 〈Fµν〉 = 0. Rewriting (2.17) with respect to the

notation in (2.6) the BPS equations become the F- and D-term equations

0 = FA − i[φ, φ]

0 = DAφ

0 = D†Aφ .

(2.18)
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Background values for the Higgs field φ and gauge field W along M3 that solve these equa-

tions will determine the effective field theory in 4d3 and describe the classical supersymmetric

vacua for the compactified theory. In components the BPS equations are

0 = ∂iAj − ∂jAi + i[Ai, Aj ]− i[φi, φj ]

0 = ∂iφj + i[Ai, φj ]− ∂jφi − i[Aj , φi]

0 = gij (∂iφj + i[Ai, φj ]) .

(2.19)

Depending on the topology of M3 there are various solutions to these equations. The

simplest set of solutions are obtained for commuting Higgs fields

[φ, φ] = 0 , FA = 0 . (2.20)

We will generally assume this to be the case. The Higgs field backgrounds derived from

an ALE-fibered G2-manifold necessarily commute and so this class of solutions is sufficient

for the study of local geometries. Solutions with non-vanishing field strength are referred

to as T-branes [90] but are not straight forwardly related to geometries with G2 holonomy

but offer an alternative approach in the construction of chiral 4d theories. The remaining

equations are DAφ = ∗D†Aφ = 0. If M3 is a compact three-manifold without boundaries

and φ is regular, there are two cases to consider:

π1(M3) = 0 ⇒ A = 0 , dφ = ∗ d ∗ φ = 0 ⇒ φ = 0

π1(M3) 6= 0 ⇒ DAφ = D†Aφ = 0 .
(2.21)

In the first case φ has to be a harmonic 1-form and thus must be trivial, in the second case

it can be non-trivial.

We will be interested in simply-connected three-manifolds in the following. To never-

theless have non-trivial solutions we relax the assumption that φ is regular, which can be

achieved by including sources into the D-term equations. Writing φ = df , the function f is

then required to satisfy Poisson’s equation

φ = df , ∆f = ρ , (2.22)
3Note that we have chosen Hermitian representatives for the gauge algebra. Transitioning to anti-

Hermitian representatives we recover the results of [49].
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M3

T( )

M3=M3\T( )

Figure 2.1: On the left hand side the three-cycle M3 is shown, with the charge distribution
ρ that is located along Γ. On the right hand side, a tubular neighborhood T (Γ) is excised
and the resulting manifold isM3.

where ρ models the sources supported on a closed subset Γ. This maps the solution of the

BPS equations to an electrostatics problem with the identification

f = electrostatic potential

ρ = charge density, supported on Γ ⊂M3 .
(2.23)

Alternatively this system can be described by excising a tubular neighborhood T (Γ) of

the charge support Γ, and studying the problem of finding solutions onM3 = M3 \ T (Γ) –

see figure 2.1. In this case φ needs to be regular, with suitable boundary conditions along

∂M3. In summary one of the setups will we consider is

φ regular , φ = df , ∆f = 0 , ∂M3 = T (Γ) 6= ∅ (2.24)

which will be used in chapter 4 to determine physically interesting solutions to the BPS

equations including localized matter. Localized matter is characterized by the vanishing of

φ. When f is Morse (i.e., it has no degenerate critical points) these are isolated points and

we will discuss this setup in chapter 4. By relaxing the constraint of f only having isolated

critical points this can be generalized to situations where f is a Morse-Bott function and

higher-dimensional matter loci can be included as well. We will discuss this in chapter 5.4

and apply it to TCS G2-manifolds in chapter 8.

The Higgs field of the solutions to (2.24) is well-defined away from the support of the

source terms, where it diverges. In particular there are no monodromies of the Higgs field

eigenvalues when encircling the graph Γ. The graph Γ is codimension 2 in M3 and the
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solution to the Poisson’s equation with such sources is branch cut free, this changes when

considering sources of codimension 1. In this case the function f is not differentiable across

surface sources and the corresponding electric field jumps, signalling a possible branch cut.

We refer to Higgs fields whose eigenvalues can be globally distinguished as split and to

all other cases as non-split. The eigenvalues of a non-split Higgs field glue to a connected

covering and separating this covering into sheets amounts to specifying the surface sources

realizing the discontinuities in the Higgs field eigenvalues. Dissecting a covering in this

fashion both electric and magnetic sources in codimension one can appear. Therefore non-

split Higgs bundles are described by generalizing (2.22) to

dφ = ∗j , ∗ d ∗ φ = ρ . (2.25)

The Higgs field eigenvalues now display finite discontinuities across surfaces supporting j, ρ

which must be such that the set of eigenvalues glue consistently across the codimension

one source loci. We consider these cases in chapter 3. The interpretation for particular

source terms is taken from the corresponding IIA string theory set-up for gauge algebras

gADE = su(n) which is given by space-time filling D6-branes on R1,3 × T ∗M3 wrapping a

special Lagrangian submanifold in T ∗M3 [49, 91]. Sources of codimension 2 and 3 lead to

singularities in the Higgs field and D6-branes associated with the corresponding eigenvalues

are non-compact as they extend to infinity in the fiber direction. Embedding the local

model into a compact geometry these would simply describe D6-branes extending beyond

the approximated region. Magnetic and electric sources j and ρ of codimension 2 along a

knot K ⊂ S3 ⊂ T ∗M3, represent the world volume perspective of D6-branes intersecting

along the knot K which have recombined due to a condensation of the bifundamental chiral

superfields localized at their intersection [92,93]. In the remainder of this section, we assume

that φ is non-trivial and regular, but make no further assumptions on the details of the loci

φ = 0.
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2.2 Higgs Bundles

Before studying the low energy effective theory, let us briefly recall the relation between the

Higgs bundle and the local ALE-fibration. The BPS equations (in the absence of sources)

(2.18) are in fact precisely the odd dimensional analogue of the Hitchin equations for the

Higgs field φ giving rise to the data of a Higgs bundle. In the case [φ, φ] = 0 there is

an elegant geometric description of the Higgs field φ in terms of an ALE-fibration over

M3, which we now summarize [49]. This construction is analogous to the one in F-theory,

where the Higgs field specifies the unfolding (a complex structure deformation) of the ALE

singularity and is closely connected to the compact Calabi-Yau underlying the F-theory

compactification [11,15,94]. Recently this was developed also for Spin(7) manifolds [95]. In

our case the Higgs field describes the deformations of the full hyper-Kähler structure of an

ALE fiber.

Recall that φ is an adjoint valued 1-form Ω1(M3) or a section of T ∗(M3), and we take

it to be non-trivial along the commutant G⊥ of the 4d gauge group G in

G̃ → G⊥ ×G . (2.26)

The Higgs field is

φ ∈ Γ(T ∗(M3)⊗Ad(G⊥)) , (2.27)

i.e., φ lives in a local geometry in the vicinity ofM3 which is the total space of the cotangent

bundle T ∗(M3). This is a local Calabi-Yau threefold. Since [φ, φ] = 0, we can diagonalize the

Higgs field to obtain n 1-forms φj , where n is the rank of the Lie algebra g⊥ of G⊥. To locally

recover the ALE-fibration over M3 associated to this Higgs field, we use the Kronheimer

construction [34, 96]. Every hyper-Kähler ALE-orbifold is of the form C2/ΓADE, where

ΓADE is a finite subgroup of SU(2), which are classified by the corresponding ADE Dynkin

diagrams. The second homology of the resolution of singularities of C2/ΓADE is isomorphic

to the Cartan subalgebra of g and we can think of the components φj as measuring the

periods of the hyper-Kähler structure forms. More explicitly, over a local patch of M3 we
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can write the fibration as R3 ×C2/ΓADE. We chose a basis σj of H2(C2/ΓADE,Z) and fix a

hyper-Kähler triple (ωI , ωJ , ωK). The 1-form φj can be written as

φj = φj,Idx
1 + φj,Jdx

2 + φj,Kdx
3 , (2.28)

where we identify

φj,I =

∫
σj

ωI , φj,J =

∫
σj

ωJ , φj,K =

∫
σj

ωK . (2.29)

This uniquely defines the hyper-Kähler structure on each fiber. Observe that the Higgs field

has an SO(3) symmetry arising from the SO(3) acting on ωI , ωJ and ωK .

In geometric terms we can describe our situation as follows. For simplicity, assume

that we have a G⊥ = U(1)-valued Higgs field φ. We are considering a local model for a

G2-manifold with ADE-singularities located along an associative submanifold M3, which

physically means that gauge degrees of freedom are localized alongM3 and the gauge group

is given by the ADE type of the singularity. Consider the gauge group G̃, which by turning

on a non-trivial background vev for φ generically higgses to G̃ → G × U(1). This means

that the ALE fiber over a generic point of M3 will have the singularity corresponding to

G via the ADE correspondence and there will be a two-cycle in the U(1) direction with

non-zero volume, given by φ. Over the points where φ = 0, the two-cycle collapses and

the ALE singularity worsens; equivalently the gauge group enhances from G to G̃. We will

elaborate this point in chapter 7.

We can in fact make the local geometry of the gauge enhancement fairly explicit. For

the moment let us restrict our attention to the case where G̃ = SU(2) which corresponds

to a C2/Z2 singularity over M3. Giving a non-trivial background vev for φ corresponds

to deforming the generic fiber to a smooth Eguchi-Hanson space. More precisely, consider

the generator σ of H2(C̃2/Z2,Z) of the resolved geometry. Recall that σ is topologically a

two-sphere. From (2.28) and (2.29) we see that at a generic point x ∈ M3 (which for this

purpose is approxated locally by R3) we have

Vol(σ) = |φ(x)| , (2.30)
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by which we mean the volume of σ in the Eguchi-Hanson space above x. Consider now a

neighborhood of a non-degenerate zero of φ, which we can assume to be at 0 ∈ R3. We can

locally write φ = df , where

f(x1, x2, x3) = f(0) +
1

2

3∑
i=1

±x2
i . (2.31)

The signs depend on the eigenvalue of the Hessian at 0. The Higgs field φ now has an

isolated zero at the origin. The explicit local description of the ALE-fibration is given by

X =

{
(z1, z2, z3), (x1, x2, x3)

∣∣∣∣∣ z2
1 + z2

2 + z2
3 =

3∑
i=1

x2
i

}
⊂ C3 × R3 . (2.32)

Viewing X as a fibration over R3 all of the fibers are smooth apart from the fiber over

(0, 0, 0) i.e., the zero of φ. Moreover, X is a cone in C3 × R3 with the apex at the origin.

The link of the cone can be found by intersecting X with the unit sphere in C3 ×R3 and is

in fact P3 realized as the twistor bundle over S4. The approximate G2-metric on X is given

by

Φ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ ωI + dx2 ∧ ωJ + dx3 ∧ ωK + φ ∧ η , (2.33)

where η is the 2-form dual to the two-cycle σ.

This can be generalized to arbitrary ALE-fibrations. The local geometry is of the form

C2/ΓG × R3, with a C2/Γ
G̃
fiber over the origin. We again work with G̃ = SU(n+ 1). For

the deformations of other ADE singularities see [97]. The topology in a neighborhood of an

isolated zero is

X =

{
(z1, z2, z3), (x1, x2, x3)

∣∣∣∣∣ z2
1 + z2

2 + zn3

(
z3 −

3∑
i=1

x2
i

)
= 0

}
⊂ C3 × R3 . (2.34)

This describes a family of SU(n) singularities, with enhancement to SU(n+ 1) at the origin

(note that we again write φ = df as above). There are also explicit deformations for other

ADE groups. Topologically X is now a cone over the weighted projective space P3
n,n,1,1 with

coordinates (y1, y2, y3, y4) [34]. In the link, there is a family of SU(n) singularities along an

S2 given by y3 = y4 = 0. In the ambient space, the location of the singularities is a cone
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R+×S2 = R3, which is identified in our context with a local patch of the base R3 of X. As

before, the apex of the cone is where the cycle σ collapses to zero volume.

This therefore establishes a key piece of the dictionary between properties of φ and the

ambient G2-geometry. The isolated zeroes of φ give rise to conical singularities of the ALE-

fibered G2-manifold. As we show in chapter 5, this fits together nicely with the physics side

as zeroes of φ which occur at codimension 7 are precisely the loci where chiral fermions are

localized.

2.3 Massless Spectrum

Given a solution to the BPS equations (2.18) with regular Higgs field we can ask what the

spectrum of the 4d gauge theory is. The equations of motion of the fermions follow from

(2.13) to be
0 = σ̄µDµχ−

√
2Diψ̄i

0 = σ̄µDµψ
i +
√

2Diχ̄−
√

2εijkD̄jψ̄k ,
(2.35)

which imply the decoupled equations

0 = DµD
µχ+ 2DiD̄iχ

0 = DµD
µψi + 2[Di, D̄j ]ψj + 2D̄jDjψi .

(2.36)

So far we have not imposed [φ, φ] = 0. Define the twisted exterior derivative and Laplace

operator

D = d+ [ϕ ∧ · ] , D̄ = d− [ϕ̄ ∧ · ] , ∆ = D†D +DD† , ∆̄ = D̄†D̄+ D̄D̄† , (2.37)

where the adjoint is taken with respect to the Hermitian inner product

〈 · , · 〉 : Ωp(M3, ad(P ))× Ωp(M3, ad(P )) → C

(α, β) → 〈α, β〉 =

∫
M3

Tr (ᾱ ∧ ∗β) .
(2.38)

Acting on functions g ∈ Ω0(M3, adP ) and written in coordinates, e.g., the operator ∆̄

becomes

∆̄g = D̄†D̄g = D̄†(D̄mg dxm) = DmD̄mg , (2.39)
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where we pick up a conjugation due to the inner product. We find that (2.36) may be

rewritten as
0 = DµD

µχ+ 2∆̄χ

0 = DµD
µψ + 2∆ψ ,

(2.40)

where by (2.8), χ and ψ are 0- and 1-forms, respectively. Massless modes are therefore

described by the kernels of the Laplacians ∆, ∆̄ or equivalently by closed and co-closed

forms with respect to the operators in (2.37)

D̄χ = 0 , D̄†χ = 0

Dψ = 0 , D†ψ = 0 .

(2.41)

By the BPS equations the co-boundary operators D, D̄ and their adjoints close D2 = D̄2 = 0

and (D†)2 = (D̄†)2 = 0, and via the Hodge correspondence for elliptic complexes we can

describe the zero modes equivalently as cohomology groups. The non-vanishing background

value of φ orW oriented along a subgroup G⊥ of G̃ breaks the gauge group to its commutant

G ⊂ G̃. The adjoint fermions ψ, χ will decompose accordingly to give matter valued in

irreducible representations. In this higgsed theory the fermions are sections of the associated

gauge bundles, E. The action of D restricts to each of these subbundles allowing us to make

the identification
χα ∈ H0

D̄(M3, E) , χ̄α̇ ∈ H0
D(M3, E)

ψα ∈ H1
D(M3, E) , ψ̄α̇ ∈ H1

D̄(M3, E) .
(2.42)

We next rewrite these cohomology groups with respect to the same co-boundary operator

by dualising H0
D̄, H

1
D̄ with the Hodge star. Note that by (2.38) we have D† = ∗ D̄ ∗ and

D̄† = ∗D ∗ so that taking χα ∈ H0
D̄(M3, E) for example we find that ∗χα is annihilated by

the operators D,D†

D†(∗χα) = ∗D̄χα = 0 , D ∗ χα = ∗D̄†χ = 0 . (2.43)

This precisely states that ∗χα ∈ H3
D(M3, E), i.e., we have mapped from D̄-cohomology to

D-cohomology using the Hodge star. The same observations hold true for ψ̄α. The Hodge

star relates

H0
D̄(M3, E) ∼= H3

D(M3, E) , H1
D̄(M3, E) ∼= H2

D(M3, E) . (2.44)
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This allows us to make the following identifications

χα ∈ H3
D(M3, E) , χ̄α̇ ∈ H0

D(M3, E) ,

ψα ∈ H1
D(M3, E) , ψ̄α̇ ∈ H2

D(M3, E) ,
(2.45)

where now all cohomologies are with respect to D and forms of all degrees are employed.

Note that the Z2-grading of the exterior algebra aligns with the 4d chirality of the fermionic

zero modes. The Hodge star depends on the metric of M3 which itself is induced from the

metric of G2-holonomy of the ambient 7d manifold.

SinceM3 is associative and so calibrated with respect to Φijk we equivalently could have

used the G2 3-form Φijk to dualize since it restricts to a volume form of M3. Contracting

elements of H0
D̄ and H1

D̄ with the 3-form Φijk is then exactly the same as taking their Hodge

dual.

2.4 Bulk Matter

The first type of matter we will discuss arises from a background Higgs bundle, where

〈φ〉 = 0, which solves the BPS equations, but W 6= 0 with FW = 0. This will be referred to

as bulk matter, as the modes will not be localized. We will see that for π1(M3) = 0 there is

no chiral index for this matter type. It may be interesting to extend this to non-trivial π1

setups, which we relegate to future work, and also has been discussed in earlier works from

a different point of view (see e.g., [98]).

Turning on a flat gauge field along a subgroup G⊥ ⊂ G̃ the gauge group G̃ is Higgsed to

the commutant G of G⊥ in G̃ and the adjoint representation of G̃ decomposes as

G̃ → G×G⊥

Ad(G̃) → (Ad(G)⊗ 1)⊕ (1⊗Ad(G⊥))⊕
⊕
n

Rn ⊗ Sn .
(2.46)

For the fields of the theory this decomposition is lifted to the bundle level, where Ad(P )

decomposes into the vector bundles Rn ⊗ Sn in the representations Rn and Sn of G and

G⊥, respectively. The chiral and conjugate-chiral zero modes transforming in Rn are then
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Chiral :
(χRn)α ∈ H0

D̄(M3,Sn)

(ψRn)α ∈ H1
D(M3,Sn)

Conjugate-chiral :
(χ̄Rn)α̇ ∈ H0

D(M3,Sn)

(ψ̄Rn)α̇ ∈ H1
D̄(M3,Sn) .

(2.47)

Their CPT-conjugate zero modes in Rn are obtained by Hermitian conjugation in the gauge

algebra or equivalently from (2.42) with E = S̄. In order to rewrite these cohomology groups

with respect to the same boundary operator D we again dualise H0
D̄, H

1
D̄ using the Hodge

star and obtain

Chiral :
(χRn)α ∈ H3

D(M3,Sn)

(ψRn)α ∈ H1
D(M3,Sn)

Conjugate-chiral :
(χ̄Rn)α̇ ∈ H0

D(M3,Sn)

(ψ̄Rn)α̇ ∈ H2
D(M3,Sn) .

(2.48)

These cohomology groups completely determine the chiral and conjugate-chiral spectrum in

4d transforming in Rn of the remnant gauge symmetry G

Chiral fermion zero modes : H3
D(M3,Sn)⊕H1

D(M3,Sn) ,

Conjugate-chiral fermion zero modes : H0
D(M3,Sn)⊕H2

D(M3,Sn) .
(2.49)

The chiral index of the representation Rn is

χ(M3,Rn,D) =

3∑
i=0

(−1)i dimCH
i
D(M3,Sn) , (2.50)

which is nothing other than the Euler characteristic of the D-complex. In the case of

trivial fundamental group π1(M3), there is no flat bundle to break the gauge group, and

dimH i
D(M3,Sn) = bi(M3,D) reduce to the Betti numbers of the de Rham complex on M3.

The chiral index is then given by the usual Euler characteristic, which vanishes for odd

dimensional closed manifolds

π1(M3) = 0 : χ(M3,Rn,D) = 0 . (2.51)

This concludes our discussion of ‘bulk’ matter. In the following we will focus our attention

on localized matter modes, which arise from non-trivial φ background values. Since these

29
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are best characterized in terms of spectral covers we next develop this framework.

Chapter 3
Spectral Covers

3.1 Spectral Cover for the Higgs Field

For the case when a higher rank Higgs bundle is turned on but the Higgs field commutes,

it is useful to describe the solution to the BPS equations in terms of the spectral data of

the Higgs field. This framework is of course very familiar from F-theory spectral covers, see

e.g., [15, 94, 99, 100], and for the Lagrangians in Calabi-Yau threefolds and the associated

G2-manifolds with pointlike singularities was touched upon in [49]. Here we will prepare the

setup to also account for more general Higgs field configurations, with the goal to apply it

to the TCS-manifolds.

Recall that φ is a section of Ω1(M3)⊗Ad(G⊥). For concreteness let G⊥ = SU(n). For

a commuting Higgs field we can choose to diagonalize it and study the resulting spectral

cover

C : 0 = det(φ− s) =

n∑
i=0

bn−is
i = b0

n∏
k=1

(s− λk) = {(s, λk(s)) | s ∈M3} , (3.1)

where bi are symmetric polynomials in the eigenvalues of φ and for SU(n), b1 = 0. The

eigenvalues λk labeled k = 1, . . . , n are one-forms which give rise to an n-sheeted cover of

M3 and

bi ∈ Si(T ∗M3) , (3.2)

where b0 is the zero-section. Here M3 is M3 with the singularities of the eigenvalues λk

excised. A cartoon of the set-ups considered is given in figure 3.1. Using the spectral cover

the associated ALE-fibration is simply

y2 = x2 + C(s) . (3.3)
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M3

p

Figure 3.1: Higgs bundle spectral cover overM3. Each sheet is labeled by an eigenvalue
λk of G⊥. Each λk is a one-form and their vanishing thus implies that they intersect the
‘zero section’, i.e., the locus of the ADE singularity of type G present in every ALE fiber,
over points pi on M3. Those points pi are precisely the loci where matter is localized. In
the generic case of non-factored spectral covers, the sheets are furthermore connected by
branch-cuts (orange). As we will see later on: In case the point p is connected by a flow
line in M3 to another critical point, there is a corresponding associative three-cycle which
is built by fibering the collapsing S2 (blue) over the flow line. The resulting contribution to
the superpotential gives a mass term for the localized states.

Each λk parametrizes the volumes of a corresponding two-sphere in the G⊥-ALE-fiber. The

gauge symmetry G̃ is generically higgsed to G, except at the loci

bn = b0

n∏
k=1

λk = 0 , (3.4)

when the gauge symmetry enhances. Since λk is a one-form, this condition implies that

this happens generically over points in M3, though we will encounter other situations as

well. The relation between the eigenvalues λk and coefficients in the ALE-fibration bi is

not linear, and generically the sheets of the spectral cover will be connected by branch-cuts.

This effect implies in particular that the U(1)-symmetries associated to the Higgs bundle

are not actually present in the low energy effective theory.

The classic example for spectral cover models starts with an E8 → SU(5) × SU(5)⊥.

The spectral cover is five-sheeted and λk = 0 characterizes the location of 10 matter rep-

resentations (we refer the reader to the F-theory literature where these models have been



3.2. U(1) SYMMETRIES 32

studied in depth [15,94,99,100]).

3.2 U(1) Symmetries

Generically the sheets of the cover are connected by branch-cuts and therefore, although

locally it may appear otherwise, the independent gauge group is G, the commutant of

G⊥ = SU(n) in G̃. If however the coefficients of the spectral cover are tuned such that it

globally factors overM3

C(s) =

N+1∏
K=1

C(K)(s) , (3.5)

then this corresponds to N independent U(1) factors in the 4d effective theory [100]. The

possibilities of factorization depend on the monodromy group that acts on the spectral cover,

which for SU(n) covers is Sn. If the group acts transitively on the n sheets then there is

no additional U(1) symmetry. If it has N + 1 orbits then there are N globally defined two-

forms, which define U(1) symmetries. To see this, we consider the difference between the

factored cover components C(K) − C(L). Fibered overM3, the associated two-cycles define

a non-trivial five-cycle in both the local model and in the compact G2 manifold J . The

Poincaré dual two-form to this five-cycle then gives a U(1) gauge boson in the Kaluza-Klein

reduction of the three-form C3 in compactification of M-theory. This can be also be seen

concretely in the context of TCS G2, see chapter 8.

When the spectral cover fully factors we refer to it as split. In the above example with

G⊥ = SU(n) this situation occurs when N = n in (3.5). When N < n the spectral cover

is non-split. When N = 0 it is irreducible. The general twisted cohomology computes the

zero mode spectrum in both cases. For split spectral covers with exact Higgs fields we find

these groups to reduce to Morse homology groups which can be computed via relative de

Rham cohomology groups of the associative submanifold. When the Higgs field is closed

but not exact these generalize to Novikov homology groups which generically do not relate

to singular homology and are more difficult to determine. For non-split covers one finds
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Novikov homology groups for covering spaces of the associative submanifold. We discuss

these cases in chapter 9.

3.3 Non-split Spectral Covers

An irreducible, non-split spectral cover C is traced out by a diagonal Higgs field φ = diag(λk).

It constitutes an n-fold covering of M3 away from singularities of the Higgs field. In this

section we specialize to M3 = S3. The n eigenvalues λk ∈ Ω1(S3) of the Higgs field are not

globally defined, but exhibit a one-dimensional branch locus. These branch loci lie along

closed submanifolds of the base S3 and therefore realize a collection of interlinked circles

Kik which are embedded into S3 as knots. We collect all linked knots Kik, labelled by i, k,

into a total of l links Li. The branch locus becomes

Branch Locus : Li =
⋃
k

Kik , Kik
∼= S1 ⊂ S3 , i = 1, . . . , l . (3.6)

The eigenvalues λk of the Higgs field φ = diag(λk) are only well-defined on a simply con-

nected neighbourhood of the link complement S3 \ ∪iLi and are acted on by a monodromy

action when encircling any component of the branch locus. Equivalently, when encircling

the branch locus the Higgs field φ returns to its original value up to a gauge transformation

implementing the action the Weyl group1

Monodromy action : φ → giφg
−1
i , gi ∈ GADE . (3.7)

We denote by si ∈ Weyl(gADE) the monodromy element associated to components of the

links Li. For gADE = su(n) we have for example Weyl(gADE) = Sn where Sn is the symmetric

group on n letters.

To every link Li there exists an orientable two-dimensional surface Fi, called the Seifert

surface of the link Li [101], bounded by the link

∂Fi = Li . (3.8)
1These are inner automorphisms of the Lie algebra. As familiar from constructions in class S we could

also consider outer automorphisms and introduce twist lines running between singularities of the Higgs field,
this case we will not consider here.
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We refer to the two sides of the Seifert surface Fi as its positive F+
i and negative F−i side.

Any circle linking the collection of knots Li intersect its associated Seifert surface Fi. The

eigenvalues λk of the Higgs field are therefore well-defined on S3 \ ∪iFi above which the

sheets of the spectral cover can be distinguished.

The Higgs field φ is constrained by the BPS equations and consequently its eigenvalues

λk ∈ Ω1(S3) are closed and coclosed on S3 \ ∪iFi. The graphs of these 1-forms in the

cotangent space T ∗S3 join above the Seifert surfaces Fi to form the spectral cover C ⊂ T ∗S3.

We refer to the graphs of λk as the k-th sheet of this cover with respect to a choice of Seifert

surfaces ∪iFi. The BPS-equations descend to each sheet up to surface sources given by a

one-form current jk and a zero-form density ρk support on the Seifert surfaces ∪iFi

dλk = ∗jk , ∗ d ∗ λk = ρk , supp jk = supp ρk =
⋃
i

Fi ⊂ S3 . (3.9)

These are subject to two sets of consistency conditions, the first set of which are between

sheets of the cover and read

n∑
k=1

ρk =
n∑
k=1

jk = 0 , λk
∣∣
F+
i

= λl
∣∣
F−i

. (3.10)

These require all sources to cancel between sheets and further constrain these to have profiles

compatible with gluing the k-th sheet to l-th sheet along the two sides F±i of the Seifert

surface. In the gluing condition k, l run over pairs such that both indices exhaust all sheets.

The second set of conditions are between sources for the same sheet and follow from the

compactness of S3. The equations (3.9) can only be solved when the integrated sources ρk

vanish on each sheet ∫
S3

∗ρk =
∑
i

∫
S3

∗ρk
∣∣
Fi

= 0 . (3.11)

In this way the sources (3.9), which are subject to (3.10) and (3.11), determine the

boundary conditions for the eigenvalues λk when decomposing the cover C into sheets. The

cancellation of sources between sheets ensures that the Higgs field φ is harmonic across

the Seifert surfaces Fi and traceless. The gluing condition encodes the monodromy action
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Figure 3.2: The picture shows a pair of unknots Li and their Seifert surfaces Fi ⊂ S2 ⊂ S3

along with the sources ρk, jk these support with respect to each sheet k = 1, 2. They are
supported on the 2-sphere S2

π/2 which projects onto θ = π/2 in (3.12). The sourced Higgs
field (3.9) realizes a branched double cover of S3.

around the Links Li as each sheet is glued along the two sides F±i to two other sheets.

Equation (3.11) is a tadpole cancellation constraint.

3.4 Example: Non-split Double Covers

We give a simple example of sources ρk, jk satisfying the conditions (3.10) and (3.11) with

K = 1, 2 realizing non-compact, branched, double covers of the 3-sphere with a collection of

circles removed. Consider the 3-sphere S3 as a fibration of 2-spheres over an interval which

we parametrize by θ ∈ [0, π]

S2 ↪−→ S3 → [0, π] . (3.12)

At θ = 0, π the fibral 2-sphere collapses. The 3-sphere S3 is equipped with the round metric

such that the geometry is symmetric under a reflection θ → π− θ fixing the central 2-sphere

fiber S2
π/2 projecting to θ = π/2. On this 2-sphere we consider a total of l separated unknots

S1
i each bounding a disk Di

Li = S1
i ⊂ S2

π/2 , Fi = Di ⊂ S2
π/2 , i = 1, . . . , l , (3.13)

which function as the links and Seifert surfaces of (3.6) and (3.8) respectively.

We now consider source profiles ρk, jk with k = 1, 2 supported on the surfaces Di real-

izing non-compact double covers of S3 away from the unknots S1
i . These are constructed
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electrostatically by setting jk = 0 and declaring the disks Di to be perfect conductors for the

electric source ρk. The eigenvalues λk of the Higgs field φ = diag(λ1, λ2) are then identified

with the electric field of the configurations in each sheet. In the first sheet k = 1 the disk Di

is assigned the electric charge qi, while in the second sheet k = 2 it is assigned the opposing

charge −qi. The distributed charge must further sum to vanish on each sheet
∑

i qi = 0.

This manifestly satisfies two of the conditions in (3.10) and (3.11). The gluing condition

across the surfaces Di is then satisfied as the source distribution in both sheets is symmetric

under reflection about θ = π/2. This realizes an irreducible double cover

C → S3 \ ∪iLi . (3.14)

We have depicted the set-up in the case of l = 2 unknots and disks in figure 3.2.

The charge distributions ρk diverges to the boundary and consequently so do the eigen-

values λk. In a local normal coordinate system (z, x) ∈ C × R where one of the unknots is

centered at z = 0 and its associated disk Di stretches along R− × R, where R− ⊂ C is the

negative real axis, we have

λk = ck

(
dz√
z

+
dz̄√
z̄

)
+ . . . , (3.15)

approaching the unknot with some real constant ck. The omitted terms are regular in the

z → 0 limit and the branch cut of the square root stretches along R−. These asymptotics

follow from the closure and co-closure of the Higgs field away from the branch locus and the

discontinuity across the charged Seifert surface. The former requires the eigenvalue to be

harmonic away from the unknot, while the latter forces a branch cut along the disk Di. The

growth of the eigenvalue is necessarily slower than the case for which sources concentrate

along the unknot, predicting (3.15) which is confirmed by explicit computation.

We now determine the topology of this cover and characterize the vanishing of the Higgs

field, both will be of interest later. The homology groups of the constructed double cover C

are computed using the Mayer-Vietoris sequence and read

H0(C,Z) = Z , H1(C,Z) = Z2l−1 , H2(C,Z) = Zl−1 , H3(C,Z) = 0 . (3.16)
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The supersymmetric deformations of the cover are given by altering the charges qi assigned

to each disk Di with respect to one of the sheets. The constraints (3.10) determine the

associated opposite deformations on the second sheet. The condition (3.11) removes one

degree of freedom yielding an l − 1 dimensional deformation space.

The zeros of the Higgs field eigenvalues λ1, λ2 lie on S2
π/2. They come in pairs as λ1+λ2 =

0 and there are a total of 2l−4 zeros. Each eigenvalue derives from an electrostatic potential

f such that df = λ1 = −λ2. For generic charge set-ups the potential f is a Morse function.

The zeros of the eigenvalues are critical points of this function and they can be distinguished

according to their Morse-index. Let Nµ be the number of critical points of Morse-index µ,

here we have

N1 = N2 = l − 2 , N0 = N3 = 0 , (3.17)

The Morse index characterizes topological properties of the Higgs field zeros and determines

the matter localized at these.

3.5 Cyclically Branched Covers

The data of the 4d theory engineered by a geometry with a split or non-split spectral cover

can be extracted from a particle probing S3 with a potential set by the Higgs field, as we

explain in the next chapter. Of interest here is in part the topology of the spectral cover,

which we discuss here for a simple class of non-split spectral covers. For concreteness we

consider spectral covers associated with the Lie algebra gADE = su(n). The spectral covers

of the local models of many TCS G2-manifolds exhibit non-split covers. The covers discussed

in this section are toy models for these situations.

We focus on irreducible spectral covers with a single component, more general covers

are given by unions of these irreducible covers. Further we restrict to set-ups for which the

monodromy elements si = s ∈ Sn are identical for all components of the branch locus and

of order n for n-sheeted coverings. In this setting the topology in the vicinity of branch link

Li is that of the branched multi-covering studied in knot theory [101], from which we excise
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Knot Name Sketch 2-fold C 3-fold C 4-fold C 5-fold C

01 1 1 1 1

31 Z3 Z2 × Z2 Z3 1

41 Z5 Z4 × Z4 Z3 × Z15 Z11 × Z11

51 Z5 1 Z5 Z2 × Z2 × Z2 × Z2

Table 3.1: We table examples of knots. Each column list the torsion component of the first
homology of the n-fold covering space C → S3 of the knot [101]. The torsion numbers are
tabled in [102]. The pictures are taken from [103].
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the links Li along which the Higgs field diverges. We refer to these covers as irreducible,

cyclically branched n-sheeted coverings. The example of section 3.4 realizes such a cover for

n = 2 and gADE = su(2) with Li = S1 and s = −1 ∈ S2.

We start with a solution to (3.9) for eigenvalue 1-forms λk where K = 1, . . . , n. The

eigenvalues λk sweep out a n : 1 cover C → S3\∪iLi away from the branch locus and picking

Seifert surfaces for each link (Li, Fi) the spectral cover C can be written as

C = C̃ \ ∪iLi , (3.18)

where the covering C̃ is glued from n copies of the base with the Seifert surfaces removed

C̃ =
(
S3 \ ∪iFi

)
1

# . . .#
(
S3 \ ∪iFi

)
n
. (3.19)

The cut out S3 \ ∪iFi contains two copies of the Seifert surfaces F±i corresponding to

its positive and negative sides which intersect along the links Li. The gluing in (3.19) is

performed by identifying F+
i in the i-th gluing factor with F−i in the (i + 1)-th factor and

finally gluing F+
i in the n-th gluing factor to F−i in the first. Each gluing factor is in

correspondence with a sheet of the spectral cover. For further details we refer to [101,104].

The homology groups of the cover (3.19) are computed by an application of the Mayer-

Vietoris sequence to a decomposition of the cover C̃ into patches whose projection to the base

contain at most a single Seifert surface Fi. The homology groups of the spectral cover (3.18)

are then computed by another application of the Mayer-Vietoris sequence to the covering

C̃ = C ∪ T where T is tubular neighbourhood of the links ∪iLi ⊂ T . We restrict to the case

in which the links Li = Ki are simply knots and T thus becomes a collection of l solid tori.

For an n-sheeted cover with l knots Ki the result reads

H1(C,Z) = Z(n−1)(l−1)+l ⊕
l⊕

i=1

H
(n)
1 (Ki) , H2(C,Z) = Z(n−1)(l−1) , (3.20)

together with H0(C,Z) = Z and H3(C,Z) = 0. Each knot contributes a torsion factor to

the first homology group while the number of links and sheets determines the free factor

in (3.20). In table 3.1 we list the group H
(n)
1 (Ki) for some low component coverings, a



substantially more extensive list of examples is given in [102]. These torsion groups give rise

to light but massive modes beneath the KK scale upon compactification to 4d, see section

7 in [2].

The cover (3.18) inherits a natural metric from its gluing factors. The eigenvalues λk of

the Higgs field then combine to a harmonic 1-form on the spectral cover

λ ∈ Ω1(C) , λ
∣∣
[S3\∪iFi]K

= λk , K = 1, . . . , n , (3.21)

which by constructions restricts on each gluing factor to one of the local 1-form eigenvalues

λk of the Higgs field. Supersymmetric deformations of the cover C are now described by

harmonic perturbations λ→ λ+δλ or equivalently n harmonic perturbations λk → λk+δλk

which glue consistently across the branch sheets ∪iFi.

Finally note that we have an auxiliary Calabi-Yau structure on the cotangent bundle

T ∗S3 whose symplectic 2-form ω and holomorphic 3-form Ω are given by

ω =
i

2

3∑
i=1

dzi ∧ dz̄i , Ω = dz1 ∧ dz2 ∧ dz3 , (3.22)

where dzi = dxi + idyi with xi, yi being local coordinates on S3, T ∗xS
3 respectively. With

respect to this auxiliary Calabi-Yau geometry the spectral cover C is an immersed, non-

compact Lagrangian submanifold, which follows from ω|C = dφ = 0.

Chapter 4
Localised Matter

We will now study the more interesting and richer class of matter fields, localized on points

or one-dimensional loci ofM3. So far in chapter 2.4 we considered only flat gauge fields on

along M3, which corresponds to bulk matter. Turning on vevs for the Higgs fields φ will

enlarge the possible matter structure and will allow us to engineer spectra with non-trivial

chiral index. The simplest case is an abelian Higgs field configuration

G̃ → G× U(1)⊥

Ad(G̃) → Ad(G)⊕Ad(U(1))⊕R+q ⊕R−q ,

(4.1)

40
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where G is the 4d gauge group and U(1)⊥ the commutant, along which the Higgs fields is

turned on. The expectation is that since φ is in the 3 of SO(3)twist, the condition for local

gauge enhancement to G occurs at codimension 3 in the base M3, i.e., codimension 7 in

the G2-manifold J . This is also suggested by the earlier spectral cover discussion. We will

discuss this case of codimension 7 localized matter first. In less generic situations, such as

the twisted connected sums, however, enhancement occurs at codimension 6 loci.

We begin with split Higgs bundles (2.24) with sources ρ supported on a graph Γ. For

this class of set-ups the twisted cohomology groups characterizing the spectrum can be

simplified to relative de Rham homology groups. The solution to the BPS equations on M3

will be constructed by excising a tubular neighborhood T (Γ) of a graph Γ, with boundary

conditions, which we will discuss in detail. The central question is how the zero modes inR+q

and R−q are counted. In this section we provide the cohomological answer to this question,

which applies to both codimension 6 and 7 gauge enhancements. In the next section we will

provide specific solutions to the BPS-equations, to which the general analysis in this section

can be applied, thereby computing the zero mode spectrum.

4.1 Zero Modes from Relative Cohomology

We now turn on a background value for the Higgs field φ, which to begin with is U(1)-valued

and solving (2.24). As explained in chapter 2, we now set out to solve the D-term equation

(2.18) for φ = df with sources, i.e., the Poisson equation

∆f = ρ , (4.2)

where the charge density ρ satisfies charge conservation∫
M3

ρ = 0 . (4.3)

We take ρ to be localized on links Γi in M3 of definite signs of the charges, Γ±,

Γ = Γ+ ∪ Γ− . (4.4)
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Both the Higgs field φ and f diverge along Γ. We again excise a tubular neighborhood as

in chapter 2. The boundary ∂M3 splits into connected components Σi, which correspond

to the connected components of the underlying links Γi and correspondingly the boundary

splits as

∂M3 =
⋃
i

Σi = Σ+ ∪ Σ− . (4.5)

The normal derivatives of f , which are computed with respect to the outward pointing unit

normal vector fields, have to be positive (resp. negative) restricted to Σ+ (resp. Σ−).

The zero modes of the fields in the representation Rq and R−q in the presence of a

background Higgs vev φ = df are obtained from the twisted Laplacian

∆f = DD† +D†D =
(
d†d+ dd†

)
+ q2|df |2 + q

3∑
i,j=1

(Hf )ij

[
(ai)†, aj

]
, (4.6)

where

D = d+ qdf∧ , D† = d† + q ιgradf , (4.7)

and Hf is the Hessian of f . Furthermore we defined the raising/lowering operators

(ai)† = dxi∧ , ai = ι∂i . (4.8)

Note that D† is not necessarily adjoint to D on manifolds with boundary Σ as

〈Dα, β〉 − 〈α,D†β〉 =

∫
Σ
ᾱ ∧ ∗β . (4.9)

Requiring appropriate boundary conditions fixes this problem. Consider a form α split into

its tangential and normal component to the boundary

α = αt + αn . (4.10)

The tangential part αt is defined as the pullback of α to the boundary and the normal part

as αn = α − αt. The boundary contribution is sensitive only to the tangential components

i.e., ∫
Σ
ᾱ ∧ ∗β =

∫
Σ
ᾱt ∧ ∗βn =

∑
i

∫
Σi

ᾱt ∧ ∗βn , (4.11)
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where we have used the fact that (∗α)t = ∗αn. The two types of boundary conditions are

Dirichlet : αt|Σi = 0

Neumann : ∗αn|Σi = 0 ,
(4.12)

which can be imposed on every boundary component Σi independently. Choosing one of the

above boundary conditions for every Σi amounts to restricting the domains of the operators

D and D† to an appropriate subspace of forms. Within the restricted domains, the operators

then become adjoints to each other. Moreover, by restricting the domain of ∆f to make it

self-adjoint, we can identify the zero modes of ∆f with the elements of cohomology groups

H∗D(M3) using Hodge theory.

A natural choice is to split the boundary conditions according to whether the normal

derivative ∂nf is inward or outward pointing at a particular component of the boundary.

This is the unique choice of boundary conditions that preclude localization of zero modes

on the boundary Σ. The relevance of this choice will become clear in section 5.4. Extending

the set-up in [105] we first restrict the domains of d and d† to

D(d) :=
{
α ∈ Ωp(M3)

∣∣αt|Σ− = 0 (Dirichlet)
}

D(d†) :=
{
α ∈ Ωp(M3)

∣∣ ∗αn|Σ+ = 0 (Neumann)
}
,

(4.13)

i.e., we are imposing Neumann conditions on the positive boundary and Dirichlet conditions

on the negative. Moreover, we define the domains of D and D† to be D(D) = D(d) and

D(D†) = D(d†). The corresponding boundary conditions on the metric Laplace operator

are given as

Dmatter(∆) =
{
α ∈ Ωp(M3)

∣∣∣αt|Σ− = (d†α)t|Σ− = 0 and ∗ αn|Σ+ = ∗(dα)n|Σ+ = 0
}
,

(4.14)

where we set again Dmatter(∆f ) = Dmatter(∆). Note that the d-complex and D-complex

are isomorphic, so they have isomorphic cohomology groups. In this case, the d-complex is

restricted to forms which vanish on Σ−. This computes the relative cohomology of the pair

(M3,Σ−) [106] so we get

Hp
D(M3) = Hp(M3,Σ−) . (4.15)
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The sign of the U(1)-charge q is important. Changing it amounts to changing the sign of

f , which inverts the signs of normal derivatives and consequently exchanges the boundary

conditions imposed on the positive and negative boundaries, and we obtain the cohomology

groups with respect to the positive boundary. In terms of the operators defined in section

2.3 changing the sign of q corresponds to computing the cohomology with respect to the

operator D̄, which is isomorphic to the D-cohomology but this time with respect to the

conjugate representation R.

Returning to the analysis of the spectrum above, we have seen that it is computed

by the relative cohomology with respect to the negatively charged boundary components.

Clearly, H0(M3,Σ−) vanishes since any constant function which vanishes on the boundary

is identically zero. Moreover, by Lefschetz duality1 H3(M3,Σ−) also vanishes. Therefore,

the discussion from section 2.3 shows that the chiral fermions are counted by H1(M3,Σ−),

while the conjugate-chiral fermions are counted by H2(M3,Σ−)

chiral : H1(M3,Σ−)

conjugate-chiral : H2(M3,Σ−) .
(4.16)

The net amount of chiral matter transforming in the representation R is therefore given by

the relative Euler characteristic

χ(M3,Σ−) = b2(M3,Σ−)− b1(M3,Σ−), (4.17)

where b1(M3,Σ−) and b2(M3,Σ−) are the dimensions of the respective cohomology groups.

The Hodge star induces the isomorphism H∗(M3,Σ−) = H3−∗(M3,Σ+), so that

χ(M3,Σ−) = −χ(M3,Σ+) . (4.18)

We have seen that for an M3 without boundary there is a 4d vector multiplet in the

spectrum. Once we introduce sources along Γ and excise a tubular neighborhood around
1The standard statement of Lefschetz duality is: Let M be an orientable compact manifold of dimension

n, with boundary N , then Hk(M,N) ∼= Hn−k(M) and Hk(M,N) ∼= Hn−k(M) with integer coefficients.
When the boundary has at least two disconnected components N = N+ ∪ N− a generalization of this
theorem gives Hk(M,N+) ∼= Hn−k(M,N−) and Hk(M,N+) ∼= Hn−k(M,N−).
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them, we need to check that the vector multiplets remain in the spectrum. Since these

adjoint fields are uncharged under the U(1), the associated forms cannot have any tangential

boundary conditions, and we impose purely normal boundary conditions. In this case the

domain of the relevant Laplace operator becomes

Dgauge(∆) := {α ∈ Ωp(M3) | ∗αn|Σ = ∗(dα)n|Σ = 0} . (4.19)

The kernel is then isomorphic to the de Rham cohomology groups [105] and we obtain the

required zero modes for the vector multiplets in 4d.

4.2 Higher Rank Higgs bundles

Next we generalize to higher rank Higgs bundles in G⊥. We still assume that [φ, φ] = 0.

If the Higgs field eigenvalues and by extension linear combinations thereof are not globally

defined (i.e., in the spectral cover language the spectral cover is non-split and does not fully

factor) then we still have a local description in terms of the Higgs field along the Cartan

subalgebra:

locally on M3 : φ = H idfi , (4.20)

away from the sources ρ = H iρi and j = H iji in (2.25). Here n = rkG⊥ and H i the

generators of the CSA. Locally this background breaks the gauge symmetry into

G̃ → G× U(1)n ,

Ad G̃ → AdG⊕Ad(U(1)n)⊕
⊕

Q=(q1,...,qn)

RQ ,
(4.21)

where Q = (q1, . . . , qn) denotes a vector of U(1)-charges. If the spectral cover has N + 1

irreducible components (as in (3.5)), N of these n U(1) factors descend to the gauge group

of the 4d effective theory. The operator D defined in (2.37) acts on RQ

D|RQ
= DQ = d+ (q1df1 + · · ·+ qndfn)∧ ,

D|†RQ
= D†Q = d† + ιgrad(q1f1+···+qnfn) .

(4.22)

Let us introduce

fQ = q1f1 + · · ·+ qnfn . (4.23)
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AdG AdU(1)n RQ R−Q

Vector multiplets 1 1 0 0

Chiral multiplets b1(M3) b1(M3) b1(M3,Σ
−
Q) b2(M3,Σ

−
Q)

Table 4.1: The 4d N = 1 matter content for a background given by a U(1)n valued Higgs
bundle whose spectral cover is fully factored. Here Σ−Q denotes the negative boundary ofM3

with respect to the function fQ. Note b1(M3) = b2(M3) and b1(M3,Σ
∓
Q) = b2(M3,Σ

±
Q).

The zero modes are counted by (2.45) where E = AdG⊥. If the spectral cover does not

factor, i.e., the sheets mix under monodromy, the cohomologies of the operator D cannot

be rewritten in terms of, e.g., de Rham cohomologies. For the case of rank 1 Higgs bundles

the isomorphism given between the corresponding complexes was given by conjugation with

eqf 2. This required a globally defined function f whose role for fully reducible Higgs bundles

is played by fQ as we will explain in the next section. This isomorphism cannot be adapted

in a straightforward manner to general Higgs bundles.

Restricting D to AdG or Ad(U(1)n), it is reduced to the exterior derivative

D|AdG = D|U(1) = d , D|†AdG = D|†U(1) = d† . (4.24)

Vector and chiral multiplets transforming in these representations are thus simply counted

by the zeroth and first Betti numbers ofM3, respectively.

However, if the Higgs bundle diagonalizes globally, i.e., if we have rank G⊥ many U(1)

symmetries, then a simple generalization of the rank one case applies. The zero modes are

counted with respect to

D = d+ dfQ∧ , (4.25)

where fQ is globally well-defined and a function. As a consequence the results of chapter

4.1 carry over upon making the replacement qf → fQ. M3 is obtained by excising the

singularities of all the fi and the boundary decomposes again into positive and negative
2For further explanation we refer to appendix C of [1])
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M3

 =1

M3

 =1

Figure 4.1: Examples of charged graphs inM3. Positive, negative charges are coloured red,
blue respectively. Both charge distribution give rise to the same chiral index but a different
number of zero modes.

parts

Σ = Σ+
Q ∪ Σ−Q , (4.26)

depending on whether fQ → ±∞ when approaching the excised charge. By (4.23) the

charge vector can flip the sign of a boundary as seen by the individual functions fi used to

define fQ, i.e., for differently charged representation RQ each zero mode counting requires

an alternate decomposition of the boundary. We therefore find the fermionic zero mode

spectrum in the representation RQ to be enumerated by the relative Betti numbers

b1(M3,Σ
−
Q) = number of chiral zero modes inRQ ,

b2(M3,Σ
−
Q) = number of conjugate-chiral zero modes inRQ .

(4.27)

This parallels the identification of cohomologies as in (4.15). Each of these fermionic zero

modes contributes to a chiral multiplet upon reduction to 4d by supersymmetry. The CPT

conjugate of the fermionic zero modes enumerated by b2(M3,Σ
−
Q) will be of positive chirality

in 4d and contribute to a chiral multiplet valued in R−Q.

For the representations uncharged under any of the factors of U(1) we have D = d

and their boundary conditions onM3 are chosen purely normal as in (4.19), and they are

counted by de Rham cohomology. The complete 4d spectrum is summarized in table 4.1.



4.3 Example: Wires in S3

We now turn to describing concrete charge configurations – these configurations were studied

in [49] and we revisit them here. Let M3 = S3 and embed charges in S3 which are localized

on a graph Γ. The positively and negatively charged components of the graph are disjoint

Γ = Γ+ ∪ Γ− . We denote by n+, n− the number of components and by `+, `− the number

of loops of Γ+,Γ− respectively. The total charge on Γ± is again constrained to vanish.

Excising tubular neighbourhoods of Γ± we obtainM3 with associated boundaries Σ±. By

(4.15) the number of non perturbative chiral and conjugate-chiral zero modes are then given

by the Betti numbers bi(M3,Σ−) for i = 1, 2 respectively. The top and bottom cohomologies

vanish as discussed in chapter 4.1. The first and second cohomology are

b1(M3,Σ−) = `+ + n− − r − 1

b2(M3,Σ−) = `− + n+ − r − 1 ,
(4.28)

where r counts the number of negative loops which are independent in homology when

embedded in M3 \ Γ+. The chiral index is then computed to be

χ(M3,Rq) = (n+ − `+)− (n− − `−) . (4.29)

It solely depends on the charge configuration Γ and is independent of the number r. A chiral

spectrum is therefore easily generated. Multiple charged graphs will give rise to the same

spectrum. Another point to note here is that a non-trivial chiral index will only arise if for

some sign of the charge, the number of loops and components is different, i.e., the charge

distribution is not localized solely on a disjoint union of circles. This will later on give hints

as to how to deform the Higgs bundles for TCS G2-manifolds whose local model exhibits a

48
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split spectral cover.

Chapter 5
BPS-Configurations, SQM and Morse-Bott Theory

In the discussion above we were not interested in any particular features of the harmonic

function f onM3 and the computation of the spectrum is in fact valid for any such f . In

this section we first specialize to the case where the Higgs field φ = df has isolated, non-

degenerate zeros, which is the same as requiring f to be a Morse function – this is the case

already studied in [49]. We show that massless chiral matter is localized at the zeros of the

Higgs field. We then generalize this to the case where f can have critical loci of dimension

one, in which case it is Morse-Bott. The latter will be essential for the TCS geometries.

The main tool here is reformulating the problem of finding the kernel of the Laplacian ∆f in

terms of a supersymmetric quantum mechanics and Morse theory. This approach is useful

as it lends itself to the generalized Morse-Bott setup that we are interested in. In section 6

we extend this approach to arbitrary solutions of the BPS equations (2.18).

5.1 Matter, Morse and Witten’s SQM

Let us consider again the abelian case where φ = df with f harmonic in the decomposition

(4.1), which counts the fermionic zero modes transforming in the representation Rq, that

are in the kernel of

∆f = DD† +D†D =
(
d†d+ dd†

)
+ q2|df |2 + q{d, ιgrad f}+ q{d†, df∧} . (5.1)

The twisted Laplacian ∆f can be interpreted as the Hamiltonian of a supersymmetric quan-

tum mechanics (SQM) with the target space M3 where the supercharges are given by the

operators D and D̄ [107]. In section 2.3 we have shown that (due to the partial topological

twist) the state space is identified with the space of differential forms on M3. However,

since M3 is now a manifold with boundary, we have to restrict the state space to forms
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satisfying the boundary conditions given in (4.13), which we denote by H = ⊕iΩi
b(M3).

The subscript b indicates that the forms satisfy the boundary conditions. The function f

now plays the role of a superpotential and the kernel of ∆f characterizing the true zero

modes in the reduction to 4d is now enumerating the supersymmetric ground states of the

SQM [107]. In summary:

4d Effective Theory SQM

Matter fields State Space

D, D† Supercharges

∆f Hamiltonian

Higgs field φ = df f = Superpotential

Matter zero modes Ground states

As in Witten’s analysis, we can now use perturbation theory to compute the zero mode

spectrum. To compute the perturbative kernel of ∆f , rescale f 7→ tf . In terms of the

electrostatics problem (4.2), this amounts to rescaling the charges globally by a factor of

t, which does not alter the overall ground state count. The term q2|df |2 in (5.1) scales

quadratically in t. Hence, for large t, the solutions of the equation ∆tfψ = 0 are localized

at the points where df = 0 i.e., the zeros of the Higgs field φ.

In this discussion we focus on harmonic functions f which are Morse. The local physics

will then be given by a supersymmetric harmonic oscillator. Before continuing with the

computation we recall the definition of a Morse function. A smooth function f : M3 → R

is called Morse if its set of critical points

N = {p ∈M3 : df(p) = 0} (5.2)

is discrete and all points p ∈ N are non-degenerate. A critical point p ∈ N is called non-

degenerate if its Hessian Hf (p) is non-degenerate as a bilinear map. In this case p ∈ N is

assigned a number µ(p) called the Morse index given by the number of negative eigenvalues

of H(p)

p ∈ N : µ(p) = |{c = eigenvalue of Hf (p); c < 0}| . (5.3)
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In the case of manifolds with boundary, we further assume that there are no critical points

of f on ∂M3. Note that this is true in our case, since the normal derivative of f at the

boundary is non-zero (see chapter 4.1). For more details on Morse theory we refer the reader

to [108,109].

We can choose a normal coordinate system in which f and the metric g onM3 take the

form

f(x) = f(0) +
1

2

3∑
i=1

ci(x
i)2 +O((xi)3) ,

gij(x) = δij +O((xi)2) ,

(5.4)

where we assumed that p = 0 and ci are the eigenvalues of the Hessian, which due to the

harmonicity of f sum to zero. This means that only points with Morse index 1 and 2 can

occur. Expanded in these coordinates ∆tf reduces to the Hamiltonian of a supersymmetric

harmonic oscillator with

∆tf =
3∑
i=1

(
− ∂2

∂(xi)2
+ q2t2c2

i (x
i)2 + qtci[dx

i, ι∂/∂xi ]

)
+O((xi)3) . (5.5)

Solving for the ground states of the harmonic oscillator locally, near a critical point p of

Morse index µ(p), we find a unique solution given by a differential form of degree µ(p). The

zero modes of ψ, which are identified with 1-forms in (2.45), localize at critical points of

Morse index 1. For ci with signature (−,+,+), the solution to leading order is

µ(p) = 1 : ψ = ψ(p,q) exp

(
−qt

3∑
i=1

|ci|(xi)2

)
dx1 . (5.6)

In other words the form part is oriented along the negative eigenspaces of the Hessian of the

function f . Here we have decomposed the 7d spinor ψ into a Weyl-spinor ψ(p,q) carrying the

anti-commuting, gauge and 4d spinor structure and its internal profile alongM3. The index

(p, q) indicates the point p, where the corresponding perturbative ground state localizes and

q keeps track of the charge of Rq. The boundary conditions we described in chapter 4.1 are

exactly such that the solutions of (5.6) collected from all critical points of f of Morse index

1 span the complete perturbative kernel of ∆f at degree 1 [105].
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If p has Morse index 2, the ground state localized near p is of degree 2 and letting ci

have signature (−,−,+), the solution is

µ(p) = 2 : ψ̄ = ψ̄(p,q) exp

(
−qt

3∑
i=1

|ci|(xi)2

)
dx1 ∧ dx2 . (5.7)

Likewise the fermions in R−q are obviously counted by replacing f with −f .

5.2 Exact Spectrum from SQM

The perturbative calculation in the previous section does not necessarily give the exact

spectrum of the full theory. On the SQM side this is due to the fact that quantum mechanical

instanton corrections can cause perturbative ground states to acquire a mass and be lifted

in the full theory [107,108]. We now complete the dictionary between the 4d effective theory

of 7d SYM and SQM by showing that masses of perturbative zero modes in the 4d theory

arise precisely from instanton corrections on the SQM side.

We start our analysis with the action in (2.13) and split the complex 1-form ϕ = ϕ0 +δϕ

into its background ϕ0 = tdf and fluctuations δϕ. The 7d fields are expanded in terms of a

basis of perturbative ground states of the twisted Laplacian as

ψ(x, y) = ψ(a,q)(x)ψ(a,q)(y) ,

ϕ(x, y) = tdf(y) + δϕ(x, y) = tdf(y) + δϕ(a,q)(x)δϕ(a,q)(y) ,

(5.8)

where (x, y) ∈ R1,3 ×M3. Here the sum runs over the charged representations, Rq and

R−q, and all critical points pa of Morse index 1 with respect to the relevant Morse function,

f and −f respectively. The fermionic field ψ(a,q)(x) carries the anti-commuting, gauge and

4d spinor structure while ψ(a,q)(y) is a 1-form onM3 annihilated by the twisted Laplacian

in perturbation theory. In leading order in t these are (5.6) or the CPT conjugate of (5.7).

The decompositions for δϕ are of analogous structure.

A mass term in 4d descends from the 7d interaction

Tr [ψ ∧ Dψ] = Tr [ψ ∧ (dψ + [ϕ∧, ψ])] , (5.9)
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which for an abelian Higgs background yields the mass matrix

Mab =

∫
M3

ψ(a,−q) ∧ (d+ tqdf∧)ψ(b,q) =

∫
M3

ψ̄(a,q) ∧ ∗(d+ tqdf∧)ψ(b,q) . (5.10)

This precisely computes the instanton corrections between the perturbative ground states

in SQM theory and is simply the matrix element

Mab = 〈ψ(a,q)|Dψ(b,q)〉 . (5.11)

Let us briefly summarize the classic results on these instanton corrections, see [107,108] for

a detailed treatment. The (Euclidean) action of the SQM with target spaceM3 is given by

a standard sigma-model action

SSQM =

∫
R
ds

(
1

2
gij
dγi

ds

dγj

ds
+
q2t2

2
gij∂if∂jf

+gij η̄
iDsη

j + qtDi∂jfη̄
iη̄j +

1

2
Rijklη

iη̄jηkη̄l
)
,

(5.12)

where gij is the metric on M3, D the covariant derivative and Rijkl the curvature tensor.

Canonically quantizing this action, one gets the SQM we have described in the previous

section [107]. The matrix element (5.11) now has the following path integral expression

〈ψ(a,q)|Dψ(b,q)〉 =
1

qf(pa)− qf(pb) +O(1/t)
lim
T→∞

〈ψ(a,q)|eT∆tf [D, f ]e−T∆tfψ(b,q)〉

=
1

qf(pa)− qf(pb) +O(1/t)

∫
γ(+∞)=pa
γ(−∞)=pb

DγDηDη̄ [D, f ]e−SSQM ,
(5.13)

which is valid to leading order in 1/t. The path integral is taken over the space of all

trajectories γ connecting the critical point pb to pa, where µ(pb) = 1 and µ(pa) = 2. The

integrand [D, f ] is D-exact and hence the path integral receives contributions only from fixed

points of the fermionic variations generated by the corresponding supercharge D. Such fixed

points are given by trajectories γ

dγi

ds
= tqgij∂jf , (5.14)

which is the gradient flow equation. With this the mass matrix is evaluated in [108] to

leading order in 1/t as

Mab =
∑
γ

nγe
−tq(f(pa)−f(pb)) . (5.15)
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M3
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S 3

pa pb

(f)

π

Figure 5.1: The supersymmetric three-cycle responsible for mass terms. The two critical
points pa and pb of the function Morse f in the base of the ALE-fibrationM3 are connected
by a gradient flow line γ(f). Above each point along this path there is a two-spheres in the
ALE fiber. Traversing along a gradient flow line of f a 3-sphere S3

γ is traced out.

Here the sum runs over all ascending gradient flow lines γ starting at pb and ending at pa.

The contribution from a flow line γ is weighted by a sign nγ = ±1, which arises from a

choice of orientation on the moduli space of gradient trajectories. The precise derivation

from the SQM context is intricate and is given in [110, Appendix F]. The main takeaway

is that perturbative ground states form a complex, where the coboundary operator is given

by

Dψ(b,q) =
∑
a

Mabψ̄(a,q) . (5.16)

This is exactly the Morse-Witten complex for the Morse function f . Massless states are

counted by the cohomology of this complex and can be found by diagonalising Mab. Recall

from chapter 4.1 that f is a solution of an electrostatics problem and satisfies ∂nf < 0 (resp.

∂nf > 0) on Σ− (resp. Σ−). The Morse-Witten complex therefore recovers the relative

cohomology of a pair (M3,Σ−) [111]. In 4d these give rise to b1(M3,Σ−) chiral multiplets

valued in Rq and b2(M3,Σ−) chiral multiplets valued in R−q.

It is possible that the boundary operator of the Morse-Witten complex is trivial. This

is equivalent to a vanishing of the mass matrix Mab = 0, i.e., all perturbative ground states

are true ground states. In this case the Morse function f is called perfect. This is precisely

the case when f has bi(M3,Σ−) critical points of Morse index i, for i = 1, 2.

We can consider these mass terms also in the M-theory picture. In section 2.2 we have
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interpreted the Higgs field φ = df as measuring the periods of the vanishing cycle in an

ALE-fibration, with respect to a reference hyper-Kähler structure. For an abelian Higgs

field there is exactly one such vanishing cycle which is of finite volume through-outM3 and

collapses precisely at the critical points of f . As this vanishing cycle is a two-sphere, paths

connecting two critical points lifts to a 3-sphere in the ALE geometry. This 3-sphere is of

minimal volume whenever it projects to a gradient flow line in M3. This is depicted in

figure 5.1.

We can consider an M2-brane probing the ALE fibered G2-manifold. The stationary

points of the M2-brane action are expected to correspond to associative three-cycles and are

fibered by vanishing cycle of the ALE-fiber over the gradient trajectories γ(f) determined

by the Morse function f . This gives the interpretation that the particle of the SQM is the

W-boson constructed by wrapping an M2-brane on vanishing cycles of the resolution. We

expand on this point of view in the next section. The associatives wrapped by the M2-branes

then give a non-perturbative correction to the superpotential [112,113] which is of the form

∆W ∼ nγ exp

(
i

∫
S3
γ

(C + iΦ)

)
. (5.17)

In particular, the coefficients originating from a one-loop determinant in the M2-brane action

are the same as the those computed in the supersymmetric quantum mechanics and hence

give the same coefficients nγ = ±1 as those appearing in the Morse theory analysis. In the

case of several flow lines connecting the same critical loci pa, pb, the corresponding associa-

tives are homologous and there can hence be cancellations among the different contributions

depending on the relative orientation.

5.3 Example: n+ + n− Point Charges in S3

We apply the analysis of section 5.1 and 5.2 to point charges on the three-sphere. Example

configurations are shown in figure 5.2. Let M3 = S3 and G̃ = SU(n + 1). Consider n±

positive/negative point charges with the total charge vanishing. The function f : M3 → R is
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Figure 5.2: Examples of point like charge configurations inM3. Depicted are positive (red)
and negative (blue) charges, critical points (yellow) and flow lines starting and ending at
critical points. The critical points have Morse index µ. The contributions of the flow lines
cancels and for generic set-ups each critical point will give rise to a ground state of positive,
negative chirality if µ = 1, 2 respectively. The LHS thus has an equal number of chiral and
conjugate-chiral ground states, the chiral index vanishes. For the same reasons the chiral
index does not vanish on the RHS.

the electrostatic potential generated by these charges. This function gives rise to a singular

abelian Higgs field background on S3 via φ = df which breaks

AdSU(n+ 1)→ AdSU(n)⊕AdU(1)⊕ nq ⊕ n−q , (5.18)

Perturbative ground states localize at the critical points of the harmonic function f . Let

nµ be the number of points with Morse index µ, then there are n1 chiral fermions ψ and

n2 conjugate-chiral fermions ψ̄ transforming in nq. The harmonicity of f forbids points of

Morse index 0 or 3 as these are minima or maxima respectively. The chiral index as defined

(2.50) is given by the difference

χ
(
S3,nq

)
= n2 − n1 , (5.19)

as perturbative ground states are lifted by M2-brane corrections in pairs leaving the differ-

ence of ground states of positive and negative chirality unchanged.

Next smear out the charges to small balls so that the singularities of f are removed

without altering f away from the support of the charge distribution. In this case grad f

becomes a smooth vector field on M3 and the Poincaré-Hopf theorem can be applied. We

denote the critical points of f by xi, then the topological index I(xi, f) of grad f at xi is
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determined by the topological index of the map

grad f
|grad f |

: S2
xi → S2 , (5.20)

where S2
xi is a small ball containing the critical point xi. The Poincaré-Hopf theorem asserts

that the sum of all indices is the Euler characteristic of M3 = S3

∑
i

I(xi, f) = χ
(
S3
)

= 0 . (5.21)

Note that I(xi, f) = (−1)µ(xi) for all critical points xi and that each charge contributes one

maximum or minimum upon smearing it out, whereby (5.21) simplifies to

0 = n− − n1 + n2 − n+ . (5.22)

Combining this result with (5.19) we find the chiral index to be determined solely by the

composition of the initial charge configuration

χ
(
S3,nq

)
= n+ − n− . (5.23)

We thus find a rather simple criterion to determine whether the true ground state spectrum

of the theory is chiral or not:

n+ 6= n− ↔ chiral spectrum . (5.24)

Two examples are shown in figure 5.2. This result is of course recovered from the more

general charge distributions discussed in section 4.3 upon setting the number of loops l+

and l− to zero. In particular for generic placements of the n+ + n− charges one has

n1 = n− − 1 , n2 = n+ − 1 . (5.25)

Each critical point thus constitutes a true ground state and we recover (4.28). This is made

explicit in figure 5.2. If flow lines between critical points exist, they always do so in pairs

with nγ = ±1. Hence the corresponding ground states are not lifted.
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μ=0

μ=2

μ=2

Figure 5.3: S2 with the Morse-Bott function given by f(x, y, z) = z2. The critical locus is
colored in yellow and consists of two critical points of index 2 (north ant south pole) and a
critical circle of index 0 (the equatorial circle). The gradient curves are depicted in black.
Note thatM(N0, N2) = S1

∐
S1. These two circles parametrize the gradient trajectories in

the upper and lower hemisphere.

5.4 Generalized Critical Loci and Morse-Bott Theory

The setup studied in [49] and in the last section assumes that the critical loci of the function

f are isolated points. Although this is the generic situation, it will be important to relax

this assumption and consider the generalized setup in which the critical locus of f can be

one-dimensional, which happens for the recent TCS constructions of G2-manifolds. Func-

tions f with critical loci of dimension greater than zero whose Hessian at its critical closed

submanifold is non-degenerate in the normal direction are called Morse-Bott functions. An

example is given in figure 5.3. For further background on this see [108,114].

The starting point is once more an abelian Higgs field φ = df as in section 5.1 where now

f is taken to be a harmonic Morse-Bott function. We are again interested in the fermionic

zero modes transforming in the representation Rq which are in the kernel of the twisted

Laplacian (5.1). As before, rescaling f → tf these localize on the critical loci of f and we

can solve for the zero mode solutions locally. However, f now has higher dimensional critical

loci and our previous analysis needs to be adapted. We begin by analyzing the critical loci

of f .

The local analysis of the perturbative ground states is now the same as in section 5.1,
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although some extra care is required to keep track of the critical loci of different dimensions.

The critical locus of f splits into connected components all of which are compact closed

submanifolds ofM3. Let N denote a single connected component. The normal bundle νN

splits into the positive and negative eigenspace of the Hessian Hf of f

νN = ν+N ⊕ ν−N (5.26)

and the Morse index of N is defined as the rank of ν−N . In our context the Morse-Bott

function f is also harmonic. This precludes critical submanifolds of dimension 2 since

harmonicity of f implies that trHf = 0, which would mean that Hf is degenerate in the

normal direction, which is not possible since f is Morse-Bott by assumption. For harmonic

Morse-Bott functions on a three-manifold, N can thus only be a point or a circle. Moreover,

if N = S1, it can only have index 1. This is again due to the requirement that TrHf vanishes

everywhere. The case where N is a point has been analyzed in section 5.1.

If N = S1 we can proceed analogously. As N has index 1, f is locally of the form

f(x) = f(0)− c

2

(
(x1)2 − (x2)2

)
+O((xi)3) , (5.27)

in a suitable normal coordinate chart centered at a point p ∈ N . In this coordinate system

x3 is the coordinate tangential to N and the Hessian Hf is diagonalized with the eigenvalues

c and −c. In these coordinates the twisted Laplacian (5.1) now takes the form

∆tf = (∆tf )⊥ + (∆tf )‖ +O((xi)3) ,

(∆tf )⊥ =

2∑
i=1

(
− ∂2

∂(xi)2
+ q2t2c2(xi)2

)
− qtc[dx1, ι∂/∂x1 ] + qtc[dx2, ι∂/∂x2 ] ,

(∆tf )‖ = − ∂2

∂(x3)2
.

(5.28)

The analysis of perturbative ground states thus splits into normal and tangential parts

relative to N . In the normal direction we get a single 1-form solution ψ⊥ given by

ψ⊥ = ψ(n,q) exp
(
−qtc

(
(x1)2 + (x2)2

))
dx1 . (5.29)

Here we have split ψ⊥ into a 4d Weyl spinor ψ(n,q) carrying the anti-commuting, gauge and

spinor structure and its internal profile normal to N . In principle ψ⊥ is defined only locally
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on N . However, observe that ψ⊥ is a volume form on the fiber of ν−N . Hence, assuming

that the negative eigenbundle ν−N is orientable, the local solutions can be patched together

to a global form on N . Since f is constant on N the tangential equation reduces to a Laplace

equation on S1. Let the coordinate on the circle be θ. Then we obtain two solutions

ψ1 = ψ⊥ , ψ2 = dθ ∧ ψ⊥ . (5.30)

For every circle N contributing to the perturbative spectrum we therefore obtain a pair of

states consisting of a 1- and 2-form. From (2.45) we know that the degree of the ground

state correlates with the 4d chirality of fermions, i.e., the state described by a 1,2-form has

positive, negative chirality upon a reduction to 4d. These fermionic states again contribute

to chiral multiplets in 4d.

As in the case of Morse functions, perturbative zero modes for χ, χ̄ transforming in Rq

are absent as f is harmonic. To conclude we again remark that the analysis above extends

to fermionic ground states transforming in R−q by replacing f with −f . The function −f

now exhibits the same critical loci. A critical point of Morse index µ with respect to f has a

Morse index of µ−3 with respect to −f , however critical circles exhibit an unchanged Morse

index of 1 with respect to both f and −f . The modes localising on the critical circles of −f

transforming in R−q are CPT conjugate to the solutions found in (5.30). As a consequence

we find the localized perturbative ground states on every critical circle contributing to the

perturbative spectrum to assemble to two chiral multiplets transforming in Rq and R−q.

5.5 Generalized Critical Loci and SQM

We now turn to the computation of the exact spectrum from the perturbative solutions in

the Morse-Bott case, where the critical loci of f consist of points and circles. While it is

possible to compute the SQM instanton correction in much greater generality [108,114], the

applications for TCS local models allow us to consider only the set-up with this restriction.

The instanton calculation in this case effectively reduces to the one considered in section

5.2.
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To find the exact spectrum, we again want to compute the matrix element (5.15) be-

tween perturbative zero modes localized at critical submanifolds we use the analogous SQM

computation. Let Nm denote the disjoint union of critical submanifolds of Morse-Bott index

m (recall that this is the dimension of the negative eigenspace of the Hessian matrix). In

our case, m can take the values 1 or 2. For m = 2, all of the components of N2 must be

points, whereas N1 can contain points as well as circles.

Recall that among the ground states localized at critical circles there are chiral multiplets

transforming in the representation Rq and R−q. As already discussed in section 5.4, this is

because perturbative ground states are of the form

ψ = α ∧ ψ⊥, (5.31)

with deg(ψ⊥) = 1 and α a harmonic form on N1. When N1 is a circle, α can be a function

or a one-form. Consider again the matrix element

Mab =

∫
M3

ψ̄(a,q) ∧ ∗(d+ tqdf∧)ψ(b,q) . (5.32)

Here we again use the indices a and b to enumerate all the perturbative ground states of

total degree 2 and 1 respectively. However, note that for Morse-Bott functions the index

is no longer in one-to-one correspondence with critical loci since there are two perturbative

ground states localized at each critical S1 ⊂ N1. For the following we will require the

assumption that there are no ascending gradient flow lines between connected components

in N1.1

To compute Mab we need to consider three cases. First, both ψ̄(a,q) and ψ(b,q) may be

localized at points in which case the discussion of section 5.2 applies verbatim. We now

turn to the second possibility, where the ground states are both localized at the same circle

critical circle S1 ⊂ N1. The matrix element is then given by the integral∫
M3

dθ ∧ ψ⊥ ∧ ∗(d+ tqdf∧)ψ⊥ , (5.33)

1In this case f is said to be weakly self-indexing. This assumption can be avoided at a cost of making
the exposition much more technical [114].
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where we have used the explicit expression of for such ground states given in (5.30). Using the

expression for ψ⊥ in (5.29) one can see that dθ∧∗(df ∧ψ⊥) = 0 and also dθ∧ψ⊥∧∗dψ⊥ = 0.

This implies that the matrix element Mab is zero, if ψ̄(a,q) and ψ(b,q) are both localized at

the same circle.

The third possibility is that ψ̄(a,q) is localized at a point pa in N2 and ψ(b,q) is localized

at a circle S1
b ∈ N1. To keep track of all of the gradient curves between critical loci of f , we

introduce the moduli space of gradient trajectories between Nm and Nn

M(Nm, Nn) =

{
γ : R→M | lim

t→−∞
γ(t) ∈ Nm , lim

t→∞
γ(t) ∈ Nn ,

dγi

ds = tqgij∂jf

}
R

(5.34)

where the quotient is taken with respect to the remaining reparametrization invariance of

the gradient flow: γ(t) 7→ γ′(t) = γ(t + δt). The moduli space M(Nm, Nn) is a smooth

manifold, and it follows from simple dimensional analysis that its dimension is m − n − 1.

An illustrative example is given by S2 with the Morse-Bott function f(x, y, z) = z2, see

figure 5.3.

For our purposes, the only relevant case is m = 1 and n = 2 in which case the moduli

space is a finite set of points. This means that there are finitely many gradient trajectories

connecting N1 and N2 and there are finitely many ascending gradient flow lines connecting

S1
b and pa. We can now continue with the computation. In terms of the SQM path integral

we have the expression

Mab = 〈ψ(a,q)|Dψ(b,q)〉 =
1

qf(pa)− qf(pb) +O(1/t)

∫
γ(+∞)=pa
γ(−∞)∈S1b

DγDηDη̄ [D, f ]e−SSQM ,

(5.35)

where pb is an arbitrary point in S1
b (note that f is constant along S1

b). This is nearly

the same expression as in (5.13), with the only difference being that we integrate over all

curves with γ(−∞) ∈ S1
b . However, the same localization argument as before applies. As we

have seen above, the number of gradient trajectories is still finite and the result of the path
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integral computation has exactly the same form as for points, i.e., (5.15). The expression

for the operator D also remains unchanged

Dψ(b,q) =
∑
a

Mabψ̄(a,q) . (5.36)

The exact spectrum is given as the cohomology of D, which acts on the following complex

C1 = Ω0(N1) , C2 = Ω1(N1)⊕ Ω0(N2) . (5.37)

This complex is a convenient way to arrange all the perturbative ground states of degree p

in Cp. It is a specific instance of a Morse-Bott complex for f , which can be defined for f

with critical loci of arbitrary dimension [114]. If f is a solution to the electrostatics problem

in section 4.1, the Morse-Bott cohomology again recovers the relative cohomology of a pair

(M3,Σ−).

5.6 Chiral Index from Spectral Covers

We close this section by introducing yet another picture for counting the perturbative zero

modes, namely using the spectral cover introduced in section 3. For certain configurations it

is possible to read off the exact spectrum using the spectral cover, this was already observed

for the U(1) case in [49].

For simplicity let us begin by recalling the statement for the rank 1 Higgsing in (5.18)

where G̃ = SU(n+ 1). There we turned on a single abelian Higgs background parametrised

by the Morse function f via φ = df . The spectral cover C in this case is simply the graph of

φ. The intersection number of C with the zero section b0 = 0 (i.e.,M3) at a critical point p is

denoted by np. This can be identified with the degree of the vector field grad f at the critical

point p. In a coordinate system where the Hessian Hf is diagonal it follows immediately

that the degree is determined by the Morse index µ(p) of f at p as np = (−1)µ(p). We can

therefore recast the counting of perturbative ground states as

|(C ∩M3)−| = chiral perturbative zero modes in Rq

|(C ∩M3)+| = conjugate-chiral perturbative zero modes in Rq ,
(5.38)
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where (C ∩M3)± counts the number of critical points p with np = ±1. The chiral index is

thus simply given by the signed count of all points of intersection

χ(M3,Rq) = C ∩M3 =
∑

p∈M3 : df(p)=0

np = (C ∩M3)+ − (C ∩M3)− . (5.39)

The above carries over straightforwardly to higher rank Higgs bundles if their correspond-

ing spectral cover factors completely. We start from the set-up in which we have broken

the gauge symmetry to G× U(1)n by turning on sources for the Higgs field along the CSA

of G̃ as in section 4.2. The representation Ad G̃ decomposes into irreducible representation

RQ of G × U(1)n where Q denotes a vector of U(1) charges. Generically the representa-

tion Ad G̃ decomposes into irreducible representation of G×G⊥ with the weights λi of the

representation of G⊥ determining the different spectral covers. Due to the special choice

of background the representations of G⊥ have decomposed into representations of U(1)n

and to construct the spectral cover we must group the representations RQ according to this

decomposition. This grouping depends on G̃ but the weights will always be determined by

the corresponding effective Morse functions as λi = dfQi where i = 1, . . . , N . The effective

Morse function fQi was defined in (4.23) and N denotes the rank of the spectral cover. A

spectral cover is thus the union of graphs of multiple dfQi and an N -fold covering of M3.

The matter loci are as before the critical points of fQi , i.e., the intersection of the spectral

cover with the zero section. This is just b0 = 0 in the language of section 3.

To compute the perturbative spectrum we thus just need to count the intersections of

the different sheets with their signs as in the rank 1 case above. Let Ci ⊂ C denote the sheet

of a spectral cover C with Graph(dfQi) = Ci then

|(Ci ∩M3)−| = chiral perturbative zero modes in RQi

|(Ci ∩M3)+| = conjugate-chiral perturbative zero modes in RQi ,
(5.40)

where the notation is as in (5.38). Similarly we compute the chiral index to

χ(M3,RQi) = Ci ∩M3 = (Ci ∩M3)+ + (Ci ∩M3)− . (5.41)



Perturbative zero modes transforming a representation RQi which is not associated by λi =

dfQi to a sheet of this spectral cover are enumerated by the intersection of the different

sheets
|(Ci ∩ Cj)−| = chiral perturbative zero modes in RQi−Qj

|(Ci ∩ Cj)+| = conjugate-chiral perturbative zero modes in RQi−Qj .
(5.42)

The chiral index again given by the difference

χ(M3,RQi−Qj ) = Ci ∩ Cj = (Ci ∩ Cj)+ + (Ci ∩ Cj)− . (5.43)

This is pictorially most clear in the case of An singularities. In this case the ALE-fiber

is given by a circle fibration over R3 and the eigenvalues λi, which are characterised by

the sheets of the spectral cover, correspond to the points at which the circle collapses. A

vanishing sphere is stretched between any pair of these points and collapses whenever they

come together, i.e., when the sheets intersect. This enhances the spectrum and constitutes

an additional ground state.

Chapter 6
M2-brane Instantons and Colored SQMs

We now generalize the SQM description of the previous section to all solutions of the BPS-

equations. These cases covered also include T-brane like configurations with non-flat con-

nections, although we will not study them here. Recall that, given a vacuum of the 7d

SYM in terms of a solution to the BPS equations (2.18), the 4d physics follows from a

compactification of the Lagrangian (2.13) on M3. The bosonic and fermionic fields (2.45)

are Lie algebra valued forms valued in Λ (M3, adPADE) and the Laplacian ∆ determining

the zero mode expansion is given in (2.37). The Laplacian ∆ is associated to the differential

D. We rename Q = D and H = ∆ in this section. In chapter 4 we argued that in favorable

situations we can twist the differential D and use Hodge theory to determine the spectrum.

Alternatively one can characterize the zero mode spectrum in terms of approximate zero

modes and their non-perturbative corrections. Approximate zero modes are Lie algebra

65
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valued 1-forms on M3

Approximate Zero Mode : χ ∈ Ω∗(M3,Sn) (6.1)

which are annihilated by the Laplacian H = 1
2

{
Q,Q†

}
to all orders in perturbation theory.

In the set-up of the last section these could be approximated to (5.6) and (5.7). The 7d

SYM gives following mass matrix for these modes

Mass Matrix : MAB =

∫
M3

〈χA,QχB〉 , (6.2)

where the bracket is anti-linear in the first argument and contracts the Riemannian and Lie

algebra indices using the metric onM3 and Killing form of the Lie algebra gADE respectively.

Generators for the cohomologies (2.45) are then determined by the kernel of the matrix (6.2).

With this approach the Yukawa couplings also become accessible. The SYM gives the

4d Yukawa couplings as the overlap integral

Yukawa Couplings : YABC =

∫
M3

〈χC , [χA∧ , χB]〉 , (6.3)

between three approximate zero modes labelled by A,B,C. Zero modes are determined by

(6.2) to linear combinations of approximate zero modes whereby (6.3) also sets the Yukawa

couplings between these.

In this section we interpreted the overlap integrals (6.2) and (6.3) as amplitudes of a

colored N = 2 supersymmetric quantum mechanics. The relevant structures of the SQM

for this identification are its physical Hilbert space Hphys. and supercharge Q which are

Hphys. = Λ (M3, adPADE) , Q = d+ [(φ+ iA)∧ , · ]. (6.4)

Here we present this new N = 2 supersymmetric quantum mechanics. In [115, 116] similar

quantum mechanical systems with less supersymmetry have been considered. We refer to

the SQM as ‘colored’ due to the presence of additional fermions over the SQM considered in

(5.12) (originally [107]) which extend the Hilbert space by color degrees of freedom associated

with the Lie algebra gADE. The colored SQM is constructed bottom-up from (6.4). We
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expect there to be a top-down derivation of the colored SQM as a dimensional reduction of

an M2-branes probing the G2-manifold. The colored SQM probing the Higgs bundle encodes

the memberane instanton effects of M-theory on the ALE-fibered G2-manifold. The Higgs

bundle was derived from the periods of the G2 3-form Φ over the vanishing cycles in the

ALE fibers. Similarly we can wrap an M2-brane on these vanishing cycles of the ALE fibers

and reduce the brane to a particle moving on the base associative M3. This is now the

natural candidate for the particle described by the colored SQM.

6.1 Set-up and Conventions

We consider the manifold M3 with metric g and a principal bundle PADE →M3 with gauge

group GADE over it. The corresponding Lie algebra is denoted gADE . This gives rise to the

associated adjoint vector bundle adPADE → M3 . Both are naturally complexified. Greek

indices run as α, β, γ = 1, . . . ,dimGADE and are associated to the fiber while latin indices

run as i, j, k = 1, 2, 3 and are associated to the base. The Killing form καβ gives rise to

a non-degenerate pairing on the fibers of adPADE → M3 which is used to raise and lower

greek indices. Latin indices are raised and lowered with the metric gij . The generators of

the Lie algebra gADE are denoted by Tα and are taken to satisfy

[Tα, Tβ] = icαβγT
γ . (6.5)

We probe the geometry adPADE → M3 with a non-linear supersymmetric sigma model.

We denote the flat worldline by Rτ and take τ to denote the time coordinate on it. The

bosonic and fermionic fields are given by the maps x : Rτ → M3 and sections ψ : Rτ →

x∗(TM3) respectively. Further we add a color field given by sections λ : Rτ → x∗(adPADE) .

The dynamics of the model are governed by a non-dynamical background connection A ∈

Ω1(M3, adPADE) and Higgs field φ ∈ Ω1(M3, adPADE) on the target manifold M3 . These

are real Lie algebra valued 1-forms on the target manifold M3 . The connection Aiα and

Higgs field φiα are required to satisfy the BPS equations (2.18). Note that these conventions

differ from (5.12).
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The sigma model can thus be summarized as

x∗(TM3 ⊕ adPADE)⊗ C (TM3 ⊕ adPADE)⊗ C

Rτ M3

ψ, λ

x∗

π

x

πτ A, φ (6.6)

where π, πτ denote the canonical projections. Expanded in components the fields ψ, λ read

ψ(τ) = ψi(τ)
∂

∂xi

∣∣∣∣
x(τ)

, λ(τ) = λα(τ)eα
∣∣
x(τ)

, (6.7)

where eα are fiber coordinates induced by a local trivialisation of adPADE . Both ψ, ψ̄ and

λ, λ̄ are taken to be anti-commuting fermionic fields. The latter we package into bilinears

T̃ = −
[
λ̄, λ

]
= T̃αeα = −icαβγ λ̄βλγeα , T̃ †α = T̃α , (6.8)

which we pair with the connection Aiα and Higgs field φiα to form the color contracted

1-forms
Aλ = (Aλ)i dx

i = Aαi T̃αdx
i = κ

(
λ̄, [Ai, λ]

)
dxi ,

φλ = (φλ)i dx
i = φαi T̃αdx

i = κ
(
λ̄, [φi, λ]

)
dxi .

(6.9)

The bilinears T̃ quantize to the Lie algebra generators T . To remind of this contraction we

introduce a subscript λ as in (6.9) .

We combine the connection Aiα and Higgs field φiα into a complex Lie algebra valued

1-form ϕ with components

ϕiα = φiα + iAiα . (6.10)

There are now three connections on M3 given by the natural connection D on adPADE and

its complexification Q which read

D = d+ i[A∧ , · ] , Q = d+ [ϕ∧ , · ] , (6.11)

together with the Levi-Civita connection ∇ of the metric gij . Each of these pulls back to

the world line Rτ in (6.6) and acts on the fermions ψ, ψ̄, λ, λ̄ of (6.7) as

∇τψi = ∂τψ
i + Γijkẋ

jψk ,

Dτλα = ∂τλα + cαβγ ẋ
iAβi λ

γ ,

Qτλα = ∂τλα − icαβγ ẋiϕβi λ
γ .

(6.12)
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The pullback is referenced by adding the world line parameter τ as an index to the respective

connections.

6.2 Colored N = (1, 1) Supersymmetric QM

The dynamics of the sigma model described in section 6.1 is governed by the Lagrangian

L =
1

2
ẋiẋi + iψ̄i∇τψi + iλ̄αDτλα +

i

2
(Fij)λ ψ̄

iψj − 1

2
Rijklψ

iψ̄jψkψ̄l

−
(
D(iφj)

)
λ
ψ̄iψj − 1

2
φiλφλ,i −

1

2
[φi, φj ]λψ̄

iψj + ζ
(
λ̄αλα − n

)
.

(6.13)

Here Rijkl denotes the Riemann curvature tensor, the bracket notation D(iφj) denotes a

symmetrisation of indices, the integer n is set to n = 1 and ζ is a Lagrange multiplier. The

action (6.13) is invariant under

δxi = εψ̄i − ε̄ψi ,

δψi = iεẋi + εφiλ − εΓijkψ̄jψk ,

δψ̄i = −iε̄ẋi + ε̄φiλ − ε̄Γijkψ̄jψk ,

δλα = −iεcαβγψ̄iϕ
β
i λ

γ − iε̄cαβγψiϕ̄
β
i λ

γ ,

δλ̄α = −iεcαβγψ̄iϕ
β
i λ̄

γ − iε̄cαβγψiϕ̄
β
i λ̄

γ .

(6.14)

The supercharges associated to the variations (6.14) are given by

Q = ψ̄i
(
iẋi + φiλ

)
, Q† = ψi

(
−iẋi + φiλ

)
. (6.15)

There is no R-symmetry rotating the supercharges.

The physics of the quantum mechanics (6.13) is that of a particle moving in the target

space M3 . In addition to its position, its state is characterized by its fermion and color

content which are given by vectors in the pullback of the exterior algebra ΛM3 and adjoint

bundle adPADE to the world line respectively. The latter are the fermions λ, λ̄ and determine

the color contracted Higgs field φλ setting the potential for the particle via (6.9).

Quantization of the SQM (6.13) leads to the physical Hilbert space

Hphys. = Λ (M3, adPADE) , (6.16)
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consisting of Lie algebra valued forms on M3. The Lagrange multiplier in (6.13) gives rise

to the constraint that only states with a single λ̄ excitations are considered physical which

precludes states in higher powers of the adjoint representation of gADE from contributing

to the spectrum. States of even, odd degrees are bosonic, fermionic respectively. The

supercharge is realized on Hphys. as the operator

Q = d+ [(φ+ iA)∧ , · ] . (6.17)

6.3 Perturbative Ground States and Instantons

Perturbative ground states of the quantized SQM are given by Lie-algebra valued forms

χ ∈ Ωp (M3, adPADE) annihilated by the Hamiltonian H = 1
2

{
Q,Q†

}
or equivalently by

the two supercharges Q,Q† to all orders in perturbation theory

Hχ = 0 ↔ Qχ = 0 , Q†χ = 0 . (6.18)

In the path integral formulation of the SQM perturbative ground states correspond to con-

stant maps fixed by the Euclidean fermionic supersymmetry variations δEψi, δEψ̄i which

emphasizes the second condition given in (6.18). A characterization of the perturbative

ground states already follows from inspection of the unquantized supercharges (6.15), con-

stant maps annihilated by the supercharges necessarily map to points at which the Higgs

field φλ vanishes. We conclude that perturbative ground states are labelled by pairs

(xA, λA) ∈M3 × gADE , (6.19)

which are such that the color contracted Higgs field at xA with respect to λA vanishes

φλA(xA) = κ
(
λ̄A, [φi(xA), λA]

)
dxi = 0 . (6.20)

Here we have introduced capital latin indices A,B,C which label pairs in M3 × gADE .

Further we assume that φλA has simple isolated zeros or equivalently that it is a Morse

1-form.
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To fully determine a perturbative ground state (6.19) we further need to specify its ψ, ψ̄

fermion content. This however is already fixed by a given pair (xA, λA) by considering how

the 1-form φλA ∈ Ω1(M3) vanishes at xA ∈M3 . Consider a small sphere S2
ε ⊂M3 on which

the color contracted Higgs field φλA does not vanish and which encloses the point xA ∈M3 .

Then we have a map of spheres

φλA
||φλA ||

: S2
ε → S2 . (6.21)

The degree µ(xA, λA) of this map topological characterizes the vanishing of the 1-form φλA

at xA ∈M3 . The number of ψ̄ excitations of the perturbative ground state, or equivalently

its degree p as a differential form, is given by p = µ(xA, λA) . This generalizes the notion

of Morse index as introduced in [107]. The pairs (6.19) thus fully label perturbative ground

states1. In Dirac notation we denote these by

χA = |xA, λA, µA〉 ∈ ΩµA(M3, adPADE) . (6.22)

Given two perturbative ground states χA, χB we construct a third perturbative ground

state χAB = [χA∧ , χB] as, if χA, χB are annihilated to all orders in perturbation theory by

Q, then so is χAB by

Q [χA∧ , χB] = [QχA∧ , χB] + (−1)µA [χA∧ ,QχB] . (6.23)

It is also annihilated to all orders in perturbation theory by an analogous relation for Q†

proving it a perturbative ground state itself. Perturbative ground states are thus seen to

come in families, the above procedure can be repeated with either of the pairs (χA,B, χAB) .

However χAB 6= 0 is not necessarily true, the terms in (6.23) may potentially cancel or more

trivially the degree of χAB may exceed the dimension of the target space M3.
1Here we have discussed generic localized perturbative ground states. To a given Higgs field background

φ there also exist color vectors λ such that the color contracted Higgs field φλ ≡ 0 vanishes identically. We
say that these color vectors and associated ground states of Q,Q† live in the bulk as the groundstates are
now determined by the differential Q = d which is as in chapter 2.4. Whenever φλ 6= 0 we refer to the color
vectors and their associated perturbative ground states as localized. Generically the local 1-form φλ has
isolated simple zeros, this is the case discussed here.
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Half-BPS instantons are field configurations minimizing the Euclidean Lagrangian and

are annihilated by half of the supercharges (6.15) in Euclidean time. They are distinguished

by boundary conditions fixing the initial and final position of the particle. Field configuration

may only converge to stationary points onM3 allowing for ẋ = 0, i.e., instantons necessarily

connect perturbative ground states. From the Euclidean Lagrangian we obtain the flow and

parallel transport equations

ẋi ± φiλ = ẋi ± icαβγgij λ̄αφβj λ
γ = 0 , Dτλα = 0 , (6.24)

supplemented with the constraint λ̄λ = 1 enforced by the Lagrange multiplier. An instanton

of the colored SQM solves (6.24) piecewise and connects multiple perturbative ground states.

We refer to instantons of the SQM as generalized instantons whenever they connect more

than two perturbative ground states, this more general class of instantons is absent in SQMs

without λ, λ̄ color degrees of freedom.

Instanton connecting two perturbative ground states, as familiar from Witten’s SQM

or Morse theory, start out at a point (xA, λA) ∈ adPADE satisfying φλA(xA) = 0 where

the color contracted Higgs field φλA is given in (6.20). From this initial configuration the

instanton flows on M3 along a path γ determined by the 1-form φλ(τ) where λ(τ) is the

parallel transport of λA along the path γ with respect to the background connection A on

M3 . The flow can end at a point (xB, λB) ∈ adPADE satisfying φλB (xB) = 0. Summarizing

we have

(xA, λA) , φλA(xA) = 0
ẋ(τ) =±φλ(τ)−−−−−−−−−−−−→
Dτλ(τ) = 0

(xB, λB) , φλB (xB) = 0 , (6.25)

where τ runs from −∞ to +∞ from left to right. Completing the square in the Euclidean

Lagrangian, instanton effects are found to be suppressed by

Sinst = ∓
∫ +∞

−∞
dτẋiφλ,i > 0 , (6.26)

where the sign depends on whether ascending or descending flows are considered in (6.24).
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Figure 6.1: Sketch of an instanton connecting three perturbative ground states labeled by
(xA, λA), (xB, λB) and (xC , λC). The color degrees of freedom are valued in the pull back
bundle x∗(adPADE) and are depicted as internal vectors attached to the localization site of
the perturbative ground states. The three legs of the instanton are piecewise determined by
the flow equations (6.24).

Generalized instantons connecting three perturbative ground states are pieced together

from flows parametrized by half-lines where τ runs from −∞ to 0 or from 0 to +∞ on each

segment. We depict such a generalized instantons connecting three perturbative ground

states labelled by (xA, λA), (xB, λB) and (xC , λC) in figure 6.1. Along each leg the instanton

is determined by the flow equations (6.24) and boundary conditions imposed at the junction

and perturbative ground states. We discuss these generalized instantons in greater detail in

section 7.2.2.

6.4 SYM and SQM

The colored SQM is a powerful computational and organisational tool when applied to the

compactification of the partially twisted 7d SYM on M3, we briefly discuss the dictionary

between the SQM and SYM which follows from (6.4).

The perturbative ground states of the SQM (6.22) are to be identified with the ap-

proximate zero modes (6.1) of the partially twisted 7d SYM. As a consequence the matrix

elements of the supercharge Q with respect to the perturbative ground states is given by the

mass matrix (6.2) of the 4d modes associated with the approximate zero modes. The ground
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states of the SQM then determine the massless spectrum in 4d (2.45). The identification

of perturbative ground states and approximate zero modes allows for an interpretation of

the Yukawa overlap integral (6.3) as a tunneling amplitude. States occupying two pertur-

bative ground states χA, χB can tunnel to a third χC and the overlap YABC then gives the

amplitude for this process. This extends the table following (5.1).

The treatment of the SYM in this thesis part is purely classical and the effects computed

by the SQM are the leading order effects in a standard Kaluza-Klein reduction of the field

theory. The overlap integrals result from standard expansions in zero modes, massive modes

are simply truncated as they do not contribute in the large Higgs field limit t → ∞. Away

from this limit quantum effects enter and their analysis poses an open problem.

The non-perturbative effects of the SYM derived from an ALE-geometry are understood

to originate from M2-brane instantons wrapping supersymmetric 3-cycles. In the SYM

these effects are in correspondence with flow trees of the Higgs field which are given by

the projection of the supersymmetric 3-cycle to the base M3, see e.g., figures 5.1 and 7.1.

These flow trees are precisely piece-wise solutions to the flow equations (6.24) and thereby

in one to one correspondence with the generalized instantons of the SQM. Along these

graphs the approximate zero modes and perturbative ground states have maximal overlap

and consequently these give the dominant contributions to the two integrals (6.2) and (6.3).

6.5 Higgs Bundles with Split Spectral Covers

The simplest backgrounds to study the correspondence between non-perturbative effects

in the 7d SYM, which originate from M2-brane instantons in M-theory, and generalized

instantons of the colored SQM are abelian solutions to the BPS-equations with split spectral

covers. These backgrounds have previously been studied in [49, 90, 95, 117] and serve as a

precursor to studying abelian solutions to the BPS equations with non-split spectral covers.

The SQM interpretation of chapter 5 emerges as a degenerate case of the colored SQM

formulation.
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Here we find that the single particle sector of the colored SQM decomposes into a direct

sum of Witten SQMs [107], one for each generator of the Lie algebra gADE. These interact

via multi-particle effects encoded in higher order operations on the Morse-Witten complex of

the colored SQM. They originate from M2-branes associated with the Y-shaped instantons

and higher-point instantons.

6.5.1 Colored SQM and Witten’s SQM

We consider backgrounds with a trivial connection dA = d and a diagonal Higgs field

φ = φIH
I . The Cartan components φI ∈ Ω1(M3) are 1-forms on M3 solving the sourced

equations (3.9). The color contracted Higgs field φλ given in (6.9) now becomes

φλ = κ
(
λ̄, [φ, λ]

)
=
∑
α

αIφI λ̄
αλα , (6.27)

where the sum runs over all roots α of the Lie algebra gADE. The Lagrangian of the SQM

probing the Higgs bundle simplifies from (6.13) to

L =
1

2
ẋiẋi + iψ̄i∇τψi + iλ̄βλ̇β −

(
∇(iφj)

)
λ
ψ̄iψj − 1

2
φiλφλ,i

− 1

2
Rijklψ

iψ̄jψkψ̄l + ζ
(
λ̄βλβ − n

)
,

(6.28)

where β = 1, . . . ,dim gADE runs over all generators T β of the Lie algebra gADE. The bundle

geometry is adPADE = M3 × gADE and as a consequence the Hilbert space (6.16) which is

now given by Lie algebra valued forms Hphys. = Λ (M3, gADE) decomposes into the direct

sum
Hphys. =

⊕
β

H(β)
phys. ,

H(β)
phys. = Λ (M3)⊗ T β ,

(6.29)

paralleling the decomposition of adPADE into a sum of line bundles. States in H(β)
phys. are

p-forms oriented along the generator T β in Ωp(M3, gADE). Specializing to a Cartan-Weyl

Basis
{
HI , Eα

}
of the Lie algebra gADE we can sharpen the decomposition (6.29) to

Hphys. =
⊕
α

H(α)
phys. ⊕

⊕
I

H(I)
phys. , (6.30)
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and refer to the first summand ⊕αH(α)
phys. as the localized sector and to the second summand

⊕IH(I)
phys. as the bulk sector of this SQM. They are built from

H(α)
phys. = Λ(M3)⊗ Eα , H(I)

phys. = Λ (M3)⊗HI . (6.31)

The supercharge Q respects this decomposition as all component functions φi of the Higgs

field φ = φidx
i are valued in the Cartan subalgebra, i.e., it restricts to operators on the

subspaces (6.31)

Q(α) : H(α)
phys. → H(α)

phys. , χ⊗ Eα 7→
(
dχ+ αIφI ∧ χ

)
⊗ Eα ,

Q(I) : H(I)
phys. → H(I)

phys. , χ⊗HI 7→ dχ⊗HI ,

(6.32)

where χ ∈ Ωp(M3) is a p-form on M3. The Hamiltonian H = 1
2

{
Q,Q†

}
decomposes

similarly into restrictions as (6.32) which govern the time evolution of states of definite color

H(α) =
1

2

{
Q(α),Q(α)†

}
, H(I) =

1

2

{
Q(I),Q(I)†

}
, (6.33)

Stripping off the trivial Lie algebra generator in each sector we obtain Hamiltonians acting

on the exterior algebra Λ(M3). We thus find a copy of Witten’s SQM for every Lie algebra

generator and more precisely obtain the correspondences

Eα ∈ gADE ↔ Witten’s SQM with supercharge Q = d+ αIφI∧ ,

HI ∈ gADE ↔ Witten’s SQM with supercharge Q = d .

(6.34)

The study of colored SQMs with split Higgs fields thus equates to studying the interaction

between the family of (uncolored) SQMs (6.34) embedded within it.

6.5.2 Partial Higgsing

When the group GADE is only partially Higgsed the correspondence (6.34) degenerates.

Consider the rank n Higgsing

GADE → GGUT × U(1)n ,

AdGADE → (AdGGUT ⊗ 1)⊕ (1⊗AdU(1)n)⊕
∑
Q

RQ ,
(6.35)



where Q = (q1, . . . , qn) is a vector of U(1) charges. Then for every generator Eα ∈ RQ the

supercharge of the associated SQM reads Q = d + QIφI∧. The correspondence (6.34) can

be rephrased as

RQ ↔ Witten’s SQM with supercharge Q = d+QIφI∧ , (6.36)

making the degeneracy manifest. Representation not transforming under U(1)n correspond

to a free SQM mapping into M3 whose supercharge is the exterior derivative. This set-up

is the one described initially in chapter 5.

Chapter 7
Yukawa Couplings and Higher-Point Interactions

In this section we discuss the interactions of localized matter1. We consider the case of

a fully factored spectral cover first. In M-theory interactions between localized matter

fields come from M2-instantons wrapped on calibrated 3-spheres of the local ALE-fibration.

This is simply a generalisation of the results of section 5.2, where we interpreted non-

perturbative mass terms as arising from M2-instantons wrapping three-cycles which connect

two critical points over a gradient flow line. For higher point interactions these three-cycles

project to gradient flow trees on M3 and studying the moduli space of these constrains

the corresponding interactions in 4d. For example, Yukawa couplings must support a cup-

product structure on the associated Morse-Witten complex.

Consider in this section again the background of section 4.2, globally on M3 we have

〈φ〉 = diag(λ1, · · · , λn) =
n∑
i=1

H idfi , ∆fi = ρi ,

∫
M3

ρi = 0 . (7.1)

The matter content is summarized in table 4.1. We first consider interactions between

fields resulting from the expansion of the approximate zero modes (5.6) and (5.7). The

interaction between the true zero modes then follow by linearity. Leading order corrections
1For the interaction between bulk and localized matter we refer to section 6.1 of [1].
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p1 p2

p3

(f3)

(f1) (f2)

α1 α2

α3

Figure 7.1: Gradient flow tree for Yukawa couplings. The picture shows three critical
points pi of the functions fi of Morse index µfi(pi) = 1. The gradient flow lines γ(fi)

of the fi are marked by arrows. Every fi controls the size of a 2-cycle αi which has the
topology of a two-sphere and collapses over the points pi. The three three-chains formed by
fibering the two-spheres αi over the segments γ(fi) can be joined at their meeting point as
α1 + α2 + α3 = 0, and the resulting three-cycle is expected to be an associative.

to these couplings are obtained from integrating out states with masses purely induced by

M2-instantons as discussed in section 5.2.

Yukawa couplings can be approached by either arguing M2-brane instanton contributions

in M-theory as in [112] or studying non-perturbative effects in the 7d SYM. Higher-point

interactions can only be analysed from the first perspective. Non-renormalizable interactions

do not descend from the 7d SYM via a simple zero mode expansion and we argue their

contributions from M-theory generalizing results for Yukawa couplings. The quantative

analysis of Yukawa couplings requires the colored SQM interpretation of the relevant overlap

integral which allows for their computation via supersymmetric localization.

7.1 Yukawa Couplings from the 7d SYM

For Yukawa couplings to occur we need a rank n = 2 Higgs bundle (or higher). There are

two Morse functions f1 and f2 and the combination fQ = q1f1 + q2f2. From the effective

field theory we obtain this coupling by expanding the action (2.13) in approximate zero
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modes

Y pqr
abc =

∫
M3

ψ(a,p) ∧ ϕ(b,q) ∧ ψ(c,r) , Qp +Qq +Qr = 0 , (7.2)

where (a, p) refers to the internal profile of the perturbative zero mode localized at the

critical point xa ∈ M3 transforming in RQp , specifying the indices in (6.3). The profiles

wedged in the integrand of (7.2) are all of the form (5.6). The Yukawa couplings arise from

M2-instantons wrapping associative three-cycles. To characterize the three-cycles consider

the Morse functions

Q1 = (1, 0) , Q2 = (0,−1) , Q3 = (−1, 1)

fQ1 = f1 , fQ2 = −f2 , fQ3 = −f1 + f2 = f3 , (7.3)

which describe an SU(3) ALE-fibration over the baseM3. Each of the functions fi controls

the volume of a corresponding two-sphere αi in the ALE fiber, which satisfy

α1 + α2 + α3 = 0 (7.4)

in the homology of every fiber. Recall that αi shrinks to zero volume precisely over the points

pi where dfi = 0. To every gradient trajectory γ(fi) starting at a point pi we can associate

a 3-chain, which is given by tracing out the corresponding αi in the ALE-fibration. Given

three sufficiently generic Morse functions fi, there will be finitely many gradient flow trees

connecting the three critical points pi (see figure 7.1). Adding the associated three-chains

produces a three-cycle, the boundary of which is given by
∑

i αi in the ALE fiber. We may

produce a closed three-cycle with the topology of a three-sphere by adding a three-cycle β

such that ∂β = α1 + α2 + α3. Moreover, this S3 is expected to be an associative, since it

projects to the tree of gradient trajectories and hence minimizes the volume among all the

three-cycles which project down to trees connecting p1, p2 and p3. Wrapping an M2-brane

on such a cycle gives rise to Yukawa couplings between modes localized at the critical points

of f1, f2 and f3. Consequently, the overlap integral (7.2) vanishes if there exists no trivalent

gradient flow tree connecting the critical points2.
2Massless chiral multiplets are found when expanding the 7d action in true zero modes. These are in

general linear combinations of the localised perturbative profiles used in (7.2). The relevant linear combina-
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M3

p1
p2

3

p3

(f2)
(f1)

(f3)

Figure 7.2: Construction of three-cycle that gives rise to the Yukawa couplings in the
spectral Cover picture. The critical loci pi correspond to the loci where two of the weights
λi are equal, i.e., the corresponding sheets of the spectral cover meet. The uplift of the
gradient flow lines γ(fi) sweeps out the associative three-cycle S3 that can then be wrapped
by an M2-instanton. This gives rise to the coupling between the three matter states localized
at λi = 0. The combined flow lines give rise to the gradient flow tree γ(f1, f2, f3).

Similarly, in the spectral cover description, the Yukawa coupling is modeled in terms

of a three-sheeted cover, which is determined by the graph of dfi. The segments of the

gradient flow trees determined by the function fi thus lift to paths on the corresponding

sheets; see figure 7.2. The paths connect the points where two sheets pairwise intersect.

One can think of the 2-cycles αj in the ALE-fibration as being stretched between the sheets

and the corresponding cycle collapses precisely at points where two sheets meet.

The strength of these interactions is governed by the choice of functions fi. The three-

sphere giving rise to the Yukawa coupling is a supersymmetric rigid homology sphere within

the G2-manifold and its contribution to the superpotential is again given by (5.17). The

sign nγ = ±1 arises in the same manner and is given by an orientation on the moduli space

of gradient flow trees. As the Higgs field φi and the gauge field Wi are identified with the

periods of the supergravity 3-form C and associative 3-form Φ the integral is evaluated as∫
S3
γ

(C + iΦ) =

3∑
j=1

∫
γ(fj)

∫
αj

(C + iΦ) =

3∑
j=1

∫
γ(fj)

(Wj + iφj) = i

3∑
j=1

∫
γ(fj)

tdfQj , (7.5)

Here, we have used that we can gauge the background for the gauge field Wi to zero.

tions are determined by the Morse-Witten complex. The overlap integral determining the Yukawa couplings
between the massless modes are thereby linear combinations of (7.2).
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Evaluating the final integrals and using that the homological relation between the α implies∑3
i fi = 0 we find

∆W ∼ nγ exp

(
−

3∑
i=1

tfQi(pi)

)
. (7.6)

We now make this M-theory derivation rigorous by computing the Yukawa overlap integral

directly via supersymmetric localization in the colored quantum mechanics.

7.2 Yukawa Couplings from the colored SQM

We now compute the Yukawa overlap integrals for the fully reducible (split) Higgs field

background (7.1) and discuss their interpretation in the colored SQM. We further restrict

to backgrounds for which the gauge group has been Higgsed to its maximal torus U(1)n

where n is the rank of the gauge group G̃. Consquently the representations RQ in (4.21)

are one-dimensional and labelled by roots α of the Lie algebra g̃. Here the n-component

roots play the role of the charge vector Q in (4.21) and the Higgs field φ = φIHI determine

the charge weighted Higgs field, given in (4.22), to αIφI = αIdfI , which is a 1-form on M3

derived from the Morse function αIfI . Backgrounds preserving a non-abelian gauge group

G in 4d are discussed subsequently and occur as a degenerate case of this set-up with some

Cartan components φI tuned to vanish.

We first discuss how the approximate zero modes appearing in the integrand of the

Yukawa integral (6.3) are organized by the colored SQM into a Morse-Witten complex.

This Morse-Witten complex is the direct sum of the complexes associated to the SQMs in

(6.34). The Yukawa overlap integral (6.3) then gives a cup product mapping between these

complexes.

7.2.1 Organizing Approximate Zero Modes

Each approximate zero mode is a Lie algebra valued 1-form and oriented along a Lie alge-

bra generator Eα. Taking the trace in (6.3) results in the integral of forms (7.2). Linear

combinations of these modes constitute zero modes along M3 and are determined by the

cohomology groups of the Morse-Witten complex associated to the function αIfI on M3.
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With this the Morse-Witten complex of the colored SQM is built from the free abelian groups

Cµ(M3, φ) generated by the perturbative ground states (6.22) over the complex numbers

Cµ(M3, φ) =
⊕
α

Cµ,α(M3, α
IφI) ,

Cµ,α(M3, α
IφI) =

⊕
a

C |xa, λα, µa〉 ≡ Cµα(M3, φ) ,
(7.7)

where µ fixes the degree of the perturbative ground state as a differential form. It is graded

by the fermion number operators associated with the fermions ψ, ψ̄ and λ, λ̄. The super-

charge gives rise to the boundary map on the complex (7.7) and as a consequence of the

decomposition (6.32) the colored Morse-Witten complex is found to decompose into multiple

standard Morse-Witten complexes whose chain groups are Cµα(M3, φ) for fixed color α. We

take capital latin indices to run over generic perturbative ground states of the colored SQM

and decapitalized latin indices to run over all perturbative ground states of a fixed color, or

equivalently over all perturbative ground states of a subcomplex of the SQMs in (6.34).

The color restricted supercharge Q(α) of (6.32) now gives rise to the standard boundary

map [107,108,110] generated by oriented flow lines (6.24) of αIφI we have

C3
α(M3, φ) C2

α(M3, φ) C1
α(M3, φ) C0

α(M3, φ) .
Q(α) Q(α) Q(α)

(7.8)

The adjoint of the supercharge Q(α) maps in the opposite direction. There is no such

complex for colors in the bulk of the SQM. Each of the complexes (7.8) can be analyzed

separately and its cohomologies are the Novikov/Lichnerowicz cohomologies [111, 118, 119]

with respect to the closed 1-form αIφI on M3. The cohomology groups of the supercharge

Q of the colored SQM thus decomposes into a direct sum

H∗Q(M3, gADE) ∼=

(
n⊕
I=1

H∗dR(M3)

)
⊕

 ⊕
Eα ∈ gADE

H∗Nov.(M3, α
IφI)

 , (7.9)

where each summand is in correspondence with an SQM of (6.34). Here the exact 1-forms

αIφI = αIdfI are derived from Morse functions αIfI and the complex (7.8) is that of Morse

theory on a manifold with boundary, as discussed in chapter 5. The boundary Σ = Σα
+∪Σα

−

follows from excising the source terms and is again partitioned according to the direction
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of the 1-form αIφI with respect to its normal vector. In the notation of chapter 5 we find

(7.9) to simplify to

H∗Q(M3, gADE) ∼=

(
n⊕
I=1

H∗dR(M3)

)
⊕

 ⊕
Eα ∈ gADE

H∗(M3,Σ
α
−)

 . (7.10)

7.2.2 Yukawa Integrals as Cup Product

The complexes (7.8) of different color can interact via a cup product originating from (6.23)

and mediated by Y-shaped instantons. These multi-particle effects are absent in ordinary

SQMs. Consider three perturbative ground states

χa = |xa, λα, µa〉 ∈ Ωµa(M3)⊗ Eα ,

χb = |xb, λβ, µb〉 ∈ Ωµb(M3)⊗ Eβ ,

χc = |xc, λγ , µc〉 ∈ Ωµc(M3)⊗ Eγ ,

(7.11)

which we assume to be energy eigenstates with energies E0,r of the Hamiltonian H =

1
2{Q,Q

†}. In general energy eigenstates will be linear combinations of the perturbative

ground states to which the arguments below extend naturally. We further restrict to cases

which allow for the normalisation κ(Ta, Tb) = δab of generators to simplify exposition.

The Y-shaped instantons determine the leading order contribution to the overlap integral

(6.3). The integral vanishes unless three selection rules are satisfied

µa + µb = µc , α+ β = γ , E0,a + E0,b = E0,c . (7.12)

If these are satisfied the Yukawa integral can be simplified to

Y αβγ
abc =

∫
M3

〈χc , [χa∧ , χb]〉 =

∫
M3

∗χ (γ)
c ∧ χ(α)

a ∧ χ
(β)
b . (7.13)

where we took the trace over the Lie algebra generators in the second equality and made the

complex conjugation in the first factor explicit. Here the raised indices (α, β, γ) refer to the

differential form part of the perturbative ground state stripped of its Lie algebra generator3.
3The connection to (7.2) is made by the isomorphism (2.44) together with some change in labels which

reflect that the formula (7.2) holds in the degenerate, but physically interesting setting (6.35) of partial
Higgsing.
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We evaluate this integral in three steps. The first step consists of rewriting the per-

turbative ground states as projections of profiles which are highly localized at the point

xr ∈ M3 associated to the perturbative ground state with r = a, b, c. We then rewrite the

overlap integral as a path integral of the colored SQM in which the unprojected localized

profiles go over into boundary conditions. This path integral then splits into three pieces

each associated with a definite color which we evaluate via supersymmetric localization.

To begin note that the operator creating a perturbative ground state can be rewritten

as

χr = lim
T→−∞(1+iδ)

e−iHTΨr e
iHT

e−iE0,rT 〈χr|Ψr〉
≡ Ψr

∣∣
−∞ , (7.14)

where 0 < δ � 1 and r = a, b, c. The Hamiltonian H is the Legendre transform of the

Lagrangian given in (6.28). Here Ψr = Ψ
(α)
r λ̄α (no sum) creates a Lie algebra valued

µr-form oriented along the generator Eα whose compact support only contains the point

xr ∈ M3 and no other points at which perturbative ground states localize. The slightly

imaginary limit projects Ψr onto the state of lowest energy with non-trivial overlap, this

state is χr. Using the basis

B =
{
λ̄α|xl〉, λ̄αψ̄i|x〉, λ̄αψ̄iψ̄j |x〉, λ̄αψ̄iψ̄jψ̄k|x〉

}
(7.15)

for the Hilbert space (6.16) we extract the component functions. Here α = 1, . . . , d and

i, j, k = 1, 2, 3 and x ∈M3. We separated these delta functions by their degree as differential
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forms. With respect to this basis we have(
Ψr

∣∣
−∞

)(α)

i1...iµr
(x) = 〈x|λαψi1 . . . ψiµrΨr

∣∣
−∞|0〉

= lim
T→−∞(1+iδ)

〈x|λαψi1 . . . ψiµr
(
e−iHTΨr

) (
e−iE0,rT 〈χr|Ψr〉

)−1 |0〉

= lim
T→−∞(1+iδ)

(
e−iE0,rT 〈χr|Ψr〉

)−1 〈x|λαψi1 . . . ψiµr e
−iHT |Ψr〉

= lim
T→−∞(1+iδ)

(
e−iE0,rT 〈χr|Ψr〉

)−1

× 〈x|λαψi1 . . . ψiµr e
−iHT

(∑
s

|χs〉〈χs|+
∑
n

|n〉〈n|

)
|Ψr〉

= lim
T→−∞(1+iδ)

(
e−iE0,rT 〈χr|Ψr〉

)−1 〈x|λα(r)ψi1 . . . ψiµr e
−iHT |χr〉 〈χr|Ψr〉

= 〈x|λαψi1 . . . ψiµr |χr〉

= χ
(α)
r,i1...iµr

(x) ,

(7.16)

which proves (7.14). Here the sum
∑

s runs over all perturbative ground states while the

sum
∑

n runs over all higher energy eigenstates in the physical Hilbertspace Hphys. of (6.30).

The support of the states Ψr is localized at xr and excludes the sites of localization of all

other perturbative ground states. Consequentially 〈χs|Ψr〉 = δsr 〈χr|Ψr〉 holds. Note further

that we can anticommute the color fermions λ, λ̄ past another in (7.16) which results in a

simplification of the Hamiltonian evolving the states. We have

χ
(α)
r,i1...iµr

(x) = lim
T→−∞(1+iδ)

〈x|ψi1 . . . ψiµr
(
e−iH

(α)TΨ(α)
r

) (
e−iE0,rT 〈χr|Ψr〉

)−1 |0〉 , (7.17)

where H(α) is the Hamiltonian given in (6.33).

Next we rewrite the overlap integral (7.13) using the expression (7.17) for the profile of

the perturbative ground states

Y αβγ
abc = lim

T→−∞(1+iδ)

∫
M3

d3x
(
e−i(E0,a+E0,b−E0,c)T 〈χa|Ψa〉 〈χb|Ψb〉 〈χc|Ψc〉

)−1

× 〈x|ψi1 . . . ψiµa
(
e−iH

(α)TΨ(α)
a

)
|0〉

× 〈x|ψj1 . . . ψjµb
(
e−iH

(β)TΨ
(β)
b

)
|0〉

× 〈x|ψk1 . . . ψk3−µc
(
eiH

(γ)T ∗Ψ
(γ)
c

)
|0〉

× εi1...iµaj1...jµbk1...k3−µc

(7.18)
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We take Ψr to be δ-function like supported at xr, rescale the Higgs field φ → tφ and from

now on work to leading order in 1/t. In the t → ∞ limit the profile of the normalized

perturbative ground states χr increasingly localizes at xr . To leading order we thus have

〈χr|Ψr〉 = 1 +O(1/t) . (7.19)

The energies cancel by (7.12) and together with (7.19) we find (7.18) to simplify to

Y αβγ
abc = lim

T→−∞(1+iδ)

∫
M3

d3x εi1...iµaj1...jµbk1...k3−µc

× 〈x|ψi1 . . . ψiµa
(
e−iH

(α)TΨ(α)
a

)
|0〉

× 〈x|ψi1 . . . ψiµb
(
e−iH

(β)TΨ
(β)
b

)
|0〉

× 〈x|ψi1 . . . ψi3−µc
(
eiH

(γ)T ∗Ψ
(γ)
c

)
|0〉

+O(1/t) .

(7.20)

We now transition to the path integral representation by rewriting each matrix element

above as a separate path integral. These are associated to paths with time intervals (T, 0]a,b

and [0,−T )c . The profiles Ψr are supported at xr and give rise to boundary conditions for

the path integral at infinite times. All in all we have

Yabc =

∫
M3

d3x0

∫ ∏
−∞<τ <0
xa,−∞=xa
xb,−∞=xb

dxa,τ dψa,τ dψ̄a,τ dxb,τ dψb,τ dψ̄b,τ
∏

0<τ <∞
xc,∞=xc

dxc,τ dψc,τ dψ̄c,τ

exp
[
i
(
S(α)[xa, ψa, ψ̄a] + S(β)[xb, ψb, ψ̄b] + S(γ)[xc, ψc, ψ̄c]

)]
+ O(1/t) .

(7.21)

Here we have introduced the half line actions

S(α) =

∫ 0

−∞
dτ L(α) , S(β) =

∫ 0

−∞
dτ L(β) , S(γ) =

∫ ∞
0

dτ L(γ) , (7.22)

where the color restricted Lagrangians L(α) are the Legendre transformation of the color

restricted Hamiltonians (6.33). These actions are associated with the time intervals (T, 0]a,b

and [0,−T )c in the T → −∞ limit. The slightly imaginary limit makes the Feynman

propagator the relevant propagator here. Further we have have written x(τ) = xτ and

denoted the three paths generated by insertions of the identity operator by the labels a, b, c.



7.2. YUKAWA COUPLINGS FROM THE COLORED SQM 87

Note that these are only defined on half of the real line. These are constrained to start or

end at the points xa, xb, xc ∈ M3 where the perturbative ground states localizes at infinite

time and join at a common point x0 ∈M3.

The expression (7.21) is technically not a path integral, the space of field configurations

integrated over is that of all Y-shaped graphs whose end points are given by xa,b,c. We

depict such a configuration in figure 7.3. In the SQM Yabc is to be identified with the

tunneling amplitude of two particles of color λa, λb located at xa, xb respectively combining

to a particle of color λc located at xc.

As the final step we now evaluate the integral (7.21) via supersymmetric localization.

We rotate to euclidean time τ → −iτ and denote the resulting actions with a subscript, we

have

Y αβγ
abc =

∫
M3

d3x0

∏
r=a,b,c
αr=α,β,γ

∫
DxrDψrDψ̄r e

−S(αr)
E [xr,ψr,ψ̄r] +O(1/t) . (7.23)

The total action

SE = S
(α)
E + S

(β)
E + S

(γ)
E , (7.24)

is not invariant under the supersymmetries derived from (6.14). Half of the supersymmetry

is broken by the boundaries of the actions (7.22), explicit computation4 yields

δSE = ε̄
(
ψia ẋa,i + ψib ẋb,i + ψic ẋc,i

)
τ=0

, (7.25)

whereby only the symmetry generated by ε is unbroken. Considering the factors of (7.23)

separately we see that the path integral thus localizes to ascending flow-lines of the 1-forms

αIφI , β
IφI on each leg emanating from xa,b and to ascending flow lines of γIφI on the

leg ending at xc of the Y-shaped configuration depicted in figure 7.3. These flow-lines are

required to meet at a common point x0 ∈ M3 at time τ = 0. We refer to such a BPS

configuration as a flow tree Γabc. In a three dimensional set-up the only relevant triplet of

perturbative ground state have degrees µa = µb = 1 and µc = 2 as the D-term constraint
4See appendix C in [2] for details.
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excludes perturbative ground states of degree 0 or 3. The moduli space of such flow trees is

generically zero dimensional which follows by dimension count. Ascending, descending flow

lines emanating from a point of Morse index µ = 1, 2 sweep out a manifold of codimension 1

respectively. A common point of these flows is obtained upon intersecting these submanifolds

whose expected codimension is 3. Due to the common center point x0 there is no zero mode

associated to time translations.

With this we localize on Y-shaped flow trees as depicted in figure 7.3. The standard

localization computation then gives the result

Y αβγ
abc =

∑
Γabc

(±)Γabc exp

(
−t
∫

Γα

αIφI − t
∫

Γβ

βIφI + t

∫
Γγ

γIφI

)
+O(1/t) ,

(7.26)

where Γσ with σ = α, β, γ are flow lines of the 1-form σIφI originating and ending at the

respective perturbative ground states at xa,b,c and x0. They glue to the flow tree Γabc over

which the sum runs. The sign (±)Γabc denotes a fermion determinant. When σIφI = df (σ)

is exact this simplifies to

Y αβγ
abc =

∑
Γabc

(±)Γabc exp
(
−tf (α)(xa)− tf (β)(xb) + tf (γ)(xc)

)
+O(1/t) . (7.27)

For exact Higgs fields df (σ) the moduli space of Y-shaped flow trees has been described

in [120], where it is shown to be an oriented 0d manifold, the relative signs (±)Γabc are then

a choice of orientation on this discrete moduli space.

The overlap integral Yabc therefore gives rise to a map between the chain groups of

Morse-Witten subcomplexes

Y = [ · ∧ , · ] : Cµaα (M3)× Cµbβ (M3) → Cµa+µb
α+β (M3) , (7.28)

which maps pairs of perturbative ground states according to the Y-shaped flow trees

(χa, χb) 7→
∑
c

Y αβγ
abc χc , (7.29)
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xa xb

xc

xa,0 = xb,0 = xc,0

M3

! > 0

Figure 7.3: The figure shows an example of a Y-shaped graph whose end points are fixed
at the points xa,b,c . It is parametrized by two copies of R− and one copy of R+ . The
set of Y-shaped graphs constrained in this manner constitute the configuration space the
path integral in (7.20) localizes to. These Y-shaped flow trees are examples of generalized
instantons which are a novel phenomenon of colored SQMs.

where χa, χb, χc are carry color αβγ and are given in (7.11). Ground states of the colored

SQM are linear combination of perturbative ground states and thus the map Y descends to

the cohomology of the colored SQM complex (7.7) where it describes a cup product.

We briefly describe the generalization to higher point interactions. However note, that

the partially twisted 7d SYM does not derive these in terms of overlap integrals, rather we

will argue for these geometrically in the next chapter.

The Massey products mn of length n generalize the cup product Y . These are realized

by gradient flow trees connecting n + 1 perturbative ground states and are associated to a

collection of Y-shaped gradient flow trees and gradient flow lines. We restrict our discussion

to the Massey products of length 3 which are given by the map

m3 : Cµaα (M3)× Cµbβ (M3)× Cµcγ (M3) → Cµa+µb+µc−1
α+β+γ (M3) (7.30)

and is defined by(
|xa, λα, µa〉, |xb, λβ, µb〉, |xc, λγ , µc〉

)
7→ (−1)µa+µb−1 Y (S, |xc, λγ , µc〉)

+ (−1)µb+µc−1 Y (|xa, λα, µa〉, T ) ,

(7.31)
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yab

fQa+fQb

xb

xa xc

xd

ycd

-fQc+fQd fQd

fQcfQa

fQb

fQa+fQb=-fQc+fQd

S-channel

xb xc

xdxa

ybc

yad

fQb

fQa

fQc

fQd

fQb+fQc

-fQb+fQd

fQb+fQc=-fQa+fQd

T-channel

Figure 7.4: Picture of the flow trees contributing to the Massey product of length 3 . Two
summands marked with S, T respectively contribute to the Massey product m3 in (7.31).
Pictorially these are given by S-channel and T-channel like contributions. The Massey
productm3 maps perturbative ground states localized at the points xa, xb, xc to one localized
at xd . Both channels are a given by two Y-shaped gradient flow trees connect by a gradient
flow line. This structure descend from (7.31) which involves two cup products Y and a
single boundary operator Q. Here we assume globally exact Higgs fields φQr = dfQr . In the
picture we mark the functions governing the gradient flows. Two intermediate perturbative
ground states are label by yrs for each channel.

where S, T are perturbative ground states determined by the reverse flows

QS = (−1)µa Y (|xa, λα, µa〉, |xb, λβ, µb〉) ,

QT = (−1)µb Y (|xb, λβ, µb〉, |xc, λγ , µc〉) .
(7.32)

Up to signs these maps are easily understood as concatenations of gradient flow lines and

Y -shaped flow trees. The quantities Y (S, |xc, λc, µc〉) and Y (|xa, λa, µa〉, T ) corresponds

to s,t-channel like graphs respectively. They are depicted in figure 7.4 . General Massey

products of length n are described similarly. By linear extension all Massey products mn

descend to the cohomolgies of the complexes of (7.8).

Summarizing we note that the set of perturbative ground states of the colored SQM can
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be organized into separate Morse-Witten complexes whose boundary maps are given by the

color restrictions Q(α) of the supercharge Q. The supercharge Q giving rise to boundary

maps. These complexes interact via the cup product Y and Massey products mn with n ≥ 3

which give rise to 3-point and (n+ 1)-point tunneling amplitutdes among the perturbative

ground states. We summarize the corresponding geometrical and field theoretic structures

in 1. Generalizing from (6.2) and (6.3) the massey products are in correspondence with

irrelevant couplings in the 4d N = 1 gauge theory.

7.3 Associatives and Gradient Flow Trees

The generation of Yukawa couplings and mass terms from associative three-cycles which

project to flow trees on M3 has a natural generalization [120], which in the effective theory

realizes higher point couplings. We briefly touched on their cohomological properties from

the perspective of the colored quantum mechanics, but did not give a global characterization

of these structures. Further the partially twisted 7d SYM does not give an expression in

terms of overlap integrals for the higher point couplings and so we must resort to geometric

reasoning and dimensional analysis to argue for these non-renormalizable couplings and

determine their strength. Here we close this gap taking a more geometrical point of view.

We consider a setup in which G⊥ = S[U(1)k], so that the Higgs background is described

by k smooth Morse functions fi. As the associated two-spheres αi in the ALE fiber sum to

zero in homology, the same must be true of the functions fi. Choosing a critical point pi of

each fi with Morse index µ(pi), one can define the moduli space of gradient flow trees

M(M ; f1, . . . , fk ; p1, . . . , pk) , (7.33)

as the set of gradient flow trees with external vertices p1, . . . , pk such that the lines ema-

nating from pi are ascending gradient flow lines of fi. These form the external edges of

the gradient flow tree. Of course we also allow for internal vertices and edges. The flow of

these is governed by the associated integral linear combinations of the fi, which are in turn
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p3
p4

p1

p5

f3

p2

f2 f1

f4

f2+f3

f1+f2+f3

f5

α1 +α2 +α3 +α4 +α5 = 0

Figure 7.5: A gradient flow tree with 5 external vertices of Morse index 1.

determined by a charge conservation constraint. This moduli spaceM has dimension

dimM(M ; f1, . . . , fk ; p1, . . . , pk) = k −
k∑
i=1

µ(pi) , (7.34)

and there are thus finitely many gradient flow trees connecting k points of Morse index 1.

An example of a gradient flow tree for the case of k = 5 is shown in figure 7.5.

As before, we can construct a three-cycle by fibering the two-sphere α associated with

the Morse function f over each segment γ(f). This both guarantees that we end up with

an associative, and also that α collapses at the end-points of the flow tree. Furthermore,

the fact that we have a tree in M3 implies that the resulting associative three-cycle has the

topology of a three-sphere, so that it contributes to the effective superpotential. Using the

same manipulations as in (7.5), we can compute the volume of such a 3-sphere γ as

Vol γ(f1, . . . , fk; p1, . . . , pk) =

k∑
i=1

fi(pi) . (7.35)

so that the resulting contribution to the superpotential is

∆W ∼ 1

Mk−3
φ

∑
γ

nγe
−

∑k
i=1 fi(pai ) . (7.36)

The scale Mφ is set by the vev of φ. Note that there can in general exist several flow trees

connecting matter localized at the same loci pi, which can cancel out.
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f4
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f1	+ f2	= f3	+	f4

f1	+ f2

Figure 7.6: The figure shows how perturbative ground states participate in 4-point interac-
tion between states localized at p1, p2, p3, p4. The gradient flow tree consists of two trivalent
trees connected by a gradient flow line between p5 and p6. We have indicated the relevant
Morse functions and Morse indices in the picture. The states localized at p5 and p6 are lifted
by instanton corrections and develop a mass m ∼MInst. In the 4d effective field theory this
gives rise to a 4-point interaction.

The modes participating in the Yukawa (and higher) couplings are not just the massless

states, but in fact all perturbative ground states of the SQM. Below the mass scale

MInst ∼Mφe
−tV (7.37)

induced by associates over flow lines between two points, we may integrate out the cor-

responding massive fields, thereby generating higher-dimensional operators in the effective

field theory. As MInst � Mφ these corrections are dominant compared to the couplings

induced between the same fields by associatives. An example is shown in figure 7.6.

For non-generic choices of the charge distribution the moduli space of gradient flow lines

may increase and (7.34) is no longer valid. In this case the moduli space of gradient flow

lines is not discrete but of dimension 1 and isomorphic to a circle. In the ALE geometry this

corresponds to a continuous family of associative submanifolds. In [113] it is shown that the

contribution of such a family C of associatives is proportional to χ(C).

In the more generic set-up of unfactored spectral cover of rank n the Higgs background

can only be diagonalised locally as in (4.20). The source terms ρ in the BPS equations

are now oriented arbitrarily along G⊥ breaking the gauge symmetry to its commutant G

in G̃. Assuming we can diagonalizing the Higgs field in a tubular neighbourhood T of the



singularity as

U(x)φ(x)U−1(x) = diag(λ1(x), . . . , λn(x)) x ∈ T ⊃ supp (ρ) , (7.38)

we can impose boundary conditions on our field content as in section 4.2 and proceed with

a local analysis. Chiral multiplets still localize at the vanishing points of the Higgs field

and the boundary conditions again preclude perturbative zero modes from localising at the

boundary. Due to the mixing of the sheets of the spectral cover the background is no longer

determined by a set of globally defined functions and we can not relate the cohomologies of

D counting the zero modes to de Rham cohomologies. The local geometric picture however

persists, all interactions are determined by three-cycles of the ALE geometry as in the

previous sections with strengths determined by their volumes as in (7.6).

Finally, let us briefly comment on the case in which the critical loci are circles, i.e., we

are allowing fQ to be Morse-Bott. Perturbing the set-up slightly we return to the case of

Morse theory. The ground states of (5.31) now decompose into multiple perturbative ground

states

α ∧ ψ⊥ → 1√
n
ηi i = 1, . . . , n , (7.39)

where we have assumed that the circle decomposes into 2n critical point of which n have

Morse index 1 and n have a Morse index of 2. The forms ηi are 1, 2-forms depending on

whether α is a 0, 1-form and localize at these critical points of Morse index 1, 2 respectively.

We further assume that the states α ∧ ψ⊥ and ηi are of unit norm. After this perturbation,

the previous analysis applies. The true ground state corresponding to α ∧ ψ⊥ is

1√
n

n∑
i=1

ηi . (7.40)

94



95

Chapter 8
Higgs Bundles and TCS G2-manifolds

In this section we consider local models associated with twisted connected sum (TCS) G2-

manifolds, which form the largest known class of examples of compact G2-manifolds [37,38].

The TCS construction has by now been covered extensively in the literature, so we will

only briefly recapitulate the main points and refer the reader to [37, 38, 45] for further

details. In a nutshell, the power of the TCS construction is that it shows how compact G2-

manifolds can be glued from simpler building blocks, which can in turn be constructed using

algebraic geometry. Although this makes finding examples relatively straight-forward, TCS

G2-manifolds appear to be a rather special class within the set of all G2-manifolds [45]. Our

analysis of local models for G2-manifolds allows us to move away (at least in local models)

from the TCS description and explore how to connect TCS G2-manifolds to G2-manifolds

giving rise to chiral spectra.

8.1 TCS G2-Manifolds

The basic ingredient for the twisted connected sum construction is a pair of algebraic three-

folds Z±, which each admit a K3 fibration

S± −→Z±

↓ π±

P1
±

(8.1)

with generic K3 fiber S±. The manifolds Z± have to satisfy

c1(Z±) = [S±] , (8.2)

i.e., the first Chern class of Z± must be equal to the class of a generic K3-fiber. With some

further assumptions on the topology (see [38, Definition 3.5]) Z± are then called the building



8.1. TCS G2-MANIFOLDS 96

S1 x Z+\S+
0

S-

S1 x Z-\S-
0HKR

S+
S-K3

Figure 8.1: TCS construction of G2-manifolds. Top: Building blocks that are aCyl Calabi-
Yau and hyper-Kähler rotation (HKR) in asymptotic cyclindrical region. Bottom: Higgs
bundle data. The critical loci of the Morse-Bott function f (in yellow) and the charge
configuration ρ (in red and blue) corresponding to the local limit of a TCS G2-manifold.
The figure on the top shows the decomposition of S3 into C± × S1

± and the figure on the
bottom shows the location of the same critical loci and charges in a patch R3 of S3. Every
every circle in X+ × S1

+ has linking number one with any of the circles in X+ × S1
+. Note

that charge conservation requires that not all loops carry identical charges in this example.

blocks. Excising a generic fiber S0
± from Z± one obtains a pair of non-compact threefolds

X± = Z± \ S0
±, fibered over a punctured Riemann sphere,

S± −→X±

↓ π±

C±

, (8.3)

which are asymptotically cylindrical (aCyl) Calabi-Yau threefolds. Away from a compact

submanifold, the X± have the topology of the cylinder R+ × S1
b,± × S0

± and the Ricci-flat

metrics on X± asymptote to the Ricci-flat product metric on this cylinder. The situation is

sketched in figure 8.1.

To form a compact G2-manifold, the aCyl Calabi-Yaus X± are then multiplied by an

extra circle S1
e,± and glued together along a their cylindrical regions. The diffeomorphism
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used for the gluing exchanges the ‘internal’ circles S1
b,± with the ‘external’ circles S1

e,∓ and

identifies the K3 surfaces S0
± by a diffeomorphism which induces a hyper-Kähler rotation,

or Donaldson matching,
Re(Ω2,0

± ) = ω∓

Im(Ω2,0
+ ) = − Im(Ω2,0

+ ) .

(8.4)

Here, Ω2,0
± and ω± are the holomorphic (2, 0) forms and Kähler forms on S0

± which are

induced by the complex structures on X±. The compact topological manifold J resulting

from this gluing then admits a metric with holonomy G2, which is close to the Ricci-flat

metrics on X± × S1
e,±. More precisely, there exists a limit, which we will call ‘Kovalev

limit’, in which the cylindrical region becomes arbitrarily long and in this limit the Ricci

flat G2-holonomy metric approaches the Calabi-Yau metrics on X±. In compactifications

of M-theory, modes localized only on X+ × S1
e,+ or X− × S1

e,− give rise to subsectors with

enhanced N = 2 supersymmetry in four dimensions. These subsectors are coupled such that

they mutually only preserve N = 1 supersymmetry, and we may think of the parameter T

which controls the length of the cylindrical region as the inverse of their coupling [43,46].

As both X±×S1
e,± are fibered by K3 surfaces and the gluing acts separately on the fiber

and base, J is (topologically) fibered by K3 surfaces as well. The base of this fibration is a

three-sphere S3 glued together from two solid tori. We can hence think of the local models

associated with TCS G2-manifolds as describing an ALE space which is cut out from the K3

fiber over a base space M3 which is S3. To engineer non-abelian gauge groups, every ALE

fiber of the local geometry and hence every K3 fiber of the associated compact G2-manifold

must be singular. It is straightforward to construct aCyl Calabi-Yau threefolds in which

every K3 fiber has a singularity of ADE type and the work of [45, 46] suggests that gluing

such singular three-folds indeed results in a singular G2-manifold.

Let us consider this in more detail. Denote the image of

ρ± : H2(Z±,Z)→ H2(S0
±,Z) (8.5)
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by N±. The Donaldson matching implies an idenfication of H2(S0
+,Z) ' H2(S0

−,Z). Using

this map, every element of

g = N+ ∩N− , (8.6)

gives rise to an associated harmonic two-form on J : the Poincaré dual cycle to such a form

is algebraic for both S+ and S−, so that its fibration over the whole base S3 of J is trivial

and it sweeps out a five-cycle, which is Poincaré dual to a two-form on J . The number of

independent such two-forms on J is simply given by the rank of g [38]. In compactifications

of M-theory on J , there are hence rank(g) massless U(1) vectors from the Kaluza-Klein

reduction of the three-form C3
1.

The hyper-Kähler structure on S0
± is forced by the Donaldson matching to be such that

the integral of both Ω2,0
± and ω± vanishes for every cycle contained in g. This means that

whenever there is a root, i.e., a lattice vector of length −2, contained in g, the K3 fibers S0
±

are singular. As g sits inside of the polarizing lattices2 of the algebraic families X±, this

implies that every single K3 fiber has a singularity. The type of singularity can be read of

by finding the sublattice groot ⊂ g generated by the roots of g. This sublattice must be a

(sum of) ADE root lattice(s) and its type determines the corresponding singularity and the

resulting simply-laced3 non-abelian gauge group upon compactification of M-theory.

The matter loci in these models arise as the degeneration loci of the singular K3-fibration

i.e., where the singularity worsens. This happens over points in P1
±, each of which gets mul-

tiplied with a circle in the TCS construction. This implies that in M-theory compactification

on a TCS manifold J , matter is localized along circles. This is true at least in the Kovalev
1There are in general further massless U(1) vectors associated with classes in the kernel of ρ± [38], which

associated with the irreducible components of reducible fibers of the K3 fibrations on Z±.
2The polarizing lattice of a family of K3 surfaces is the sublattice of H2(K3,Z) which is orthogonal to

Ω2,0 for all members of the family.
3While this data is sufficient to find the singularities associated with simply-laced gauge groups, it is

slightly more tricky to find non-simply laced gauge groups. Their emergence in TCS G2-manifolds parallels
their emergence in F-theory [121] in that the exceptional divisors of resolutions of ADE singularities of S±
may globally become a single divisor in X± [45]. In terms of lattice data, this can be expressed by saying
that a cycle of self-intersection n < −2 contained in g can force an ADE singularity in every fiber if it is
a linear combination of −2 curves in S+ or S− which are all in the polarizing lattices of the families S+

and S−. The difference between the polarizing lattices and N± determines the ‘folding’ of the ADE Dynkin
diagram.
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(stretched neck) limit in which the metric on the J is well approximated by the metrics

on each of the building blocks, which can be thought of as being contained inside J (more

precisely, the products X± × S1
± are in J).

8.2 Higgs Bundles of TCS G2-manifolds

We start by considering the local models of the two building blocks individually. As the

discussion is the same for both sides, we will drop the ± subscripts. The first step is to

replace the K3 fibration with a local ALE model. The precise details of this local limit

depends on the ADE group corresponding to the type of ADE singularity, and are well

known in the literature [122, 123]. Besides an ADE singularity, every ALE fiber contains

a number of compact cycles, the volumes of which vary over the base. Such cycles may

collapse over points in the base C. At these loci the singularity present in the generic fiber

is enhanced and matter is localized. Let

σ ∈ H2(S,Z) (8.7)

be such cycle which vanishes at (some) of the corresponding points in the base C. Let us

denote the hyper-Kähler triple by Θ = (ωI , ωJ , ωK). In terms of (8.4) the hyper-Kähler

structure is simply
ω = ωI

Ω2,0 = ωJ + iωK .
(8.8)

After taking the local limit and integrating over σ we get a meromorphic function φ on C:

φ =

∫
σ

Θ, (8.9)

with zeros precisely where σ shrinks to zero volume. The poles and zeros of φ are located

away from ∞. Moreover, we can identify φ with the meromorphic (1,0)-form as φdz. Since

the base C is contractible φ = df , where f is now a Morse function with critical points of

index 1 and singular loci corresponding to the poles of φ. After taking a product with the

circle we trivially get a Morse-Bott function.
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If (unit) charges are placed at points ai ∈ C, the function φ will be of the form

φ(z) =
n∑
i=1

1

z − ai
. (8.10)

Therefore φ can have at most n− 1 critical loci, which is generically the case. If we impose

charge conservation on each side, there can be at most n− 2 critical loci of φ.

With this information let us now consider how the Higgs bundle for TCS manifolds.

After gluing C+ × S1
e,+ with C− × S1

e,−, the base manifold is M3 = S3. In the Kovalev

limit, the critical locus of the harmonic Morse-Bott function f consists of a disjoint union

of m circles of Morse index 1. As before, we may engineer such an f by an appropriate

configuration of charges Γ on S3. On C± × S1
±, these charges will simply be given by a

collection of points on C± times the circle S1
±.

From the above discussion we only need the simple observation that matter loci in TCS

G2-manifold, at least in the Kovalev limit, are circles. Suppose that there are m matter

circles and no points. Using the results of section 5.5 we see that the Morse-Bott complex

is

C1 = Ω0(S1)m , C2 = Ω1(S1)m , (8.11)

and the cohomology gives just

H1(M3,Σ−) ∼= Rm , H2(M3,Σ−) ∼= Rm . (8.12)

We find that every perturbative ground state constitutes a true ground state, the Morse-

Bott function f is thus perfect. As each circle gives rise to a pair of chiral and conjugate-

chiral zero modes upon Kaluza-Klein reduction, the spectrum associated to this Higgs field

configuration φ = df is non-chiral

χ(M3,Rq) = 0 . (8.13)

We can use this result to derive constraints on the function f . By the above results the

relative Euler characteristic χ(M3,Σ−) = 0 vanishes and by Lefschetz duality we find that
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this implies χ(M3,Σ+) = 0. We obtain the topological constraint

χ(M3) = χ(Σ+) = χ(Σ−) = 0 . (8.14)

There has been a recent attempt to modify the TCS construction to yield singular G2-

manifolds with codimension 6 singularities by Chen [81]. Instead of smooth bulding blocks

Chen takes the Z+ building block to be a threefold with isolated nodal singularities, which

means that the non-compact aCyl G2-manifold X+ × S1
e+ has singularities in codimension

6. However, the standard TCS gluing argument does not work in this case; rather it is

conjectured [81] that if circles of nodal singularities are replaced by pairs of isolated conical

singularities it is possible to glue to a G2-manifold with conical singularities using a modified

version of the connected sum construction. In terms of the local model, the collapse of circles

into points corresponds to deforming the Morse-Bott function to a generic Morse function,

where the same collapse of critical circles to critical points occurs (recall that critical points

correspond precisely to isolated singularities of the total space of the G2-manifold). However,

even if this conjecture is true, such G2-manifold will still give rise to a non-chiral spectrum

by the arguments above.

Finally, let us discuss the spectral covers for a TCS G2-manifold which is given to us in

terms of building blocks X± and a gluing map

γ : S0
+ → S0

− , (8.15)

where S± have ADE singularities over U± ⊂ C±. This gluing of the K3 fibers in the TCS

geometry also implies a consistent gluing map for the ALE-fibrations associated with the

local model4. In general, to be able to glue two given ALE-fibrations together, the two

ALE-spaces need to be of the same type, G̃+ = G̃−, and furthermore the periods of the

ALE-fibers must satisfy a matching condition. By Torelli theorem for ALE-spaces [124],

the structure of an ALE-space is completely determined by the periods of the hyper-Kähler
4Here we assume the existence of a complete metric for the local model.
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C
+

C
-

Figure 8.2: Each of the building blocks X± defines a spectral cover over C±, and these are
then glued to a spectral cover over S3. In the example shown here, the cover on C+ factors
into two components and the cover on C− factors into three components. These covers are
glued such that the resulting spectral cover over S3 has two components with two sheets
each. Hence the resulting model has G⊥ = S[U(2) × U(2)] and there is a single unbroken
U(1).

structure forms over the 2-cycles in the root lattice of the algebra of G̃. Explicitly, the

matching condition is∫
σj

ωI,+ =

∫
σj

ωJ,− ,

∫
σj

ωJ,+ =

∫
σj

ωJ,− ,

∫
σj

ωK,+ = −
∫
σj

ωK,− , (8.16)

where σj are the 2-cycles generating the root lattice. Note that this implies that the non-

abelian part of the group G, i.e., the type if ADE singularity, must be the same on both

sides.

Each X± furthermore has a local model, which is a Higgs bundle φ(±) over C±, and a

corresponding spectral cover C(±). The asymptotic values the Higgs fields φ(±),0 are similarly

related by

φ(+),0 = γ∗φ(−),0 , (8.17)

which induces a gluing of the spectral covers.

Let us explain the origin of U(1) gauge symmetries in glued spectral covers. Each cover

C(±) can have a factorization structure, which defines two-forms (five-cycles) and locally U(1)

symmetries. This can be detected by the restriction of the map (8.5) to the ALE-fibrations

over C±. Factorization of the spectral cover C over S3 after gluing C(±) can likewise be

detected by (8.6), and only those two-forms in the image that lie in the intersection will
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globally give rise to a two-form and thereby a U(1) symmetry. An example is shown in

figure 8.2, where C(±) → C± each is a four-sheeted cover. However C(±) is factored into

two (three), and thus locally gives one (two) U(1) symmetries. The gluing is such that

the spectral cover C → S3 has only two factors, and thus only gives rise to a single U(1)

symmetry. The scale at which the other U(1) is broken is set by the size of the neck region

of the TCS-construction.

Besides an analysis via Higgs bundles, the matter spectrum of M-theory on TCS G2-

manifolds can also be found using a purely geometric reasoning. The geometry in the vicinity

of each matter locus is that of a Calabi-Yau threefold times a circle. The local Calabi-Yau

geometry is that of a fibration of an ADE singularity over C with a further degeneration at

a point. Using the usual dictionary between singularities and gauge theory for M-theory or

type IIA on Calabi-Yau threefolds, the Cartan generators and weight vectors can be identified

with exceptional divisors and curves in the resolved Calabi-Yau geometry [15, 97, 125, 126].

Our analysis of Higgs bundles now implies that the multiplicities must be such that each

matter locus gives rise to a single vector-like pair of representations. Furthermore, we may

determine the U(1) charges by simply integrating the two-forms in g which give rise to the

U(1)s over the exceptional curves of the resolution associated with the matter.

8.3 Deformation of TCS Higgs Bundles

Given the local model for TCS G2-manifolds we now consider the behavior of the physics

under deformations of the Morse-Bott function. We have seen above that circular critical loci

arise in the non-generic S1-invariant distributions of charges in S3 which are present in the

Kovalev limit. The natural question is what happens if this invariance in is broken by a slight

deformation. The strategy we will use to describe deformations is to exploit the construction

of Morse(-Bott) functions in terms of charge distributions. For every charge distribution ρ,

there is an associated Morse-Bott function, which in turn lifts to an ALE-fibration, our

local model of a G2-manifold. For every deformation of the charge distribution there is
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Figure 8.3: Two homogeneously negatively charged coplanar circles which have been
stretched to ellipses. On the ellipse which is equidistant to the two charge loci, the elec-
tric field only vanishes at the four points marked as black dots. To find the Morse index,
consider the small circles (coplanar to the ellipses) around these points and the restriction
of the electric field to these circles. The Morse index of the points near the vertices of the
ellipse is 2 and while those near the co-vertices have a Morse index of 1. As before, the
critical loci are shown in yellow, and the charges in blue.

hence an associated deformation of the local model. Note that this deformation might be

trivial: contrary to the number of deformations of Higgs bundles or the deformations of G2-

manifolds, which are finite in number, there are infinitely many deformations of any given

charge configuration.

A configuration of charges which produces the Morse-Bott function associated with a

TCS G2-manifold in the Kovalev limit must of course be finely tuned, as a generic config-

uration of charges will always result in critical loci of dimension zero. Let us discuss this

in a simple example – see figure 8.3: consider a charge distribution of two equally charged

coplanar and cocentric circles in R3. This setup has rotational symmetry and correspond-

ingly the critical locus is another coplanar and concentric circle. A generic deformation will

destroy the rotational symmetry and lead to critical points instead of a circle. Consider e.g.,

deforming the charges to ellipses while preserving coplanarity. This collapses the critical

locus to two points of Morse index 1 near the vertices of the ellipses and two points of index
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2 near the co-vertices.

More generally, the function f will become Morse with isolated critical points for a

generic deformation. However, since the topology of Σ± does not change, we still have

χ(M3,Σ−) = 0 . (8.18)

Physically this means that any deformation of f will give rise to chiral spectrum if under the

deformation the topology of Σ− remains unchanged. Denoting the number of points with

Morse index i by mi, the Morse inequalities for manifolds with boundary imply

χ(M3,Σ−) = m2 −m1 = 0 . (8.19)

Equally, every deformation of the local model of a TCS G2-manifold that has an associated

charge distribution which consists of a number of circles will satisfy n± = l±, so that the

resulting spectrum is seen to be non-chiral.

8.4 Chirality and Singular Transitions

It is not at all surprising that TCS G2-manifolds do not give rise to chiral spectra and that

small deformations do not change the chiral index. However the result we have found already

has fairly interesting geometrical implications: for a generic small deformation of a TCS G2-

manifold, the loci at which matter is localized are no longer one-dimensional but become

point-like. This of course implies that the product structure ofX±×S1
e,± must be broken and

the periods of the hyper-Kähler triplet on the K3 fiber must have a non-trivial dependence

along S1
e,±. Although such small deformations will not yield G2-manifolds giving rise to

chiral spectra, the crucial ingredient, which are point-like singularities, is already present

for small deformations of TCS G2-manifolds.

Engineering the ALE-fibration from a Morse function which in turn is determined by

a configuration of charges allows us to make the key observation for how to deform TCS

G2-manifolds to situation with chiral spectra: we need to make a transition after which

n± = l± no longer holds. The simplest way to do so is to bring two circles of equal charge
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Figure 8.4: A transition of the charge configuration which results in a transition between a
non-chiral and a chiral spectrum. Starting from a TCS configuration of charges deforming
the configuration to one that results in a chiral spectrum.

together and then deform them to an object with l = 2. For TCS G2-manifolds, there are

essentially two different ways to achieve this.

The first option is to take e.g., a positive charge on C+ and another positive charge on

C−, bring them together, and fuse them as shown in figure 8.4. As now l+ − n+ = 1 while

l− − n− = 0, the resulting spectrum must be chiral. In a generic situation in which f is

Morse, i.e., f only has isolated critical points, the critical locus of f hence consists of an odd

number of points now. As we started from a non-chiral configuration with an even number

of critical points, this implies that some of the critical points must have fused. As the circles

of positive charge we have fused originated from different ends of the TCS G2-manifold we

started from, the critical points which have fused must likewise originate from different ends.

Geometrically, these critical points are nothing but degeneration loci of the K3 fibration of

the G2-manifold, so that we have effectively taken specific singular fibers of the K3 fibration

into what used to be cylindrical region of the TCS and collided them. As expected from

our earlier statement about the absence of chiral spectra in TCS G2-manifolds, this signifies

a definite departure from the TCS set-up, where the K3-fibration must be constant in the

cylinder region.

In fact, the type of transition we have just sketched can also be anticipated from the

heterotic duals of TCS G2-manifolds, which are given by compactifications on the Schoen

Calabi-Yau threefold with different vector bundles [45]. Such models always have non-chiral

spectra and a singular transition connecting the Schoen Calabi-Yau threefold to a different

Calabi-Yau threefold (together with appropriate vector bundles) is needed to find a chiral



spectrum. The Schoen Calabi-Yau threefold can be described as a fiber product of two

dP9s, and it allows singular transitions in which a singular fiber of one dP9 is collided with

a singular fiber of the other dP9. As discussed in [45,47], the duality to a TCS G2-manifold

implies that the singular fibers of these two dP9s are separated into disjoint regions of the

common P1 base. A collison between singular fibers from both ends translates to a collision

of singular K3 fibers coming from the two separate ends X+ and X− of the dual TCS

G2-manifold.

The second option is to change the charge configuration corresponding to a TCS G2-

manifold by colliding two circles of equal charge which are both located in the same building

block. The picture of such a deformation will be similar to the one in figure 8.4, however

initially the charged circles will be unlinked. Again, it is clear that this signals a departure

from a TCS G2-manifold (and must result in a singular transition on the heterotic side as

well): after the transition e.g., X+×S1
e,+ must become a non-compact G2-manifold without

the structure of a product.

Chapter 9
Higgs Bundles with Non-Split Spectral Covers

We now turn to colored SQMs probing Higgs bundles with non-split spectral covers. These

covers are branched and were discussed in chapter 3, they are the spectral covers generi-

cally encountered in F-theory constructions [13, 15, 94, 99, 100, 127–132]. Here we explore

the Morse-theoretic consequences of the presence of branch sheets and find that previously

distinct copies of Witten’s SQM combine into a single SQM whose target space is now topo-

logically an irreducible component of the spectral cover. Consequently the cohomology of

the supercharge Q onM3 computes topological properties for the spectral cover components

Ck rather than those of the base manifold M3. We discuss how to count zero modes in these

models and determine the gauge symmetry of the associated 4d physics. We further com-

107
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Figure 9.1: Sketch of a flow line (black) encircling a branch cut (blue). The incoming
flow is determined by the Morse 1-form αIφI and the monodromy action associated to the
branch circle is given by s = −1, then the outgoing flow is determined by βIφI . The two
Witten SQMs associated to the roots α, β are coupled and combine to a single SQM.

ment on turning on flat abelian connections A and how these generically lift zero modes.

As in chapter 3 we specialize to M3 = S3. To distinguish the eigenvalues of the Higgs field

from the color fermions we denote the first by Λ and latter by λ in this chapter.

9.1 Combination of Witten SQMs

We consider the Lagrangian (6.28) with a Higgs field φ = diag (ΛK) ∈ Ω1(S3, gADE) solving

the sourced BPS equations (3.9) whose associated n-sheeted spectral cover is irreducible

and cyclically branched as described in section 3.5. For concreteness we furthermore restrict

to Lie algebras gADE = su(n). The topology of such covers is fixed by the pairs (Li, Fi)

where Li = ∂Fi ⊂M3 denotes the links of the branch locus and Fi ⊂M3 a choice of Seifert

surfaces together with a cyclic monodromy action s ∈ Sn.

We begin analysing the 1-particle sector of the colored SQM. The notion of perturbative

ground states and the flow equations between these are identical to the case of non-split

spectral covers, but the global structure of flow lines is altered. Along a path linking the

branch locus the eigenvalues of the Higgs field are interchanged according to the monodromy

action which is given by

φ → gφg−1 , g ∈ SU(n) , (9.1)



9.1. COMBINATION OF WITTEN SQMS 109

where the element g is determined by the monodromy element s. A particle following the

flow line set by a sum of Higgs field eigenvalues αIφI follows a different combination of

eigenvalues βIφI after circling the branch locus and changes color. We have depicted this

process in figure 9.1. The color change is determined by the monodromy action

Eα → gEαg−1 , (9.2)

and looping around the branch locus multiple times we find an orbit of generators

E[α] =
{
gkEαg−k | k = 0, . . . , n− 1

}
. (9.3)

For a standard choice of Cartan-Weyl basis Eα conjugation by gk acts as a permutation of

the roots α and we find an associated orbit of colors [α] to the action (9.3).

The eigenvalue 1-forms of the Higgs field can be distinguished on the simply connected

subspace S3 \ ∪iFi and while flowing in S3 \ ∪iFi the particle is of definite color. Travers-

ing the Seifert surfaces Fi the particle changes color according to (9.2). This leads to an

interpretation of the Seifert surfaces as defects in the colored SQM. The wave functions of

particles of definite color need not extend smoothly across the Seifert surfaces in S3 \ ∪iFi

but rather they are required to glue smoothly to a wave function profile on S3 \ ∪iFi as-

sociated with a color prescribed by the monodromy action (9.2). Equivalently, they must

glue exactly as the eigenvalues of the Higgs field in (3.21). By this effect particles of color

α evolve identically to an uncolored particle probing n copies of S3 \ ∪iLi. Each copy is

associated with a color β ∈ [α] and the potential governing the particle is determined in

the respective copy by the 1-form βIφI . Due to (3.21) this gives a well-defined potential

on the n-fold glued space (3.18) which is topologically the spectral cover C. With this the

correspondence (6.34) is altered to

E[α] ⊂ su(n) ↔ Witten’s SQM on C with supercharge Q = d+ Φ[α]∧ ,

HI ∈ su(n) ↔ Witten’s SQM on M3 with supercharge Q = d .

(9.4)

Here the 1-form Φ[α] ∈ Ω1(C) is defined by gluing the 1-forms βIφI across the gluing factors

given in (3.18).
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The branch cuts of the Higgs field or equivalently its Seifert surface defects break the

gauge symmetry to the stabilizer Stab(φ) which consists of gauge transformations leaving φ

invariant. They are generated by the generators H of the maximal torus of the gauge group

which satisfy

gHg−1 = H . (9.5)

For the n-sheeted irreducible coverings discussed in this section all of the gauge symmetry is

broken. More general Higgs fields whose spectral covers have N + 1 irreducible components

have their gauge group broken to U(1)N . This may enhance to include factors of SU(k) if

k eigenvalues of the Higgs field take the same value.

9.2 Monodromies and Partial Higgsing

We are interested in preserving some of the gauge symmetry and non-split Higgs field back-

grounds whose spectral cover (3.1) has multiple components. The eigenvalues ΛK associated

with each irreducible component of the cover can be activated successively whereby we can

focus on Higgs fields where n eigenvalues have been set to vanish and m have been activated

to trace out an irreducible m-sheeted cover.

We begin by consider a Higgs field background valued in the Lie algebra su(n+m) for

which m eigenvalues are turned on as described in section 3.5. This naively realizes a partial

Higgsing of the gauge symmetry from SU(n+m) to SU(n)×U(1)m as discussed in section

6.5.2. The adjoint representation breaks into representations of SU(n)× U(1)m as

AdSU(n+m) → (AdSU(n)⊗ 1)⊕ (1⊗AdU(1)m)

⊕
m∑
i=1

(nQi ⊕ n−Qi)⊕
m2−m∑
j=1

1Qj .
(9.6)

Here we denote the fundamental representation of SU(n) by n and both Qi, Qj are charge

vectors of U(1)k. There are m pairs of the fundamental representation of SU(n) and m(m−

1) trivial representations charged under U(1)k.

Monodromy effects (9.5) now break the gauge symmetry to SU(n) × U(1) and the col-

ored SQM now groups the representations in (9.6) into representations of this reduced gauge
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symmetry. The m pairs of fundamental representations nQi ,n−Qi belong to the same mon-

odromy orbit of colors with length m (9.3) and combine to a single pair of fundamental

representations n+,n− of the gauge symmetry SU(n)×U(1). Similarly the m(m−1) trivial

representations are grouped into (m− 1) trivial representations which are uncharged under

the new gauge group. The m representations AdU(1)m combine to AdU(1). The latter

follows from the common geometric origin of the Higgs field φ and the connection A. The

gauge fields valued in AdU(1)m are in correspondence with the m activated Higgs field

eigenvalues. They are constrained to glue in the same way as the eigenvalues (3.21) across

the branch sheets and are not independent. Summarizing we find that the monodromy

effects lead to following representation content

(AdSU(n)⊗ 1)⊕ (1⊗AdU(1)m)⊕
m2−m∑
j=1

1Qj ⊕
m∑
i=1

(nQi ⊕ n−Qi)

→ (AdSU(n)⊗ 1)⊕ (1⊗AdU(1))⊕
m−1∑
k=1

1
(k)
0 ⊕ (n+ ⊕ n−)

(9.7)

of the reduced gauge symmetry group SU(n) × U(1). The raised superscript 1
(k)
0 is intro-

duced to distinguish the m− 1 uncharged trivial representation.

We check these results by considering the circle reduction of M-theory on the ALE geom-

etry set by the Higgs field background to the IIA set-up. This is given by n+m D6-branes of

which m have been Higgsed leaving a stack of n coincident branes. The m D6-branes recom-

bine into a single D6-brane which explains the gauge symmetry reduction to SU(n)×U(1).

Further this interpretations explains the single pair of fundamental representations n+,n−

which correspond to the open string sector between the stack of n D6-branes and the re-

combined, Higgsed D6-brane. The modes in the uncharged trivial representations originate

from the self-intersection of the Higgsed D6-brane.

The colored SQM now further determines a simplification of the cohomology groups

H∗Q(S3, gADE) with gADE = su(n+m) which determine the 4d spectrum (2.45). The spectral

cover is the union of n copies of the zero section in T ∗S3 and the Higgsed eigenvalues which
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sweep out the irreducible 3-manifold C ⊂ T ∗S3 given topologically by

C =

[
S3 \

(⋃
i

Fi

)]
1

# . . . #

[
S3 \

(⋃
i

Fi

)]
m

\ (∪iLi) . (9.8)

We discuss the zero mode counting for each summand of (9.7) in turn. The fields transform-

ing in AdSU(n) ⊗ 1 are not effected by the Higgs field background and the relevant zero

modes in the reduction on M3 are counted by the de Rham cohomology groups H∗dR(S3,R).

The fields transforming in 1 ⊗ AdU(1) commute with the Higgs field, but, as explained

above, zero modes are counted by the de Rham cohomology groups H∗dR(C,R). The fields

transforming in the m − 1 uncharged trivial representations 1(k) are similarly effected by

the branch cuts. Such representations resulted from combining m charged representations

1Qj and the relevant Higgs field for each of these is given by QIjφI . The charge vectors Qj

are nothing but the roots αj of su(m) and the glued representations 1Qj precisely fit into

a color orbit of the monodromy action (9.2). The sum
∑m−1

k=1 1(k) =
∑

[α] 1
[α] in (9.7) is

equivalently expressed as a sum over color orbits. The m 1-forms QIjφI associated with the

color orbit [α] glue across the m factors in (9.8) to the 1-form Φ[α] on the gluing space C. As

a consequence zero modes are counted by the Novikov cohomology groups H∗Nov.(C,Φ[α]).

The fields transforming in n+ are identically argued to be counted by H∗Nov.(C,Φ[β]) where

β is a positive root of su(n + m) that is neither a root of the subalgebras su(n) or su(m).

Of course there are many different (precisely nm) such roots but due to the degeneracy ex-

plained in section 6.5.2 all such roots yield the same 1-form Φ[β]. Zero modes transforming

in n− are simply counted by the groups H∗Nov.(C,−Φ[β]). Due to its distinguished role we

denote Φ[β] simply by Φ.

We can now generalize (7.9) for partial Higgsings with non-split spectral covers. For

the Lie algebra g = su(n+m) and monodromy orbits [α] of su(m) we have, counting with
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multiplicities,

H∗Q(S3, g) =

n2−1⊕
i=1

H∗dR(S3,R)

⊕H∗dR(C,R)

⊕

⊕
[α]

H∗Nov.(C,Φ[α])

⊕( m⊕
k=1

[H∗Nov.(C,Φ)⊕H∗Nov.(C,−Φ)]

)
.

(9.9)

More generally we can consider other ADE gauge groups and turn on Higgs fields sim-

ilarly as above. Consider for example the gauge symmetry breaking E8 → SU(5)GUT ×

SU(5)⊥ where the Higgs field is turned on along SU(5)⊥. Such a breaking is described by

a five sheeted spectral cover of SU(5)⊥ traced out by the non-vanishing eigenvalues of the

Higgs field. The Higgsing is a special case of

E8 → SU(5)GUT × SU(5)⊥

248 → (24,1)⊕ (1,24)⊕ (10,5)⊕
(
5,10

)
⊕
(
10,5

)
⊕
(
5,10

)
,

(9.10)

for which SU(5)⊥ is further reduced to U(1) when taking the eigenvalues of the Higgs field to

trace out an irreducible 5-fold covering. The representations of SU(5)GUT follow from orbits

of the Weyl group action S5 on the representations in (9.10) of SU(5)⊥. The Higgs field

breaks SU(5)⊥ naively to S[U(1)5], the spectrum transforming under SU(5)GUT×U(1) then

follows as in (9.7). We normalize the U(1) charge of the fundamental representations 5 to

unity and then find following spectrum transforming under the gauge symmetry SU(5)GUT×

U(1)

240 ⊕

(
10 ⊕

4∑
k=1

1
(k)
0

)
⊕ 10+1 ⊕ 10−1 ⊕ 2× 5+2 ⊕ 2× 5−2 . (9.11)

The zero modes of Q transforming in each representation are again characterized by a

Higgs field on the space (9.8) constructed via gluing. For example the matter curves (here

points) of (10,5) in (9.10) give matter transforming in the anti-symmetric representation of

SU(5)GUT which localizes at ΛK = 0 for the K = 1, . . . , 5 eigenvalues of the Higgs field. The

eigenvalues ΛK glue to a 1-form Λ on C as in (3.21). The massless matter transforming in

10+1 of (9.11) is therefore counted by H∗Nov.(C,Λ). Similarly the massless matter in (5,10)

localizes at ΛK +ΛL = 0 with K > L. The monodromy action groups these ten 1-forms into
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Figure 9.2: The picture locally shows the four D6-branes which are IIA realization of
the Higgs field (9.12). The D6-branes labeled by ±Λ are connected by branch sheets and
along a closed path linking a branch cut locus S1

i the components of the combined D6-brane
interchange. By (a,b,c) we label three open string sectors and their image when transported
around the branch locus. The Chan-Paton factors of the string determine to which root of
the Lie algebra su(4) it is associated. The pairs of roots (9.21)-(9.24) are now understood
as the open string sectors which are mapped onto another by the monodromy action.

two groups of five 1-forms which glue to the 1-forms Λ
(1)
as ,Λ

(2)
as on C. The matter transforming

in the two representations 5+2 are therefore counted by H∗Nov.(C,Λ
(i)
as ) with i = 1, 2.

9.3 Example: 2-sheeted Covers and Monodromy

We give an explicit example of the effects discussed in the previous sections. Consider the

family of two-sheeted covers (3.14) constructed in section 3.4 and embed these two sheets

sheets (Λ,−Λ) into an su(4) valued Higgs field φ on M3 = S3 as

φ = diag(0, 0,Λ,−Λ) . (9.12)

Here Λ is a 1-form with branch loci along a collection of circles ∪iS1
i defined on S3 \ ∪iDi

where Di are disks realizing the branch sheets and bound by the branch locus ∂Di = S1
i .

With respect to the Cartan basis

H1 = diag(1,−1, 0, 0) , H2 = diag(0, 1,−1, 0) , H3 = diag(0, 0, 1,−1) , (9.13)

consider the six positive roots

α1 = (2,−1, 0) , α2 = (−1, 2,−1) , α3 = (0,−1, 2) , (9.14)

α4 = (1, 1,−1) , α5 = (−1, 1, 1) , α6 = (1, 0, 1) . (9.15)
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When traversing a closed path linking one of the circles S1
i the third and fourth sheet of

the spectral cover are interchanged, i.e., the Higgs field φ returns to (9.1)

φ→ −φ = gφg−1 , g =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 ∈ SU(4) , (9.16)

which realizes a Z2 monodromy action. The gauge group is broken to SU(2) × U(1). The

supercharge Q = d+ [φ∧ , · ] preserves the standard complexified Lie algebra generators Eαi

associated with the roots (9.14) and restricts to each of the respective subspaces, in the

notation of (6.32), to

Q(α1) = d , Q(α2) = d− Λ∧ , Q(α3) = d+ 2Λ∧ , (9.17)

Q(α4) = d− Λ∧ , Q(α5) = d+ Λ∧ , Q(α6) = d+ Λ ∧ . (9.18)

The gauge transformation (9.16) determines which copies of Witten’s SQM associated with

different roots of su(4) combine across the branch sheets. The conjugation of (9.16) acts on

the positive generators of su(4) as

gEα1g−1 = Eα1 , gEα2g−1 = −Eα5 , gEα3g−1 = −(Eα3)T = −E−α3 , (9.19)

gEα4g−1 = −Eα6 , gEα5g−1 = Eα2 , gEα6g−1 = Eα4 , (9.20)

and the roots (9.14) and (9.15) together with their negative copies are grouped into the color

orbits

[α1] = {α1} , [−α1] = {−α1} ,
(
AdSU(2)

)
(9.21)

[α2] = {α2, α5} , [α4] = {α4, α6} , (n+) (9.22)

[−α2] = {−α2,−α5} , [−α4] = {−α4,−α6} , (n−) (9.23)

[α3] = {α3,−α3} (10) . (9.24)

The twelve SQMs naively associated with the roots of su(4) in (6.34) (and their negative

copies) consequently combine across the branch sheets to SQMs associated with the color

orbits (9.21)-(9.24). The generators E±α1 commute with the Higgs field and give free SQMs
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mapping into S3. The remaining color orbits contain two roots and are over (9.4) in corre-

spondence with SQMs mapping into the target space

C =
(
S3 \D

)
1

#
(
S3 \D

)
2
\ L , D =

N⋃
i=1

Di , L =

N⋃
i=1

S1
i , (9.25)

whose metric is inherited from the gluing factors. Each gluing component is associated with

one of the roots in of the pairs (9.22)-(9.24). The 1-forms Λ,−Λ glue to a single harmonic

1-form Φ on C and consequently the supercharges (9.17), (9.18) combine in pairs to give the

supercharges of the SQMs mapping into (9.25).

We briefly comment on the IIA string theory interpretation of the above effects. In the

type IIA set-up associated with the Higgs field (9.12) we locally have four D6-branes of which

two have combined to a connected object corresponding to the spectral cover component

C. The transformations (9.19) are then understood as open string sectors identified by the

monodromy action. For instance, an open strings locally connecting the first and third

D6-branes are found to connect the first and fourth D6-brane when transported around the

branch locus. We depict this interpretation in figure 9.2.

The monodromy orbits already fix the representation content (9.7) transforming under

SU(2)× U(1) which here reads

AdSU(2)0 ⊕AdU(1)⊕ 10 ⊕ 2+ ⊕ 2− , (9.26)

where the roots associated with each representation are as given in (9.21)-(9.24). In figure

9.2 the open string sectors corresponding to 2+,2−,10 are marked with (a, b, c) respectively.

The reflective symmetry θ → π − θ of the set-up, we refer to section 3.4, requires all

instanton effects potentially lifting perturbative ground states to come in pairs and cancel.

All perturbative ground states are therefore ground states of the colored SQM and their

count determines the cohomologies in (9.9). These are localized at the zero of the Higgs

field, counted in (3.17), and therefore the Novikov cohomology groups evaluate to

H∗Nov.(C,Φ) =
{

0,Rl−2,Rl−2, 0
}
, (9.27)
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where l is the number of disks participating in the gluing construction (9.25). The Novikov

groups for the 1-form Φ[α3] = 2Φ on C of the color orbit [α3] also evaluate to (9.27).



Part III
4d N = 1 from 6d N = (2, 0) and Confinement

This part of the thesis is devoted to the study of confinement in a large class of 4d N = 1

theories. We begin by reviewing the definition of confinement that we use here, background

on 6d N = (2, 0) theories relevant for this thesis part and their geometric construction in

IIB string theory is laid out in section 10. A vacuum r of a quantum field theory (QFT)

T is called confining if the vacuum expectation value (vev) of some genuine1 line operator

in T exhibits area law in r. This is correlated with the existence of confining strings in the

spectrum which can end on such line operators and are responsible for giving rise to the

linear potential that gives rise to the area law. A classic example is provided by 4d N = 1

pure Super-Yang-Mills (SYM) theory with gauge group SU(n). This theory has n vacua

and in each vacuum, the Wilson line operator in the fundamental representation of SU(n)

exhibits area law. Thus, each vacuum is confining.

Confinement can be characterized in terms of the 1-form symmetry group O of T [57],

which captures equivalence classes of line operators with two line operators L1 and L2

considered to be in the same class if there exists a local operator living at the junction of

L1 and L2. For the theories that are studied in this thesis part, these equivalence classes

form an abelian group Λ under OPE and characterize different charges under the 1-form

symmetry group O = Λ̂, which is the Pontryagin dual of Λ. If a line operator L1 shows area

or perimeter law, then another line operator L2 in the same equivalence class shows the same

law. Thus confinement can be characterized by dividing Λ into two subsets: those showing

area law and those showing perimeter law. Furthermore, the classes exhibiting perimeter

law form a subgroup Λr of Λ which depends on the vacuum r under consideration [133].
1A non-genuine line operator is one which lives at the boundaries or corners of higher-dimensional ex-

tended operators. A genuine line operator exists independently of any higher-dimensional extended operator.
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Consider a line operator L that exhibits perimeter law in vacuum r. Then, any element

of the 1-form symmetry group O under which L is non-trivially charged is spontaneously

broken in the vacuum r, because we can set the vev of L to a non-zero constant by introducing

a counter-term along the location of L, which cancels the perimeter dependence [57, 134].

Thus, the 1-form symmetry group Or preserved in vacuum r can be written as2

Or =

(̂
Λ

Λr

)
⊆ Λ̂ = O . (9.28)

In other words, the data of the preserved 1-form symmetry group Or is equivalent to the

data of the set Λ − Λr of line operators that exhibit area law. The confining strings are

charged under Or and their charges take values in its Pontryagin dual Λ/Λr.

The goal of this thesis part is to study confinement in N = 1 deformations of 4d N = 2

Class S theories [55], i.e., those 4d N = 2 theories that can be obtained via compactification

of the 6d N = (2, 0) theories on Riemann surfaces with a partial topological twist. We

only consider those Class S theories that can be obtained by compactifying 6d N = (2, 0)

theory of An−1 type on a Riemann surface with untwisted punctures and no closed twist

lines [135]. It should be noted that, though in practice we will largely consider such Class S

constructions with irregular punctures, our considerations apply to general Class S set-ups.

Much like the 4dN = 2 Class S theories have a description in terms of Higgs bundles that

are solutions to a Hitchin system [77], their N = 1 deformations are similarly related to a set

of BPS equations, which form a generalized Hitchin-like system, involving two Higgs fields.

Akin to the spectral curve (or the Seiberg-Witten curve) in theN = 2 case, one can associate

a spectral curve, known as the N = 1 curve, to the generalized Hitchin system [79,136]. The

N = 1 curve has appeared in various forms in the literature [52,71–73,78,79,136–151]. The

N = 1 deformation is realized by turning on singular behaviors of the second Higgs field at

the locations of the punctures on the Riemann surface, which we dub as a “rotation” of the

involved punctures. The profile of the second Higgs field is solved in terms of its asymptotic

behavior by the generalized Hitchin system, which also constrains the profile of the N = 2

2Hats denote Pontryagin duals, i.e., Λ̂ := Hom(Λ, U(1)).
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Higgs field. Ultimately, the different solutions for the two Higgs field capture N = 1 vacua

of the deformed theory.

One can also study a generalization of the above set-up, where one starts with a topologi-

cal twist that only preserves 4d N = 1 supersymmetry. The BPS equations are a generalized

Hitchin system, where the two Higgs fields are now on an equal footing and can have singu-

larities at mutually distinct locations on the Riemann surface. One can again associate an

N = 1 curve to a vacuum of the resulting 4d N = 1 theory, which now does not have an

interpretation as a deformation of a 4d N = 2 Class S theory. In M-theory, the two twists

are distinguished as follows: the Class S construction is obtained by wrapping M5-branes on

the UV curve embedded in a local K3-surface. The N = 1 twists arise by instead embedding

the curve into a local Calabi-Yau threefold. These set-ups are discussed in sections 13.3 and

13.4.

The 1-form symmetry group O of a Class S theory is encoded in the 1-cycles of the

punctured Riemann surface as discussed in detail in [3] (which is based on [64], also see [66,70]

and the study of line operators in [152]), which we summarize in our context in chapter 11.1

and section 13.2. In a similar spirit, we argue in section 13.5 that the preserved 1-form

symmetry group Or in a vacuum r is encoded in the 1-cycles of the N = 1 curve Σr

associated to the vacuum r. Our work can thus be viewed as a part of the recent surge

of activity in the study of generalized symmetries of QFTs via compactifications of string

theory and higher-dimensional QFTs [3, 58–60,62,65,66,70,153–157].

To explain and test our framework we first consider pure N = 1 SYM as well as an ex-

tension to the set-up studied in Cachazo-Seiberg-Witten (CSW) [71–73], which corresponds

to turning on a superpotential for the adjoint chiral superfield that lives in the N = 2 vector

multiplet. Both instances have well-documented confining vacua and we use them to test our

general framework and to showcase how to go from the N = 1 curve to the area/perimeter

law of line operators.

The most exciting application of this work is to the realm of non-Lagrangian theories –
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which are ubiquitous in Class S constructions. For these the standard tool set for analyzing

confinement from a Lagrangian point of view is unavailable. We identify, in section 16, a

family of N = 1 theories, and show that this class of theories exhibits confinement! We

argue – based on the curve and associated line operators that these theories have confining

vacua. Clearly numerous generalizations of this can be considered, opening up a vast arena

for studying confinement in theories with no apparent Lagrangian.

The plan of this thesis part is as follows:

In chapter 12 we will whet the appetite of the reader by discussing in detail the su(2)

SYM theory and its confining vacua using the Class S and N = 1 perspective.

The main conceptual background will be explained in chapter 13, which includes theN =

1 curve and associated Hitchin system. We then apply this general approach to two well-

known instances of theories with confining vacua: in chapter 14 we study the N = 1 curves

for 4d N = 1 su(n) SYM , and use it to recover the well-known properties of confinement

in this model. In chapter 15, we discuss the CSW model, whose confinement properties are

also well-known in the literature. These two models provide extensive consistency checks of

our proposed method of computing confinement, and also for testing our methodology.

In chapter 16, it comes time to reap the rewards as we use our method to find an

infinite class of non-Lagrangian 4d N = 1 theories that contain confining vacua. The

simplest theory in this class can be described as an N = 1 deformation of the N = 2

asymptotically conformal theory obtained by gauging su(3)3 flavor symmetry subgroup of the

famous E6 Minahan-Nemeschansky theory (or the T3 trinion theory) [158]. Other theories

in this class can be described as N = 1 deformations of N = 2 asymptotically conformal

theories obtained by gauging su(n)n flavor symmetry group of the 4d N = 2 SCFT obtained

by compactifying An−1 N = (2, 0) theory on a sphere with n maximal regular untwisted

punctures.



Summary of notation in figures of v- and w-curves.

• The pictures show the UV curve parametrized by t and the branch cuts for v, w as

n-fold cover over it.

• Punctures and branch points are denoted by stars and crosses, respectively.

• Branch lines are labelled by a monodromy element in the symmetric group Sn.

• Cyclic permutation (123 · · ·n)→ (234 · · ·n1) is denoted by a.

• Transposition of ij is denoted by bij .

• Dashed lines are associated with Z2 branch cuts and solid oriented lines are associated

with Zn>2 branch cuts.

• Branch lines are oriented such that the labelled monodromy takes action along a closed

path γ(τ) when the cross product of the oriented line with the vector γ̇ points out of

the page.

• The circle |t| = 1 is located at the vertical equator with t = 1 on the front and t = −1

on the back.

Chapter 10
6d N = (2, 0) SCFTs from IIB

We review 6d N = (2, 0) superconformal field theories following [159, 160]. In this thesis

two equivalent perspectives are taken on such theories with gauge algebra of type An. In

M-theory these theories arise as the world volume theory of a stack of nM5-branes. By M/F-

theory duality these are equally described as IIB string theory on an ADE singularity of type

An. The latter allows for immediate generalization to 6d N = (2, 0) with gauge algebras

of type D and E. In this section we elaborate the more general geometric construction and

classification. The presented structures are intrinsic to the 6d theory.
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Consider IIB string theory on an ADE singularity. To understand the physics we resolve

the singularity and study its properties in the limit of collapsing vanishing cycles. For

concreteness consider C2/Z2. A minimal resolution of this A1 singularity, as discussed in

section 1.2, gives the local Calabi-Yau two-fold OP1(−2) with resolution divisor P1. The

effective physics on this smooth geometry derives from a Kaluza-Klein reduction of IIB

supergravity and gives a 6d theory with gravity decoupled. This geometry preserves half

of the 32 supercharges, with the unbroken 16 supercharges assembling into two spinors of

identical chirality, we have N = (2, 0) supersymmetry. The Kaluza-Klein reduction of the

chiral four-form wrapped on P1 gives a two-form B with anti-self dual field strength. The

metric modulus controlling the size of the P1 descends to a bosonic field. This field and

the two-form are part of the N = (2, 0) tensor multiplet. The chiral four-form of IIB string

theory couples to D3-branes. Wrapping D3-branes on the divisor P1 gives a dynamical string

in 6d, which couples to the two-form B and whose tension is set by the volume of P1. On

the other hand wrapping the D3-brane on the non-compact two-cycle in OP1(−2) gives a

non-dynamical string of infinite tension in 6d, which we refer to as a surface operator. This

non-compact two-cycle is constructed by taking the torsional one-cycle in the asymptotic

boundary ∂OP1(−2) = S3/Z2 and fibering it over a radial direction. Often, ∂OP1(−2) and

P1 are referred to as link and bolt.

Now we collapse the P1 [161, 162]. The dynamical strings become tensionless, the non-

dynamical strings are essentially unaffected. The resulting theory is 6d SCFT of type g = A1.

Now consider more general set-ups with an arbitrary number of P1’s contained inside

a local Calbabi-Yau two-fold. The Calabi-Yau condition requires these curves Σi to be

(−2) curves. This collection of (−2) curves can only be contracted if its intersection matrix

Aij = Σi ∩ Σj is negative definite with off-diagonal entries either zero or one. These are

precisely the Cartan matrices of type ADE. One finds that 6d N = (2, 0) SCFTs are labelled

by an ADE gauge algebra g.

Now consider IIB string theory on the resolution B = ˜C2/ΓADE. The charge lattice of
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the massive dynamical strings is given by the compactly supported homology group Λ =

Hc
2(B,Z) generated by the Σi. The dual lattice Λ∗ is associated with the non-compact two-

cycles and characterizes the charge lattice of the non-dynamical strings. The pairing between

these two lattices is interpreted physically as a Dirac pairing [163]. Surface defects engineered

from D3-branes on non-compact curves are thus labelled by their charge, a wrapped non-

compact surface in Hnc
2 (B,Z) and the supersymmetry they preserve.

The intersection pairing on Λ gives a map Λ∗ → Λ. The defect group D is now given

by [160]

D = Λ∗/Λ . (10.1)

For the A1 example above we clearly have Λ∗ ∼= Z and Λ ∼= 2Z givingD = Z2. More generally

D computes to the abelianization of the ADE group Γ. The defect group characterizes the

charges of the surface operators which can not be screened by dynamical particles.

Whenever the defect groupD is non-trivial the 6dN = (2, 0) theory is a relative quantum

field theory [66, 164]. Theories of ADE type are relative to a three-form abelian Chern-

Simons theory in 7d with level matrix given by the Cartan matrix of the corresponding Lie

algebra. This means, that if the 6d theory is defined on M6, the 7d theory is defined on M7

with M7 = M6 × I. The 6d theory can be interpreted as a topological boundary condition

of the 7d Chern-Simons theory [66]. For this consider the 7d theory compactified on the

interval I and choose boundary conditions at one end while coupling to the 6d theory at the

other. After compactification, the final absolute 6d theory has a group of genuine surface

operators and non-genuine surface operators constrained to live at the ends of topological

three-dimensional operators generating the 2-form symmetry. The genuine surface operators

are acted on by an anomalous 2-form global symmetry which is matched by the 7d theory to

render the coupled 6d/7d system anomaly free. Genuine surface operators are determined

by a choice of polarization and are mutually local.

In the following sections we will expand both on the above geometric picture and its

M-theory counterpart for theories with gauge algebra of type A. We study the higher form



symmetries and defect groups as they descend to 4d theories with N = 1, 2 supersymmetry

by compactification on Riemann surfaces.

Chapter 11
1-form Symmetries in 4d N = 2 Class S

In this section we study the 1-form symmetries for 4d N = 2 theories of class S. We establish

the construction and properties of line operators and the preserved higher form symmetries

in the absence and presence of regular punctures. Further we consider a geometric IIB dual

interpretation of the set-up.

We briefly give some background on higher form symmetries [57]. A q-form global

symmetry in d dimensional space-time is realized by an operator Ug(S) associated with a

(d− q− 1)-dimensional closed submanifold S of space-time and labelled by a group element

g ∈ G. Operators compose according to group multiplication

Ug(S)Ug′(S) = Ugg′(S) . (11.1)

Further these operators are topological and correlation functions do not change under small

deformations of their supports. Operators V (S) charged under the associated symmetry

are supported on a closed q-dimensional submanifolds T . The operators supported on S, T

satisfy the equal time commutator

U(S)V (T ) = g(V )S·TV (T )U(S) (11.2)

where S, T are now contained in the same spacial slice with S ·T denoting their intersection

and g(V ) characterizing the charge/phase of the extended operator V (T ) under the sym-

metry generated by U(S). This relation holds at unequal times with S · T replaced by the

linking number l(S, T ).

In following sections we discuss 1-form symmetries in 4d and 2-form symmetries in 6d.
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g Z(G) Ẑ(G) 〈·, ·〉

An−1 Zn Zn 〈f, f〉 = 1
n

D4n Z2 × Z2 Z2 × Z2 〈s, s〉 = 0, 〈c, c〉 = 0, 〈s, c〉 = 1
2

D4n+1 Z4 Z4 〈s, s〉 = 3
4

D4n+2 Z2 × Z2 Z2 × Z2 〈s, s〉 = 1
2 , 〈c, c〉 = 1

2 , 〈s, c〉 = 0

D4n+3 Z4 Z4 〈s, s〉 = 1
4

E6 Z3 Z3 〈f, f〉 = 2
3

E7 Z2 Z2 〈f, f〉 = 1
2

E8 0 0 −

Table 11.1: For the ADE Lie algebras g we denote by G the simply-connected Lie group, and

list the center Z(G), the Pontryagin dual group to the center Ẑ(G), and the bihomomorphism

〈·, ·〉. E8 has a trivial center group, which has been denoted by 0 since we use an additive

notation for the group multiplication law throughout this chapter. We denote a generator

of Ẑ(G) for g = An−1, E6, E7 as f ; a generator of Ẑ(G) for g = D2n+1 as s; and generators

of Ẑ(G) ' Z2 × Z2 for g = D2n as s, c. We also define v := s+ c for g = D2n.

11.1 Surface Operators and Outer Automorphisms in 6d (2, 0)

6dN = (2, 0) SCFTs are relative QFTs classified by a simple Lie algebra g of ADE type. Such

a theory contains surface defect operators of dimension 2. Modulo screening by dynamical

objects, these operators can be classified by the Pontryagin dual Ẑ(G) of the center Z(G)

of the simply connected group G associated to g, which are summarized in table 11.1. The

Pontryagin dual Ẑ(G) := Hom(Z
(
G),R/Z

)
of a finite abelian center group is isomorphic to

the center group itself.

These surface operators are not all mutually local. Consider a correlation function con-

taining two surface operators α, β ∈ Ẑ(G). As α is moved around β, the correlation function

is transformed by a phase factor1

exp
(
2πi〈α, β〉

)
(11.3)

1Notice (in the following equation) that we define the pairing with a negative sign as compared to the
standard choice, which can be found for example in [66].
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with a bihomomorphism

〈·, ·〉 : Ẑ(G)× Ẑ(G) → R/Z . (11.4)

The bihomomorphism can be specified by providing its values on the generators of Ẑ(G) [66].

These are also listed in table 11.1.

The (2, 0) theory admits a discrete 0-form symmetry which can be identified with the

group of outer-automorphisms Og of g, which are

Og = Z2 (11.5)

for g = An≥2, Dn≥5, E6, and

OD4 = S3 , (11.6)

namely the group formed by permutations of three objects. Og is trivial for E7 and E8. The

outer-automorphisms act on representations of g, and hence on Ẑ(G). For g = An, D2n+1, E6,

the non-trivial element of Og = Z2 acts by sending the generator of Ẑ(G) to its inverse. For

g = D2n and n ≥ 3, the non-trivial element of Og = Z2 acts by exchanging the two chosen

generators s, c of Ẑ(G) ' Z2 × Z2. For g = D4, we write

OD4 = S3 ' Z3 o Z2 (11.7)

and choose generators a ∈ Z3 and b ∈ Z2, which act as follows

a : s→ v, v → c, c→ s

b : s→ c, c→ s, v → v .
(11.8)

11.2 Compactifications without Punctures

In this chapter we consider compactifications of 6d (2, 0) theories on a Riemann surface

Cg of genus g without any punctures. If there are no other ingredients involved in the

compactification, such a compactification is called an untwisted compactification. On the

other hand, we can also consider twisted compactifications which means the following. The

outer-automorphism 0-form symmetry in 6d (2, 0) theory discussed in the last section is
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generated by topological operators of codimension-1 in the 6d theory. Inserting such a

topological operators along a cycle of the Riemann surface gives rise to a “codimension-0

object” in the 4d theory, which means that the resulting 4d theory itself is different from

the 4d theory arising when no such topological operators are inserted. Further discussion

on twisted compactification is omitted here, but can be found in [3].

Twisted and untwisted compactifications can equivalently be distinguished in the Higgs

bundle description of the compactification. Here the insertion of topological operators along

twist lines gives rise to an action on the Higgs field by an outer automorphism o across

these. The insertions alter the gauge group of the effective 4d N = 2 theory and have a

geometric interpretation in the IIB dual description as we explain in more detail in section

11.4. In this geometric picture we are further able to justify the key assumption that regular

untwisted punctures are irrelevant in determining the defect group, which we also argue for

in section 11.3.

11.2.1 Untwisted Compactifications

Let us compactify a (2, 0) theory on a Riemann surface Cg of genus g without any punctures

or twists. This gives rise to a relative 4d N = 2 theory with a set of line defects descending

from the elements of Ẑ(G) wrapped along various cycles of Cg. That is, the set L of 4d line

defects (modulo screening) can be identified with

L = H1(Cg, Ẑ) ' H1(Cg,Z)⊗ Ẑ . (11.9)

These line defects are not all mutually local. The violation of mutual locality between two

elements a⊗ α, b⊗ β ∈ H1(Cg,Z)⊗ Ẑ ' H1(Cg, Ẑ) is captured by the phase

exp
(
2πi〈α, β〉〈a, b〉

)
, (11.10)

where 〈a, b〉 is the intersection pairing on H1(Cg,Z). This gives rise to a pairing on H1(Cg, Ẑ)

which is the natural combination of the intersection pairing and the bihomomorphism (11.4)
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〈·, ·〉 : H1(Cg, Ẑ)×H1(Cg, Ẑ) → R/Z

〈a⊗ α, b⊗ β〉 = 〈a, b〉〈α, β〉 .
(11.11)

We can specify an absolute 4d N = 2 theory by choosing a maximal set of line operators

Λ ⊂ H1(Cg, Ẑ) , (11.12)

which are all mutually local, i.e., the phase (11.10) is trivial for any two elements in Λ. Such

a set Λ is also referred to as a ‘maximal isotropic subgroup’ or as a ‘polarization’ in what

follows. The 1-form symmetry of the absolute 4d N = 2 theory can then be identified with

the Pontryagin dual Λ̂ of Λ.

Once we choose a set of A and B cycles on Cg, we can decompose

H1(Cg, Ẑ) ' ẐgA × Ẑ
g
B , (11.13)

where ẐgA is the contribution of A-cycles, and ẐgB is the contribution of B-cycles. Moreover,

ẐgA and ẐgB are maximal isotropic sublattices, and hence provide canonical choices of Λ once

a choice of A and B cycles has been made.

Example: When (2, 0) theory of type g is compactified on a torus, we obtain 4d N = 4

SYM with gauge algebra g. Choosing an A-cycle and a B-cycle, we write

H1(T 2, Ẑ) ' ẐA × ẐB . (11.14)

We assume without loss of generality that the A-cycle is much shorter than the B-cycle,

this specifies the electromagnetic duality frame in which the W-bosons become light. Then,

ẐA can be identified as the set of 4d Wilson line operators, and ẐB can be identified as

the set of 4d ’t Hooft line operators. Choosing Λ = ẐA, we obtain 4d N = 4 SYM with

gauge group G. On the other hand, choosing Λ = ẐB, we obtain 4d N = 4 SYM with gauge

group G/Z(G) and all discrete theta parameters turned off. In these cases, we have 1-form

symmetry

Λ̂ ' Z(G) , (11.15)
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which matches with the 1-form symmetry obtained using the Lagrangian description of 4d

N = 4 SYM: when the gauge group is G, this is the electric 1-form symmetry; and then the

gauge group is G/Z(G), this is the magnetic 1-form symmetry.

Other choices of global forms of the gauge group and discrete theta angles are obtained

by choosing other polarizations. For concreteness, consider the case of g = su(4). In this

case, ẐA ' ẐB ' Z4. The PSU(4) theory with a discrete theta parameter n ∈ {0, 1, 2, 3}

turned on is obtained by choosing Λ to be the sublattice generated by the element (n, 1) ∈

Z4 × Z4 ' ẐA × ẐB (where we have represented Z4 as the additive group Z/4Z). Any such

choice leads to the 1-form symmetry

Λ̂ ' Z4 . (11.16)

If we choose the polarization Λ generated by elements (0, 2) and (2, 0) in Z4 × Z4, then we

obtain the SO(6) ' SU(4)/Z2 theory with the discrete theta parameter turned off. In this

case the 1-form symmetry is

Λ̂ ' Z2 × Z2 . (11.17)

From the point of view of the Lagrangian description, the two Z2 factors are electric and

magnetic 1-form symmetries respectively. The remaining su(4) theory has SO(6) gauge

group and a discrete theta parameter turned on. This is obtained by choosing Λ to be

generated by the element (1, 2) ∈ Z4 × Z4 ' ẐA × ẐB, and the 1-form symmetry group of

the theory is

Λ̂ ' Z4 . (11.18)

Example: Consider compactifying A1 (2, 0) theory on Cg with g ≥ 2. In an S-duality frame,

in which A-cycles are much shorter than B-cycles, we obtain the following Lagrangian 4d
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N = 2 theory

so(4)so(3) su(2) su(2) so(4) · · · so(4) su(2) so(3)

1
2F 1

2F

(11.19)

where we have a total of 2g − 1 nodes. Each node describes a gauge algebra and an edge

between two nodes denotes a half-bifundamental2 between the two nodes. An edge connect-

ing an su(2) node to a node labeled 1
2F implies that the corresponding su(2) gauge algebra

carries an extra half-hyper charged in fundamental rep. If we choose Λ = (Z/2Z)gA, we

obtain the 4d theory with all the gauge groups being simply connected. In this case, we

have 1-form symmetry

Λ̂ ' Zg2 , (11.20)

which can be easily matched with the above Lagrangian description with all the gauge groups

chosen to be the simply connected ones. A Z2 factor arises from each of the g number of

so(n) nodes (where n = 3, 4 and the corresponding gauge group is Spin(n)). This Z2 is the

subgroup of the center of Spin(n) that acts trivially on the fundamental representation of

so(n) as defined in the above footnote.

11.3 Compactifications with Regular Punctures

Regular punctures are a special set of punctures defined by the condition that the Hitchin

field has (at most) a simple pole at the location of the puncture. These punctures can be

either untwisted or twisted. Twisted regular punctures arise at the ends of twist lines, and

hence the Hitchin field transforms by the action of the corresponding outer-automorphism

as one encircles a twisted regular puncture. On the other hand, untwisted punctures do

not live at the ends of non-trivial twist lines, and correspondingly the Hitchin field does
2Here, for ease of notation, we are using the convention that the fundamental representation of so(n) is

the n-dimensional vector representation. So, the fundamental representation for so(3) is not the fundamental
representation for su(2), but rather the adjoint representation. Similarly, the fundamental representation of
so(4) is the (2, 2) rep of su(2)⊕ su(2) ' so(4).
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t

Twisted PunctureUntwisted Puncture

Figure 11.1: A twisted puncture lives at the end of a non-trivial twist line t, while an

untwisted puncture does not live at the end of a non-trivial twist line.

not pick up the action of any non-trivial outer automorphism as one encircles an untwisted

regular puncture. See figure 11.1. We restrict the presentation to regular puncture and avoid

complications due to twist lines which are irrelevant for the content presented in chapters

going forward.

Moreover, we further omit a special subset of regular punctures. The punctures in this

subset are referred to as atypical punctures. In the presence of atypical regular punctures, the

number of simple factors in the gauge algebra arising in a degeneration limit of the Riemann

surface is not equal to the dimension of the moduli space of the Riemann surface [165–167]

(see also [135]). We call a regular puncture which is not atypical a typical puncture. An

atypical regular puncture can be resolved into some number of typical regular punctures.

Throughout this chapter a regular puncture always refers to a typical regular puncture.

In this chapter, we consider compactifications of 6d N = (2, 0) theories on a Riemann

surface Cg with an arbitrary number of (untwisted and twisted) regular punctures, and an

arbitrary number of closed twist lines (which do not have end-points).

11.3.1 Untwisted Regular Punctures

Let L be the set of 4d line operators (modulo screening) when a (2, 0) theory is compactified

on a Riemann surface Cg without any punctures, but possibly in the presence of closed twist

lines. The set L (and Dirac pairing on it) was determined in the last few sections. Now,

insert n regular untwisted punctures on Cg. We propose that the set of 4d line operators

modulo flavor charges (and screening) can again be identified with L. Moreover, an absolute
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4d N = 2 theory is obtained by choosing a maximal isotropic subgroup

Λ ⊂ L (11.21)

and the 1-form symmetry of such an absolute 4d N = 2 theory can be identified with Λ̂.

In other words, regular untwisted punctures turn out to be irrelevant for the considerations

of this paper. In the rest of this section, we substantiate this proposal by studying some

examples. This behavior is in stark contrast with the irregular punctures of type P0 which

play a major role in the constructions of chapter 12 and beyond.

Sphere with 4 regular untwisted punctures: As a few examples, we can obtain the

following 4d N = 2 gauge theories by compactifying (2, 0) theories on a sphere with 4

regular untwisted punctures3:

• su(n) + 2nF by compactifying An−1 (2, 0) theory.

• so(8) + 2F + 2S + 2C, so(8) + 4S + 2C, so(8) + 4S + C + F by compactifying D4 (2, 0)

theory [168].

• so(9) + 3S + F, so(10) + 4S, so(10) + 2S + 4F by compactifying D5 (2, 0) theory [168].

• so(11) + S + 5F, so(11) + 3
2S + 3F, so(12) + S + 1

2C + 4F, so(12) + S + 6F, so(12) +

3
2S + 1

2C + 2F by compactifying D6 (2, 0) theory [168].

• su(4) + 2Λ2 + 4F, sp(2) + 6F by compactifying A3 (2, 0) theory [56].

For this case L is trivial, which is what is expected from the 4d gauge theory description

as it can be checked that the line operators (modulo screening and flavor charges) form a

trivial set in all of the above gauge theories. Consequently, the 1-form symmetry is also

trivial for all of these theories, and the gauge group must be the simply connected one.
3The notation gi +

∑
niRi denotes a 4d N = 2 gauge theory with gauge algebra g along with ni full

hypers in irrep Ri. If ni is half-integral, it means that there is an additional half-hyper in Ri along with bnic
number of full hypers in Ri. F denotes fundamental irrep for su(n) and sp(n), and vector irrep for so(n). S
denotes spinor irreps for so(n) and C denotes co-spinor irrep for so(2n). Λ2 denotes 2-index antisymmetric
irrep for su(n) and sp(n).
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Torus with 1 regular untwisted puncture and twisted line: We can obtain the fol-

lowing 4d N = 2 gauge theories by compactifying (2, 0) theories on a torus with 1 regular

untwisted puncture and a twisted line wrapped along a non-trivial cycle4:

• su(2n) + S2 + Λ2 by compactifying A2n−1 (2, 0) theory.

• su(2n+ 1) + S2 + Λ2 by compactifying A2n (2, 0) theory.

In the former case, we have

L ' Z2 × Z2 , (11.22)

which can be matched with the 4d gauge theory expectation. For a pure su(2n) gauge

theory, the set of Wilson lines (modulo screening) is Z2n with generatorW being the Wilson

line in fundamental rep of su(2n). The set of ’t Hooft lines (modulo screening) is also Z2n

with generator H. The Dirac pairing between W and H is 〈W,H〉 = 1
2n . Now we add in

the matter. The hypermultiplets in §2 and Λ2 screen 2W , and thus the set of Wilson lines

(modulo screening and flavor charges) can be identified with Z2, generated by W . On the

other hand, the ’t Hooft lines must be mutually local with 2W , and hence the set of ’t Hooft

lines (modulo screening and flavor charges) can be identified with Z2, generated by nH.

Thus, we verify the prediction (11.22). Choosing the polarization Λ to be the Z2 generated

by W leads to gauge group SU(2n). Choosing Λ to be the Z2 generated by nH or W +nH

leads to gauge group SU(2n)/Z2 with discrete theta parameter turned off or on respectively.

In all these cases, the 1-form symmetry is

Λ̂ ' Z2 . (11.23)

In the latter case, L is trivial. Correspondingly, the set of line operators in the gauge

theory (modulo screening and flavor charges) is trivial. The set of Wilson lines is trivial

because 2W is a generator of Z2n+1, and the set of ’t Hooft lines is trivial because they need

to be mutually local with W (as W is screened). There is no 1-form symmetry, and the

gauge group must be the simply connected SU(2n+ 1).
4S2 denotes the 2-index symmetric representation of su(n).



11.3. COMPACTIFICATIONS WITH REGULAR PUNCTURES 135

Torus with k regular untwisted punctures: 4d N = 2 su(n)k necklace quiver can be

obtained by compactifying An−1 (2, 0) theory on a torus with k regular untwisted punctures.

In this case,

L ' ẐA × ẐB ' ZAn × ZBn , (11.24)

which can be verified from the 4d gauge theory description. For example, choosing all gauge

groups to be SU(n) corresponds to choosing one of the two Zn factors as the polarization.

The 1-form symmetry is then predicted to be

Λ̂ ' Zn , (11.25)

which can be identified as the diagonal subgroup of the Zkn center of the gauge group SU(n)k.

Cg with n regular untwisted punctures: Consider compactifying A1 (2, 0) theory on Cg

in the presence of n regular untwisted punctures [55]. According to our proposal, we predict

L ' Zg2 × Zg2 . (11.26)

There are a number of degeneration limits which lead to a variety of S-dual weakly-coupled

4d conformal gauge theories. The predicted answer for L and the pairing on it can be verified

from the point of view of any of these 4d gauge theories. For example, one such degeneration

limit (which exists for n ≥ 2) leads to the following 4d gauge theory

su(2)su(2) · · · su(2) so(4)

2F

n− 1

su(2) · · · so(4) su(2) so(3)

2g − 1

1
2F

(11.27)

where an edge between two su(2) gauge algebras denotes a full hyper in bifundamental,

while an between an su(2) and an so(n) gauge algebra denotes a half-hyper in bifundamental

(see earlier discussion for our slightly non-standard definition of fundamental of so(3) and

so(4)). The edge between a node labeled nF and a node labeled su(2) denotes that the
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corresponding su(2) gauge algebras carries n extra hypers in fundamental representation,

where n is allowed to be a half-integer to account for half-hypers in fundamental. Choosing a

particular Λ ' Zg2 ⊂ L corresponds to choosing all the gauge groups to be simply connected.

The 1-form symmetry is predicted to be Λ̂ ' Zg2 for this choice, which can be verified easily

from the 4d gauge theory description. A Z2 factor arises as the subgroup of the center of

each Spin(n) (where n = 3, 4) gauge group that leaves the vector rep of Spin(n) invariant.

Example and Comparison with 6d (1, 0) on T 2: The last class of example has an al-

ternative realization in terms of a 6d (1, 0) on T 2 [169, 170]: For g = 1 and n = 2 the A1

theory on C1,2 has defect group L = Z2 × Z2. We can alternatively think of this as the

compactification of the 6d (1,0) theory that is the SU(2)− SU(2) conformal matter theory

of rank 2, i.e., 2 M5-branes probing C2/Z2. The 6d theory has a tensor branch geometry,

which has two non-compact curves, with SU(2) singularities, sandwiching a (−2)-curve,

with SU(2) gauge group. The defect group given by Z2, and the dimensional reduction of

this on T 2, results in LA = LB = Z2. More generally, 2 M5-branes probing a Zk singu-

larity results in a ‘hybrid’ class S theory, where an A1-trinion is glued to an Ak−1 one (see

(2.6) in [170]). The tensor branch-geometry changes simply to SU(k) groups both on the

non-compact curves as well as on the (−2)-curve, thus leaving the defect group, and the

expected 1-form symmetry unchanged.

11.4 1-Form Symmetries from Type IIB Realization

11.4.1 Class S from Type IIB

Class S theories can also have a realization in terms of a dual, Type IIB compactification,

using geometric field theory methods, developed for general N = 2 theories, predating class

S [171]. Type IIB on a canonical singularity gives rise to N = 2 SCFTs, and more generally

can provide a way to engineer gauge theories. The Calabi-Yau X geometries that realize

class S theories, can be constructed as ALE-fibrations over a curve

˜C2/ΓADE ↪→ X → Cg,n , (11.28)
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where the resolutions parametrized for the ALE-fiber are encoded in a Higgs field ϕ. The

Higgs field ϕ is a meromorphic 1-form valued in the respective ADE Lie algebra g and

enters into a Higgs bundle [77, 172]. We consider the 6d (2,0) theory of type ADE on

Cg,n, with the standard topological twist that retains N = 2 supersymmetry in 4d, i.e.,

SO(5) → SU(2) × U(1)R and SO(6) → SO(4) × U(1)L twisting the U(1)L by combining

it with the U(1)R R-symmetry transformation. The scalars give rise to the (1, 0) and (0, 1)

forms ϕ and ϕ̄. These define together with the gauge field components (along the curve)

the Higgs bundle, satisfying the Hitchin equations when describing supersymmetric vacua.

The spectral equation defines the SW curve inside the co-tangent bundle of Cg,n

det(ϕ− λ Id) = 0 . (11.29)

We assume that the Higgs bundle is diagonalizable, i.e., ϕ = diag(λ1, · · · , λr). The spectral

data encodes a local Calabi-Yau, which defines an ALE-fibration over C. Each sheet is

labeled by a fundamental weight of g. For simplicity let us focus on the AN−1 case. There

are N sheets, associated to the Li, i = 1, · · · , N fundamental weights, with the simple roots

realized as αi = Li−Li+1. The Higgs field eigenvalues λi encode the volumes of the rational

curve in the ALE-fibration, where each simple root is associated to a rational curve P1
i ,

whose volume is determined by ∫
P1
i

Ω = λi − λi+1 . (11.30)

When λi = 0 for all i, the full SU(N) symmetry is restored. More precisely, the spectral

curve allows us to construct three-cycles as follows: if bα are the branch points of the spectral

curve, where two sheets of the cover collide, we can construct an S3 by considering the ALE-

fiber over the line `α,β connecting two branch-points in C. At each of the branch-points a

2-sphere collapses, and thus we obtain an S3. These three-spheres are Lagrangian and give

rise in IIB to the gauge fields in 4d. Other three-cycles with the topology of S2 × S1 are

obtained by considering the rational curves fibered over closed 1-cycles in the base.
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π

Σ o

Cg,n

Figure 11.2: The outer automorphism (11.31) acting on the spectral cover.

Regular, untwisted punctures correspond to simple poles of ϕ. In the ALE-fibration,

this maps to sending the volumes of (some) P1s to infinity. In class S regular, untwisted

punctures are further labelled by a Young diagram [55], which is a pictorial representation

of a partition of N =
∑
nihi. It is a finite collection of boxes with row lengths of non-

increasing order. Listing the number of boxes in each row gives the partition where ni is

the multiplicity of the box of height hi in the Young diagram. The flavor symmetry is

GF = S(
∏
i U(ni)). E.g. the full punctures corresponding to the partition 1N the flavor

symmetry is SU(N), corresponds to sending all N sheets to infinity with the same rate,

parameterized by the residue of the pole of ϕ.

Open and closed twist lines alter the global structure of the ALE geometry. Open twist

lines are inserted between punctures and closed twist lines are wrapped along a 1-cycle B

of the base C, both are labelled by an element o of the outer automorphism group. When

encircling a puncture or traversing a 1-cycle intersecting B the Higgs field is acted on the by

the outer automorphism o, see figure 11.2. In the ALE-fibration, rational curves P1 locally

sweeping out distinct three-cycles are identified reducing the total number of 3-cycles in X.

The Poincaré dual of these three-cycles are used to expand the supergravity four-form and

construct the gauge bosons of the effective 4d theory. The gauge algebra of the theory is

therefore determined by the initial choice of ADE gauge group and twist line structure.
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Example: Consider the 6d (2, 0) A2n−1 theory compactified on the torus Cg = T 2 with a

closed b twist line along the B cycle. The spectral cover Σ is a 2n-sheeted cover of the torus

T 2. Each sheet can be thought of as associated to a fundamental weight Li, i = 1, · · · , 2n,

and the outer automorphism acts as

o : Li ←→ −L2n+1−i , (11.31)

which induces an action on the simple roots αi = Li − Li+1 ↔ α2n−i. The root αn is fixed.

There are n 3-cycles, one for each orbit of the outer automorphism on the P1 fibers which

determine the root system of the 4d gauge algebra. These 3-cycles intersect linearly with

the 3-cycle corresponding to the fixed P1 lying at the end of this chain. The root originating

from this P1 is shorter than than the remaining n − 1 roots and we find the roots system

of type Bn. Overall we find the gauge group to reduce from SU(2n) to Spin(2n+ 1) when

introducing the twist line, the center of Spin(2n+ 1) is Z2.

11.4.2 Line operators from IIB

The line operators in this context are realized in terms of wrapped D3-branes, on non-

compact three-cycles, modulo screening by particles, which are D3-branes wrapped on com-

pact three-cycles. To study these, consider the analog arguments as in [58–60]. In relative

homology, where ∂X is the boundary link 5-fold of the Calabi-Yau three-fold, the line op-

erators are thereby realized in terms of

L =
H3(X, ∂X,Z)

H3(X,Z)
. (11.32)

Chasing this through the long exact sequence in relative homology,

· · · −→ H3(X,Z)
q−→ H3(X, ∂X,Z)

∂−→ H2(∂X,Z)
ι−→ H2(X,Z) −→ · · · , (11.33)

we find that

L =
H3(X, ∂X,Z)

H3(X,Z)
=
H3(X, ∂X,Z)

Im(q)
= Im(∂) = Ker(ι) . (11.34)
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In particular we can write it as

L = {` ∈ H2(∂X,Z)| ` is a 2-cycle in ∂X which becomes trivial in X} . (11.35)

The pairing on L governing the mutual non-locality of 4d line operators descends straight-

forwardly from the linking pairing on H2(∂X,Z).

The boundary ∂X receives contributions BF and Bk from the fibers and punctures

respectively

∂XCg,n = BF ∪
n⋃
k=1

Bk , (11.36)

where the topology of Bk is given by

˜C2/ΓADE ↪→ Bk → S1 , (11.37)

and the topology of BF is given by

S3/ΓADE ↪→ BF → Cg,n . (11.38)

The contribution of (11.38) part of ∂XCg,n to H2(∂XCg,n ,Z) is obtained by choosing an

element α ∈ H1(S3/ΓADE), which is then fibered over a loop L in Cg,n. We have

H1(S3/ΓADE,Z) ' Ẑ(G) , (11.39)

where G is the simply connected Lie group associated to the ADE Lie algebra g associated

to ΓADE. Moreover, an outer-automorphism of g acts on H1(S3/ΓADE,Z) in precisely the

same way as it acts on Ẑ(G). When the loop L crosses an outer-automorphism twist line o,

α is transformed to o · α. Moreover, any such element (α,L) ∈ H2(BF ,Z) ⊂ H2(∂X,Z) is

clearly trivial, when embedded into X since α is contractible when embedded into C2/ΓADE.

Thus, contributions of type (α,L) give rise to a non-trivial subgroup

LF ⊆ L , (11.40)

where L is defined in (11.35).
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Figure 11.3: Consider an untwisted regular puncture and a boundary cycle (L,α) ∈
H2(BF ,Z), with α ∈ H1(S3/ΓADE). We illustrate how the untwisted puncture does not
affect this contribution to the defect group. Left: A line L, associated to (L,α). Right: A
line L′ associated to (L′, α). Center-left: Limiting configuration as L is moved towards an
untwisted regular puncture. Center-right: Limiting configuration as L′ is moved towards
the puncture.

Now, notice that the above contributions of the kind (α,L) are precisely the contributions

we have been considering throughout the paper. Let us label the group of line operators

obtained using the earlier considerations in the paper as L0. Then we clearly have

L0 ⊆ LF . (11.41)

Thus, the only way for our previous calculation L0 and the Type IIB calculation L to match

is if

L0 = LF = L . (11.42)

In the rest of this subsection, we justify this equality.

First thing we need to show is that the contribution of all boundary components Bk to

L is trivial. Indeed, the only 2-cycles in Bk are the exceptional P1s in ˜C2/ΓADE, but none

of these 2-cycles is trivial when embedded into X, and hence do not contribute to L.

Next, we need to show that (L,α) and (L′, α) give rise to the same element in H2(∂X,Z)

if L′ is obtained from L by passing it over an untwisted regular puncture. Consider the

limiting configuration of L approaching an untwisted regular puncture k, say from the left

in figure 11.3. We hit the boundary component Bk at a particular point p ∈ S1. The fiber

component α embeds into the fiber
( ˜C2/ΓADE

)
p
of Bk at p via the inclusion map

ιp : S3/ΓADE ↪−→
( ˜C2/ΓADE

)
p
. (11.43)
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Figure 11.4: Consider again (L,α), (L′, α) ∈ H2(BF ,Z) with α ∈ H1(S3/ΓADE). Left: A
line L associated to (L,α). Right: A line L′ associated to (L′, α) along the blue subsegment
and o · α along the green subsegment. Center-left: Limiting configuration as L is moved
towards an untwisted regular puncture. Center-right: Limiting configuration as L′ is moved
towards the puncture. The central equality only holds for α = o · α.

Similarly, the limiting configuration of L′ approaching an untwisted regular puncture k, say

from the right in figure 11.3, hits the boundary component Bk at a particular point p′ ∈ S1.

The fiber component α embeds into the fiber
( ˜C2/ΓADE

)
p′

of Bk at p′ via the inclusion

map described above. Since the two embeddings of α into
( ˜C2/ΓADE

)
p
and

( ˜C2/ΓADE
)
p′

respectively are homotopic to each other, we deduce that (L,α) = (L′, α) as elements of

H2(∂X,Z).

Finally, we need to show that (L,α) and (L′, α) give rise to the same element in

H2(∂X,Z) if L′ is obtained from L by passing it over an twisted regular puncture, as

long as α is left invariant by the action of the outer-automorphism associated to the twist

line emanating from the twisted regular puncture. The argument proceeds exactly as in the

untwisted case since the twist line is immaterial if α is left invariant by the corresponding

outer-automorphism action. On the other hand, if α is not left invariant by the outer-

automorphism, then L′ needs to be divided into two sub-rays (denoted by blue and green

respectively in figure 11.4) with α inserted along the blue sub-ray and o ·α inserted along the

green sub-ray. In particular, there is no consistent limiting configuration as L′ approaches

the puncture, and the above argument fails. Thus, L and L′ give rise to different elements

of H2(∂X,Z) (and hence L) if α is acted upon by the twist line emanating from the regular

puncture.

The above argument can be viewed as a justification of our key assumption used in the

earlier parts of the paper: If L is a loop surrounding a regular (untwisted or twisted) puncture



carrying an element α ∈ Ẑ(G) left invariant by the twist line emanating from the puncture,

then such a loop is trivial in L. As an alternative approach one might consider arguing

that closing an untwisted regular puncture does not change the defect group. It would be

interesting to develop this point of view. Here we note, that in the geometric descriptions

one could argue as follows: regular punctures characterize base points at which fibral P1’s

both decompactify and potentially braid when approaching the puncture. For line operators

the decompactification of cycles is immaterial. We can therefore rescale Higgs field with a

factor of the base coordinate z preserving the braiding structure. This completely removes

regular punctures. In other words, regular punctures can be filled in from the perspective of

line operators and do not contribute to the defect group. It would be interesting to develop

the precise dictionary, and to expand it to include irregular punctures.

Generically the above procedure can be applied to any canonical singularity. E.g. even

in the case of general irregular punctures, which realize Argyres Douglas theories, that do

not necessarily admit a Lagrangian description. The theories of type AD[G,G′] have a

realization in terms of Type IIB on a canonical singularity and for AD[G,G′] theories, the

1-form symmetries are non-trivial only for G = AN with N > 1 and G′ = D,E type,

see [59, 60]. These results should provide further insights into computing the one-form

symmetry for irregular punctures more generally.

Chapter 12
Appetizer: Confinement in su(2) N = 1 SYM Theory

In this section, we discuss confinement in N = 1 pure super-Yang-Mills (SYM) theories with

gauge algebra su(2). As we review in section 12.1, there are three such theories: one with

gauge group SU(2) and two with gauge group SO(3). The two theories with gauge group

SO(3) are distinguished by a discrete theta parameter, and correspondingly are referred to

as SO(3)+ and SO(3)− theories. All these theories have two massive vacua. Both of these
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vacua are confining for the SU(2) theory, while only one of them is confining for the SO(3)±

theories.

In section 12.2, we discuss a construction of these 4d N = 1 theories involving compact-

ification of the 6d A1 N = (2, 0) theory. The construction involves transitioning through

4d N = 2 pure SYM theories with gauge algebra su(2). Compactifying the 6d theory on

a sphere with two irregular punctures provides a Class S construction for these 4d N = 2

theories. One can then further “rotate” one of the punctures to softly break N = 2 super-

symmetry to N = 1. Field theoretically, this corresponds to adding a small superpotential

proportional to the Coulomb branch (CB) parameter u to the 4d N = 2 theories (viewed

as N = 1 theories). As is well-known, all the CB vacua are lifted under this deformation,

except the monopole and dyon points, giving rise to two massive vacua. As the rotation

parameter is taken to infinity, these theories reduce to the pure su(2) N = 1 SYM theories,

with the above two vacua being identified as the vacua of the pure N = 1 theories.

We then proceed in section 12.3 to explain the above field theory results about confine-

ment from the point of view of this compactification and properties of the 6d N = (2, 0)

theory.

12.1 Result from Field Theory

In this subsection, we review the discussion in [133, 173] about confinement in pure su(2)

N = 1 SYM theories. A massive vacuum is called confining if a non-trivial subgroup of the

1-form symmetry group of the theory is left unbroken in that vacuum [57]. Thus we need

to study the 1-form symmetry group in the SU(2), SO(3)± versions of the theory, and its

spontaneous breaking in each of the two vacua.

The 1-form symmetry group acts on the line operators in the theory. For pure su(2)

gauge theories, the set L of line operators modulo screenings forms a group

L ' Z2 × Z2 (12.1)
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under fusion. The two Z2 factors are generated by a fundamental Wilson line W and a ’t

Hooft line H, with their sum W +H (the sum operation represents fusion) being a dyonic

Wilson-’t Hooft line operator.

These line operators are not all mutually local with respect to the Dirac pairing. For

example, if W is taken around H, or if H is taken around W , then the correlation function

changes sign. This non-locality is captured in a Z2 valued pairing defined on L as follows

〈W,W 〉 = 0

〈H,H〉 = 0

〈W,H〉 =
1

2
.

(12.2)

The change in phase of a correlation function as an element α ∈ L is taken around β ∈ L is

then

exp
(
2πi〈α, β〉

)
. (12.3)

This means that not all the line operators in L are genuine line operators. If α, β ∈ L

are such that 〈α, β〉 6= 0, then either α or β lives at the boundary of a topological surface

operator which acts on the other line operator, and this action is responsible for producing

the phase (12.3). Thus specifying a theory T (also called as an “absolute” theory) specifies

a maximal subgroup Λ of mutually commuting line operators in L which are genuine in T.

The line operators in L − Λ are non-genuine line operators of T.

Consequently, a theory can only contain one out of W , H and W + H in its spectrum

of genuine line operators. Choosing W to lie in the spectrum gives rise to a pure 4d gauge

theory with gauge group SU(2). On the other hand, choosing H or W +H give rise to pure

4d gauge theories with gauge group SO(3). The two SO(3) theories are differentiated by a

discrete theta parameter1. The theory containing H is called the SO(3)+ theory and the

theory containing W +H is called the SO(3)− theory.
1The SO(3)+ theory is obtained from the SU(2) theory by gauging its Z2 1-form symmetry, while the

SO(3)− theory is obtained by gauging the diagonal Z2 1-form symmetry of the SU(2) theory stacked with an
SPT phase for the Z2 1-form symmetry. After gauging, the SPT phase is understood as a discrete theta-like
parameter which when added to the Lagrangian of the SO(3)+ theory leads to the SO(3)− theory and vice
versa. The above construction in terms of the SU(2) theory allows us to call the SO(3)+ theory as the
theory with discrete theta parameter “turned off”, and the SO(3)− theory as the theory with discrete theta
parameter “turned on”.
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The 1-form symmetry in each of these three theories is Z2. The charged operator is

the non-trivial element of L lying in the spectrum of genuine line operators of the theory.

Notice, for future purposes, that the above analysis regarding L, different global forms of the

gauge group, discrete theta parameters and 1-form symmetry is independent of the amount

of supersymmetry. In particular, it applies equally well to pure 4d su(2) SYM theories with

N = 1 and N = 2 supersymmetry.

To probe confinement in 4d su(2) pure N = 1 SYM theories, we realize them as de-

formations of 4d su(2) pure N = 2 SYM theories. Let us deform the N = 2 theory by a

superpotential µTrφ2 where µ is a mass parameter and φ is an N = 1 adjoint chiral super-

field inside the N = 2 vector multiplet. For µ � ΛN=2 the superpotential is represented

as µU where U is an N = 1 chiral superfield whose scalar component corresponds to the

CB modulus u. It is well-known [174] that this superpotential lifts the entire CB except

for the monopole and dyon points, and thus the theory has two massive vacua, which we

refer to as the monopole vacuum and the dyon vacuum respectively. The superpotential

leads to condensation of monopoles at the monopole point and the condensation of dyons

(whose charges align with W + H) at the dyon point. This has the following consequence

for confinement in the three theories:

• For the SU(2) theory, since the charge of the chosen line operator W does not align

with the charges of condensing monopoles or dyons,W exhibits area law in both vacua.

Hence, both vacua are confining and preserve the Z2 1-form symmetry.

• For the SO(3)+ theory in the monopole vacuum, the charge of the chosen line operator

H aligns with the charge of condensing monopoles, and hence H exhibits perimeter

law in the monopole vacuum. On the other hand, the charge of H does not align with

the charge of condensing dyons in the dyon vacuum, and hence H exhibits area law

in the dyon vacuum. Thus, the monopole vacuum is not confining and spontaneously

breaks the Z2 1-form symmetry, while the dyon vacuum is confining and preserves the

Z2 1-form symmetry.
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• For the SO(3)− theory in the dyon vacuum, the charge of the chosen line operator

W+H aligns with the charge of condensing dyons, and henceW+H exhibits perimeter

law in the dyon vacuum. On the other hand, the charge of W +H does not align with

the charge of condensing monopoles in the monopole vacuum, and hence W + H

exhibits area law in the monopole vacuum. Thus, the dyon vacuum is not confining

and spontaneously breaks the Z2 1-form symmetry, while the monopole vacuum is

confining and preserves the Z2 1-form symmetry.

In a confining vacuum there are massive confining strings which are charged under the 1-form

symmetry, while in a non-confining vacuum there are no such strings.

For µ � ΛN=2 we can rely on the UV description of the N = 2 theory to integrate

out Φ thus leading to the pure N = 1 SYM theory at low-energies, which is expected to

admit two massive vacua. This ties in neatly with the two vacua found for µ� ΛN=2 and

suggests that there is no phase transition as we vary µ/ΛN=2. Moreover, we are lead to the

prediction that both the vacua of the SU(2) pure N = 1 SYM are confining, while for the

SO(3)± pure N = 1 SYM only one of the vacua is confining.

12.2 Construction from 6d A1 N = (2, 0) Theory

The pure N = 2 theory admits a Hanany-Witten type brane construction in terms of NS5

and D4 branes in Type IIA superstring theory [8, 175], which is shown in figure 12.1. This

allows us to read off the Seiberg-Witten curve (SW curve) of the theory

v2 =
Λ2

t
+ u+ Λ2t , (12.4)

where we have used the notation of [175] and we have shortened ΛN=2 used in the previous

subsection to Λ.

Now, following [55, 77], one can use the above SW curve to phrase the construction of

the pure N = 2 theory as a compactification of 6d A1 N = (2, 0) superconformal field

theory (SCFT). The (2, 0) theory contains a chiral operator2 that we denote as TrΦ2 which
2It should be noted that while TrΦ2 is a genuine local operator in the 6d theory, Φ is not.
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NS5 NS5

2 × D4

log(t)

v

Figure 12.1: The Hanany-Witten setup realizing in Type IIA string theory the pure N = 2
su(2) SYM theories.

transforms in an irreducible representation of the so(5)R symmetry. Vevs of this chiral

operator parametrize the moduli space of supersymmetric vacua of the (2, 0) theory.

To construct the pure 4d N = 2 theory, we need to compactify the A1 (2, 0) theory

on a sphere C with two punctures whose coordinate is t and the punctures are located at

t = 0,∞. C is the UV curve for this Class S construction. We need to perform a topological

twist along C which decomposes so(5)R → so(3)R ⊕ so(2)R and identifies so(2)R with the

so(2) holonomy group of C, while identifying so(3)R as the R-symmetry of the descendant 4d

N = 2 theory. This decomposes TrΦ2 into various operators, out of which we single out an

operator Trφ2 which is charged only under the so(2)R subalgebra of so(5)R and transforms

as a quadratic differential on C due to the twist. The vevs

φ2 := 〈Trφ2〉 (12.5)

are quadratic meromorphic differentials on C and parametrize the CB of the resulting 4d

N = 2 theory. To fully specify the space of φ2(t), we need to specify their behavior at the

punctures t = 0,∞. This can be read off by identifying the SW curve as

φ2 =
v2

t2
dt2 =

(
Λ2

t3
+
u

t2
+

Λ2

t

)
dt2 , (12.6)

from which follows that φ2 has poles of order 3 at both punctures. The corresponding Higgs

field φ has a pole of order 3
2 at each puncture. Since this is higher-order singularity than a

simple pole of order 1, it is called as an irregular singularity of the Higgs field. Thus, the 4d
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Figure 12.2: Rotation of the branes in the Hanany-Witten setup, which results in breaking
N = 2 to N = 1 supersymmetry. Again we show the construction for su(2) pure SYM.

pure su(2) N = 2 SYM is constructed by compactifying the 6d A1 (2, 0) theory on a sphere

with two irregular punctures where the Higgs field has a pole of order 3
2 at each puncture.

Now, to reach the 4d N = 1 SYM theory, we would like to deform the 4d N = 2 SYM

theory by the superpotential discussed in the previous subsection. In the Type IIA brane

construction, this corresponds to rotating one of the NS5 branes in two of the transverse

directions denoted by a complex coordinate w [52, 138, 176]. The µ → ∞ limit which leads

to the 4d N = 1 SYM theory is obtained when the NS5 brane has been completely rotated.

See figure 12.2.

To achieve this deformation from the point of view of the 6d A1 (2, 0) theory, we start

by choosing an so(2)w inside so(3)R which corresponds to choosing an operator Trϕ2 inside

TrΦ2 which is charged only under so(2)w subalgebra of so(5)R. Then we turn on vevs

ϕ2 := 〈Trϕ2〉 , (12.7)

which are meromorphic functions on C. Since Trϕ2 is charged under so(3)R, its vevs break

the N = 2 R-symmetry in 4d, and hence the resulting theory only has 4d N = 1 supersym-

metry. The asymptotic values of the Higgs field3 ϕ are

ϕ ∼ µV as t→∞

ϕ ∼ c as t→ 0
, (12.8)

3Notice that the Higgs field ϕ is a function on C, while the Higgs field φ is a 1-form.
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where c is a constant and V is a Higgs field defined via

V
dt

t
= φ . (12.9)

Thus ϕ has a singularity only at t = ∞ but not at t = 0, which encodes the fact that we

are “rotating” the puncture at t =∞ but not the puncture at t = 0.

Turning on vevs for Trφ2 and Trϕ2 also turns on vevs for operator Trφϕ sitting inside

TrΦ2, which is charged under both so(2)R and so(2)w. The vevs

(φϕ)2 := 〈Trφϕ〉 (12.10)

are meromorphic 1-forms on C due to the topological twist.

The SW curve can now be transformed to an “N = 1 curve” specified by

v2dt
2

t2
= φ2

w2 = ϕ2

vw
dt

t
= (φϕ)2

(12.11)

with (t, v, w) ∈ C∗×C×C, which is a 2-fold cover of the UV curve C. In particular, the last

equation in the above set of equations combines the double covers associated to v and w into

a single double cover. This equation can be imposed because φ and ϕ are simultaneously

diagonalizable and hence Tr(φϕ) defines a consistent profile for vw dt
t .

It turns out that the set of equations (12.11) is consistent only for two values of the CB

parameter u [136]. To see this, we first write down the most general form of w2 compatible

with the boundary condition (12.8)

w2 = µ2Λ2t+ c . (12.12)

Now the well-defined-ness of vw requires us to impose that the product of (12.4) and (12.12)

is a perfect square, that is

v2w2 =

(
Λ2t2 + ut+ Λ2

)(
µ2Λ2t+ c

)
t

=
P 2(t)

Q2(t)
. (12.13)
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t =∞ t = 0

v :

t =∞

w :

Figure 12.3: The figure displays the sheet structures of v-curve and w-curve over the UV
curve C with the coordinate t. A star denotes a singular point where the corresponding
curve escapes to infinity, × denotes a non-singular branch-point, and the dashed lines denote
branch cuts.

Keeping Λ fixed, the only way to achieve the perfect square condition is by requiring

c = 0

u = ±2Λ2
. (12.14)

Thus, we rediscover that after a rotation only two vacua survive, which are the monopole

and the dyon points in the N = 2 CB. The N = 1 curves for these two vacua are

v2 = Λ2

(
1

t
± 2 + t

)
w2 = µ2Λ2t

vw = µΛ2(t± 1)

. (12.15)

The perfect square condition, which is equivalent to vw being well-defined, can be un-

derstood in a more topological/group-theoretical way that will be very useful for further

generalizations in later chapters. If we only consider (12.4) and (12.12), we find that in gen-

eral there are 4 values of (v, w) associated to a fixed value of t. That is, we are describing

two separate double covers v, w of the UV curve C parametrized by t. Instead, we would like

to combine these two double covers into a single double cover of C, and the combined curve

is the N = 1 curve we are after. We can represent the sheet structures of the two double

covers (12.4) and (12.12) in terms of branch points and the branch lines (i.e., branch cuts)

joining them, as shown in figure 12.3.

To combine these two double covers, we need to move the branch points and potentially

collide them such that the resulting branch structure of the two double covers is the same.

One such possible movement of branch points is shown in figure 12.4. From the point of
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t =∞ t = 0

v :

t =∞ t = 0

=

t =∞

w :

Figure 12.4: A possible movement and collision of branch points that ensures that the
branch structures of v and w curves coincide. However, as explained in the text, this branch
structure is not possible.

t =∞ t = 0

v :

t =∞ t = 0

w :

Figure 12.5: A possible movement and collision of branch points that ensures that the branch
structures of v and w curves coincide. This configuration gives rise to a consistent N = 1
curve.

view of (12.4), this movement requires that t = 0 is a root of Λ2t2 + ut + Λ2 which is not

possible for a fixed Λ, and requires us to change our starting N = 2 theory. Thus, we reject

this movement of branch points.

However, there is another possible movement of the branch points which results in the

same branch structure for the two double covers. See figure 12.5. From the point of view of

(12.4), this movement requires colliding the two branch points of Λ2t2+ut+Λ2; and from the

point of view of (12.12), this movement requires sending the branch point of (12.12) located

at finite t to be moved to t = 0. Thus, this movement enforces precisely the conditions

(12.14) which lead to the N = 1 curve (12.15).

Now, even though both the N = 1 curves (12.15) have the same structure of branch

points, they have different structure of branch lines. This can be seen easily by analyzing
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t =∞ t = 0 t =∞ t = 0

Σ+ : Σ− :

Figure 12.6: Branch-cut structure for the two N = 1 curves for su(2) SYM. The figures
show the projections of the N = 1 curves onto the UV curve (parametrized by t). The right
hand figure is related to the left by a Dehn twist. These two curves characterize the two
vacua of the theory.

the behavior of vw as t→ 0. In this limit we can write

vw = ±µΛ2 . (12.16)

So, for a fixed asymptotic value of v, the two curves have asymptotic values of w having

opposite signs. From the equation w2 = µ2Λ2t, we see that we can change the sign of

asymptotic value of w by encircling once the t = 0 point. Thus, the branch cuts of the two

N = 1 curves (seen as double covers of C) are related by a Dehn twist around the puncture

at t = 0. If we choose to represent the branch cut for the N = 1 curve (12.15) with plus

sign as in the left side of figure 12.6, then the branch cut for the N = 1 curve (12.15) with

minus sign is as shown on the right side of figure 12.6.

Taking an appropriate µ→∞ limit of (12.15) leads to N = 1 curves for the two vacua

of pure su(2) N = 1 SYM [138]. Under this limit, the following quantities are kept fixed

Λ3
N=1 := µΛ2

t̃ := µt
(12.17)

and after the limit we obtain the following N = 1 curves

v2 =
Λ3
N=1

t̃

w2 = Λ3
N=1t̃

vw = ±Λ3
N=1

. (12.18)

Notice that the structure of branch points and cuts of the above two N = 1 curves (viewed

as double covers of the t̃ plane) is exactly the same as in figure 12.6, i.e., the structure of

branch points and cuts is left unchanged in the µ→∞ limit.
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12.3 Confinement from the 6d Construction

In this subsection, we apply our results from [3], and first discuss how the group of line

operators L (12.1) is encoded in the cycles on the UV curve C. Different theories SU(2)

and SO(3)± correspond to different subgroups Λ of L. The 1-form symmetry group is then

identified with the Pontryagin dual Λ̂ of Λ. Let Ir ⊆ L be defined as

Ir = {projections of 1-cycles on the N = 1 curve Σr for vacuum r onto C} . (12.19)

Then we propose that the 1-form symmetry group Or preserved in the vacuum r can be

identified with

Or =

(̂
Λ

Ir|Λ

)
⊆ Λ̂ . (12.20)

where Ir|Λ := Ir∩Λ and a hat on top of a group denotes the Pontryagin dual of that group.

If Or is trivial, then the vacuum r is not confining. On the other hand, if Or is non-trivial

then the vacuum r is confining.

The group L in the 4d N = 2 su(2) SYM theory descends from a similar group Ẑ ' Z2

formed by dimension-2 surface operators (modulo screenings) in the 6d A1 (2, 0) theory. Let

us denote the non-trivial element of Ẑ by f , which is non-local with itself

〈f, f〉 =
1

2
, (12.21)

As proposed in [3], after compactifying on C, the set L (12.1) descends from Ẑ as shown in

figure 12.7. Compactifying f on the cycle W (which encircles both punctures) leads to the

element named W ∈ L, and compactifying f on the cycle H (which extends between the

two punctures) leads to the element named H ∈ L. The pairing (12.2) on L is obtained by

combining the pairing (12.21) on Ẑ with the intersection pairing on C.

As we discussed earlier, the various global forms of the gauge group are distinguished as

follows, where [W ] denotes the subgroup generated by W ∈ L, etc:

• SU(2) theory is obtained by choosing Λ = [W ] ⊂ L,
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t =∞ t = 0

H

W

Figure 12.7: The Wilson (W , red) and ’t Hooft (H, blue) lines in the Class S realization of
the 4d N = 2 su(2) pure SYM theories.

• SO(3)+ theory is obtained by choosing Λ = [H] ⊂ L,

• SO(3)− theory is obtained by choosing Λ = [W +H] ⊂ L.

As we deform the N = 2 theory, the sets Λ and L remain same. That is, our encoding of

Λ and L into the UV curve C should hold even after rotating one of the punctures. This

should continue to hold even as we take the limit µ→∞, with the role of C played by the

t̃-plane.

We can now study the subgroups Ir for the two vacua obtained after the deformation.

For the vacuum r = + with the plus sign in (12.15), this is encoded in the left side of figure

12.6 which depicts the projection of the corresponding N = 1 curve Σ+ onto C. Because of

the branch cut extending between the two punctures, one must go around a puncture twice

to obtain a cycle on Σ+. This cycle projects to 2W ≡ 0 ∈ L. Traveling from one puncture

to the other along one side of the branch cut, we obtain another cycle on Σ+ which projects

to H ∈ L. Thus, we find that

I+ = [H] . (12.22)

For the vacuum r = − with the minus sign in (12.15), I− is encoded in the right side of

figure 12.6 which depicts the projection of the corresponding N = 1 curve Σ− onto C. Again,

because of the branch cut, one must go around a puncture twice to obtain a cycle on Σ−

which projects to 2W ≡ 0 ∈ L. On the other hand, traveling from one puncture to the other

along one side of the branch cut, now we obtain a cycle on Σ− which projects toW +H ∈ L.



Thus, we find that

I− = [W +H] . (12.23)

From these, we readily compute for the SU(2) theory the 1-form symmetry that is preserved

in each of the vacua is
O+ ' Z2

O− ' Z2

. (12.24)

That is, both vacua r = ± are confining for the SU(2) theory. For the SO(3)+ theory, we

find
O+ ' 0

O− ' Z2

. (12.25)

That is, the monopole vacuum r = + is not confining, while the dyon vacuum r = − is

confining. For the SO(3)− theory, we find

O+ ' Z2

O− ' 0
. (12.26)

That is, the monopole vacuum r = + is confining, while the dyon vacuum r = − is not

confining. Thus, our proposal (12.20) recovers the field theory results discussed in section

12.1.

Since the branch structure (over the t̃-plane) of the N = 1 curves (12.18) in the µ→∞

limit is also described by the figure 12.6, the above results about O± remain the same even

after the µ→∞ limit.

Chapter 13
N = 1 Hitchin Systems and Confinement

13.1 Confinement, 1-form Symmetries, and Relative and Ab-
solute Theories

The vacua of distinct absolute theories agree and are thefore independent of the choice of

polarization Λ and so the vacua can be associated to the relative 4d theory. A vacuum r of

a relative theory divides line operators in L into two distinct sets: those showing perimeter

156
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law and those showing area law. The subset of line operators exhibiting perimeter law form

a subgroup Ir ⊆ L. For an absolute QFT having (genuine) line operators specified by a

polarization Λ, the subgroup Λr := Ir ∩Λ ⊆ Λ of line operators show perimeter law. Then,

the vacuum r preserves a subgroup

Or :=

(̂
Λ

Λr

)
⊆ Λ̂ (13.1)

of the 1-form symmetry group Λ̂. If Or is trivial, it is said that the vacuum r is not confining.

On the other hand, if Or is non-trivial, the vacuum r is said to be confining. Moreover, if

Or ' Zt, then t is called the confinement index of the vacuum r [72, 177].

13.2 1-form Symmetry for An−1 Class S Theories

The class of 4d theories we study in this thesis are related to 4d N = 2 theories of Class S

obtained by compactifying 6d An−1 (2, 0) SCFT on a punctured Riemann surface Cg of genus

g with arbitrary (untwisted) punctures but without any outer-automorphism twists. The

line operators L in this class of theories arise by wrapping dimension-2 surface operators

along 1-cycles of Cg. For An−1 (2, 0) theory, the dimension-2 surface operators modulo

screenings form a group Ẑ ' Zn. The group Ẑ carries a non-trivial pairing 〈·, ·〉 capturing

the non-locality between the dimension-2 surface operators. Choosing a generator f ∈ Ẑ,

this pairing can be written as

〈f, f〉 =
1

n
. (13.2)

Thus the (2, 0) theory is a relative QFT in the language of section 13.1. Its compactification

on Cg gives rise to a relative 4d N = 2 Class S theory.

Apriori, the possible ways of wrapping dimension-2 operators along 1-cycles of Cg are

described by H1(Cg, Ẑ, ∗), which is the homology group of 1-cycles (with coefficients in

Ẑ) that are allowed to end on punctures, indicated by ∗. See figure 13.1. On the other

hand, let H1(Cg, Ẑ) denote the homology group of 1-cycles (with coefficients in Ẑ) that do

not end on punctures. Clearly H1(Cg, Ẑ) ⊆ H1(Cg, Ẑ, ∗). Now, it is not possible for all
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α

α

α

α=

Figure 13.1: Top: The cycles in H1(Cg, Ẑ, ∗) are allowed to end on punctures. α denotes
some element of Ẑ. Bottom: Composition rule for cycles that end on punctures.

dimension-2 operators to end on every puncture. Given a specific puncture p of type P,

only a subgroup ZP ⊆ Ẑ of dimension-2 surface operators can end at p. So, let S be the

subgroup of H1(Cg, Ẑ, ∗) such that the coefficient α ∈ Ẑ associated to a 1-cycle in S ending

at a puncture of type P is such that α ∈ ZP . See figure 13.2. The physical interpretation

of S is the subgroup of 1-cycles that can be wrapped by the dimension-2 operators.

S is not straightforwardly identified with the group L of 4d line operators, as S also

captures flavor charges of 4d line operators but the flavor charges are not part of the data

tracked by L. The data of flavor charges is modded out by modding out certain elements of

S resulting in a projection map

π : S → L . (13.3)

The elements of S that are modded are described as follows. Consider a 1-cycle Lp encircling

a puncture p of type P. Wrapping dimension-2 surface operators along Lp we generate a

subgroup Z̄p ' Ẑ of S. Then, depending on the type P of the puncture p, a subgroup
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α

P1 P2

∈ S =⇒ α ∈ ZP1 , α ∈ ZP2

Figure 13.2: If a 1-cycle in S carrying α ∈ Ẑ ends on punctures of types P1 and P2, then
we must have α ∈ ZP1 and α ∈ ZP2 .

α ∈ Z̄P ⊆ Ẑ

=

P P

Figure 13.3: A 1-cycle surrounding a puncture of type P and carrying α ∈ Z̄P ⊆ Ẑ is
trivial in L.

Z̄P,p ⊆ Z̄p ⊆ S is modded out where Z̄P,p ' Z̄P and Z̄P is a subgroup of dimension-2

operators Ẑ. See figure 13.3.

The pairing on L can be determined in terms of pairing on Ẑ and the intersection pairing

of 1-cycles. First of all, combining these two pairings we obtain a pairing on H1(Cg, Ẑ, ∗) '

H1(Cg,Z, ∗)⊗ Ẑ. For two elements a⊗ α, b⊗ β ∈ H1(Cg,Z, ∗)⊗ Ẑ the pairing is written as

〈a⊗ α, b⊗ β〉 = 〈a, b〉〈α, β〉 , (13.4)

with 〈a, b〉 determined using the intersection pairing and 〈α, β〉 determined using the pairing

on Ẑ. The above pairing is then extended by linearity to all of H1(Cg, Ẑ, ∗). Since S ⊆

H1(Cg, Ẑ, ∗), we obtain a pairing on S by simply restricting the pairing on H1(Cg, Ẑ, ∗).

Now we would like to push-forward the pairing on S to a pairing on L using the projection

map (13.3). This can only be done consistently if

〈α, β〉 = 0 (13.5)
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β ∈ Z̄P

=

P

α ∈ ZP

P

α ∈ ZP
=⇒ 〈α, β〉 = 0

Figure 13.4: A consistent pairing on L exists only if the mutual pairing between elements
of Z̄P and ZP vanishes.

for all α ∈ ZP ⊆ Ẑ and β ∈ Z̄P ⊆ Ẑ, and for all P. See figure 13.4. Thus, the well-defined-

ness of pairing on L imposes the above constraint on the subgroups ZP , Z̄P for all puncture

types P. Once this condition is satisfied, we obtain a pairing on L as a push-forward of

(13.4).

This determines L and pairing 〈·, ·〉 on L for the relative Class S theory arising from the

above compactification. As discussed in section 13.1, an absolute Class S theory arising from

this compactification chooses a maximal subgroup Λ ⊂ L such that the pairing restricted

to Λ is trivial. The 1-form symmetry of such an absolute Class S theory is Λ̂ which is the

Pontryagin dual of Λ.

13.2.1 Data Associated to Various Punctures

Let us now collect information about ZP , Z̄P for various types of punctures that can arise

in untwisted compactifications of 6d An−1 (2, 0) theory. The punctures can be divided into

two types: the regular punctures for which the N = 2 Hitchin field φ has at most a simple

pole, and the irregular punctures for which φ has higher-order poles.
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For regular punctures, it was argued in [3] that in this case we have1

ZP = 0 ⊂ Ẑ

Z̄P = Ẑ

. (13.6)

The constraint (13.5) is trivially satisfied. In other words, no element of Ẑ can end on a

regular puncture and all elements of Ẑ are trivial when inserted along a loop encircling a

regular puncture.

More interesting values for ZP and Z̄P occur for irregular punctures. For general irregular

punctures, this information about ZP , Z̄P is not known. However, this information can

be deduced using Lagrangian field theory for a special class of irregular punctures that

can be constructed using Hanany-Witten type brane constructions in Type IIA superstring

theory. Consider a brane configuration of the form shown in figure 13.5, where the following

inequalities are satisfied

n1 ≤ n− 1

n+ n2 ≤ 2n1

ni−1 + ni+1 ≤ 2ni for 2 ≤ i ≤ k − 1

nk−1 ≥ 2 .

(13.7)

At t = 0, this constructs an irregular puncture for An−1 (2, 0) theory which we call to be of

type Pn1,n2,··· ,nk .

Let us first consider a sphere with two punctures of type P0. This corresponds to the

brane configuration shown in figure 13.6. The resulting 4d N = 2 theory can be read from

the brane configuration to be pure SYM theory with gauge algebra su(n). This theory has

L ' ZWn × ZHn (13.8)
1A first-principles way to see that this must be the case is to realize the puncture as a boundary condition

of 5d N = 2 su(n) SYM theory. A surface operator of the 6d theory wrapping a loop encircling the puncture
becomes a gauge Wilson line of the 5d theory. For a regular puncture, the associated boundary condition is
such that the 5d dynamical gauge field becomes a background gauge field at the 4d boundary. Consequently,
every gauge Wilson line of the 5d theory reduces to a flavor Wilson line at the 4d boundary, which does not
contribute to L and hence Z̄P = Ẑ. ZP = 0 is now fixed by (13.5).
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NS51 NS52 NS53 NS5k−1 NS5k

n
n1

n2 nk−1

nk

−→

t = 0

Irregular Puncture of type Pn1,n2,··· ,nk

Figure 13.5: Top: k ≥ 1 parallel NS5 branes in Type IIA superstring theory with D4 branes

stretched between them. All the branes share a common 4-dimensional spacetime, and the

preserved supersymmetry is N = 2. Here, n, ni denote numbers of D4 branes. The stacks of

n D4 branes on the left and nk D4 branes on the right are semi-infinite. Bottom: If n1 < n,

then the above brane construction can be associated to an irregular puncture of An−1 (2, 0)

theory compactified on a cigar parametrized by a complex coordinate t with the puncture

being located at t = 0. This puncture is referred to be of the type Pn1,n2,··· ,nk .

with the sub-factor ZWn arising from Wilson lines and the sub-factor ZHn arising from ‘t

Hooft lines. The pairing on L is

〈Wg, Hg〉 =
1

n
, (13.9)

where Wg is a generator of ZWn and Hg is a generator of ZHn . On the other hand, as can be

seen from figure 13.7, we also have

H1(Cg, Ẑ, ∗) ' ZWn × ZHn , (13.10)

where ZWn sub-factor is generated by wrapping f ∈ Ẑ ' Zn along the cycle denoted W in

the figure 13.7, and ZHn sub-factor is generated by wrapping f ∈ Ẑ ' Zn along the cycle
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NS5 NS5

n
P0 P0

Figure 13.6: The Type IIA brane construction associated to 6d An−1 (2, 0) theory com-
pactified on a sphere with 2 irregular punctures of type P0.

H

W

Figure 13.7: The generatorsW and H of 1-cycles on a 2-punctured sphere. The intersection
number between them is 〈W,H〉 = 1.

denoted H. We can read the pairing between the generators of ZWn and ZHn to be

〈W ⊗ f,H ⊗ f〉 =
1

n
. (13.11)

Matching with the gauge theory results (13.8), (13.9) we find that

L = S = H1(Cg, Ẑ, ∗) , (13.12)

which implies that for a puncture of type P = P0 the associated data is

ZP = Ẑ

Z̄P = 0 ,

(13.13)

which also trivially satisfies (13.5). In other words, every element of Ẑ can end on a type

P0 irregular puncture and no element of Ẑ is trivial, when inserted along a loop encircling

a type P0 irregular puncture.
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NS51 NS52 NS53 NS5k−1 NS5k

n
n1

n2 nk−1

nk

P0 Pn1,...,nk

Figure 13.8: The Type IIA brane construction associated to 6d An−1 (2, 0) theory com-
pactified on a sphere with 2 irregular punctures, one of type P0, and the other of type
Pn1,n2,··· ,nk .

Now let us consider a sphere with a puncture of type P0 and a puncture of general type

Pn1,n2,··· ,nk . This corresponds to the brane configuration shown in figure 13.8. The resulting

4d N = 2 theory is the following quiver

su(n2)su(n) su(n1) · · · su(nk−1) nkF
, (13.14)

where there is a bifundamental hyper for any two adjacent gauge algebras, plus nk funda-

mental hypers for su(nk−1). For nk > 0, all electric charges for all su(ni) are screened by

the fundamentals and bifundamentals. This implies that there are no magnetic charges that

are simultaneously unscreened and mutually local with all the electric charges. Thus, using

the Lagrangian description we find that

L = 0 (13.15)

for nk > 0. This implies that any element of Ẑ wrapped along the 1-cycle W must be trivial

in L. We know that this triviality does not arise at the location of P0 puncture. So it must
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be the case that for a puncture of type P = Pn1,n2,··· ,nk with nk > 0, we have

Z̄P = Ẑ . (13.16)

Moreover, for (13.15) to hold, it should not be possible to insert any element of Ẑ along the

1-cycle H. Since there are no restrictions on the elements of Ẑ that can end on a puncture

of type P0, we learn that for a puncture of type P = Pn1,n2,··· ,nk with nk > 0, we have

ZP = 0 . (13.17)

Notice that this is just as for regular punctures, and the constraint (13.5) is trivially satisfied.

Now let us consider the nk = 0 case. Before accounting for bifundamental matter the

electric charges form Zn ×
∏k−1
i=1 Zni group. Let W be the generator of Zn sub-factor and

Wi be the generators for Zni sub-factors. Accounting for the bifundamentals, we obtain the

relations Wi = W for all i. Thus, we have

gcd(n, n1, n2, · · · , nk−1)W = 0 (13.18)

and the contribution of Wilson operators to L is Zgcd(n,n1,n2,··· ,nk−1). Similarly, before ac-

counting for the bifundamental matter, the magnetic charges also form Zn×
∏k−1
i=1 Zni group.

Let H be the generator of Zn sub-factor and Hi be the generators for Zni sub-factors. The

subgroup mutually local with the bifundamentals is spanned by

n

gcd(n, n1, n2, · · · , nk−1)
H +

k−1∑
i=1

ni
gcd(n, n1, n2, · · · , nk−1)

Hi . (13.19)

Thus, the contribution of ‘t Hooft operators to L is also Zgcd(n,n1,n2,··· ,nk−1). In total, we

have

L ' ZWgcd(n,n1,n2,··· ,nk−1) × ZHgcd(n,n1,n2,··· ,nk−1) . (13.20)

From this, we read that for an irregular puncture of type P = Pn1,n2,··· ,nk−1,0, we have

ZP =

[
n

gcd(n, n1, n2, · · · , nk−1)
f

]
⊆ Ẑ

Z̄P =
[
gcd(n, n1, n2, · · · , nk−1)f

]
⊆ Ẑ

, (13.21)
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where [α] denotes the subgroup of Ẑ generated by α ∈ Ẑ. The pairing between the generators

of ZP and Z̄P is〈
n

gcd(n, n1, n2, · · · , nk−1)
f , gcd(n, n1, n2, · · · , nk−1)f

〉
= 0 (13.22)

as required by the constraint (13.5).

13.3 Rotation and N = 1 Higgs Bundles

We next discuss constructions of N = 1 theories by compactification of 6d (2, 0) theories

on a Riemann surface with a partial topological twist. This includes both general N = 1

theories, and the N = 1 theories of interest that can be obtained by deforming N = 2

theories of Class S. Along the way, we would encounter key notions of generalized Hitchin

system and N = 1 curve which characterize vacua of these N = 1 theories.

13.3.1 Topological Twists for 4d N = 2 and N = 1

Start with 6d (2, 0) theory of type g = A,D,E compactified on a Riemann surface Cg,n of

genus g, with n punctures. We want to perform a partial topological twist along C which

preserves at least 4d N = 1 supersymmetry as discussed in [147]. The global symmetries

of the 6d theory are the local Lorentz and R-symmetry so(6)L ⊕ so(5)R which are broken

to so(4)L ⊕ u(1)L ⊕ so(5)R by the background M4 × C. To preserve N = 2 supersymmetry,

we would decompose the R-symmetry as so(5)R → su(2)R⊕ u(1)1 and twist u(1)L by u(1)1.

For a more general twist that in general preserves N = 1 supersymmetry, we further reduce

su(2)R to u(1)2 and both u(1)1 and u(1)2 are used to twist u(1)L. The supercharges Q and

scalars2 Φ decompose as

so(6)L ⊕ so(5)R → (so(4)L ⊕ u(1)L)⊕ (u(1)1 ⊕ u(1)2)

Q : (4,4) → ((2,1)+1 ⊕ (1,2)−1)⊗ (1++ ⊕ 1+− ⊕ 1−+ ⊕ 1−−)

Φ : (1,5) → 10 ⊗ (12,0 ⊕ 1−2,0 ⊕ 10,2 ⊕ 10,0 ⊕ 10,−2) .

. (13.23)

2These scalars are not genuine local operators in the 6d (2, 0) SCFT, but the Casimirs built out of these
scalars are genuine local operators in the 6d theory.
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The twists giving N = 1 supersymmetry are parametrized by an integer parameter α which

sets the charge qtw of the preserved diagonal combinination of the three u(1) factors

qtw = qL + (1− α)q1 + αq2 . (13.24)

For α = 0, 1, we recover the usual N = 2 twist. For other values of α, only 4 supercharges

are preserved and hence the twist is N = 1. It should be noted that one can obtain N = 1

supersymmetry from the N = 2 twist, as we discuss below.

The scalars Φ of the 6d theory transform with charges qtw = ±2(1 − α),±2α, 0. The

twisted scalars carrying charges ±2α and ±2(1−α) are sections of two line bundles L1 and

L2 with

deg(L1) + deg(L2) = deg(KC) , (13.25)

where KC is the canonical line bundle on C. We denote these by φ and ϕ respectively.

The above setup preserves 4d N = 1 supersymmetry for α 6= 0, 1 since the twist only

preserves a maximum of 4 supercharges. But for α = 0, 1 one can have either 4d N = 1 or

4d N = 2 supersymmetry. To understand this, without loss of generality, consider the case

α = 0, for which φ must be singular, and hence non-zero, but ϕ (which is a function on C)

can be zero or non-zero. For zero ϕ, we inherit su(2)R ⊂ so(5)R R-symmetry in 4d and thus

4d N = 2 supersymmetry. On the other hand, if ϕ is non-zero, then the su(2)R R-symmetry

is broken by the non-zero profile of ϕ, and we only obtain 4d N = 1 supersymmetry.

13.3.2 Generalized Hitchin System and Rotation of Codim-2 Defects

The profiles of φ, ϕ over C satisfy a set of BPS equations that were determined in [79] and

yield what is known as the N = 1 Hitchin system

D̄φ = D̄ϕ = 0

[φ, ϕ] = 0

F + [ϕ,ϕ∗] + [φ, φ∗] = 0 .

(13.26)

Here the star denotes conjugation and F abbreviates the field strength of a connection on C.

In this thesis, we always restrict ourselves to the special case where the Higgs fields φ and
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ϕ are diagonalizable (at each point in C), and therefore the third BPS equation in (13.26)

imposes F = 0.

The punctures on C are characterized by singularities of the two Higgs fields φ, ϕ. From

the point of view of the 6d (2, 0) theory, punctures with different singularities are identified

as different codimension-2 defects inserted along the locations of punctures. Such defects

preserve 4d N = 1 supersymmetry in general. In the standard N = 2 Class S case, we

have α = 0 and ϕ = 0. The codimension-2 defects are then characterized by singularities

of φ and preserve a mutual N = 2 supersymmetry. Now, one can “rotate” such an N = 2

codimension-2 defect to an N = 1 codimension-2 defect3 by turning on a singular ϕ at

the location of the corresponding puncture. As we will discuss in section 13.4, the second

equation in (13.26) allows us to write the behavior of ϕ near the defect, placed at t = 0, as

ϕ ∼
m∑
k=0

rk
tbk
φkζ , (13.27)

where φζ is the contraction of φ with a holomorphic vector field ζ that is non-singular at

t = 0, and bk ∈ Z. Let the most singular piece of φζ be of order t−q for some q > 0. Let

S = {k ∈ {0, 1, 2, · · · ,m} : bk + kq > 0} . (13.28)

The terms in the sum (13.27) that correspond to k ∈ S capture the singular pieces of ϕ

near p. Consequently, rk for k ∈ S are interpreted as deformation parameters rotating the

codimension-2 defect. We refer to a puncture associated to a rotated codimension-2 defect

as a rotated puncture.

13.3.3 Rotation of a 4d N = 2 to a 4d N = 1 Theory

Consider a situation in which all the punctures on C are rotated punctures. If we replace

all the rotated punctures by their unrotated versions, and take a zero area limit of C, then

we obtain a (not necessarily conformal) 4d N = 2 Class S theory which is UV complete in
3It is also possible that the resulting defect actually preserves an N = 2 supersymmetry but it would

be a different N = 2 supersymmetry than the N = 2 supersymmetry preserved by the unrotated defect.
That is, in such a situation, inserting both the rotated and unrotated defects would only preserve N = 1
supersymmetry.
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4d. In a similar way, from the original situation having rotated punctures, one would want

to obtain a UV complete 4d N = 1 theory by taking the zero area limit of C. For small

non-zero area A, the compactified 6d system can be described at energy scales E � 1/A

by 4d N = 2 Class S theory deformed by rotation parameters rk ∈ S coming from each

puncture, defined at a cutoff scale 1/A. In general, these parameters may contain relevant,

marginal and irrelevant deformation parameters of the 4d N = 2 Class S theory. If all the

deformation parameters are relevant or marginal, then one can consistently take a zero area

limit, thus lifting the cutoff and obtaining a UV complete 4d N = 1 theory which is defined

as relevant and marginal deformation of the initial 4d N = 2 Class S theory. However, on

the other hand, if any of the rotation parameters is irrelevant, then one runs into the usual

issues of non-renormalizability and it is not clear if the zero area limit can be consistently

taken, and if it can be taken then what the resulting 4d N = 1 theory is. Irrespective of

these subtleties, we can still study the confinement properties of the 4d N = 1 theory with

a cutoff imposed by the area of C, as it is not impacted by the cutoff and the precise details

of 4d UV completion (if it exists). We will study examples of both kinds of situations later.

In either case, different profiles on C of φ, ϕ satisfying the generalized Hitchin equations

(13.26) (for a fixed structure of singularities) characterize different 4d vacua. For a 4d N = 2

Class S theory, we have ϕ = 0 and the various profiles of φ form a moduli space which can

be identified with the Coulomb branch (CB) of vacua of the 4d N = 2 theory. After an

N = 1 rotation which switches on a non-zero ϕ, only a subset of profiles of φ satisfy the

second condition in (13.26). This means that the CB vacua corresponding to other profiles

of φ are lifted by the N = 1 deformation, and the CB vacua corresponding to the profiles of

φ that satisfy (13.26) remain as vacua of the resulting 4d N = 1 theory (which may have a

UV cutoff as discussed above). It should be noted that there can also be other vacua arising

from the Higgs branch of the unrotated 4d N = 2 theory, which we do not study here.
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13.4 The N = 1 Curve

13.4.1 Spectral Curve

To a generic-enough profile of diagonalizable φ, ϕ satisfying (13.26), one can associate an

N = 1 curve which lives in L1 ⊕ L2 and is an N -sheeted cover of C. We start by picking

two generic meromorphic sections ζ and η of L−1
1 and L−1

2 respectively. The contractions

φζ ≡ φ(ζ) , ϕη ≡ ϕ(η) (13.29)

are meromorphic functions on C. By the second equation in (13.26), the Higgs fields ϕη and

φζ commute. If at generic points on the curve C the eigenvalue spectrum of φζ and ϕη are

distinct, then each Higgs field can be expressed as a polynomial of the other Higgs field

ϕη = R(φζ) =
∑
k

rk(t)φ
k
ζ

φζ = S(ϕη) =
∑
k

sk(t)ϕ
k
η .

(13.30)

By the first BPS equation in (13.26) the coefficient functions rk, sk are meromorphic func-

tions on the compact curve C. We diagonalize (13.30) and find

w = R(v) =
∑
k

rk(t)v
k

v = S(w) =
∑
k

sk(t)w
k ,

(13.31)

solved by pairs of eigenvalues (w, v) of (ϕη, φζ).

The above pairing of eigenvalues allows us to combine the spectral covers associated to

ϕη, φζ into a single N -sheeted cover Σ ⊂ L1 ⊕ L2 of C known as the N = 1 curve. In more

detail, the two characteristic equations4

det(v − φζ) = 0

det(w − ϕη) = 0
(13.32)

for ϕη and φζ define two spectral covers

P(v) =
∑
l

pl(t)v
l = 0 , Q(w) =

∑
l

ql(t)w
l = 0 . (13.33)

4To write down the characteristic equations, we represent φζ , ϕη as matrices acting in the fundamental
representation, vector representation, 27, 56 and 248 for the Lie algebras An, Dn, E6, E7 and E8 respectively.
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The coefficients pl, ql are again meromorphic functions. Each spectral curve (13.33) is an

N -sheeted covering of C with the number of sheets N depending on the type g = A,D,E of

the (2, 0) theory. Consider the monodromy of the N sheets of P(v) around a branch point

p ∈ C or around a cycle C ∈ H1(C), which is given by some element of the permutation

group SN permuting the N sheets. Now, the monodromy of Q(w) around p or C must be

the same as the sheets (which are described by the eigenvalues) of P(v) and Q(w) are paired.

Thus, the monodromies of P(v) must match the monodromies of Q(w). Furthermore, the

pairs (v, w) define a combined N -fold cover Σ̃ ⊂ OC ⊕ OC of C whose monodromies match

the monodromies of P(v) and Q(w). The N = 1 curve Σ ⊂ L1 ⊕ L2 is then identified as

the N -sheeted cover of C spanned by pairs (vζ−1, wη−1). The N = 1 curve Σ can also be

thought of as being cut out by

det(λ− φ) = 0 , det(σ − ϕ) = 0 , det(λσ − φϕ) = 0 , (13.34)

where λ ∈ L1 and σ ∈ L2.

In conclusion, for each vacuum r of a 4d N = 1 theory that can be characterized by

profiles φr, ϕr of N = 1 Higgs fields satisfying at least one of the equations5 (13.31), we can

associate a curve Σr ⊂ L1 ⊕ L2 which is an N -fold cover of C.

13.4.2 Algorithm for Determining the N = 1 Curve

In this thesis, we focus on the study of the N = 1 curves with α = 0 with ϕ 6= 0, and in

particular those cases which can be understood as “rotations” of standard N = 2 Class S

setups. For these cases, we provide an algorithm to determine the N = 1 curves for those

vacua of the N = 1 theory (obtained after rotation) that arise from the N = 2 Coulomb

branch:

1. Unrotated Theory: Choose an N = 2 Class S theory (which need not be conformal)

by specifying the singularities of φ at the locations of punctures. We can determine

the profile of φ away from the punctures by using holomorphicity. Different profiles
5Later, we will see an example where only one of the two equations in (13.31) is satisfied, but not both.
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of φ parameterize Coulomb branch of N = 2 vacua, and the Seiberg-Witten (SW)

curve associated to each vacuum is obtained by inserting the corresponding profile of

φ into the characteristic equation det(λ−φ) = 0. The SW curve is an N -sheeted cover

P(λ) = 0 of the UV curve Cg,n.

2. Rotation: Fix the singularities of ϕ at each puncture p. This can be done by specifying

r
(p)
k and b(p)k arising in (13.27) for k ∈ S. This determines the deformation parameters

used to deform the Class S N = 2 theory chosen above. Write down the generic mero-

morphic profile of ϕ having singularities determined by the above imposed boundary

conditions. This generic profile determines another N -sheeted cover Q(w) = 0 of Cg,n

via the characteristic equation det(w − ϕ) = 0.

3. Topological Factorization: Determine all possible topological degenerations by moving

and colliding the branch points of both the N -sheeted covers P(λ) and Q(w) of C,

such that the monodromies for P(λ),Q(w) match after the degeneration. Each such

topological degeneration determines a potential factorization of the discriminants of

P(λ),Q(w) as N -sheeted covers of C.

4. “Holomorphic” Factorization: After determining all possible topological degenerations

for which monodromies of P(λ),Q(w) match, one needs to check that the correspond-

ing potential factorizations of the discriminants of P(λ),Q(w) are realizable without

changing the singularities of φ, ϕ which defined the parent N = 2 theory and its N = 1

rotation. If this is possible, then one also needs to check that all the monodromies

are as determined by the topological degeneration. If the monodromies also match,

then the CB moduli for which the factorization is possible determine a vacuum of the

descendant N = 1 theory. It is possible that one finds multiple possible choices of CB

parameters for a fixed topological degeneration leading to multiple N = 1 vacua whose

corresponding N = 1 curves have the same set of branch points and monodromies.

However, the branch lines connecting the branch points for these different vacua might
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be topologically distinct from each other. This difference reflects in the difference of

the images of the map (13.36) for these different vacua, that we discuss in the next

subsection.

13.5 Confinement from the N = 1 Curve

Consider a relative 4d N = 1 theory that has been obtained as a rotation of a relative 4d

N = 2 Class S theory of above type. We propose that the defect group L of line operators

remains invariant under the rotation. Thus, L for the resulting 4d N = 1 theory is the same

as for the 4d N = 2 theory determined in section 13.2.

Consider a vacuum r of the 4d N = 1 theory that descends from a Coulomb branch

vacuum of the parent 4d N = 2 theory. As we discussed in the previous subsection, if

certain conditions are met, we can associate to this vacuum r an N = 1 curve Σr ⊂ T ∗C×C

which is an N -fold cover of C characterized by a projection map

πr : Σr → C . (13.35)

We can use this map to define a pushforward map

πr∗ : H1(Σr, Ẑ, ∗)→ H1(C, Ẑ, ∗) (13.36)

from 1-cycles on Σr (that are allowed to end on punctures) to 1-cycles on C (that are allowed

to end on punctures). We further argue (see below) that the line operators Ir ⊆ L that

exhibit perimeter law can be identified with

Ir = π∗

(
S ∩ πr∗

(
H1(Σr, Ẑ, ∗)

))
, (13.37)

where π is the projection map from S to L defined in (13.3), and π∗ is the associated

pushforward.

As discussed in section 13.1, an absolute 4d N = 1 theory specifies a polarization Λ ⊂ L,

and then the preserved 1-form symmetry group Or for this absolute theory in the vacuum

r is determined to be

Or =

(̂
Λ

Λr

)
, (13.38)
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where Λr := Ir ∩ Λ.

Our argument for (13.37) is a generalization of the argument appearing in [52] where

confinement for N = 1 SYM was studied in this setup, which can be understood as a

compactification of M-theory as follows. We can realize a CB vacuum of the 4d N = 2

Class S theory before rotation as M-theory compactified on T ∗C with M5-branes wrapping

a curve Σ ⊂ T ∗C, which is identified as the SW curve for that vacuum. Σ is an n-fold

cover of C under the projection map T ∗C → C and is cut out by the characteristic equation

det(λ − φ) = 0, where φ is the N = 2 Higgs field discussed above and λ is a coordinate

along the fiber of T ∗C. Once we rotate the N = 2 theory to N = 1, then a vacuum r of the

resulting N = 1 theory is realized by M5-branes wrapping a curve Σr ⊂ T ∗C × C, which is

identified as the N = 1 curve associated to that vacuum. The projection of Σr to T ∗C is

cut out by the characteristic equation det(λ − φ) = 0 and the projection of Σr to C is cut

out by the characteristic equation det(w−ϕ) = 0, where ϕ is the other Higgs field discussed

above and w is a coordinate along C.

To study confinement, we study the charges of confining strings in this setup. The

confining strings are realized by compactifying M2-branes along 1-cycles of Y = T ∗C×C. A

crucial addition to the argument of [52] is that we need to also include 1-cycles in Y whose

projections onto C contain 1-cycles included in H1(C,Z, ∗) (see section 13.2) which end at

punctures of C. After including such 1-cycles we obtain a homology group H1(Y,Z, ∗),

which is isomorphic to H1(C,Z, ∗) under the projection map. Thus, as a first step, the

possible charges of confining strings are characterized by H1(Y,Z, ∗) ' H1(C,Z, ∗). Now, we

need to account for the fact that M2-branes can end on M5-branes, which implies that M2-

branes characterized by different elements ofH1(Y,Z, ∗) can be related by topological moves,

which split and join the M2-branes along the M5 brane locus Σr. All such identifications

are captured by the fact that a confining string arising from an element i∗H1(Σr,Z, ∗) ⊆

H1(Y,Z, ∗) is topologically equivalent to a trivial string and hence must have trivial charge.

Here i : Σr ↪→ Y denotes the inclusion map and i∗ denotes the associated pushforward map
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Figure 13.9: The figure shows various configurations of M2-branes wrapping 1-chains inside
M5-branes. An M5-branes is depicted as a surface, which shows a local region of Σr. In
the top-left configuration, we consider an M2 brane stretched between two punctures on Σr.
The subsequent configurations depict that we can get rid of this M2 brane by splitting it
into two by creating its end-points (shown with a black dot) on the M5 brane. Similarly,
in the bottom-left configuration, we consider an M2 brane wrapping a compact 1-cycle on
Σr. As shown in the subsequent configurations, we can get rid of this M2 brane again by
creating its end-points on the M5 brane.

which embeds the cycles of Σr into Y . See figures 13.9 and 13.10.

We can use this fact to constrain the possible charges of confining strings to lie in

H1(Y,Zn, ∗)
i∗H1(Σr,Zn, ∗)

, (13.39)

since any cycle of the form nC with C ∈ H1(Y,Z, ∗) ' H1(C,Z, ∗) lies in i∗H1(Σr,Z, ∗)

because Σ is an n-fold cover of C. In other words, at this step, the possible charges of

confining strings are characterized by modding out H1(C, Ẑ, ∗) by the image of H1(Σr, Ẑ, ∗)

under the projection map (13.35)

H1(C, Ẑ, ∗)
πr∗H1(Σr, Ẑ, ∗)

, (13.40)

where Ẑ ' Zn.



Σr :

C

Figure 13.10: The N = 1 curve Σr ⊂ Y as a covering of the UV curve C. The dashed
sheet denotes a branch cut connecting two sheets. The green and blue line segments denote
1-cycles wrapped by M2-branes and give rise to potential confining strings. The green cycle
is contained in the M5 brane locus and is of the type depicted in figure 13.9. The confining
strings associated to it are trivial and uncharged under the 1-form symmetry. The blue cycle
stretches between the sheets, is contained in Y , and is an element of the relative homology
group H1(Y,Σr). These are charged under the 1-form symmetry.

We can further reduce the set of possible charges by recalling that different punctures

allow different subgroups of Ẑ to end on them. As we discussed in section 13.2, this means

that the allowed charges of line operators take values in a subgroup S of H1(C, Ẑ, ∗). Con-

sequently, at this step, the possible charges of confining strings are characterized by

S

S ∩ πr∗
(
H1(Σr, Ẑ, ∗)

) . (13.41)

Finally, we take into account the fact that not all charges in S are independent charges of

line operators. As discussed in section 13.2, we need to mod out a subgroup of S to obtain

the true group of charges L of line operators, resulting in a projection map π : S → L.

Thus, finally the possible charges of confining strings are characterized by

L
Ir

(13.42)

with Ir given in (13.37). Once we choose an absolute theory with charges of line operators

specified by subgroup Λ ⊂ L fixing the 1-form symmetry group O = Λ̂, the confining strings

are chosen to have charges
Λ

Ir ∩ Λ
(13.43)

176



177

and the preserved 1-form symmetry group is Or ⊆ O where Or is the Pontryagin dual of

the above group formed by charges of confining strings.

Chapter 14
Confinement in 4d N = 1 SYM

In this section we consider the well studied case of 4d N = 1 su(n) SYM and determine

the 1-form symmetry groups and their spontaneous breakings in various vacua for various

global forms of the gauge group and discrete theta parameters. We do so using the ma-

chinery developed in chapter 13, and in particular using our main proposal in section 13.5

about reading off confinement from the N = 1 curve. This problem was previously studied

field-theoretically in [133] without using the modern language of 1-form symmetry and its

spontaneous breaking. We enhance their description at various points by providing explicit

results for the UV 1-form symmetry groups for various polarizations and the preserved 1-

form symmetry groups in various vacua for various polarizations. Our main purpose is to

use this example as a test ground to verify and demonstrate our more general prescription.

We begin with a Class S construction of 4d N = 2 su(n) SYM discussed in section 13.2,

where the defect group L of the theory was also discussed. We then perform a rotation

µ of the 4d N = 2 theory such that 4d N = 1 SYM is obtained as the µ → ∞ limit.

Following the algorithm of section 13.4.2, we determine various N = 1 vacua and their

corresponding N = 1 curves for finite µ. Then we use the topological structure of N = 1

curves to determine the group Ir of line operators showing perimeter law in each vacuum

r. This allows us to present our main result, i.e., the computation of the preserved 1-form

symmetry group Or in the vacuum r (for various choices of polarization Λ). These results

remain unchanged as we take the limit µ → ∞ and recover pure 4d N = 1 su(n) SYM

theory.
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14.1 N = 2 Curve and Line Operators

A Class S construction of 4d N = 2 su(n) SYM was discussed in section 13.2. It involves

compactifying 6d An−1 (2, 0) theory on a compactification manifold C which is a sphere with

two punctures, both of type P0 (see figure 13.6). As discussed there, the defect group L is

identified with the group of 1-cycles H1(C, Ẑ, ∗)

L = H1(C, Ẑ, ∗) ∼= ZWn × ZHn (14.1)

with coefficients in Ẑ ∼= Zn. The factors labelled W,H are associated with the Wilson and

’t Hooft lines of the field theory and geometrically with the 1-cycles encircling a puncture

and running between the punctures respectively, as depicted in figure 13.7 in section 13.2.

The SW curve is [175]

P(v) = Pn(v)− Λn
(
t+

1

t

)
= 0 , (14.2)

where (v, t) ∈ C×C∗ with Pn(v) = vn+u2v
n−2 + · · ·+un where uk are combinations of CB

parameters. The SW differential is λ = vdt/t. The dynamically generated scale is denoted

ΛN=2 ≡ Λ. The asymptotics of the Higgs field approaching the punctures at t = 0,∞ can be

derived from (14.2) and are taken to define the Higgs field φ profile characterizing punctures

of type P0. At the two P0 punctures t = 0,∞ the Higgs field φ = φζ(dt/t) therefore diverges

as
t→ 0 : φζ ∼

Λ

t1/n
diag

(
1, ω, ω2, · · · , ωn−1

)
+ · · ·

t→∞ : φζ ∼ Λt1/ndiag
(
1, ω, ω2, · · · , ωn−1

)
+ · · · ,

(14.3)

with the n-th root of unity ω = exp(2πi/n). We have made the choice ζ = t∂t for which the

coordinate v = λ(ζ) = x8 + ix9 has the interpretation of two flat space-time coordinates in

the weakly coupled IIA brane picture (see figure 13.6).

14.2 Constraints from Rotation

We rotate to N = 1 by turning on the Higgs field ϕ subject to the boundary conditions

t→∞ : ϕ→ µφζ . (14.4)
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The puncture at t = 0 is not rotated and ϕ is required to be regular everywhere except

t =∞. At t =∞ we therefore prescribe the asymptotics

t→∞ : ϕ ∼ µΛt1/ndiag
(
1, ω, ω2, · · · , ωn−1

)
+ · · · . (14.5)

This constitutes a boundary value problem with bulk equations given by the BPS equations

(13.26). Field theoretically, we are turning on a superpotentialW (Φ) = µ
2TrΦ2 in theN = 2

su(n) SYM theory, where Φ is an N = 1 chiral multiplet living inside the N = 2 vector

multiplet. This deformation has been studied before and one expects only those points in

N = 2 Coulomb branch to survive, where all A-cycles of the SW curve (14.2) pinch to

develop a nodal singularity. It is known that there are n such points. Thus, we expect the

existence of n solutions to (13.26) corresponding to the n points of the N = 2 CB that are

not lifted by the deformation (14.4).

Using (14.5), we deduce that

Tr ϕk = ck 2 ≤ k ≤ n− 1

Tr ϕn = nµnΛnt+ cn

. (14.6)

The above form of the Casimirs is valid over the whole sphere C for some constants ci. Thus

we can write the spectral equation det(w − ϕ) = 0 as

Q(w) = wn −
n∑
k=2

ckw
n−k − µnΛnt = 0 , (14.7)

for some constants ci.

14.3 Topological Factorization

As discussed in section 13.4, the solutions to the N = 1 BPS equations (13.26) are curves

Σr ⊂ KC ⊕ OC(0) constituting n-fold coverings of C. They are parametrized by λ,w and

combine the spectral curves of the Higgs fields φ, ϕ into a single covering. Contracting with

ζ = t∂t we equivalently study the n-fold coverings parametrized by v, w for the Higgs fields

φζ , ϕ. Crucially, the branch cut structures of the coordinates v, w are required to match as

otherwise the sheets of the spectral curves for φζ , ϕ can not be consistently combined into an
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n-fold covering. This allows us to describe a set of curves, which are topologically consistent,

thereby improving on the constraints in section 14.2. Which of these also holomorphically

satisfy the BPS-equations is then determined by computation with an ansatz derived from

the branch cut structure of the candidate curves.

We begin by deriving the generic branch cut structures for the coordinate v from the

SW curve (14.2) and for the coordinate w from the curve (14.7). The coordinate v has in

total two Zn branch cuts emanating from the punctures at t = 0,∞. The coordinate w

has a single Zn branch cut emanating from the rotated puncture at t =∞. The number of

branch points for each cover is given by the degree in t of the respective discriminants

deg∆(P, v) = 2n− 2 , deg∆(Q, w) = n− 1 . (14.8)

Here ∆(P, v) denotes the discriminant of the polynomial P with respect to the variable v.

The branch points are given by the roots of (14.8). In the generic case, the discriminants

(14.8) have isolated zeros and are associated with monodromy actions of order 2.

The SW curve is symmetric with respect to t→ 1/t and the 2n− 2 branch points come

in pairs with identical monodromy action. We denote the cyclic permutation of the n sheets

as a ∈ Sn and the transposition of the i-th and j-th sheet by bi,j ∈ Sn. The generic branch

cut structure for the coordinates (v, w) can be described as:
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v :
a

b1,2

bn−1,n

t =∞

b1,2

bn−1,n

a

t = 0

2n− 2

w :
a

b1,2

bn−1,n

t =∞
n− 1

. (14.9)

Now we implement the topological factorization condition. The CB moduli uk and

constants ck must be tuned such that the branch cut structures of v, w coincide. The n− 1

Z2-valued branch points of w must collide at t = 0 to match the Zn branch point of P(v) at

t = 0. After implementing this, the branch cut structures of v and w can be described as:

w :
at =∞

n− 1

t = 0

v :

a

2n− 2

b1,2 bn−1,n

t =∞ t = 0

(14.10)

where we have rearranged the branch cuts for v to match with branch cuts of w at t = 0

and t =∞, and we have denoted the collision of n−1 branch points by a circle surrounding
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the points. Since there are no more branch points for w, the v curve cannot have any

monodromy at t 6= 0,∞ either. Thus, we find that the 2n − 2 Z2-valued branch points of

v must collide in pairs, eliminating all branch cuts not terminating at punctures. The final

configurations for v and w are as follows:

v :
a

2n− 2

w :
a

t =∞ t = 0

t =∞
n− 1

t = 0

. (14.11)

Here we have denoted the collision of branch points by a circle enclosing them.

14.4 Holomorphic Factorization

The topology (14.11) for P(v),Q(w) constrains the coefficients uk, ck in (14.2) and (14.7).

It is known [142, 178] that the degeneration for v in (14.11) fixes the CB parameters such

that P (r)
n (v) = 2ΛnT

(r)
n (v/2Λ) with T (r)

n (x) = Tn(e2πir/2nx) where Tn is the n-th Chebyshev

polynomial of the first kind. Due to the Weyl invariance v → −v this gives in total n

physically distinct solutions. On the other hand, the degeneration for w in (14.11) fixes all

ci = 0, otherwise the n sheets for Q(w) cannot come together at t = 0. With this we find n

distinct solutions for P(v),Q(w) associated to the topological degeneration (14.11) at finite

values of µ to be

P (r)
n (v)− Λn

(
t+

1

t

)
= 0 , wn = µnΛnt (14.12)
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parametrized by r = 0, . . . , n − 1. We solve these equations for v. First, for r = 0, we find

v = Λ
(
t1/n + t−1/n

)
which follows from the properties of the Chebyshev polynomials. For

general r, we send v → ve2πir/2n followed by a coordinate transformation eπirt → t. This

gives

v = Λ
(
t1/n + ωrt−1/n

)
, (14.13)

where ω = exp(2πi/n). We can pair the n values of v with n values of w by requiring

vw = µΛ2
(
t2/n + ωr

)
. (14.14)

Overall we find
v = Λ

(
t1/n + ωrt−1/n

)
w = µΛt1/n

, (14.15)

where the n different values of t1/n parametrize the n sheets of the N = 1 curve Σr. In

total, we have n different N = 1 curves corresponding to the n different vacua of the rotated

N = 1 theory. The curves of these n vacua are related via Dehn twists. Consider the pairing

condition (14.13) near t = 0 where it reads vw = µΛ2ωr. Going between the r-th and (r+1)-

th vaccum the pairing between the sheets is cyclically permuted. From w = µΛt1/n we see

that this shift can be realized by circling once around origin. It follows that the branch cuts

of curves associated with neighbouring vacua are related by a Dehn twist and we therefore

depict the branch cut structure of the curve Σr as:

Σr :
a

t =∞

t = 0

r

ZN

. (14.16)

The v-curve becomes singular and displays double points at those points in the CB that

admit rotation (14.11). These singularities are removed in the N = 1 curve as the double

points are resolved to two points with distinct w-coordinates. The difference of the value
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for w between these points encodes the vev of glueball superfield [52,138,140]. We redefine

the coordinates to make this dimensionally manifest

v → v/Λ , w → wΛ , (14.17)

and introduce the N = 1 strong coupling scale Λ3
N=1 = µΛ2. The new coordinates (v, w)

carry charges (0, 2) under the Z2N R-symmetry and are of mass dimension (0, 3). The former

now makes the cyclic rotation between the sheets paired in (14.16) clear, as the vacua are

manifestly rotated into each other by the R-symmetry. Further we make the redefinition

v → v − t1/n and find

vn = t , wn = Λ3n
N=1t , vw = Λ3

N=1ω
r (14.18)

giving the n curves described in [175]. Taking the limit µ→∞ keeping ΛN=1 constant we

are left with 4d N = 1 su(n) SYM [138]. Crucially the branch cut structure of the associated

N = 1 curves is not altered from (14.16) which correctly captures the topology of the N = 1

curves associated with each SYM vacuum.

14.5 Line Operators and Confinement from the Curve

To discuss 1-form symmetry preserved in each of the n vacua, we need to first choose a

polarization Λ ⊂ L which determines the 1-form symmetry group Λ̂ of the absolute UV

theory. Recall that for pure su(n) SYM we have

L ' Zn × Zn . (14.19)

The two factors are generated by W and H, respectively, with the pairing

〈W,W 〉 = 〈H,H〉 = 0 , 〈W,H〉 =
1

n
. (14.20)

Let us choose Λ such that it contains Wilson line operators ikW with i ∈ {0, 1, · · · , l − 1}

where 1 ≤ k, l ≤ n are integers such that kl = n. Then the gauge group of the corresponding

absolute theory is

G = SU(n)/Zk . (14.21)
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where Zk is the order k subgroup of the center Zn of the simply connected group SU(n)

associated to the gauge algebra g = su(n). To make Λ maximal, we can add to it the line

operator lH + mW where m ∈ {0, 1, · · · , k − 1} is known as the discrete theta parameter

associated to the absolute theory. Then

Λ = [kW, lH +mW ] ⊂ L (14.22)

is the subgroup of L generated by kW and lH +mW .

The group structure of polarisation Λ can be obtained by computing the Smith normal

form of the following matrix associated to the generators of Λ

Mklm =

(
k 0
m l

)
. (14.23)

A diagonal matrix D is the Smith normal form ofMklm if we find invertible integral matrices

S, T such that if SMklmT = D. The form of D is fixed to be D = diag(d,N/d). We find

that d = gcd(k, l,m) and correspondingly

Λ ∼= Zd × Zn/d (14.24)

is the group structure of Λ.

Now we compute the line operators Ir exhibiting perimeter law in vacuum r from the

topological structure (14.16) of the associated N = 1 curve Σr. We can see that we need to

encircle a puncture n times to obtain a cycle on Σr implying that nW exhibits perimeter

law, but nW = 0 in L. On the other hand, following the branch cut, we see that H + rW

exhibits perimeter law, which is a non-trivial element of L. Thus, Ir = [H + rW ] is the

subgroup of L generated by H + rW . The intersection Λr = Ir ∩ Λ determines the line

operators of the chosen absolute theory that exhibit perimeter law and we can compute it

to be

Λr ∼= Zbr , (14.25)

where br = gcd(k,m − lr). The 1-form symmetry group Or preserved in r-th vacuum

is now given by the Pontryagin dual of Λ/Λr and crucially depends on the embedding

ιr : Λr ∼= Zbr ↪→ Zd × Zn/d ∼= Λ.
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To compute Or we denote the order d, n/d generators of Λ by F,G respectively. Then we

have the relation of bases (F,G) = DT−1(W,H). From (14.25) we find the generator of Λr

to be Br = (n/br)(H + rW ). We expand this generator as Br = prF + qrG with coefficients

(pr, qr) ∈ Zd×Zn/d. These coefficients follow in turn from (pr, qr) = (n/br)(r, 1)TD−1. The

quotient Λ/Λr is computed using the Smith normal form (SNF) of the matrix

Mr =

 d 0
0 n/d
pr qr

 SNF−−−→

 sr 0
0 tr
0 0

 . (14.26)

With this we find the 1-form symmetry group of the r-th vacuum to be

Or = Zsr × Ztr , (14.27)

where the integers sr, tr can be computed form the minors of Mr and are given by

sr = gcd
(
d,
n

d
, pr, qr

)
, tr = gcd

(
n,
npr
d
, dqr

)
. (14.28)

Note that even if sr, tr agree for two different vacua they are physically distinct if the

associated embeddings ιr : Zbr ↪→ Zd × Zn/d differ. The embedding ιr is determined by

Br ∈ Λ, that is the confining properties of two vacua r1, r2 differ if and only if Br1 6= Br2 .

Before ending with two examples we give a simplification of the formula (14.27) for the

case of d = 1 often encountered at low rank. In this case sr = 1 and from pr = 0 and

qr = n/br it follows

d = 1 : Or = Ztr (14.29)

with tr = gcd(n, n/br) = n/br = n/gcd(k,m− lr).

Example: Consider the gauge algebra su(4). There are seven different choices for the

spectrum of line operators [133]

SU(4) : Λ = Z4 = [W ]

SU(4)/Z2 :

{
SO(6)+ : Λ = Z(1)

2 × Z(2)
2 = [2W, 2H]

SO(6)− : Λ = Z4 = [W + 2H]

SU(4)/Z4 :



(
SU(4)/Z4

)
0

: Λ = Z4 = [H](
SU(4)/Z4

)
1

: Λ = Z4 = [W +H](
SU(4)/Z4

)
2

: Λ = Z4 = [2W +H](
SU(4)/Z4

)
3

: Λ = Z4 = [3W +H] .

. (14.30)
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The line operators exhibiting perimeter law in each vacuum are given by the intersection

Ir ∩ Λ and computed mod 4 for r = 0, 1, 2, 3 respectively to be

SU(4) : Ir ∩ Λ = 0, 0, 0, 0

SO(6)+ : Ir ∩ Λ = [2H], [2W + 2H], [2H], [2W + 2H]

SO(6)− : Ir ∩ Λ = 0, 0, 0, 0(
SU(4)/Z4

)
0

: Ir ∩ Λ = [H], 0, [2H], 0(
SU(4)/Z4

)
1

: Ir ∩ Λ = 0, [W +H], 0, [2W + 2H](
SU(4)/Z4

)
2

: Ir ∩ Λ = [2H], 0, [2W +H], 0(
SU(4)/Z4

)
3

: Ir ∩ Λ = 0, [2W + 2H], 0, [3W +H] .

. (14.31)

The 1-form symmetry preserved in each vacuum is given by the Pontryagin dual of the

quotient Λ/ (Ir ∩ Λ)

SU(4) : Or = Z4

SO(6)+ : Or = Z(1)
2 , Z(3)

2 , Z(1)
2 , Z(3)

2

SO(6)− : Or = Z4(
SU(4)/Z4

)
0

: Or = 0, Z4, Z2, Z4(
SU(4)/Z4

)
1

: Or = Z4, 0, Z4, Z2(
SU(4)/Z4

)
2

: Or = Z2, Z4, 0, Z4(
SU(4)/Z4

)
3

: Or = Z4, Z2, Z4, 0 .

. (14.32)

Here Z(3)
2 is the diagonal subgroup of Z(1)

2 × Z(2)
2 . The 1-form symmetries of

(
SU(4)/Z4

)
k

are cyclic permutations of each other induced by shifts of the theta angle θ → θ + 2π.

Note that the SO(6)+ theory is obtained from the SU(4) theory by gauging the Z2

subgroup of the Z4 1-form symmetry of the SU(4) theory. The resulting Z2 × Z2 1-form

symmetry thus has a mixed anomaly [179], which is captured by the Bockstein of the ex-

tension 1→ Z2 → Z4 → Z2 → 1. It would be interesting to see this anomaly from a direct

reduction starting with the 6d anomaly polynomial.



Example: Consider the gauge algebra su(12) with the polariztation Λ = [6W, 4W + 2H].

Using (14.24) we find Λ ∼= Z2×Z6. The generators of each factor are (F,G) = (6H, 4H+2W ).

There are 12 vacua labelled by r = 0, . . . , 11 and with respect to the basis F,G the generators

of Λr have the coordinates r 0 1 2 3 4 5 6 7 8 9 10 11

pr 1 1 1 1 1 1 1 1 1 1 1 1
qr 0 3 2 3 0 5 0 3 2 3 0 2

 . (14.33)

The 1-form symmetry Or preserved in each vacuum now follows from appending the columns

of (14.33) as a row to the diagonal matrix diag(2, 6) and computing the diagonal entries of

its Smith normal form. The 1-form symmetries preserved in each vacuum are isomorphic

to:

r 0 1 2 3 4 5 6 7 8 9 10 11

Or Z6 Z6 Z2 Z6 Z6 Z2 Z6 Z6 Z2 Z6 Z6 Z2

. (14.34)

The set of line operators displaying perimeter and area law differ for vacua with distinct

(pr, qr) even if their confinement indices agree. As in the previous example, there is a mixed

1-form symmetry anomaly associated to the extension 1→ Z6 → Z12 → Z2 → 1 [180].

Chapter 15
Confinement Index in the Cachazo-Seiberg-Witten Set-
up

In this section we consider another rotation of N = 2 SYM with gauge algebra g = su(n).

This rotation corresponds to turning on a generic tree-level cubic superpotential for the

N = 1 adjoint chiral multiplet living in the N = 2 vector multiplet

W (Φ) =
g

3
TrΦ3 +

µ

2
TrΦ2 . (15.1)

We also briefly discuss rotations corresponding to generic superpotentials of higher order

W (Φ) =
k∑
i=2

gi
i
TrΦi , (15.2)
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for k ≤ n, which are analyzed similarly. Properties of confinement were discussed in great

detail for the latter case by Cachazo, Seiberg, Witten in [72]. Here we concentrate mainly

on cubic superpotentials. Note that the mass dimension of gi is negative for i ≥ 4, so the

higher order superpotentials are non-renormalizable and the resulting N = 1 theory needs

a UV cutoff to be well-defined (see the related discussion in section 13.3.3).

Field theoretically the confining properties of the theory after turning on these superpo-

tentials was studied in [72], which we briefly review before turning to the main discussion

deriving these properties from N = 1 curves. Classical vacua are given by diagonal configu-

rations of Φ with eigenvalues extremizing the superpotential. Classical vacua are therefore

labelled by k − 1 integers (n1, n2, · · · , nk−1) (such that n1 + n2 + · · ·+ nk−1 = n) counting

the number of eigenvalues fixed to the k − 1 different critical points of the superpotential.

In such a vacuum the gauge symmetry is broken as

su(n) → su(n1)⊕ su(n2)⊕ · · · ⊕ su(nk−1)⊕ u(1)k−2 . (15.3)

At low energies the non-abelian factors decouple and individually confine, and the system

settles in one of n1n2 · · ·nk−1 quantum vacua, leaving an abelian gauge theory. We label

these vacua by integers (r1, r2, · · · , rk−1) where ri ∈ {0, . . . , ni − 1}. The Wilson and ‘t

Hooft lines Wi, Hi of each non-abelian factor su(ni) are identified as Wilson and ‘t Hooft

linesW,H of the initial su(n), which can be used to read the confining properties. We expect

niWi, Hi+riWi for each i to exhibit perimeter law, implying perimeter laws for niW,H+riW

for each i. Thus the set of lines exhibiting perimeter law in vacuum (r1, r2, · · · , rk−1) can

be written as

Ir1,r2,··· ,rk−1
= [H + r1W, gcd(n1, n2, · · · , nk−1, r1 − r2, r2 − r3, · · · , rk−2 − rk−1)W ] (15.4)

which is a subgroup of L ' ZWn × ZHn . The confining properties of each vacuum can

now be determined once one chooses a polarization. For instance, if one chooses the

purely electric polarization Λ = ZWn , then the 1-form symmetry group preserved in vac-
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uum (r1, r2, · · · , rk−1) is

Or1,r2,··· ,rk−1
= Zt ; t = gcd(n1, n2, · · · , nk−1, r1 − r2, r2 − r3, · · · , rk−2 − rk−1) , (15.5)

where t is known as the confinement index of the vacuum.

15.1 Constraints from Rotation to N = 1

The starting point is the Seiberg-Witten curve for g = su(n) N = 2 SYM

P(v) = det(v − φζ) = Pn(v)− Λn
(
t+

1

t

)
= 0 . (15.6)

Here φζ denotes the contraction of the Higgs field φ with the vector ζ = t∂t and Pn(v) =

vn +
∑n

i=2 uiv
n−i with the ui parametrizing the CB. Irregular punctures of type P0 are

located at t = 0,∞. The cubic superpotential (15.1) can be turned on by rotating the

puncture at t =∞ such that the Higgs field ϕ is subject to the boundary conditions

t→∞ : ϕ→ gφ2
ζ + µφζ . (15.7)

The asymptotics of the Higgs field φ at the puncture t =∞ read

t→∞ : φζ = Λt1/ndiag
(
1, ω, ω2, · · · , ωn−1

)
+ . . . , (15.8)

at the puncture t = ∞, which follows from (15.6). Here ω = exp(2πi/n). The eigenvalues

of φζ grow as Λ|t|1/n whereby those of ϕ grow as gΛ2|t|2/n as t → ∞. This restricts the

w-curve Q(w) = det(w − ϕ) = 0 to take the form

Q(w) = wn + bt2 + t

bn/2c∑
k=0

dkw
k +

n−1∑
k=0

ckw
k (15.9)

for some complex constants b, ck, dk. The boundary condition (15.7) fixes the terms of

maximal growth O(t2), i.e., the coefficients b, dn/2 or b when n is even or odd respectively.

This follows by substituting the asymptotics (15.8) into the boundary condition (15.7) and

collecting all terms of the w-curve which do not receive contributions from the lower order

terms. For even n we find

Q(w) =
(
wn/2 − gn/2Λnt

)2
+ t

n/2−1∑
k=0

dkw
k +

n−1∑
k=0

ckw
k , (15.10)
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while for odd n we have

Q(w) = wn − gnΛ2nt2 + t

(n−1)/2∑
k=0

dkw
k +

n−1∑
k=0

ckw
k . (15.11)

This form of the w-curve follows purely from the prescribed behavior of ϕ at the puncture

t = ∞. We can improve on this ansatz for even n with n1 = n2 and r1 = r2 where a

spontaneously broken R-symmetry is restored. While select, these cases display interesting

screening effects, as seen from the confinement index (15.5). We finish this section with

a discussion of this symmetry enhancement before improving on the above Ansätze by

prescribing branch points and cuts away from the punctures.

The superpotential (15.1) has two critical points associated to su(n1) and su(n2) gauge

algebras arising at low energies. The exchange of these two critical points is an R-symmetry

of the theory1 which acts on the quantum vacua by n1 ↔ n2 and r1 ↔ r2. Thus, this

symmetry is spontaneously preserved only in the vacua characterized by n1 = n2 and r1 = r2.

The symmetry changes the sign of v while leaving w invariant and we therefore expect the

eigenvalues of ϕ to come in identical pairs. The w-curve must only have double roots and

this improves the ansatz (15.10) to

Q(w) =

wn/2 − gn/2Λnt+

n/2−1∑
k=0

ekw
k

2

, (15.12)

introducing the complex constants ek. The sheets of the v-curve on the other hand must

come in pairs related by the symmetry v ↔ −v, in particular there must be an involutive

renumbering of the sheets which leaves the branch cuts structure invariant. The v-curve is

an n-fold cover of the UV curve and the w-curve is an n-fold cover which degenerated to

an (n/2)-fold cover as seen from the perfect square (15.12). We call latter as the reduced

w-curve. By the above the branch cut structure of the reduced w-curve is the Z2 quotient

of that of the v-curve.
1To see this, shift v → v − µ/2g for which we have W ′(v) = gv2 − µ2/4g. The symmetry is now

implemented by v → −v which changes the sign of the superpotential, and hence the symmetry is an
R-symmetry.
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15.2 Topological Factorization

We begin by determining the ramification structure of the generic v- and w-curves from

(15.6) and (15.10) or (15.11). The v-curve has two Zn branch cuts emanating from the

punctures at t = 0,∞. Further there are deg∆(P, v) = 2n − 2 branch points terminating

Z2 branch cuts. The w curves (15.10), (15.11) have a single Zn branch cut emanating from

the rotated puncture at t =∞. The discriminant ∆(Q, w) has order

deg∆(Q, w) =

{
2n− 3 , n even and r1 6= r2 whenever n1 = n2

2n− 2 , n odd,
(15.13)

which is equal to the number of branch points terminating Z2 branch cuts. The generic

branch cut structure therefore takes the form

v :
a

b1,2

bn−1,n

t =∞

b1,2

bn−1,n

a

t = 0

2n− 2

w :
a

b1,2

bn−1,n

t =∞
n− 1

n− 2

n− 1
or

(15.14)

with n−2 and n−1 branch points not connected to t =∞ in the w-curve for n even and odd

respectively. When n is even and n1 = n2 and r1 = r2 the w-curve takes the form (15.12).

We remove the doubling up of roots by considering the (n/2)-fold cover Q1/2(w) = 0 for

which we find to have the branch cut structure:
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w :
ã

b̃1,2

b̃n/2−1,n/2

t =∞
n/2− 1

, (15.15)

where ã denotes the cyclic permutation of the n/2 sheets and b̃ij a transposition of the i-th

and j-th sheet.

We now implement the factorization condition topologically. The gauge symmetry break-

ing to su(n1) ⊕ su(n2) ⊕ u(1) demands the presence of n1 + n2 − 2 = n − 2 mutually local

massless monopoles. We need to restrict to the CB sublocus on which the SW curve degen-

erates to genus one (here ϕ can be turned on). Therefore this condition is addressed at the

level of the v-curve and met by colliding all but one pair of branch points of the v-curve,

which are related by the t↔ 1/t, at t = ±1. When n is even/odd there are three/two possi-

bilities for the number of branch points colliding in at t = ±1. This follows from considering

the limit Λ→ 0, which does not change the topology of the SW curve (or the N = 1 curve

after rotation). In this limit the dynamics of the su(ni) factors decouple and each subsector

is described by its own SW curve Pni = Pni(v)− Λni(t+ 1/t) = 0. The polynomials Pni(v)

are the Chebyshev polynomials. The discriminant of these SW curves then takes the form

∆(Pni , v) ∼ (t+ 1)2ki,−(t− 1)2ki,+ , (15.16)

where ki,− = ki,+ + 1 = ni/2 and ki,− = ki,+ = (ni − 1)/2 for even and odd ni, respectively

For example when ni = 2, 3, 4 we have ki,− = 1, 1, 2 and ki,+ = 0, 1, 1 respectively. Here

ki,± denotes the number of branch points collided at t = ±1. Naively this suggests that

a given partition n = n1 + n2 fixes the number of branch points collided at t = ±1 to

k± = k1,± + k2,±. However taking the chiral symmetry t → −t and Λn → −Λn of the

su(n) theory into account we find that for every factorization of the discriminant ∆(P, v)

characterized by (k+, k−) there must also exist one with (k−, k+) in the N = 2 CB as the
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chiral symmetry maps k+ ↔ k−. Therefore the discriminant of the rank n SW curve takes

one of the three possible forms

∆(P, v) ∼


(t+ 1)n/2(t− 1)n/2−1

(t+ 1)n/2(t− 1)n/2

(t+ 1)n/2−1(t− 1)n/2
(15.17)

for even n, while taking one of the two forms

∆(P, v) ∼

{
(t+ 1)(n−3)/2+1(t− 1)(n−3)/2

(t+ 1)(n−3)/2(t− 1)(n−3)/2+1
(15.18)

for odd n along loci of complex dimension one in theN = 2 CB at which the gauge symmetry

enhances to su(n1)⊕su(n2)⊕u(1). These loci are not irreducible in general. However, in low

rank examples with gauge algebra g = su(3), su(4) we have precisely 2, 3 such irreducible

subloci characterized by (15.18), (15.17), respectively.

When the unbroken gauge symmetry is su(n1)⊕su(n2)⊕u(1) the deformed N = 1 gauge

theory has n1n2 vacua. Each such vacuum is associated with an N = 1 curve which in turn

follows from a rotation of the v-curve described above. Different v-curves are related by

partial Dehn twists, which result from movements of branch-points on the base curve. This

follows again from studying the topology of the SW curve in the limit Λ → 0, where the

dynamics of the su(ni) factors decouple. There are ni − 1 massless monopoles associated

with each factor and correspondingly ni − 1 pairs of branch points colliding at t = ±1.

These are in correspondence with a subset of the branch points of the full su(n) theory. The

problem essentially factorizes and we can determine for each su(ni) the set of branchpoint

movements associated to different Dehn twists, and then superpose them.

We therefore need to understand the movement of the branch points for the Chebyshev

polynomials when going between the monopole points of the su(ni) SW curve via the phase

rotation v → eπi/niv. These are precisely the Dehn twists discussed in chapter 14.

Consider the v-curve preparing the rotation to the vacuum labelled (r1, r2) = (0, 0) with

the integer double (n1, n2). We have the branch cut structure
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v :
a

∞ a 0

c

1/c

bn1

bn2

bn1+1,1

bn,n1

, (15.19)

where bn1 and bn2 act via cyclic permutation on the first n1 and last n2 sheets respectively,

i.e., the central branch lines are commuting and of monodromy type Zn1 and Zn2 . The

branch lines connecting to t = c, 1/c are Z2 branch lines. For clarity we depict (15.19) once

more, now labelling the branch cuts by their monodromy subgroups

v :
Zn

∞ Zn 0

c

1/c

Zn1

Zn2

Z2

Z2

. (15.20)

From (15.19) we generate a total of n1n2 branch cut structures, labelled by integers (r1, r2),

by wrapping the Zn1 and Zn2 branch lines r1 and r2 times around the vertical equator of

the UV curve respectively. We call the move individually increasing or decreasing r1, r2 by

one a positive or negative partial Dehn twist respectively, while the move simultaneously

increasing or decreasing r1, r2 by one is referred to as an overall positive or negative Dehn

twist respectively. For instance, the (1, 0) and (0, 1) configurations respectively are
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v :
a

t =∞ a t = 0

c

1/c

bn1

bn2

bn1+1,1

bn1+1,1

v :
a

∞ a 0

c

1/c

bn2

bn1

bn1+1,1

bn1+1,1

, (15.21)

where the dotted lines depict a branch cut wrapping around the twice punctured sphere C.

Wrapping the Zni branch line ni times around the sphere the ni loops can be stacked and

trivialize, i.e., we have the equivalence of configurations (r1, r2) ∼ (r1 +n1, r2) ∼ (r1, r2 +n2)

for a given partition n = n1+n2. Therefore we restrict to the labels to run as ri = 0, . . . , ni−1

and for every partition n = n1 +n2 we therefore have n1n2 branch cut structures of the type

v :
Zn

∞ Zn 0

c

1/c

Zn1

Zn2

Z2

Z2

(r1, r2)
loops

Zn2

Zn1
. (15.22)

We turn to the w-curve. The branch points of the generic w-curve (15.14) must be moved

to match the branch cut structure of the v-curve (15.22). The v-curve has a Zn branch line

terminating at t = 0. The w-curve is therefore required to have a branch point at t = 0

similarly terminating a Zn branch line. This follows by colliding branch points on the lhs of

(15.14) at t = 0. This move is realized by setting ck = 0 in (15.10) and (15.11) improving
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the ansätze for the w-curve to

Q(w) = wn + gnΛ2nt2 − 2gn/2Λnwn/2t+

n/2−1∑
k=0

dkw
kt (15.23)

for even n and to

Q(w) = wn − gnΛ2nt2 +

dn/2e−1∑
k=0

dkw
kt (15.24)

for odd n as otherwise total ramification at t = 0 is not possible. For cases with n1 = n2

and r1 = r2 this move sets ek = 0 in (15.12) which fully fixes the curve to

Q(w) =
(
wn/2 − gn/2Λnt

)2
. (15.25)

The remaining dn/2e complex constants dk in (15.23) and (15.24) are determined, up to

discrete choices, by colliding all but a pair of the n − 2 or n − 1 branch points shown on

the rhs in (15.14) and moving the two unpaired branch points to t = c, 1/c. The former

fixes dn/2e − 2 parameters and the latter the remaining 2. For a given v-curve with branch

points at t = c, 1/c we must pick the w-curve with the same branch cut structures of this

discrete set of solutions. This finally determines the unique w-curve to a given v-curve, both

share the branch cut structure shown in (15.22). In the cases with n1 = n2 and r1 = r2 the

w-curve (15.15) however simply takes the form

0
ã

∞ r1 = r2

loops

ã

w : Zn/2
Zn/2

. (15.26)

This w-curve is the Z2 quotient of the corresponding v-curve (15.22) via identification of the

sheets related through the unbroken Z2 R-symmetry.

The N = 1 curve is now the diagonal of the v, w-curves. If both curves are given by

(15.22) the N = 1 curve is given by the n pairs (vi, wi) sweeping out its i-th sheet. For
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the cases with n1 = n2 and r1 = r2 with v-curve (15.22) and w-curve (15.26), the Z2 R-

symmetry maps the j-th sheet of the v-curve to the ̃ -th sheet where we number the sheets

as j = 1, . . . , n/2 and ̃ = n/2 + 1, . . . , n. The N = 1 curve in these cases is given by the

two sets of n/2 pairs (vj , wj) and (v̃, wj). In both cases the N = 1 curve is an n-fold cover

of the UV curve.

15.3 Line Operators, Confinement and Higher-order Superpo-
tentials

Consider the CSW N = 1 curve associated to the (r1, r2) vacuum for partition n = n1 + n2

given by

Σr1,r2 :
Zn

∞ Zn 0

c

1/c

Zn1

Zn2

Z2

Z2

(r1, r2)
loops

Zn1

Zn2
. (15.27)

We now determine, using the curve (15.27) and following the procedure of section 13.5, the

set Ir1,r2 of line operators that would exhibit perimeter law in the N = 1 vacuum described

by the curve (15.27). The central Zn1 ,Zn2 monodromy actions commute and act on a disjoint

set of sheets. Starting from a point lying along the equator and on the sheet acted upon

by the Zni action, we return to the same sheet if we go around the equator ni times. Thus

niW ∈ Ir1,r2 for i = 1, 2. Now, start from the puncture at infinity from a sheet acted upon

by the Zn1 action, and follow the Zn, Zn1 branch cuts to reach the puncture at t = 0. On

this path, one is allowed to cross the Zn2 branch cut, but not the Zn, Zn1 ,Z2 branch cuts.

Since Zn2 does not act on this sheet, one remains on the same sheet and obtains a cycle on

the N = 1 curve Σr1,r2 which projects to the cycle H + r1W on the UV curve C. Similarly,

there is a cycle on Σr1,r2 which projects onto the cycle H + r2W on C. Thus, in total,

I(r1,r2) = [n1W,n2W,H + r1W,H + r2W ] = [H + r1W, gcd(n1, n2, r1 − r2)W ] (15.28)



matching the field theory expectation (15.4).

In a similar fashion, one can study the theory deformed by a general higher-order super-

potential (15.2). This deformation can be achieved by performing the rotation

t→∞ : ϕ→
k∑
i=2

giφ
i−1
ζ . (15.29)

Consider a vacuum specified by the partition n1 + n2 + · · · + nk−1 = n and integers

(r1, r2, · · · , rk−1) with ri ∈ {0, . . . , ni − 1}. The N = 1 curve Σr1,r2,··· ,rk−1
has the fol-

lowing branch cut structure

Σr1,r2,··· ,rk−1
:

Zn

∞ Zn 0

c1

1/c1

Zn1

Znk−1

(r1, r2, · · · , rk−1)
loops

Zn1

Znk−1

· · ·
ck−2

· · ·
1/ck−2

· · ·

· · ·

, (15.30)

where dashed lines carry (in general, different) Z2 monodromies whose associated branch

cuts combine with the Zn branch line and split it into Zni branch lines with each Zni acting

on mutually different ni number of sheets. The Zni branch line wraps the sphere ri number

of times along the equator. The branch points at ci and 1/ci carry the same Z2 monodromy.

Let us study the cycles on this N = 1 curve. If we start at a point on equator and along

a sheet acted upon by the Zni line, then traversing the equator ni times brings us back to

the same sheet. Thus niW exhibits perimeter law for each i. Moreover, starting at t = ∞

along a sheet acted upon by Zni and running along the Zn branch line and Zni branch line

to reach t = 0, we obtain the cycle H + riW , which implies that the associated line exhibits

perimeter law. The full set of line operators exhibiting perimeter law can be written as

Ir1,r2,··· ,rk−1
= [H + r1W, gcd(n1, n2, · · · , nk−1, r1− r2, r2− r3, · · · , rk−2− rk−1)W ] (15.31)
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matching the field theory expectation (15.4).

Chapter 16
Confinement in Non-Lagrangian Theories

Because of the lack of available tools, confinement is typically studied only in Lagrangian

theories. The main advantage of the method outlined in this thesis part is that it allows

to study confinement for N = 1 deformations of Class S theories, which are typically non-

Lagrangian. Thus, in this section, we discuss a class of non-Lagrangian theories and apply

our method to show that they contain vacua exhibiting confinement.

We discuss an infinite class of such theories. The simplest theory in this class is related to

the famous E6 Minahan-Nemeschansky theory. More precisely, it is an N = 1 deformation

of the asymptotically conformal 4d N = 2 theory obtained by gauging an su(3)3 subalgebra

of the e6 flavor algebra of the E6 Minahan-Nemeschansky SCFT. Other examples in the

class are N = 1 deformations of the asymptotically conformal 4d N = 2 theory obtained by

gauging su(n)n flavor symmetry of the 4d N = 2 SCFT obtained by gluing n− 2 copies of

Tn trinions, or in other words, the 4d N = 2 SCFT obtained by compactifying An−1 (2, 0)

theory on a sphere with n maximal regular untwisted punctures.

The first few subsections are devoted to the n = 3 example, while the last subsection

discusses briefly the generalization to general n.

16.1 The 4d N = 2 Set-up: Sphere with three P0 Punctures

Consider compactification of 6d N = (2, 0) theory of type An−1 on a sphere with three

irregular punctures of type P0. We will refer to these theories by Pn,3, and more generally

we define

Pn,α = 6d (2,0) An−1 theory on a sphere with α irregular P0 punctures . (16.1)
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Though our interest is in the case n = 3, we keep n general in this subsection. This constructs

a 4d N = 2 theory described by a quiver of the form

TnPn,3 :

n

n n
, (16.2)

i.e., the Tn theory with its su(n)3 flavor symmetry gauged and no additional matter. For

n = 3, the T3 theory is the same as the E6 Minahan-Nemeschansky theory.

Placing the punctures at t = 0, 1,∞ the v-curve takes the form

P(v) = vn −
n−2∑
k=1

Pn−k(t)v
k

(t− 1)n−k
− Pn+3(t)

t(t− 1)n+1
= 0 , (16.3)

where the polynomials Pk(t) are polynomial of degree k. These contain

3 + 3(n− 1) +
(n− 2)(n− 1)

2
(16.4)

complex parameters with 3(n− 1) of them being the CB parameters associated to the three

su(n) gauge algebras, (n− 2)(n− 1)/2 of them being the CB parameters associated to the

Tn theory, and 3 of them being mass parameters associated to the strong-coupling scales of

the three su(n) gauge algebras which can be identified via the asymptotics

t→ 0 : φζ ∼ Λ0 t
−1/ndiag

(
1, ω, ω2, · · · , ωn−1

)
+ · · ·

t→ 1 : φζ ∼ Λ1 (t− 1)−(n+1)/ndiag
(
1, ω, ω2, · · · , ωn−1

)
+ · · ·

t→∞ : φζ ∼ Λ∞ t
1/ndiag

(
1, ω, ω2, · · · , ωn−1

)
+ · · ·

. (16.5)

From this we learn

Λn0 = (−1)n+1Pn+3(0) , Λn1 = (−1)n+1Pn+3(1) , Λn∞ =
Pn+3(t)

tn+3

∣∣∣
t=∞

. . (16.6)

Let us now turn to the study of the defect group of line operators in this 4d N = 2 theory.

Inserting the surface defect f ∈ Ẑ ' Zn along the cycles encircling the three punctures gives

rise to three line operators Wi, and inserting f along cycles stretching between the three

punctures gives rise to line operators Hij , as shown below
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∞

v :

1

0

W1

W2

W3

H32H21

H13

. (16.7)

Wi can be identified with the Wilson line associated to su(n)i and Hij can be identifed with

‘t Hooft line Hi −Hj where Hi is the ‘t Hooft line associated to su(n)i. These lines are not

independent but sum to zero

W1 +W2 +W3 = 0 , H21 +H32 +H13 = 0 . (16.8)

Thus the defect group is

L = {Wi, Hjk} / {W1 +W2 +W3 = 0, H21 +H32 +H13 = 0} . (16.9)

The pairing on these line operators is

〈Wi, Hij〉 = 1/n , 〈Wj , Hij〉 = −1/n , (16.10)

and zero otherwise. One can choose various polarizations, but we will be particularly con-

cerned with the purely electric polarization Λ = {Wi} / {W1 +W2 +W3 = 0} which corre-

sponds to choosing the global form of the gauge symmetry groups to be SU(n)i for each i.

The 1-form symmetry group for this polarization is Λ̂ ' Zn × Zn.

16.2 Rotating to N = 1: P3,3

We now deform the n = 3 version of the above discussed N = 2 theory to N = 1, which

is the theory P3,3 defined in (16.1). We do this by rotating the two punctures at t = 0,∞.

The specific form of the rotation is discussed later. This rotation is only possible at certain

points in the CB of N = 2 vacua, whose branch cut structure we first discuss. At a generic

point in the CB, the v-curve (16.3) has 12 branch points of Z2 monodromy. Thus, we can



16.2. ROTATING TO N = 1: P3,3 203

represent the branch cut structure as

∞
v :

1

0

a

b1,2

b2,3 a

b1,2 b2,3

a

b1,2

b2,3

. (16.11)

The CB vacua that survive are obtained by colliding the two sets of 6 branch points together

at t = t1, t2 with the v-curve being The v-curve after taking the above limit is written as

v3 − Λ3 (t− t1)3(t− t2)3

t(t− 1)4
= 0 . (16.12)

From this we see that all the CB parameters have been fixed, and the scale Λ and the

locations t1, t2 of collided branch points are determined in terms of Λi computed in (16.6).

There is no monodromy as one encircles the two points t1 and t2, while the three punctures

still have a Z3 monodromy. Thus the branch cut structure has to be

∞
v :

1

0

a

aa

. (16.13)

The rotation that we perform is specified by the boundary conditions

t→ 0 : ϕ→ µ0φζ

t→∞ : ϕ→ µ∞φζ .
(16.14)

The generic w-curve compatible with these asymptotics is

w3 −
1∑

k=0

c3−kw
k − d0

t
− d∞t = 0 , (16.15)
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for some complex constants c2, c3, d0, d∞. The associated branch cut structure can be dis-

played as

∞
w :

0

a

b1,2

b2,3

a

b1,2

b2,3

. (16.16)

The w-curve (16.15) has the symmetry

t↔ d0/td∞ , (16.17)

which pairs branch points of identical Z2 monodromy. To match the Z3 monodromy of the

v-curve about t = 1 we need to collide 2 branch points of the w-curve with Z2 monodromy

at t = 1. Necessarily the remaining 2 branch points collide at t = d0/d∞ ≡ d. The point

t = 1 is a branch point and necessarily fully ramified, i.e., all sheets must come together at

w = 0. Thus we require that substitution of t = 1 into the w-curve (16.15) results in the

equation w3 = 0. This implies c3 = d0 + d∞ with c2 vanishing. Further we have

t→ 0 : w3 → µ3
0v

3 = µ3
0Λ3

0/t+ . . .

t→∞ : w3 → µ3
∞v

3 = µ3
∞Λ3
∞t+ . . .

(16.18)

from which d0 = µ3
0Λ3

0 and d∞ = µ3
∞Λ3
∞ follow. The w-curves potentially matched by the

v-curve simplify to

w3 − µ3
0Λ3

0

(
1− 1

t

)
− µ3

∞Λ3
∞ (1− t) = 0 . (16.19)

The structure of this curve is determined by two disjoint branch cuts of Z3 monodromy and

takes the form

∞
w :

1

0

d

. (16.20)
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We further take the limit d = 1, which constrains the two parameters µ0, µ∞ in terms of

each other (and Λi) and the final w-curve is then

∞
w :

1

0

a

aa

. (16.21)

In equations, the w-curve becomes

w3 − µ3Λ3

(
t+

1

t
− 2

)
= 0 , (16.22)

where µ3 = −µ3
∞.

The N = 1 curve is specified by the diagonal combination of (16.13) and (16.21). The

cycles on the N = 1 curves project to Hij and 3Wi. Thus Hij show perimeter law while Wi

show area law. Thus, in the electric polarization Λ, the preserved 1-form symmetry group

in this vacuum is

O = Λ̂ ' Z3 × Z3 . (16.23)

That is, akin to the case of a vacuum of N = 1 SYM in electric polarization, no element of

the 1-form symmetry group is broken in this vacuum.

16.3 Generalizations: Pn,n

The above discussed example falls into an infinite class of theories which contain similar

confining vacua. The N = 2 theory Pn,α=n, defined in (16.1), that we begin with is obtained

by compactifying An−1 (2, 0) theory on a sphere with n irregular punctures of type P0.

Notice that the number of punctures is correlated to the type of (2, 0) theory. This N = 2

theory Pn,n can be understood as being obtained by gauging the su(n)n flavor symmetry

algebra of the 4d N = 2 SCFT Sn obtained by compactifying An−1 (2, 0) theory on a sphere

with n maximal regular punctures. Each su(n) factor in the resulting su(n)n gauge algebra
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has non-vanishing beta function such that the associated gauge couplings asymptote to zero

in the UV. Thus, the 4d N = 2 theory Pn,n under consideration asymptotes in the UV to

the 4d N = 2 SCFT Sn described above.

If we label the punctures by i ∈ {1, 2, · · · , n}, then the un-screened line operators can be

written as Wi, Hij , where Wi arises by wrapping the surface defect f along a loop encircling

the i-th puncture, and Hij arises by wrapping f along a 1-cycle going from puncture j to

puncture i. We can write the defect group as

L = LW × LH , (16.24)

such that

LW = {Wi} /
{∑

Wi = 0
}
' Zn−1

n (16.25)

and

LW = {Hi+1,i, H1n} /
{∑

Hi+1,i +H1n = 0
}
' Zn−1

n . (16.26)

The non-trivial pairings are

〈Wi, Hij〉 = 1/n , 〈Wj , Hij〉 = −1/n . (16.27)

We call the polarization Λ = LW as the electric polarization.

Let the punctures be located at t = 0,∞, 1, p1, p2, · · · , pn−3. We rotate all punctures

except the one located at t = 1 such that the asymptotics of ϕ are

t→ 0 : ϕ→ µ0φζ

t→∞ : ϕ→ µ∞φζ .

t→ pi : ϕ→ µiφζ .

(16.28)

We take specific limits of the v and w curves such that they become

vn −
Λn(t− tvn−2)n(t− tvn−1)n

t(t− 1)n+1

n−3∏
i=1

(t− tvi )n

(t− pi)n+1
= 0

wn − dn(t− 1)n−1

t

n−3∏
i=1

(t− twi )n

(t− pi)n+1
= 0 ,

(16.29)
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where Λ, tvi capture the strong coupling scales associated to su(n)n gauge algebra and d, twi

capture the rotation parameters µi. Since we have n−1 number of µi but only n−2 number

of parameters d, twi , there is a constraint the rotation parameters have to satisfy for the

vacuum described by the above solution to exist. From the above expressions, we see that

there is no monodromy around tvi for the v-curve, and there is no monodromy around twi

for the w-curve. On the other hand, there is a Zn monodromy around pi, 1, 0,∞ for both v

and w curves. Thus, we can write the branch structure of the N = 1 curve Σ as

∞
Σ :

1

0

a

aa

· · ·p1

p2

pn−3

a a
a

. (16.30)

From this curve we see that Hij show perimeter law, while Wi show area law. It should be

noted though that some combinations of Wi also show perimeter law. For example, pick a

positive integer k that divides n. Choose any set Sk comprising of k punctures. Then the

line operator
n

k

∑
i∈Sk

Wi (16.31)

shows perimeter law. In any case, since Wi show area law, this vacuum exhibits non-trivial

confinement for the electric polarization Λ = LW . The preserved 1-form symmetry group

depends on the divisors of n. If n is prime, then the preserved 1-form symmetry group is

easily computed to be

O = Λ̂ ' Zn−1
n . (16.32)

Clearly this class of non-Lagrangian confining theories deserve further investigation. In a

similar way, using the methods described in this this part, one can construct a large number

of other classes of examples of N = 1 theories that contain confining vacua.



Part IV
Final Remarks

Chapter 17
Conclusion and Outlook

In this thesis we studied two interesting construction of 4dN = 1 gauge theories in M-theory.

The first involved an ALE-fibered G2-manifold, with base M3, which engineered a partially

twisted 7d SYM theory on M3. The 4d gauge theory then followed from compactification

of the 7d theory on M3. Different BPS configurations in 7d give rise to distinct minimally

supersymmetric theories in 4d and are described by solutions to the Higgs bundle

DAφ = ∗j , D†Aφ = ρ , FA = i[φ, φ] , (17.1)

onM3 with gauge covariant connectionDA, one-form Higgs field φ and one-form and function

source terms j, ρ respectively, all ADE-valued. The metric-independent BPS equations are

equivalent to the flatness of the complex connection D = d+φ+ iA which, together with the

twisted field content, allowed us to rephrase the compactification integrals as amplitudes of

a colored supersymmetric quantum mechanics with supercharge Q = D.

Solutions to (17.1) are geometric for trivial connections DA = d and conjectured to lift

to ALE-fibered G2-manifolds1. In this setting the colored SQM was interpreted to descend

from M2-branes probing the G2-manifold. We studied the 4d physics of such solutions and

considered the Higgs bundles resulting from TCS G2-manifolds which solved (17.1) with
1These and related constructions are treated in the mathematics literature for smooth geometries in

[36, 90, 181] and exploring the mathematics of the singular ALE-fibrations discussed in this thesis is a very
interesting and fundamental open problem.

208
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j = 0. Deformations of these Higgs bundles were given by altering the sources ρ with

chirality of the final 4d spectrum depending on the topology of their support supp ρ.

The presented results suggest many interesting research directions. First, the local model

techniques laid out have potential for the analysis of a recently described family of G2-

manifolds [182]. These are described as circle bundles over hyper-conifolds with geometric

structures generalizing the Bryant-Salamon cone [51] based on theorems presented in [183].

These theories also have interesting IR duals derived from an open/closed string duality

generalizing arguments of [31]. The IR physics of these models is unexplored yet should

permit an analysis similar to the one presented in [32, 50]. Similarly interesting would be

the study of possible domain walls in such theories.

Second, local Spin(7)-manifolds, recently analysed in [117,184], also permit a description

in terms of a Higgs bundle over a four-dimensional base M4 given by

DAφSD = 0 , FSD + φSD × φSD = 0 (17.2)

with the self-dual two-form Higgs field φSD, the self-dual part FSD of the curvature F of the

gauge covariant connection DA and (φSD × φSD)ij = [(φSD)ik, (φSD)jl]g
kl/4. In this setting,

M2-brane probes were touched on in [184], but the non-perturbative aspects of matter in

the resulting 3d N = 1 theory are not fully understood. Here the SQM must map into

the signature complex of M4 and understanding its generalization is expected to yield an

additional tool for the study of these vacua.

Third, 4d theories with minimal supersymmetry can also be constructed in F-theory [11].

The Higgs bundle associated to these models is defined on a Kähler surface S

F
(0,2)
A = F

(2,0)
A = 0 , ∂̄Aϕ = ∂Aϕ̄ = 0 , ω ∧ FA +

i

2
[ϕ, ϕ̄] = 0 (17.3)

with complex (2,0)-form Higgs field ϕ and Kähler form ω. The overlap between sets of 4d

N = 1 theories engineered by (17.1) and (17.3) is unclear and determining it an interesting

open problem. Analysis of this will possibly involve a third formulation employing the
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Heterotic string, studied in [49, 185] with the above Higgs bundles replaced by the Hull-

Strominger system. Equivalently, this problem can be phrased as the problem of how Higgs

bundles map through string dualities.

The second part of this thesis studied deformations of 4d N = 2 theories to N = 1 and

derives string theoretic diagnostics for their confinement. These deformations rotate the

spectral curve of the N = 2 theory into the N = 1 curve, which is the diagonal spectral

curve of the Higgs field pair (φ, ϕ). These solve a Higgs bundle described by

∂̄Aφ = ∂̄Aϕ = 0 , [φ, ϕ] = 0 , FA + [ϕ,ϕ∗] + [φ, φ∗] = 0 , (17.4)

defined on the Riemann surface C with 1-form and 0-form Higgs fields φ, ϕ respectively

and gauge connection A. We gave a topologically motivated method for solving (17.4) and

characterized the line operators exhibiting perimeter and area law in each N = 1 vacuum

purely from the associated N = 1 curve. In particular this approach extends to non-

Lagrangian theories which we demonstrated by giving an infinite family of such theories

containing confining vacua. We further studied the interplay between punctures and line

operators. Regular punctures were found to be undetected by line operators unlike punctures

of type Pn1,...,nk . However, both types of punctures themselves did not contribute to the

one-form symmetry, i.e., the defect theory of the puncture did not have a one-form symmetry.

Again, the result presented in this thesis lead to multiple open questions. Starting with

4d N = 2 theories of class S many irregular punctures remain unexplored. These often

result from collisions and degenerations [186] of simpler punctures and understanding how

properties relating to higher form symmetries are affected by such processes is an unsolved

problem. One possible approach for analysis of such situations consists of bootstrapping

rules from Lagrangian examples. Alternatively, the geometric picture, presented in chapter

11.1, is expected to yield a more direct, top-down analysis. However, this view point is

far from fully developed and establishing the class S dictionary in terms of ALE-fibered

Calabi-Yau three-folds is a necessarily preceding and very interesting line of research. These



questions extend by rotation to the N = 1 setting discussed in part III of this thesis. We

note that we have studied a very small subset of N = 1 theories and heavily relied on class S

methods for their analysis. Taking the point of view that an N = 1 theory is defined by an

N = 1 curve together with a choice of polarization we can ask if we can extend our analysis

to a larger class of theories. For example, a simple, yet new, generalization we expect in

reach are theories for which the punctures of the w-curve are not a subset of those of the

v-curve. Another example would be N = 1 deformations of twisted D-type. This class of

theories not only exhibits 1-form symmetry but extends these to a 2-group symmetry. It is

an open problem how to extract these higher group structures from the N = 1 curve.

Many properties studied here were topological in nature and are expected to hold even

if supersymmetry is broken completely. Such configurations have been studied in [187] and

warrant further attention. Of interest are also 4d N = 1 SCFTs of the type described

in [147]. These theories, being SCFTs, do not confine, rather the interesting physics lies

in their known holographic dual description which relates to their higher form symmetries

following [68].

Finally, we also mention the study of lower dimensional theories embedded into 4d N = 1

theories, e.g., as domain wall theories [188]. Anomaly inflow for higher form symmetries

constrain the modes trapped on the domain walls [57] and using methods presented in

this text we expect to derive a string theoretic understanding of such effects whereby non-

Lagrangian set-ups become accessible.
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